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Uniqueness conditions for the affine Open-Loop Linear

Quadratic Differential Game.∗

Jacob Engwerda

Tilburg University
Dept. of Econometrics and O.R.

P.O. Box: 90153, 5000 LE Tilburg, The Netherlands
e-mail: engwerda@uvt.nl

January 2006

Abstract
In this note we consider the open-loop Nash linear quadratic differential game with an infinite plan-
ning horizon. The performance function is assumed to be indefinite and the underlying system affine.
We derive both necessary and sufficient conditions under which this game has a unique Nash equi-
librium.

Keywords: linear-quadratic games, open-loop Nash equilibrium, affine systems, solvability condi-
tions, Riccati equations.
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1 Introduction

1

In the last decades, there is an increased interest in studying diverse problems in economics and
optimal control theory using dynamic games. In particular in environmental economics and macroe-
conomic policy coordination, dynamic games are a natural framework to model policy coordination
problems (see e.g. the books and references in Dockner et al. [4], Engwerda [10] and Plasmans et
al. [19]). In these problems, the open-loop Nash strategy is often used as one of the benchmarks to
evaluate outcomes of the game. In optimal control theory it is well-known that, e.g., the issue to
obtain robust control strategies can be approached as a dynamic game problem (see e.g. [2]).

In this note we consider the open-loop linear quadratic differential game. This problem has been
considered by many authors and dates back to the seminal work of Starr and Ho in [20] (see, e.g., [17],
[18], [5], [14], [13], [1], [22], [6], [7], [3] and [15]). More specifically, we study in this paper the (regular
indefinite) infinite-planning horizon case. The corresponding regular definite (that is the case that
the state weighting matrices Qi (see below) are semi-positive definite) problem has been studied, e.g.,
extensively in [6] and [7]. [15] (see also [16]) studied the regular indefinite case using a functional
analysis approach, under the assumption that the uncontrolled system is stable. In particular,
these papers show that, in general, the infinite-planning horizon problem does not have a unique
equilibrium. Moreover [15] shows that whenever the game has more than one equilibrium, there will
exist an infinite number of equilibria. Furthermore the existence of a unique solution is related to
the existence of a so-called LRS solution of the set of coupled algebraic Riccati equations, see (4)
below. Unfortunately these results obtained for stable systems can not be directly used to derive
results for stabilizable systems using a feedback transformation. This, since such a transformation in
general corrupts the open-loop information structure of the problem (see e.g. [11] where this point
is illustrated).

In [9] (see also [10]) the above results were generalized for stabilizable systems, using a state-space
approach, for a performance criterion that is a pure quadratic form of the state and control variables.
In this note we generalize this result for performance criteria that also include ”cross-terms”, i.e.
products of the state and control variables. Performance criteria of this type often naturally appear
in economic policy making and have been studied, e.g., in [8] and [15]. In this paper we, moreover,
assume that the linear system describing the dynamics is affected by a deterministic variable. For a
finite-planning horizon the corresponding open-loop linear quadratic game has been studied in [3].

The outline of this note is as follows. Section two introduces the problem and contains some
preliminary results. The main results of this paper are stated in Section three, whereas Section four
contains some concluding remarks. The proofs of the main theorems are included in the Appendix.

2 Preliminaries

In this paper we assume that player i = 1, 2 likes to minimize:

lim
tf→∞

Ji(tf , x0, u1, u2), where Ji(tf , x0, u1, u2) :=

∫ tf

0

[xT (t), uT
1 (t), uT

2 (t)]Mi




x(t)
u1(t)
u2(t)



 dt, (1)

1Tilburg University; Dept. of Econometrics and O.R.; P.O. Box: 90153; 5000 LE Tilburg; The Netherlands; e-mail:
engwerda@uvt.nl.; fax: +31-134663280; phone: +31-134662174
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Mi =




Qi Vi Wi

V T
i R1i Ni

W T
i NT

i R2i


, Rii > 0, i = 1, 2, and x(t) is the solution from the linear differential

equation
ẋ(t) = Ax(t) +B1u1(t) +B2u2(t) + c(t), x(0) = x0. (2)

The variable c(.) ∈ L2 here is some given trajectory. Notice that we make no definiteness assumptions
w.r.t. matrix Qi.

We assume that the matrix pairs (A,Bi), i = 1, 2, are stabilizable. So, in principle, each player
is capable to stabilize the system on his own.

The open-loop information structure of the game means that both players only know the initial
state of the system and that the set of admissible control actions are functions of time, where time
runs from zero to infinity. We assume that the players choose control functions belonging to the set
of square integrable functions yielding a stable closed-loop system (see also e.g. [21])

Us(x0) =
{
u ∈ L2(0,∞) | lim

tf→∞

Ji(tf , x0, u) ∈ IR ∪ {−∞,∞}, lim
t→∞

x(x0, u, t) = 0
}
.

Here x(x0, u, t) is the solution of (2)2. Notice that the assumption that the players use simultaneously
stabilizing controls introduces the cooperative meta-objective of both players to stabilize the system
(see e.g. [10] for a discussion). For simplicity of notation we will omit from now on the dependency
of Us on x0.

In the rest of the paper the algebraic Riccati equations (see the end of the paper for the introduced
notation)

ATKi +KiA− (KiBi + Vi)R
−1
ii (BT

i Ki + V T
i ) +Qi = 0, i = 1, 2, (3)

and the set of (coupled) algebraic Riccati equations

0 = ÃT
2 P + PÃ− PBG−1B̃TP + Q̃ (4)

or, equivalently,

0 = AT
2 P + PA− (PB +

[
Z1

Z2

]
)G−1(B̃TP + Z) +Q

play a crucial role.

Definition 2.1 A solution P T =: (P T
1 , P

T
2 ), with Pi ∈ IRn, of the set of algebraic Riccati equations

(4) is called

a. stabilizing, if σ(Ã− BG−1B̃TP ) ⊂ lC−; 3

b. left-right stabilizing4(LRS) if

i. it is a stabilizing solution, and

2limtf→∞ Ji(tf , x0, u) = −∞(∞) if ∀r ∈ IR, ∃Tf ∈ IR such that tf ≥ Tf implies Ji(tf , x0, u) ≤ r(≥ r).
3σ(H) denotes the spectrum of matrix H ; lC− = {λ ∈ lC | Re(λ) < 0}; lC+

0 = {λ ∈ lC | Re(λ) ≥ 0}.
4In [10] such a solution is called strongly stabilizing.
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ii. σ(−ÃT
2 + PBG−1B̃T ) ⊂ lC+

0 ; �

The next relationship between certain invariant subspaces of matrix M and solutions of the Riccati
equation (4) is well-known (see e.g. Engwerda et al. [8]). This property can also be used to calculate
the (left-right) stabilizing solutions of (4).

Lemma 2.2 Let V ⊂ IR3n be an n-dimensional invariant subspace of M , and let Xi ∈ IRn×n, i =
0, 1, 2, be three real matrices such that

V = Im
[
XT

0 , X
T
1 , X

T
2

]T
.

If X0 is invertible, then Pi := XiX
−1
0 , i = 1, 2, solves (4) and σ(A− BG−1(Z + B̃TP )) = σ(M |V ).

Furthermore, (P1, P2) is independent of the specific choice of basis of V .

Lemma 2.3

1. The set of algebraic Riccati equations (4) has a LRS solution (P1, P2) if and only if matrix
M has an n-dimensional stable graph subspace and M has 2n eigenvalues (counting algebraic
multiplicities) in lC+

0 .

2. If the set of algebraic Riccati equations (4) has a LRS solution, then it is unique.

Proof.

1. Assume that (4) has a LRS solution P . Then with T :=

[
I 0

−P I

]
,

TMT−1 =

[
Ã− S̃P −S̃

0 −ÃT
2 + P S̃

]
.

Since P is a LRS solution, by Definition 2.1, matrix M has exact n stable eigenvalues and 2n eigen-
values (counted with algebraic multiplicities) in lC+

0 . Furthermore, obviously, the stable subspace is
a graph subspace.

The converse statement is obtained similarly using the result of Lemma 2.2.
2. See, e.g., Kremer [15, Section 3.2]. �

3 Main results

Using the previous results, in the Appendix the following theorem is proved.

Theorem 3.1 If the differential game (1,2) has an open-loop Nash equilibrium for every initial state,
then

3



1. M has at least n stable eigenvalues (counted with algebraic multiplicities). More in particular,
there exists a p-dimensional stable M-invariant subspace S, with p ≥ n, such that

Im




I

Ṽ1

Ṽ2



 ⊂ S,

for some Ṽi ∈ IRn×n.

2. the two algebraic Riccati equations (3) have a stabilizing solution.

Conversely, if the two algebraic Riccati equations (3) have a stabilizing solution and
vT (t) =: [xT (t), ψT

1 (t), ψT
2 (t)] is an asymptotically stable solution of

v̇(t) = Mv(t) +



c(t)
0
0


 , x(0) = x0,

then, with ψT (t) := [ψT
1 (t), ψT

2 (t)],

[
u∗1(t)
u∗2(t)

]
= −G−1

[
B̃Tψ(t) + Zx(t)

]
, (5)

provides an open-loop Nash equilibrium for the linear quadratic differential game (1,2). �

Remark 3.2 Similar conclusions as in [9] can be drawn now. A general conclusion is that the
number of equilibria depends critically on the eigenstructure of matrix M . With s denoting the
number (counting algebraic multiplicities) of stable eigenvalues of M we have.
1. If s < n, still for some initial state there may exist an open-loop Nash equilibrium.
2. In case s ≥ 2, the situation might arise that for some initial states there exists an infinite number
of equilibria.
3. If M has a stable graph subspace, S, of dimension s > n, for every initial state x0 there exists,
generically, an infinite number of open-loop Nash equilibria. �

The next theorem shows that in case the set of coupled algebraic Riccati equations (4) have a stabi-
lizing solution, the game always has at least one equilibrium.

Theorem 3.3 Assume that

1. the set of coupled algebraic Riccati equations (4) has a set of stabilizing solutions Pi, i = 1, 2;
and

2. the two algebraic Riccati equations (3) have a stabilizing solution Ki(.), i = 1, 2.

4



Then the linear quadratic differential game (1,2) has an open-loop Nash equilibrium for every initial
state.
Moreover, one set of equilibrium actions is given by:

[
u∗1(t)
u∗2(t)

]
= −G−1(Z + B̃TP )Φ̃(t, 0)x0 −G−1B̃Tm(t), (6)

where Φ̃(t, 0) is the solution of the transition equation

˙̃Φ(t, 0) = (A− BG−1(Z + B̃TP ))Φ̃(t, 0); Φ̃(0, 0) = I

and m(t) =
∫

∞

t
e(−Ã2+PBG−1B̃T )(t−s)Pc(s)ds. �

Corollary 3.4 An immediate consequence of Lemma 2.2 and Theorem 3.3 is that if M has a stable
invariant graph subspace and the two algebraic Riccati equations (3) have a stabilizing solution, the
game will have at least one open-loop Nash equilibrium. �

Remark 3.5 In case c(.) = 0 it can be shown, similar to [6], that the costs by using the actions
(6) for the players are xT

0 M̄ix0, i = 1, 2, where, with Acl := A− BG−1(Z + B̃TP ), M̄i is the unique
solution of the Lyapunov equation

[I, −G−1(Z + B̃TP )]Mi[I, −G
−1(Z + B̃TP )]T + AT

clM̄i + M̄iAcl = 0. (7)

�

Notice that in case the set of algebraic Riccati equations (4) has more than one set of stabilizing
solutions, there exists more than one open-loop Nash equilibrium. Matrix M has then a stable
subspace of dimension larger than n. Consequently (see Remark 3.2, item 3) for every initial state
there will exist, generically, an infinite number of open-loop Nash equilibria. This point was first
noted by Kremer in [15] in case matrix A is stable.

The above reflections raise the question whether it is possible to find conditions under which the
game has a unique equilibrium for every initial state. The next Theorem 3.6 gives such conditions.
Moreover, it shows that in case there is a unique equilibrium the corresponding actions are obtained
by those described in Theorem 3.3. The proof of this theorem is provided in the Appendix.

Theorem 3.6 Consider the differential game (1,2) with c(.) = 0.
This game has a unique open-loop Nash equilibrium for every initial state if and only if

1. The set of coupled algebraic Riccati equations (4) has a LRS solution, and

2. the two algebraic Riccati equations (3) have a stabilizing solution.

Moreover, in case this game has a unique equilibrium, also the corresponding affine linear quadratic
differential game, where c(.) ∈ L2, has a unique equilibrium and the unique equilibrium actions are
given by (6). �
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4 Concluding Remarks

In this note we considered the affine regular indefinite infinite-planning horizon linear-quadratic
differential game. Both necessary conditions and sufficient conditions were derived for the existence
of an open-loop Nash equilibrium. Moreover, conditions were presented that are both necessary and
sufficient for the existence of a unique equilibrium.

To prove our results we basically proceeded along the lines of the proofs of the paper [9] (see also
[10]). By adapting those proofs (in a not always trivial way) we showed that the results obtained in
that paper carry over to this extended model.

The above results can be generalized straightforwardly to the N -player case. Furthermore, since
Qi are assumed to be indefinite, the obtained results can be directly used to (re)derive properties
for the zero-sum game. If players discount their future loss, similar to [6], it follows from Theorem
3.6 that if the discount factor δ is ”large enough” the game has generically a unique open-loop Nash
equilibrium (all that changes is that matrix A has to be replaced by A− 1

2
I everywhere). Finally we

conclude from (5) that the conclusion in [15], that if the game has an open-loop Nash equilibrium
for every initial state either there is a unique equilibrium or an infinite number of equilibria, applies
in general.

Appendix: Proofs of theorems

Theorem 4.1 Let S := BR−1BT . Consider the minimization of the linear quadratic cost function
∫

∞

0

xT (t)Qx(t) + 2pT (t)x(t) + uT (t)Ru(t)dt (8)

subject to the state dynamics

ẋ(t) = Ax(t) +Bu(t) + c(t, x0), x(0) = x0, (9)

and u ∈ Us(x0). Then,
1. with c(.) = p(.) = 0, (8,9) has a solution for all x0 ∈ IRn if and only if the algebraic Riccati
equation

ATK +KA−KSK +Q = 0 (10)

has a symmetric stabilizing solution K(.) (i.e. A− SK is a stable matrix).
2. for every x0, (8,9) with c(., x0), p(.) ∈ L2, has a solution iff. item 1 has a solution. Moreover if
this problem has a solution then the problem has the unique solution

u∗(t) = −R−1BT (Kx∗(t) +m(t)).

Here m(t) is given by

m(t) =

∫
∞

t

e−(A−SK)T (t−s)(Kc(s) + p(s))ds, (11)

and x∗(t) satisfies

ẋ∗(t) = (A− SK)x∗(t) − Sm(t) + c(t), x∗(0) = x0.
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Proof. Similar to the proof of [10, Theorem 5.16]. �

Proof of Theorem 3.1.

”⇒ part” Suppose that u∗1, u
∗

2 are a Nash solution. That is,

J1(u1, u
∗

2) ≥ J1(u
∗

1, u
∗

2) and J2(u
∗

1, u2) ≥ J2(u
∗

1, u
∗

2).

From the first inequality we see that for every x0 ∈ IRn the (nonhomogeneous) linear quadratic
control problem to minimize J1 =

∫
∞

0

{xT (t)Q1x(t) + 2uT
1 (t)V T

1 x(t) + 2u∗
T

2 (t)W T
1 x(t)+

uT
1 (t)R11u1(t) + uT

1 (t)N1u
∗

2(t) + u∗
T

2 (t)R21u
∗

2(t)}dt, (12)

subject to the (nonhomogeneous) state equation

ẋ(t) = Ax(t) +B1u1(t) +B2u
∗

2(t) + c(t), x(0) = x0, (13)

has a solution. Or, equivalently, with

v1(t) := u1(t) +R−1
11 (V T

1 x1(t) +N1u
∗

2) (14)

the minimization of

J1 =

∫
∞

0

{xT
1 (t)(Q1 − V1R

−1
11 V

T
1 )x1(t) + vT

1 (t)R11v1(t) (15)

+ 2(u∗
T

2 (t)W T
1 − u∗

T

2 (t)NT
1 R

−1
11 V

T
1 )x1(t) + u∗

T

2 (t)(R21 −NT
1 R

−1
11 N1)u

∗

2(t)}dt,

subject to the (nonhomogeneous) state equation

ẋ1(t) = (A−B1R
−1
11 V

T
1 )x1(t) +B1v1(t) + (B2 − B1R

−1
11 N1)u

∗

2(t) + c(t), x1(0) = x0, (16)

has a solution. This implies, see Theorem 4.1, that the algebraic Riccati equation

(A−BiR
−1
ii V

T
i )TKi +Ki(A− BiR

−1
ii V

T
i ) −KiSiKi +Qi − ViR

−1
ii V

T
i = 0

has a stabilizing solution. It is easily verified that this equation can be rewritten as (3), with i = 1.
Similarly we get that also the second algebraic Riccati equation must have a stabilizing solution.
Which completes the proof of point 2.
To prove point 1 we consider Theorem 4.1 in some more detail. According Theorem 4.1 the min-
imization problem (15,16) has a unique solution. Introducing for notational convenience Āi :=
A−BiR

−1
ii V

T
i − SiKi, i = 1, 2, its solution is

ṽ1(t) = −R−1
11 B

T
1 (K1x1(t) +m1(t)) (17)

with m1(t) =

∫
∞

t

e−ĀT
1

(t−s)(K1n1(s) + p1(s))ds,

7



where pT
1 (s) = u∗

T

2 (s)(W T
1 −NT

1 R
−1
11 V

T
1 ), n1(s) = (B2 −B1R

−1
11 N1)u

∗

2(s)+ c(s) and K1 the stabilizing
solution of the algebraic Riccati equation (3), with i = 1. Consequently, see (14),

ũ1(t) := ṽ1(t) −R−1
11 (V T

1 x1(t) +N1u
∗

2) (18)

solves the original optimization problem. Notice that, since the optimal control for this problem is
uniquely determined, and by definition the equilibrium control u∗1 solves the optimization problem,
u∗1(t) = ũ1(t). Consequently,

d(x(t) − x1(t))

dt
= Ax(t) +B1u

∗

1(t) +B2u
∗

2(t) − Ā1x1(t) + S1m1(t) − (B2 −B1R
−1
11 N1)u

∗

2(t)

= Ax(t) − S1(K1x1(t) +m1(t)) −B1R
−1
11 (V T

1 x1(t) +N1u
∗

2)

−Ax1(t) + S1(K1x1(t) +m1(t)) +B1R
−1
11 (V T

1 x1(t) +N1u
∗

2(t))

= A(x(t) − x1(t)).

Since x(0) − x1(0) = 0 it follows that x1(t) = x(t).
Analogously we obtain from the minimization of J2, with u∗1 now entering into the system as an
external signal, that

u∗2(t) := −R−1
22 B

T
2 (K2x(t) +m2(t)) − R−1

22 (W T
2 x(t) +NT

2 u
∗

1) (19)

with m2(t) =
∫

∞

t
e−ĀT

2
(t−s)(K2c2(s) + p2(s))ds, p

T
2 (s) = u∗

T

1 (s)(W T
2 − NT

2 R
−1
22 V

T
2 ), n2(s) = (B1 −

B2R
−1
22 N2)u

∗

1(s) + c(s) and K2 the stabilizing solution of the algebraic Riccati equation (3), with
i = 2.
Differentiation of m1(t) in (17) gives

ṁ1(t) = −ĀT
1m1(t) − (K1B2 −K1B1R

−1
11 N1 +W1 − V1R

−1
11 N1)u

∗

2(t) −K1c(s). (20)

Next, introduce ψ1(t) := K1x(t) +m1(t). Using (16,17) and (20) we get

ψ̇1(t) = K1ẋ(t) + ṁ1(t)

= K1Ā1x(t) −K1S1m1(t) +K1(B2 −B1R
−1
11 N1)u

∗

2(t) +K1c(s)−

ĀT
1m1(t) − (K1B2 −K1B1R

−1
11 N1 +W1 − V1R

−1
11 N1)u

∗

2(t) −K1c(s)

= −Q1x(t) − AT (K1x(t) +m1(t)) + V1R
−1
11 ((BT

1 K1 + V T
1 )x(t) +BT

1 m1(t) +N1u
∗

2(t)) −W1u
∗

2(t)
(21)

= −Q1x(t) − ATψ1(t) − V1u
∗

1(t) −W1u
∗

2(t). (22)

Similarly it follows that ψ̇2(t) = −Q2x(t) − ATψ2(t) − V2u
∗

1(t) −W2u
∗

2(t).
From (17,19) it follows that (u∗1, u

∗

2) satisfy

R11u
∗

1 +N1u
∗

2(t) = −BT
1 ψ1(t) − V T

1 x(t)

NT
2 u

∗

1 +R22u
∗

2(t) = −BT
2 ψ2(t) −W T

2 x(t),

respectively. Due to our invertibility assumption on matrix G we can rewrite this as (5). Conse-
quently,

vT (t) = [vT
1 (t), vT

2 (t), vT
3 (t)] := [xT (t), ψT

1 (t), ψT
2 (t)],

8



satisfies v̇(t) = Mv(t) +
[
cT (t) 0 0

]T
, with v1(0) = x0.

Since by assumption, for arbitrary x0, v1(t) converges to zero it is clear from [10, Lemma 7.36] by
choosing consecutively x0 = ei, i = 1, · · · , n, that matrix M must have at least n stable eigenvalues
(counting algebraic multiplicities). Moreover, the other statement follows from the second part of
this lemma. Which completes this part of the proof.
”⇐ part” Let u∗2 be as defined in (5) where x(t) satisfies

ẋ(t) = (A−BG−1Z)x(t) − BG−1B̃Tψ(t), x(0) = x0.

We next show that then necessarily u∗1 solves the minimization problem (12,13). Since, by assumption,
the algebraic Riccati equation (3) has a stabilizing solution, according Theorem 4.1, the minimization
problem (12,13) has a solution. Following the notation of the ”⇒” part of the proof this solution is
given by (see (18,17))

ũ1(t) = −R−1
11 B

T
1 (K1x1(t) +m1(t)) − R−1

11 (V T
1 x1(t) +N1u

∗

2))

Next, introduce ψ̃1(t) := K1x1(t) +m1(t). Then, similar to (22) we obtain

˙̃
ψ1(t) = −Q1x1(t) −AT ψ̃1(t) − V1ũ1(t) −W1u

∗

2(t).

Consequently, with xd(t) := x(t) − x1(t), ψd(t) := ψ1(t) − ψ̃1(t) and h(t) := (A − B1R
−1
11 V

T
1 )x1(t) +

S1ψ̃1(t) we have:

ẋd(t) = (A− BG−1Z)x(t) −BG−1B̃Tψ(t) − h(t) − (B2 −B1R
−1
11 N1)u

∗

2(t)

= (A− BG−1Z)x(t) −BG−1B̃Tψ(t) − h(t) + (B2 − B1R
−1
11 N1)[0 I]G

−1(B̃Tψ(t) + Zx(t))

= (A− [B1 0]G−1Z)x(t) − [B1 0]G−1B̃Tψ(t) − h(t) − [0 B1R
−1
11 N1]G

−1(B̃Tψ(t) + Zx(t))

= Ax(t) − B1R
−1
11 [R11 N1]G

−1(B̃Tψ(t) + Zx(t)) − h(t)

= (A− B1R
−1
11 V

T
1 )xd(t) − S1ψ̃d(t).

Furthermore, using (21),

ψ̇d(t) = ψ̇1(t) −
˙̃
ψ1

= −Q1x(t) − (AT − V1R
−1
11 B

T
1 )ψ1(t) + V1R

−1
11 (V T

1 x(t) +N1u
∗

2(t))

−W1u
∗

2(t) +Q1x1(t) + AT ψ̃1 + V1ũ1(t) +W1u
∗

2(t)

= −Q1x(t) − (AT − V1R
−1
11 B

T
1 )ψ1(t) + V1R

−1
11 (V T

1 x(t) +N1u
∗

2(t)) +Q1x1(t) + AT ψ̃1 −

V1R
−1
11 (BT

1 ψ̃1 + V T
1 x1(t) +N1u

∗

2(t))

= (−Q1 + V1R
−1
11 V

T
1 )xd(t) − (A− B1R

−1
11 V

T
1 )Tψd(t).

Now, let H :=

[
A−B1R

−1
11 V

T
1 −S1

−Q1 + V1R
−1
11 V

T
1 −(A−B1R

−1
11 V

T
1 )T

]
and eT := [xT

d , ψ
T
d ]. Then for some p ∈

IRn,

ė(t) = He(t), with eT (0) = [0, p].

Notice that matrix H is the Hamiltonian matrix associated with the algebraic Riccati equation (3).
The rest of the proof follows now along the lines of the corresponding part of [10, Theorem 7.11]. �
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Proof of Theorem 3.3.

Since (4) has a stabilizing solution, we can factorize M as in the proof of Lemma 2.3. That is, M =

T−1

[
A− BG−1(Z + B̃TP ) −BG−1B̃T

0 −ÃT
2 + PBG−1B̃T

]
T.

Next consider

ψ(t) := Px(t) +m(t) with m(t) =

∫
∞

t

e(−ÃT
2

+PBG−1B̃T )(t−s)Pc(s)ds,

and x(.) the solution of the differential equation

ẋ(t) = (A− BG−1(Z + B̃TP ))x(t) −BG−1B̃Tm(t) + c(t), x(0) = x0.

Notice that both x(t) and ψ(t) converges to zero if t → ∞. By direct substitution of this x(t) and
ψ(t) into

v̇(t) = Mv(t) +
[
cT (t) 0 0

]T
, x(0) = x0,

it is straightforwardly verified (using the above decomposition of M) that v(t) := [xT (t) ψT (t)] is an
asymptotically stable solution of this differential equation. So, by Theorem 3.1

[
u∗1(t)
u∗2(t)

]
= −G−1

[
B̃Tψ(t) + Zx(t)

]
= −G−1((Z + B̃TP )x(t) + B̃Tm(t)),

provides an open-loop Nash equilibrium for the linear quadratic differential game (1,2). �

Proof of Theorem 3.6.

”⇒ part” With some small straightforward modifications this part of the proof can be copied from
the corresponding part of the proof of [10, Theorem 7.16].
”⇐ part” Since by assumption the stable subspace, Es, is a graph subspace we know that every
initial state, x0, can be written uniquely as a combination of the first n entries of the basisvectors in
Es. Consequently, with every x0 there corresponds a unique ψ1 and ψ2 for which the solution of the
differential equation ż(t) = Mz(t), with zT

0 = [xT
0 , ψ

T
1 , ψ

T
2 ], converges to zero. So, by Theorem 3.1,

for every x0 there is a Nash equilibrium. On the other hand the proof of Theorem 3.1 shows that all
Nash equilibrium actions (u∗1, u

∗

2) satisfy (5), where ψi(t) solves




ẋ(t)

ψ̇1(t)

ψ̇2(t)


 = M




x(t)
ψ1(t)
ψ2(t)


 , with x(0) = x0.

Now, with zT := [xT ψT
1 ψT

2 ] and yT := [xT u∗
T

1 u∗
T

2 ] consider the system

ż(t) = Mz(t); y(t) = Cz(t), where C :=




I 0 0

−[I 0]G−1Z −[I 0]G−1B̃T
1 −[I 0]G−1B̃T

2

−[0 I]G−1Z −[0 I]G−1B̃T
1 −[0 I]G−1B̃T

2


 .
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Then, rank

[
M − λI

C

]
= rank




A− λI 0 0
−Q1 −AT − λI 0
−Q2 0 −AT − λI

I 0 0

Z B̃T
1 B̃T

2



.

Since (A,Bi), i = 1, 2, is stabilizable, it is easily verified from the above expression that the pair
(C,M) is detectable. Consequently, due to our assumption that x(t) and u∗i (t), i = 1, 2, converge
to zero, we have from [23, Lemma 14.1] that [xT (t), ψT

1 (t), ψT
2 (t)] converges to zero. Therefore,

[xT (0), ψT
1 (0), ψT

2 (0)] has to belong to the stable subspace of M . However, as we argued above, for
every x0 there is exactly one vector ψ1(0) and vector ψ2(0) such that [xT (0), ψT

1 (0), ψT
2 (0)] ∈ Es.

So we conclude that for every x0 there exists exactly one Nash equilibrium.
Notice that in case the conditions 1. and 2. of this theorem are satisfied, Theorem 3.3 implies

that the unique equilibrium actions are given by (6).
Finally, it will be clear that with c(.) 6= 0 one can pursue the same analysis as above. Since

this analysis brings on only some additional technicalities and distracts the attention from the basic
reasoning we skipped that analysis here. �

Notation

The next shorthand notation will be used.

Si := BiR
−1
ii B

T
i ; G :=

[
[0 I 0]M1

[0 0 I]M2

]


0 0
I 0
0 I



 =

[
R11 N1

NT
2 R22

]
;

where we assume throughout that this matrix G is invertible,

A2 := diag{A,A}; B := [B1, B2]; B̃
T := diag{BT

1 , B
T
2 }; B̃

T
1 :=

[
BT

1

0

]
; B̃T

2 :=

[
0
BT

2

]
;

Z :=

[
[0 I 0]M1

[0 0 I]M2

] 


I

0
0



 =

[
V T

1

W T
2

]
; Zi := [I 0 0]Mi




0 0
I 0
0 I



 = [Vi, Wi], i = 1, 2;

Q :=

[
Q1

Q2

]
; Q̃i := Qi − ZiG

−1Z; Q̃ :=

[
Q̃1

Q̃2

]
; S̃i := BG−1B̃T

i ; S̃ := [S̃1, S̃2],

Ã := A− BG−1Z; ÃT
2 := AT

2 −

[
Z1

Z2

]
G−1B̃T and M :=

[
Ã −S̃

−Q̃ −ÃT
2

]
.

Notice that M =




A 0 0

−Q1 −AT 0
−Q2 0 −AT



 +




−B
Z1

Z2



G−1
[
Z, B̃T

1 , B̃T
2

]
.
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