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Latent Structure Models for
Ranking Data

M. A. Croon and R. Luijkx !

ABSTRACT In this paper several latent structure models for analyzing
data that consist of complete or incomplete rankings are discussed. First,
attention is given to some latent class extensions of the Bradley-Terry-
Luce model for ranking data. Next, various latent class models based on
log-linear modeling of ranking data are described. Within this latter family
of latent class models, a main distinction is made between models based on
the assumption of quasi-independence within the latent classes, and models
in which some form of association between the ranking positions is allowed
to exist within the classes. All models are applied to a real data set from a
large scale cross-national survey on political values. |

4.1 Introduction

Latent Struciure Models

Latent structure models are extensively used in the social and behavioral
sciences, and their popularity in these circles 1is easily explained. One of
the main problems with which empirical research in these sciences has to
cope pertains to the imperfect and unreliable way in which theoretically
important constructs are ‘measured’ or operationalized. Concepts such as
‘intelligence’ ‘neuroticism’, ‘group cohesiveness’,or ‘political trust’ simply
elude direct measurement, and variation among respondents on such the-
oretical constructs can only be assessed by means of imperfect 1indicator
variables. These indicator variables hopefully reflect variation on the un-
derlying theoretical concept, but are probably also influenced by a host
of other irrelevant disturbing factors. As a consequence, empirical investi-
gators in the social and behavorial sciences have long been interested In
methods by means of which the relation between underlying unobservable
latent variables and observable manifest variables can be described and
analyzed, and that is exactly what latent structure models do.

Depending upon the nature of the manifest and latent variables, many

1Faculty of Social Sciences, Tilburg University, Tilburg, The Netherlands
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different forms of latent structure models may be formulated. By way of
faclor analysis (or by means of the related technique of covariance structure
analysis) one may analyze the correlation or covariance structure among
a large number of quantitative manifest variables in terms of a relative-
ly small number of quantitative latent variables. Lafent frail models, on
the other hand, aim at the analysis of categorical (mostly dichotomous)
responses to aptitude or attitude items in terms of underlying continuous
latent traits. Finally, latent class analysis was developed to analyze the
association between qualitative variables.

Although in social and behavioral research respondents are quite often
asked to rank a given set of alternatives on a particular evaluation criterion,
no special attention has yet been paid to the problem of developing latent
structure models for ranking data. In this paper, we will describe several
latent structure models for ranking data and illustrate the usefulness of
these methods. The basic idea behind all models that we will discuss is that
a heterogeneous population of respondents may be partitioned into a small
number of homogeneous subpopulations, within each of which the choice
or ranking processes are assumed to satisfy a relatively simple model. Seen
in this way, these latent structure models are instances of finite miziure
models.

Ranking Tasks: Some Notation and Terminology

Assume that a set of n stimuli is presented to the subjects who are instruct-
ed to select and rank the m alternatives which, in their view, score highest
on the evaluation criterion defined by the investigator. Such a ranking task
will be called a ‘rank m out of n’ task. If m = n — 1, we obtain complete
rankings of the stimuli; for m < n— 1, the rankings are incomplete. In this
paper we assume that ties are not allowed in the rankings. If we denote the
alternatives by the first n integers, and arbitrary alternatives by either sub-
scripted or unsubscripted symbols as ¢, 7, k and [, the respondents’ rankings
can be represented by ordered m—tuples (41,25, -, %, ). In this m-tuple, 74
represents the alternative that occupies the first position in the ranking, i
represents the alternative that occupies the second position in the ranking,
etc. In general, 1, represents the alternative that occupies position r in the
ranking, with 1 < r < m.

The Date for Illusiraiion

All the models described in this paper will be illustrated on data ob-
tained from the cross-national survey Political Action (See [1]). In this sur-
vey respondents from five different western countries (West-Germany, The
Netherlands, the United States, Great-Britain and Austria) were asked to
select and rank their three most preferred alternatives from the following
set of eight political goals:

1. Maintain a high rate of economic growth.
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2. Make sure that this country has strong defense forces.

3. Give people more say in how things are decided at work and in their
country.

4. Ity to make our cities and countryside more beautiful.
5. Maintain a stable economy.

6. Fight against crime.

7. Move toward a friendlier, less impersonal society.

8. Move toward a society where ideas are more important than money.

In this paper only the U.S. data will be used.

The selection of these eight political goals was based on Inglehart’s the-
ory of value orientations in which a clear distinction is drawn between a
materialistic and a post-materialistic value orientation (See [8]). The mate-
rialistic value orientation is characterized by a strong concern for social and
economic stability, while the post-materialistic value orientation is mainly
concerned with the more humane, ecological and spiritual aspects of social
life. In this respect, it is clear that the political goals 1,2,5 and 6 tap the
materlalistic value orientation, whereas the remaining goals 3,4,7 and 8 tap
the post-materialistic value orientation. |

The ranking in which alternative ¢ is in the first, alternative § in the
second and alternative k in the third position will be denoted by the or-
dered triple (2, 4, k). Its observed frequency will be denoted by f;;x, and its
theoretical probability by p;;x.

For all models discussed in this paper specific FORTRAN computer pro-
grams were developed since none of the available standard packages for log-
linear and latent class analysis seemed capable of dealing 1n an efficient way
with the particular features shown by ranking data. As we shall see, the
fact that particular patterns of structural zeros emerge if one summarizes
ranking data in the form of a contingency table has to be taken into account
in a log-linear and latent class analysis of ranking data. Upon request these
program codes are available from the first author.

4.2 Latent Class Analyses Based on the
Bradley-Terry-Luce Model

The BTL choice model

Although the Bradley-Terry-Luce model (in what follows, the BTL- mod-
el, for short) was first introduced by Bradley and Terry [4] in 1952 as a
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statistical model for analyzing choices between pairs of stimull, 1ts histo-
ry seems to date back to at least 1929, when the set-theoretician Zermelo
[16] arrived at basically the same model in an attempt to develop a math-
ematically sound way to rank chess masters on the basis of the results
of round-robin tournaments. As a model for individual choice behavior,
the BTL-model was thoroughly investigated by Luce [9] in his monograph
‘Individual Choice Behavior’. Luce showed how the BTL-model may be
derived from an Aziom of Choice.

Let S denote the set of alternatives used in a choice experiment and let
R be a subset of 5: B C S. Let ¢ be an arbitrary element of R, and hence
of S. Let pr(i) and ps(i) denote the probabilities of selecting item ¢ from
either R or S, and let Ps(R) represents the probability that one of the
elements of R is selected when the entire set S of alternatives 1s presented.
Then, Luce’s choice axiom states that the choice probabilities satisfy the

following condition:

ps(i) = ps(R).pr(i)

Luce [9] showed that if a subject’s choices satisfy this choice axiom, there
exists a scale on which each alternative i has a (positive) scale value u;

stich that:

&)

pr(i) = _z_jeﬁuj

The scale values u; are uniquely defined up to multiplication by a positive
constant. In the case of a pairwise choice between alternatives 7 and 7, we
have R = {4, 7}, and, hence, if p;; denotes the probability of choosing z over
1, we have:

U;
Ug + Uj

Pij =

The BTL-model can be parametrized in another way. By defining
I; = In Ug,

we obtam:
EXP dg

pR(i) — e —————
EjER eXp a;
with —oo < a; < +o0. For pairwise choices, we have:

exp a;
exp a; + exp a;

Pij =

We will now discuss two different extensions of the BTL-model which have
been proposed in the past for the analysis of rankings.
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The BTL-model as a random ulilily model

The first adaptation starts from the well known fact that the BTL-model
is compatible with a particular random utility model as defined in [2] or
[10]. This point has been thoroughly investigated by Yellott [12, 13], but
was already signaled by Bradley [3]. The basic assumptions of random
utility models may be stated in the following way. Every time a stimulus
is presented to a subject, it elicits a subjective impression of worth or
value. The magnitude of this subjective impression may be represented by
a real number. Instead of assuming that a stimulus always elicits the same
subjective impression, one assumes that the magnitude of the subjective
impression is a random variable. Let U; represent the random variable that
corresponds to the fluctuating subjective impressions elicited by stimulus
i, Then, the probability that alternative ¢ will be chosen from set K 1s given

by
pR(z) = P?‘Ob(Ug :IEE&%U’“)
For pairwise choices we obtain
Pis = Prob(f)} 2 5'3)

The BTL-model is compatible with the random utility model in which
the random variables U; are independently distributed as extreme value
distributions with constant scale parameters, but with possibly different
location parameters. Without loss of generality, we may set the constant
scale parameter equal to one, and obtain the following expression for the

density function of the extreme value distribution for the random variable
U

f(ui} = exp[~(ui— a;)—exp (i — ai)]

for —o0 < u; < 400, and in which a; 1s the location parameter of the
distribution.
Under this interpretation of the BTL-model, one easily derives expres-
sions for the ranking probabilities in a ranking task. The probability p;, i,,
.+ ,i,. that in a ‘m out of n’ ranking task the incomplete ranking (73, 29, - - -,
im ) 18 observed is given by:

Diryizyryim = Prob(Usy 2 Uiy >+ 2 Ui, > max  Uy)
kﬁ{ilriii”':im}

Let Z = {1,2,..-,m} and define

jr — I\{ilnih'”:ir—l}

for a given ordering (31,12, -, %y ). Note that J; =Z.
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If the random variables U; follow independent extreme value distribu-
tlons, one may prove

For a ‘rank three out of n’ task, the expressions for the ranking probabilities
simplify to:

exp a; exp a;

- Pijk = T - - X
eXp a; + exXp a; + exp ag exp a; + exp dk

This expression shows that under this random utility BTL ranking model
the probability of obtaining a particular ranking such as (1, 7, k) 1s given by
the product of the probability of selecting ¢ from {1, j, k} and the probability
of selecting 7 from the set that remains after the first selection has been
made, i.e. the probability of selecting 7 from {7, k}. A similar interpretation
of ranking probabilities as products of successive selection probabilities also
applies in the general case of a ‘rank m out of n’ task.

The Pendergrass-Bradley approach

Pendergrass and Bradley [11] proposed a different extension of the BTL-
model to the analysis of rankings. In the case the subjects are required to
rank three alternatives {1, j, k}, these authors assume that the probability
of obtaining the complete ranking (¢, j, k) is proportional to the product of
the three paired comparison probabilities which are induced by the ranking:

pijk = GO pij - pik ' Pik

The proportionality constant C' is chosen so that the sum of all ranking
probabilities p;; is equal to one.

If the paired comparison probabilities satisfy the BTL-model, one may
derive

exp(2a; + a;)
Er,s;ér e}(p(Qa,. T (I,,)

Pijg =

By a,pplyin g the basic principle of this approach, we obtain for the proba-
bility that the incomplete ranking (zy, - -, 4, ) is observed in a ‘rank m out
ot n’ task the following expression:

: . — SXp (E:‘ll (n T T’)(Igr)
pil:'”:‘m - __Q-

in which ¢ is the sum of terms like exp (3" . (n — r)a;,) over all possible
incomplete rankings .
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Latent class models for lhe analysis of ranking data based on the BTL
model

For a discussion on how to obtain the maximum likelihood estimates of the
scale parameters a; under both models, and on how to test their statistical
fit, we refer to [b]. Unfortunately, application of these methods to data from
large surveys seldom results in an acceptable fit. The main reason for this
consistent negative result probably lies in the fact that these models are
unable to capture ‘differences of opinion’ in large populations, which are
usually quite heterogeneous with respect to social and political attitudes.

In an attempt to extend the applicability of the BTL-model to the anal-
ysis of rankings in large samples from heterogeneous populations, Croon
[5, 6] eveloped finite mixture models in which the BTL ranking models are
coupled with the basic assumptions of latent class models. The point of de-
parture of this approach 1s the assumption that the original heterogeneous
population from which the respondents were sampled can be partitioned
into a relatively small number of homogeneous subpopulations, the latent
classes. Each respondent is assumed to belong to exactly one of these
latent classes, but latent class membership is an unobserved variable. As-
sume that T latent classes are needed in a particular analysis and let ¢
denote an arbitrary class. The scale values of alternative 7 in latent class
t will be denoted by a;;. Let p = (¢1,---, %) be an arbitrary incomplete
ranking. If we denote the probability of obtaining ranking p in latent class
t by pp ¢, we obtain for the random utility ranking model:

m
CXP a;..¢
p ,t —— —r—— i rem————————
p Ll (E:ie.ﬂ exp a.f)

r=1

If r; denotes the propoftion of subjects belonging to latent class t., we derive

| T
Dp = § :Pp,t + Tt
=1

for the probability p, of obtaining ranking p in a random sample from the
entire population.

Similar expressions hold for the PB ranking models. For more informa-
tion on these latent class models, and on the way in which the model
parameters can be estimated by means of an E-M algorithm, we refer to

5].

An tllusiration

We give here the results of some analyses on the incomplete rankings of the
eight political goals in the US sample (N=2090). These analyses were based
on the random utility adaptation of the BTL-model. (We will not discuss
the results of the analysis using the Pendergrass-Bradley approach, which
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gave very similar results.) The number of latent classes was systematically
varied from 1 to 6. In the following table we give for each latent class num-
ber the log likelihood ratio statistic and the associated number of degrees
of freedom. By means of the log likelihood ratio one tests the hypothesis
that the model with a particular number of classes provides an accept-
able description of the data against the general alternative that the set of
ranking frequencies are multinomially distributed. This log likelihood ra-
tlo statistics is asymptotically distributed as a chi square distribution with
the corresponding number of degrees of freedom. The general formula for
computing the degrees of freedom is: n(n — 1)(n — 2) — nT', with n being
the number of alternatives and 7' the number of latent classes.

t L df

1{1073.31 328
2| 573.64 320
3| 488.08 312
41 429.74 304
| 401.78 296
6| 377.51 288

From this table we see that the value of the log likelihood statistic drasti-
cally decreases when the number of classes is increased, but, unfortunately,
even the solution with six classes fails to provide a statistically acceptable
fit to the data. Presumably, the latent class model based on this adaptation
of the BTL model still remains a much too simple model to capture the
diversity of political attitudes in the U.S. sample. Although we have cer-
tainly to reject the two-classes solution, it may be of some interest to take
a closer look at it. If Inglehart’s theory on value orientations is correct, one
expects that one of the latent classes would represent the ‘materialistic’
respondents while the other would represent the ‘post-materialists’. The

following table gives the scale values of the eight political goals in the two
classes,

Class 1 Class 2

1 -.06 —1.49
2 a7 =117
3 .00 70
4|1 —1.08 —.31
5 1.33 45
6 1.07 15
71 —1.64 .06
8 —.40 1.12
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In latent class 1, the materialistic alternatives 2, 5 and 6 score relative-
ly high, while the post-materialistic items 4,7, and to a lesser extent also
alternative 8, score low. The first latent class seems to represent the ma-
terialistic respondents. The interpretation of the second latent class as the
subpopulation of post-materialistic respondents 1s probably also quite ade-
quate since in this class the post-materialistic items 3, 7 and 8 score high,
while the matenalistic items 1, 2, and to a lesser extent alternative 6, score
low. However, note that not all items conform to the expected pattern:

e In class 1 item 1 scores too low, whereas item 3 scores too high.

e In class 2 item 4 scores too low, whereas item 5 scores too high.

4.3 Latent Class Analyses Based on a
Quasi-independence Model

Log-linear models for ranking probabilities.

In search for more flexible latent class models, a study of the log-linear
analysis of ranking data was made. For more information on the log-linear
analysis of ‘rank 3 out of n’ data, we refer to [7], but see also [12, 13] for
similar ideas.

In the case of ‘rank 3 out of n’ data, the saturated log-linear model for
the theoretical ranking probabilities p;jx > 0 (with ¢ # 5,7 # k,j # k )
may be stated in the following way: '

Inpir = u-+ui) -+ Usyg) + Usr) + Uiaei) + Yaser) + Y2a(ir) T Y123(i5k)

In this model, u 18 a normalizing constant; the terms uy, us and us represent
the main effects of the various alternatives corresponding to the first, second
and third position in the ranking; the terms wui3, 133 and uss represent
the first-order interaction effects between the ranking positions; finally,
the term ujs3 represents the second- order interaction between all ranking
positions. The first- and second- order interaction terms are only defined
for pairs and triples of distinct subscripts. Moreover, in order to obtain
an identified log-linear model, some ANQOVA-like restrictions have to be
imposed on the main and interaction effects. The basic idea behind this
log-linear model for ‘rank 3 out of n’ data is that the ranking frequencies
can be inscribed in a n X n X n contingency table whose three successive
dimensions correspond to the three positions in the incomplete rankings.
Since an alternative cannot occupy two or more different positions in the
same ranking, only the n(n—1)(n —2) cells that correspond to the possible
rankings may contain a non-zero frequency. The remaining n°—n{n—1)(n—
2) = n(3n — 2) cells necessarily contain structural zeros.
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The quasi-independence log-linear model

The quasi-independence log-linear model is obtained by assuming that all
first- and second-order interaction effects are zero. We then have

In pije = U+ ui@) + Uzg) T Us(k)

for any triple (¢, 7, k) of different subscripts. As identifying constraints we
1INpose

z U1(3) = 2“2(5) - Zua(,—) N |

1=1 =1 1=1

This model may also be written multiplicatively:

Pijk = U U() " V2(4) * V3(k)

with, as identifying constraints,

n " -
Z V1(3) = ZvZ(i) = Z'Dg(f) =1

ta=l 1=1 1=1

The concept of quasi-independence is an adaptation of the usual concept
of independence to the case of contingency tables with structurally empty
cells.

In the general case of a ‘rank m out of n’ task, we may write in terms of
the multiphecative model

m
pil:*”:im — v H Uf(ir)

r=1

with

D vy = 1
1=1

for all » = 1,...,m. The parameter v i1s a normalizing factor, which is
needed to ensure that the sum of the ranking probabilities over all feasible
rankings is equal to one.

It may be of some interest to note here that the Pendergrass-Bradley
model for ranking probabilities is a submodel of the quasi-independence
model introduced above. Under the Pendergrass-Bradley model, there exist
scale values v; such that we have Vp(s) = v; "' for all » = 1,---,m. The
random utility variant of the BTL-model for ranking data, on the other
hand, 1s a submodel of the log-linear model in which the m-th position is
independent of the configuration of the first m — 1 positions, i.e. of the
model in which all inferaction terms in which the m-th position is involved
are equal to zero.
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The latent class model based on the quasi-independence model

The quasi-independence model can easily be incorporated in a latent class
model. Assume T latent classes are needed, and let an arbitrary class be
denoted by t. The parameters v, are assumed to be specific for each class;
they will be denoted by v,(;);. As identifying constraints we impose for all

r and all #:
Tl
D vy = 1
i=1

Then, we may write for the probability of obtaining ranking (i1, --,%x) in
latent class ¢:

m
Piy,im,t = Ut]___[’ﬂr(i,.)t

r=1

in which v; is the normalizing factor for latent class t. If m; represents the
latent proportion of class ¢, we finally have:

T
pil;'”;im — Zp‘l.l,‘“,im,t ) ﬂ‘t
t==1

The E.M. algorithm for estimating the quasi-independence latent class
model

The maximum likelihood estimates of the model parameters can be ob-
tained by means of an E.M-algorithm. We will restrict ourselves to the
case of ‘rank 3 out of n’ data in our discussion of this algorithm.

The iterations of the E.M. algorithm consist of two steps:
an E(expectation)-step and a M(aximization)-step.

I. During the E-step the observed ranking frequencies f;;; are dis-
tributed over the T' classes in the following way:

fiskt = Jije X De)ije
in which the conditional probability p;j;;x 1s given by

Pijkt * T
Et Pijkt + T4

This conditional probability is computed on the basis of the provisory
values of the model parameters.

Pilijk =

2. During the M-step, the quasi-independence model is fitted, sepa-
rately in each class, to the ‘completed’ set of ranking frequencies
fijkt. This 1s done by using the Iterative Proportional Fitting Algo-
rithm. Let e;;3: denote the expected frequency corresponding to the
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observed frequency fi;r: under the quasi-independence m:ode-l. Th?se
expected frequencies are obtained by means of the following 1terative

computing algorithm:

Step 1
8 _ (s~1) fi_-i_:-i-t
85_7'2:1 = Gkt X TG
Gl
Step 2
(1) _ o) JHitt
Cijet = Cijkt (5
Chi4t
Step 3
(+2) _  (s+1) ,, Jrtrt
ikt = Cijrt X TGHD)
' ikt

We use here, and also in what follows, the + subscript to denote
summation over the corresponding subscript. So, for instance,

fi-!-—{-t — Z Z fijkt
| J#FL k¥eg

That we have to use the Iterative Proportional Fitting Algorithm in
fitting the quasi-independence model is due to the fact that this model

does not allow for an analytic solution of the maximum likelihood
optimization problem.

During each M-step, the latent proportions are also estimated again.:

C+++t
N

Tt =

An example

The following table contains the global results of some latent class analyses

based on the quasi- independence model. We have used once again the U.S.
data. |
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From a statistical point of view, only the solution with four classes is
acceptable; the solutions with a smaller number of classes all result in a
statistically unacceptable fit. In order to see in which respects these four
classes differ among themselves, we report the first-choice parameters V1(i)e
in the following table:

1 | Class1 Class 2 Class 3 Class 4

1 113 012 007 025
2 131 175 023 038
3 063 023 005 230
4 009 .000 005 .024
5 404 620 .068 168
6 241 141 878 .000
7 .008 .000 006 127
8 030 029 .009 .399
e 318 229 163 289

The second- and third choice parameters va(i)t and vg(;); showed a pat-
tern similar to that of the first-choice parameters. These results indicate
that under the quasi-independence model three slightly different ‘materi-
alistic’ classes seem to exists in the U.S.A. The first three classes are all
characterized by a strong preference of some ‘materialistic’ items, and by a
resolute rejection of the ‘post-materialistic’ political goals. The differences
between the three ‘materialistic’ classes are more difficult to interpret, and
seem to be rather item-specific. Seventy-one percent of the American sam-
ple 1s estimated to belong to one of the materialistic classes. The fourth
class probably represents the ‘post-materialistic’ subpopulation, although
some of the alternatives do not conform to the pattern that could be ex-
pected here: In this class the alternative item 4, which is a very unpopular
item in the U.S., scores too low, while the materialistic item 5, which is the
most popular item in this sample, scores too high.

4.4 Models that Allow for Association Between
Choices within the Classes

A GENERAL MODEL ALLOWING FOR ASSOCIATION
BETWEEN CHOICES

Latent class models based on a quasi-independence model do not always
lead to satisfactory results. Often models of this kind only provide a sta-
tistically acceptable fit to the data if the number of latent classes is made
large enough.
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In a search for alternative latent class models, which possibly could ex-
plain the data in terms of a smaller number of latent classes, we first consid-
ered the log-linear model which includes all first-order, but not the second-
and higher-order interaction effects. This first-order interaction model 1s
in some sense the most simple extension of the quasi-independent model.
In this section we restrict ourselves to a discussion of ranking data from a
‘rank 3 out of n’ task.

For the case of ‘rank 3 out of n’ data, the latent class model with first-
order interactions can be written as

In pijre = U+ Urgye + uag)e + sy + Yiagig)e T Yis(ak)t T U23(i k)

In this model, which we refer to as the Ag-model, latent classes differ
with respect to the main effects as well as with respect to the first-order
interaction terms. It is interesting to note that, for T' = 1, we simply obtain
the hierarchical submodel of the saturated log-linear from which all second-
order interaction terms are removed. Our limited experiences with this very
general Ag-model, however, have been quite negative for T > 2 .

We observed quite often that the final solutions under this model had
many of their parameter estimates on the boundary of the parameter space.
This was especially the case for the estimates of the first-order interaction
terms. Some rather difficult identification problems are probably involved
here.

THREE SUBMODELS WITH INVARIANT FIRST-ORDER
INTERACTION EFFECTS

since the general Ag-model did not provide an acceptable alternative to the
quasl-independence model considered earlier, we have investigated some
submodels of it. In particular, we have considered models in which the
first-order interaction terms are assumed to be the same in the various
latent classes, which may still differ with respect to main effects. In these
models the latent classes may differ with respect to the ‘popularity’ of the
items, but the pattern of association between the choices (as described by
first-order interaction terms) is assumed to be invariant over the different
classes. We first consider the most general model of this kind, the Aj-model
before discussing two interesting submodels of it. '

Model A4

For the most general model within this class, we may write for ‘rank 3 out
of n’ data: S

In pijee = up+ uigye + uagye + Usey + uiags) + U1sgr) + U23(j k)

In the following this model will be referred to as Model A;. Note that for
T" = 1 this model too 1s equivalent to the ‘no second-order interactions’
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submodel of the saturated log-linear model, and, hence, to Model Ay with
T =1 as described above.
Next, we consider two submodels of A;.

Model A,

As a first interesting submodel of A; we will consider the model for which
U12(i5) = U13(35) = U23(ij) = Uij

holds for all 4, 7. Under this model, which will be referred to as model As,
one may write

In pijkr = W Uiy + Ug(gy + Us(r) + Uij -+ Uik + Ujk

In this model only one set of invariant first-order interaction terms remains
to be estimated.

Mﬂdﬂl Ag

A second interesting submodel of A; is the model in which the First by Sec-
ond Choice, and the Second by Third Choice first-order interaction terms
are included, but not the First by Third Choice interaction terms. Hence,
for this model A3, we may write:

In pijrr = Ut + Uiy + g+ Us(k)r T Uia(ig) T U233 k)

In this model only interaction terms for pairs of consecutive positions in
the ranking are included. Note that models A; and A3 are both submodels
of model Ai, but are themselves not hierarchically related to each other.

Estimating the Paramelers by Means of an E.M. Algorithm. Let fi;x be
the observed frequency of ranking (z, j, k) and assume that T' latent classes
are needed for an analysis based either on model A;, model Ay, or model
As. Let N denote the sample size. The maximum likelihood estimates of
the parameters of the three models can be obtained by means of an E.M.
algorithm.

Fach iteration of this algorthim consists of two steps:

¢ An Expectation step during which the frequencies f;;x: with which
ranking (ijk) occurs in latent class ¢ is estimated again:

Pijkt * Tt

fijkr = Jfijrp X
ij ) Dii

with
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The probability p;;z: of observing ranking (ijk) in latent class ¢ 1s
computed on the basis of the provisory values of the parameter esti-
mates. The way in which these probabilities are computed depends

on the model under consideration.

A Maximization Step during which the maximum likelihood esti-
mates of the model are determined again on the basis of the completed
set of frequencies f;;r:. The expression for the latent proportions

1s extremely simple:

S+t
N

The estimation of the parameters of the log-linear model 1s more
involved, since one has to rely on a subordinate iterative process, such
as the Iterative Proportional Fitting Algorithm. More information on
these estimation procedures are given in the next paragraph.

me

The Iterative Proportional Fitling Algorithm for Models A1, Ao and Az with
Complete Data. We assume that the frequency fi;5; with which ranking
(ijk) occurs in class ¢ is observed. The corresponding expected frequency
will be denoted by e;;:.

For model A; the iterations of Iterative Proportional Fitting Algorithm
consist of the following 6 steps:

1.

(s+1) _ () . Jit4e

Cijkt T T Cijkt X Ty
EMEE

Q342 (a41) S
17kt _ ijkt (s+41)
C4j+i

(s43) __  (s42) . S++kt
Cijkt T = Cijpr X (542)
€3 4rt

(s+4) _  (s43) _ fij++
Ei.fkt = Cijkt x-(.s+3j-
Cij++

(s+5)  _  _(s+4) _ J+ik+
Skt = Cike X LD

tik+
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6.
J346)  _ (s48) fitk+t
8] k1 T 1kt (2+5)
Cidk+-

For Model A, the 1terations of the Iterative Proportional Fitting Algo-
rithm consist of 4 steps, the first three being identical with the correspond-
ing steps of the algorithm for the A; model. The fourth step 1tself consists
of n(n — 1) substeps, each one corresponding to a pair (¢, j) of distinct sub-
scripts. During the substep that corresponds to the pair (7, 5), the following
computations take place for all k = 1,-..,n (with k£ # ¢ and k£ # j) and for
all £:

(new) _  (old) ., _Sij
€ijht © T Cijkr X /(1)
A
(new) _ _(old) Sij
iy . o e, . X
tk_‘}t 1kt ald)
US;
(new) _ (old) Si;
€rijt © T CRist X T_(old)
| Ui(' )
with
Sii = fije+ + Firi+ + Frij+
and
old __ _(old) (old) (old)
Uii" = ijay T eigih + g

For Model Ag, the iterations of the Iterative Proportional Fitting Algo-
rithm consist of five steps, which are identical to the first five steps of the
algorithm for fitting Model A;.

In order to guarantee that the Iterative Proportional Fitting Algorithms
converge to the maximum of the likelihood function, the starting values
of the expected frequencies should satisfy the model under consideration.
The easiest way out of this problem is to set all expected frequencies e;; 1
initially equal to 1.

After convergence of the Iterative Proportional Fitting Algorithm, the
model parameters, such as (i), Ua(i)e, Us(i)e, Yi2(is), * * *, can be determined
by solving appropriate systems of linear equations in these unknowns. This
system of linear equations expresses the model parameters as functions of
the natural logarithms of the expected frequencies e;;x1.

Testing model fit. When the E.M. algorithm has converged, the hypothesis
that the model under consideration applies to the data may be tested

against the general multinomial hypothesis by means of a log likelihood
ratio test. Let p;;x be the estimate of the theoretical ranking probability
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under the particular model under consideration, and let fz:jk = N - piji
denote the corresponding expected frequency. ‘Then, the log likelihood ratic

statistic L is defined as:

where the summation runs over all triples of distinet subseripts.

If the model under consideration is true, then the log likelihood statistic is
asymptotically distributed as a chi square variate with degrees of freedom
equal to the difference between the number of Independent parameters
under both models.

In the context of latent class analysis, model tests of this kind can be
used to the test the hypothesis that the latent class model with a specified
number T of classes is true against the general multinomial hypothesis. Let
Lt denote the value of log likelihood statistic obtained by a latent class
analysis with T classes. For Model A4; the observed value of the statistic
L7 should, for n > 5, be located under a chi square distribution with
(n° — 6n% + 11n — 3) — (3n — 2)T degrees of freedom; for Model A, the
number of the degrees of freedom is given by (n® —4n?+5n—1)—(3n—2)T
if n > 5; for Model As, the number of degrees is n® — bn? +8n —(3n —2)T.

SOME RESULTS

The Results of the Ay Analyses on the U.S. Data. The U.S. ranking data
were analyzed on the basis of model As with 7' = 1 and 7" = 2. The global
results are shown in the next table.

L df

11328.523 273 .016
21248.833 251 .5627

Hence, we see that the solution with two latent classes provides an ac-
ceptable fit to the U.S. data. The next table contains the estimates of the
main effects parameters in both classes.
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Class 1 Cllass 2
? Ur1()1 U211 U3 | Ui1(d)2  Usyz U3(1)2

11 .29 05| -1.25 —2.01 —1.33

90 .69 —09| —-.60 —42 —.10
-1.29 —-.91 —12| 148 151 1.14
~1.95 —1.67 —143|-129 —.18 .30
223 149 68| 59 58 .33
2.37 257 220 —.09 -—.73 —.78
-1.59 -1.15 —48| —21 01 —.68
-79 —131 —82| 138 124 1.3

1
2
3
4
O
6
7
q

Gmat | 1.40 126 71| —-.34 —65 —.A47
Upmat | —1.40 —1.26 —71| 34 65 .47

The estimates of the latent proportions were 7, = .613 and 7, = .387.
The interpretation of these results is rather straightforward:

e The first latent class is a relatively pure ‘materialistic’ class in which
the four materialistic alternatives are rated higher than the four post-
matenalistic ones. The clear opposition between the two groups of
alternatives occurs at all three ranking positions, but it diminishes
slightly when going from the first to the third position.

o When looking at the average scale values of the materialistic and
post-materialistic alternatives in the second class, it should be clear
that this class cannot be considered as a pure ‘post-materialistic’
class. A few rather striking exceptions make such an interpretation
implausible: In this class, the post-materialistic items 4 and 7 score
much too low, while the materialistic alternative 5 scores too high.
It 18 probably safer to characterize this class as the class of persons
who value the humane and spiritual aspects of life.

A Further Analysis of the First-Order Interaction Terms. Next, we turn to
the interpretation of the interaction terms. Instead of giving the complete
8 X 8 matrix with estimated first-order interaction terms, we will report
on the results of a bilinear decomposition analysis of these terms. Assume
the first-order interaction terms u;; are inscribed in a n X n matrix U.
Since the terms u;; are undefined for the case i = j, the main diagonal of
this matrix is structurally empty. We say that the matrix U allows for a
‘Bilinear Decomposition of Rank s’ if there exist two n x s matrices X, the
left factor matrix, and Y, the right factor matrix, such that

3
Uij = E:‘Biqyjq

g=1
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holds for all 4,7 = 1, -+, n with j # i. In practice, we are Interested In the
bilinear decomposition of the lowest rank which still provides an acceptable
fit to the incomplete matrix. To this end, we determine, for successive values
of s, the decomposition of U which minimizes the following least squares

loss function:

s 2
¢ = Z (umequ)

i\j#i =1

For more information on the bilinear decomposition model and on the tech-
nical details of the estimation procedure, we refer to (7].

In the present example, the rank 1 decomposition left 50.3 % percent of
the variance of the interaction terms unexplained. For the rank 2 decom-
position, this figure decreased to 23.2 %. The next table gives the result of
the latter decomposition. -

—.60 —321 .23 —.56
~34 ~.43 |50 -.53
.67 —.66 | —.47 .07
39 181 ~.b6 .67
—.23 19| .07 —.42
-60 46 .60 —.03
27 881 87T BT
a3 071 =37 .48

1
2
3
4
i
6
7
8

From the mmformation in these coordinate matrices, one may conclude
that, to a large extent, the pattern of the first-order interaction terms is
dominated or determined by the contrast between the two types of alter-
natives, An interesting feature of this bilinear decomposition is that the
contrast between materialistic and post-materialistic alternatives shows it-
self most distinctively in the first component of the left factor matrix X,
and 1n the second component of the right factor matrix Y. It is not clear

why different components from the left and right factor matrix should be
involved in this way.

A Comparison with the Az analyses. The U.S. data were also analyzed by
means of the Az-model. The next table gives some global results.

11375673 230

2] 242.987 208 .0485
31191.608 186 .3736
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Since models As and Az are not related to each other in a hierarchical
way, it is difficult to compare the relative fits of both models to the same
data. However, it is probably safe to conclude that the two-class solution of
the A, analysis represents the data better than the two-class solution of the
A analysis. This 1s remarkable since fewer parameters are estimated under
the A.-model than under the Ag. This result seems to indicate that all three
kinds of first-order interaction terms (First by Second Choice, Second by
Third Choice, and First by Third Choice) are needed in a comprehensive
latent class model of this type. Removing one set of these interaction terms
has more detrimental effects than setting corresponding terms in the three
sets equal to each other.
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