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Abstract In this paper we review a number of algorithms to compute Nash
equilibria in deterministic linear quadratic differential games. We will review
the open-loop and feedback information case. In both cases we address both
the finite and the infinite-planning horizon.

Keywords Algebraic Riccati equations · Linear quadratic differential games ·
Nash equilibria

1 Introduction

Many problems in economics and management are dynamic and involve strate-
gic considerations. That is, actions taken by a decision maker not only have an
effect on the current period but also on the future and they usually have a direct
impact on variables that are important for other decision makers as well. This
naturally leads to reactions of these other decision makers. In case they like
the impact a consequence may be that they support the decision maker in his
actions, which may even result in a cooperation between the decision makers.
On the other hand, if the impact is disliked by some other decision maker, that
agent may try to counterbalance the impact on the variable by taking actions
himself. In most cases such a noncooperative behaviour will lead to a situation
which can be improved upon by both decision makers if they would cooper-
ate. It may even be the case that the decision maker takes the action with the
intention to eliminate the other decision maker from the market so that, after
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some reduction in his short term profits, in the long run he will gain. Topical
examples may be found in the liberalization of markets which previously were
controlled by the government. More or less by definition (since entering costs
are usually prohibitive), these liberalized markets will be controlled by only a
few players. Once a market has been liberalized (which is of common interest
for all initial players) a scenario as sketched above may then take place. This
may yield ultimately a worse outcome for a large majority of all those which
are represented by the government (citizens). In such a case it is in the interest
of the government to come up either with rules which prevent such an outcome
or not to liberalize these markets. Another example can be found in the global
warming of the climate. There are a few players who contribute a lot to the
global warming. However they also profit at this moment a lot from it. Since
the consequences of global warming will be visible only after the current play-
ers have died, there is almost no incentive for them to invest in counteracting
measures (from which they would lose most). So, though there is a common
(vague) objective in the future all players have an incentive to contribute as less
as possible at this moment to realize this goal.

These are just two examples demonstrating the need to model situations in
economics and management that are characterized by multiple decision mak-
ers/players and enduring consequences of decisions. Moreover, the examples
demonstrate that a careful modeling may be a tough job (and maybe sometimes
even impossible). This, since problems not only invoke the modeling of mar-
kets but may be also affected by, e.g., the institutional organization of a country,
property rights, division of power etc. On the other hand, sometimes, a trade-
off is possible between model complexity and inclusion of model uncertainty
within a relatively simple model.

The aim of this paper is to present for a class of simple deterministic models
numerical tools for solving them. For simplicity results will be presented only
for the two-player case. In particular this class of games includes the so-called
zero-sum games. However, results will not be elaborated here for that special
case. Uncertainty can be incorporated in various ways within the considered
class of models. Results on a stochastic and a worst-case scenario approach,
respectively, as well as elaborated results for the zero-sum game can be found
e.g. in Engwerda (2005).

The theory which conceptualizes problems which involve more than one
player is dynamic games. Dynamic game theory tries to arrive at appropriate
models describing a process that evolves over time. Depending on the specific
problem this model sometimes can be used by an individual decision maker
to optimize his performance. In other cases it may serve as a starting point
to introduce new communication lines which may help to improve upon the
outcome of the current process. Furthermore it is possible by the introduction
of “nature” as an additional player in games, which is trying to work against
the other decision makers in a process, to analyze the robustness of strategies
of players w.r.t. worst-case scenarios.
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Further examples of dynamic games in economics and management science
can be found e.g. in Dockner et al. (2000), Jørgensen and Zaccour (2004) and
Plasmans et al. (2006).

As already mentioned, in this paper we consider a special class of dynamic
games. We study games where the process can be modeled by a set of linear
differential equations and the preferences are formalized by quadratic utility
functions. The so-called linear quadratic differential games. These games are
very popular in literature and a recent exposition (and additional references) of
this theory can be found in Engwerda (2005). The popularity of these games is
caused on the one hand by practical considerations. To some extent these kinds
of differential games are analytically and numerically solvable. On the other
hand this linear quadratic setting naturally appears, e.g., if the decision makers’
objective is to minimize the effect of a small perturbation of their optimally
controlled nonlinear process. By solving a linear quadratic control problem,
and using the optimal actions implied by this problem, players can avoid most
of the additional cost incurred by this perturbation.

In a dynamic game, information available to the players at the time of their
decisions plays an important role and, therefore, has to be specified before one
can analyze these kind of games appropriately. We will distinguish two cases:
the open-loop and the feedback information case, respectively. In the open-loop
information case it is assumed that all players know just the initial state of the
process and the model structure. More specifically, it is assumed that players
simultaneously determine their actions for the whole planning horizon of the
process before it starts. Next they submit their actions to some authority who
then enforces these plans as binding commitments. So players cannot react on
any deviations occurring during the evolution of the process. In the feedback
information case it is assumed that all players can observe at every point in
time the current state of the process and determine their actions based on this
observation.

An advantage of feedback over open-loop information is, e.g., that it requires
no precommitment of the players. The proposed feedback actions remain opti-
mal from the point of view of an individual player even if the state of the system
differs at some point in time from the ex ante expected realization of the state.
A property which is in literature known as subgame perfectness.

In the rest of this paper we will concentrate on the case that players do not
cooperate with each other in order to arrive at their decisions. This may be
caused by individual motivations or for physical reasons. Under these condi-
tions it seems reasonable that all players individually will try to play actions
which are optimal for them. That is, for actions they cannot improve upon
themselves. If there exists a set of actions such that none of the players has an
incentive to deviate from his action (or stated otherwise, given the actions of
the other players his choice of action is optimal), we call such a set of actions a
Nash1 equilibrium of the game. In general, a game may either have none, one

1 This after J.F. Nash who proved in a number of papers from 1950–1953 the existence of such
equilibria.
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or more than one Nash equilibrium. This leads on the one hand to the question
under which conditions these different situations will occur and on the other
hand, in case there is more than one equilibrium solution, whether there are
additional motivations to prefer one equilibrium outcome to another.

As already indicated above linear quadratic differential games have been
studied a lot in the past. In this paper we will review some basic results and
present algorithms to compute equilibria for the open-loop and feedback infor-
mation case. A more detailed exposition, additional results and references can
be found in Engwerda (2005). In particular this reference contains proofs of
results that will be quoted in this paper. One can find there, e.g., also the rela-
tionship between the Bellman equations/Hamiltonians and the various Riccati
equations that arise further on in this review.

The outline of the rest of the paper is as follows. Section 2 considers the
“one-player” case. That is, the solution of the ordinary linear quadratic optimal
control problem. The solution of this problem plays an important role in solving
the various games studied in the subsequent sections. Section 3 considers the
open-loop information case and Sect. 4 the feedback information case. Finally
Sect. 5 reviews some extensions that can be found elsewhere in literature.

2 The one-player case

In this section we consider the minimization w.r.t. u(·) of

J =
tf∫

0

{xT(t)Qx(t) + uT(t)Ru(t)}dt + xT(tf )Qtf x(tf ), (1)

subject to
ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (2)

where R is a positive definite matrix and Q, R and Qtf are symmetric matrices
of appropriate dimensions, x(t) ∈ IRn and u(t) ∈ IRm.

This problem is in literature known as the linear quadratic control prob-
lem. Here, x(t) is usually called the state of the system and u(t) the (vector of)
control(s).

In economic literature one often considers instead of (1) a cost function
where future cost are discounted. That is, the minimization of

J̃ =
tf∫

0

e−rt{x̃T(t)Qx̃(t) + ũT(t)Rũ(t)}dt + e−rtf x̃T(tf )Qtf x̃(tf ), (3)

subject to ˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = x0. (4)
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Introducing x(t) := e− 1
2 rtx̃(t) and u(t) := e− 1

2 rtũ(t), it is easily verified that this
optimization problem is equivalent with the minimization of (1), w.r.t. u(·),
subject to

ẋ(t) =
(

A − 1
2

rI
)

x(t) + Bu(t), x(0) = x0. (5)

So, to solve this discounted problem, all one has to do is to replace in the for-
mulae below matrix A everywhere by matrix A − 1

2 rI. For that reason, we will
just present the results for the undiscounted problem. The same remark applies
for the games considered in the next sections.

The solution of the linear quadratic control problem is tightly connected to
the existence of a symmetric solution of the following matrix Riccati differential
equation

K̇(t) = −ATK(t) − K(t)A + K(t)SK(t) − Q, K(tf ) = Qtf , (RDE) (6)

where S := BR−1BT .

Theorem 1 The linear quadratic control problem (1,2) has for every initial state
x0 a solution if and only if the Riccati differential equation (6) has a symmetric
solution K(·) on [0, tf ].

If the linear quadratic control problem has a solution, then it is unique and the
optimal control in feedback form is

u∗(t) = −R−1BTK(t)x(t)

whereas in open-loop form it is

u∗(t) = −R−1BTK(t)�(t, 0)x0

with � being the transition matrix of

ẋ∗(t) = (A − SK(t))x∗(t).

Moreover, J(u∗) = xT
0 K(0)x0.

An important property of this Riccati differential equation (RDE) is that
its solution can be found by solving a set of linear differential equations (Reid
1972, see Chap. 2.2). This is in particular important from a computational point
of view. For there are many efficient numerical algorithms that can calculate
solutions of linear differential equations accurately. These algorithms have been
implemented, e.g., in the computer software MATLAB to calculate solutions
of Riccati differential equations.

To show this equivalence, consider the following, more general,
non-symmetric matrix Riccati differential equation
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K̇(t) = −DK(t) − K(t)A + K(t)S̃K(t) − Q̃, (7)

where K, Q̃ ∈ IRm×n, D ∈ IRm×m, A ∈ IRn×n and S̃ ∈ IRn×m.
The solution of this Riccati differential equation (7) is intimately connected

with the next set of linear differential equations

[
U̇(t)
V̇(t)

]
=

[
A + µI −S̃

−Q̃ −D + µI

] [
U(t)
V(t)

]
, (8)

where µ is a scalar parameter which may be chosen arbitrarily (and in particu-
lar equal to zero). This parameter may be used in computations to increase the
numerical stability of calculating the solution of (8).

The relationship between (7) and (8) is summarized in the following theorem.
A proof can be given along the lines of e.g. Engwerda (2005, Theorem 5.12).

Theorem 2 If U, V is a solution pair of (8) with U nonsingular on the interval
[0, tf ], then K(t) = VU−1 is a solution of the Riccati differential equation (7) on
[0, tf ]. Conversely, if K(t) is a solution of (7) on [0, tf ] and U(·) is a fundamental
solution of

U̇(t) = (A − S̃K(t) + µI)U(t)

then the pair U(t), V(t) := K(t)U(t) is a solution of (8) on [0, tf ].
By considering in the above theorem the special case D = AT we get then

the next result.

Corollary 1 The Riccati differential equation (6) has a solution on [0, tf ] if and
only if the set of linear differential equations

[
U̇(t)
V̇(t)

]
=

[
A + µI −S

−Q −AT + µI

] [
U(t)
V(t)

]
;

[
U(tf )
V(tf )

]
=

[
I

Qtf

]
(9)

has a solution on [0, tf ], with U(·) nonsingular.
Moreover, if (9) has an appropriate solution (U(·), V(·)), the solution of (6) is

K(t) = V(t)U−1(t).

Notice that with H :=
[

A + µI −S
−Q −AT + µI

]
, the solution of the above differ-

ential equation (9) is

[
U(t)
V(t)

]
= eH(tf −t)

[
I

Qtf

]
.

Consequently, if one can find an analytic expression for the Jordan canonical
form of matrix H, it is possible to determine an analytic expression for U and V.
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From this one gets then an analytic solution for the Riccati differential equation
(6) by calculating K(t) := V(t)U−1(t). Moreover, by choosing µ as a large neg-
ative number matrix H becomes stable. This property can be used to increase
the numerical stability of the calculation of eHt.

Next, we lift the restriction that the final time tf in the planning horizon must
be finite. We consider the problem of finding a control function u(·) = Fx(·)
(where F is a time-invariant matrix) for each x0 ∈ IRn that minimizes the cost
functional

J(x0, u) :=
∞∫

0

{xT(t)Qx(t) + uT(t)Ru(t)}dt. (10)

Notice that, since we do not make any definiteness assumptions w.r.t. matrix Q,
the optimal state trajectory x(t) of (5) (if it exists) may have the property that
it will not converge. Since in economic applications this is usually a rare situ-
ation, we will consider the above minimization problem under the additional
constraint that limt→∞ x(t) = 0. The imposed stabilization constraint is equiv-
alent with the requirement that the system is stabilizable. Therefore, through-
out this section, the assumption is made that the pair (A, B) is stabilizable
(i.e. rank [A − sI B] = n, ∀s ∈ lC+2). Furthermore, we introduce the set of
linear, stabilizing, time-invariant feedback matrices, i.e.

F := {F | A + BF is stable}.

The next algebraic Riccati equation (ARE)

ATX + XA − XSX + Q = 0 (11)

plays an important role in the problem under consideration. A solution K of
this equation will be called stabilizing if the matrix A − SK is stable. It can be
shown that (ARE) has at most one stabilizing solution. We have

Theorem 3 Assume that (A, B) is stabilizable and u = Fx, with F ∈ F . The
linear quadratic control problem (5,10) has a minimum F̂ ∈ F for J(x0, u) for
every x0 ∈ IRn if and only if the algebraic Riccati equation (11) has a symmetric
stabilizing solution K.

If the linear quadratic control problem has a solution, then the solution is
uniquely given by F̂ = −R−1BTK and the optimal control in feedback form is

u∗(t) = −R−1BTKx(t).

In open-loop form it is

u∗(t) = −R−1BTK�(t, 0)x0

2 C+ is the set of all complex numbers which have a nonnegative real part; C− is the set of all
complex numbers with a negative real part.
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where � is the transition matrix of

ẋ∗(t) = (A − SK)x∗(t).

Moreover, J(u∗) = xT
0 Kx0.

To calculate the stabilizing solution of (ARE) one can consult e.g. MATLAB
again. There have been suggested in literature many ways to find in a numerical
reliable and efficient way this stabilizing solution (see e.g. the review paper by
Laub (1991) and Abou-Kandil et al. (2003)). Here we will consider an approach
which will also be used in the next section to compute equilibria of the open-loop
game.

For that purpose we consider the more general (nonsymmetric) algebraic
Riccati equation

DK + KA − KS̃K + Q̃ = 0, (12)

where the dimensions correspond with those of the corresponding matrices in
(7). Similarly as in (11) we will call a solution X of the nonsymmetric algebraic
Riccati equation (12) stabilizing if all eigenvalues of matrix A − S̃X have a
negative real part.

Equation (12) can be rewritten as

[I2n K]
[

Q̃ D
A −S̃

] [
In
K

]
= 0.

From this we infer that the image of matrix [I2n K] is orthogonal to the image of[
Q̃ D
A −S̃

] [
In
K

]
. Or, stated differently, the image of

[
Q̃ D
A −S̃

] [
In
K

]
belongs

to the orthogonal complement of the image of matrix [I2n K]. It is easily veri-
fied that the orthogonal complement of the image of matrix [I2n K] is given by

the image of
[−K

In

]
. Therefore, ARE has a solution if and only if there exists a

matrix � ∈ IRn×n such that

[
Q̃ D
A −S̃

] [
In
K

]
=

[−K
In

]
�.

Premultiplication of both sides from the above equality with the matrix[
0 In

−I2n 0

]
yields then that (12) has a solution X if and only if there exists a

matrix � ∈ IRn×n such that

[
A −S̃

−Q̃ −D

] [
In
X

]
=

[
In
X

]
�.
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So, all solutions of (12) can be obtained by considering all n-dimensional

invariant subspaces V = Im

[
X1
X2

]
of

M :=
[

A −S̃
−Q̃ −D

]
, (13)

with X1 ∈ IRn×n invertible. A subspace V that satisfies this property is called
a graph subspace (since it can be “visualized” as the graph of the map: x →
X2X−1

1 x). The corresponding solution of (12) is then X := X2X−1
1 . To calculate

the stabilizing solution of (11) one might pursue then as follows.

Algorithm 1

Step 1: Calculate matrix H :=
[

A −S
−Q −AT

]
. Next calculate the spectrum of

H. If the number of eigenvalues with a negative real part (counted with
algebraic multiplicities) is less than n, goto Step 4 (there is no stabilizing
solution in this case).

Step 2: Calculate the n-dimensional H-invariant subspace P corresponding
with the set of eigenvalues of H that have a negative real part. If P
is not a graph subspace, goto Step 4. There is no solution again.

Step 3: Calculate n × n matrices X and Y such that Im
[

X
Y

]
= P .

Denote K := YX−1. Then

u∗(t) := −R−1BTKeAcltx0

solves the infinite planning horizon problem. Here Acl := A − SK. The
spectrum of the corresponding closed-loop matrix Acl equals σ(H|P ).3

The involved cost for player i is xT
0 Kx0.

Step 4: End of algorithm.

3 The open-loop game

In this section we consider two players who try to minimize their individual
quadratic performance criterion. Each player controls a different set of inputs
ui to the single system described by the differential equation

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t), x(0) = x0. (14)

Here x is the n-dimensional state of the system, ui is an mi-dimensional (con-
trol) vector player i, i = 1, 2, can manipulate and x0 is the initial state of the
system.

3 σ(H) denotes the spectrum (set of eigenvalues) of matrix H.
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The players have an open-loop information structure. The set of allowed
actions is

�i = {ui(·) | ui(·) = fi(t, x0) and ui is piecewise continuous}, i = 1, 2.

We are looking for Nash equilibria of this game. That is, for combinations of
actions of all players which are secure against any attempt by one player to
unilaterally alter his strategy. Or, stated differently, for those set of actions
which are such that if one player deviates from his action he will only lose.
In the literature on dynamic games this problem is known as the open-loop
Nash non-zero-sum linear quadratic differential game and has been analyzed
by several authors (see e.g. Starr and Ho 1969a; Simaan and Cruz 1973; Başar
and Olsder 1999; Abou-Kandil and Bertrand 1986; Feucht 1994; Kremer 2002;
Engwerda 2005). To avoid cumbersome notation, we will restrict the analyses
to the two-player case.

We will state first some basic results in case the performance criterion player
i, i = 1, 2, aims to minimize w.r.t. ui is

J1(u1, u2) :=
tf∫

0

{
xT(t)Q1x(t) + uT

1 (t)R11u1(t) + uT
2 (t)R12u2(t)

}
dt

+ xtf (tf )Q1tf x(tf ), (15)

and

J2(u1, u2) :=
tf∫

0

{
xT(t)Q2x(t) + uT

1 (t)R21u1(t) + uT
2 (t)R22u2(t)

}
dt

+ xT(tf )Q2tf x(tf ). (16)

Again, here all matrices are symmetric and, moreover, Rii are positive definite.
So, we are looking for actions that satisfy simultaneously

J1(u
∗
1, u∗

2) ≤ J1(u1, u∗
2) and J2(u∗

1, u∗
2) ≤ J2(u∗

1, u2),

for all admissible (u1, u2).
Using the shorthand notation Si := BiR−1

ii BT
i we have the following.

Theorem 4 Assume that

1. the set of coupled Riccati differential equations

Ṗ1 = −ATP1 − P1A − Q1 + P1S1P1 + P1S2P2; P1(tf ) = Q1tf , (17)

Ṗ2 = −ATP2 − P2A − Q2 + P2S2P2 + P2S1P1; P2(tf ) = Q2tf (18)

has a solution Pi, i = 1, 2, on [0, tf ], and
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2. the two Riccati differential equations,

K̇i(t) = −ATKi(t) − Ki(t)A + Ki(t)SiKi(t) − Qi(t),

Ki(tf ) = Qitf , i = 1, 2, (19)

have a symmetric solution Ki(·) on [0, tf ].
Then the linear quadratic differential game (14–16) has a unique open-loop Nash
equilibrium for every initial state.

Moreover, the set of equilibrium actions is given by

u∗
i (t) = −R−1

ii BT
i Pi(t)�(t, 0)x0, i = 1, 2.

Here �(t, 0) satisfies the transition equation

�̇(t, 0) = (A − S1P1 − S2P2)�(t, 0); �(t, t) = In.

Notice that the above equilibrium actions can also be obtained as a state feed-
back control. That is, u∗

i (t) can be rewritten as

u∗
i (t) = −R−1

ii BT
i Pi(t)x∗(t), i = 1, 2,

where x∗(t) satisfies:

ẋ∗(t) = (A − S1P1 − S2P2)x∗(t); x∗(0) = x0.

Assumption 2 in Theorem 4 states that for both players a linear quadratic con-
trol problem associated with this game problem should be solvable on [0, tf ].
That is, the optimal control problem that arises if the action of his opponent is
known must be solvable for each player.

Theorem 4 presents a local result. That is, it just states a sufficient condi-
tion for existence of an equilibrium strategy at some fixed endpoint tf in time.
However, it can be shown that this condition is almost necessary too. For com-
pleteness we state this result here too.

Theorem 5 Assume that the two Riccati differential equations (19) have a solu-
tion on [0, t1].

Then, for all tf ∈ [0, t1] the game defined on the interval [0, tf ] has an open-loop
Nash equilibrium for all x0 if and only if the set of Riccati differential equations
(17,18) has a solution on the interval [0, t1].

Moreover, in case the above condition is satisfied the equilibrium is unique.

With

P :=
[

P1
P2

]
; D :=

[
AT 0
0 AT

]
; S := [S1 S2] ; and Q :=

[
Q1
Q2

]
,
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the set of coupled Riccati equations (17,18) can be rewritten as the non-
symmetric matrix Riccati differential equation

Ṗ = −DP − PA + PSP − Q; PT(tf ) = [Q1tf , Q2tf ].

From Sect. 2 we know that numerically the solution of such a Riccati differential
equation can be obtained by solving a set of linear differential equations. From
Theorem 2 we get the next Corollary.

Corollary 2 The set of coupled Riccati differential equations (17,18) has a solu-
tion on [0, tf ] if and only if the set of linear differential equations


 U̇(t)

V̇1(t)
V̇2(t)


 = M


 U(t)

V1(t)
V2(t)


 ;


 U(tf )

V1(tf )
V2(tf )


 =


 I

Q1tf
Q2tf


 (20)

has a solution on [0, tf ], with U(·) nonsingular.
Moreover, if (20) has an appropriate solution (U(·), V1(·), V2(·)), the solution

of (17,18) is obtained as Pi(t) := Vi(t)U−1(t), i = 1, 2.

Next we consider the infinite planning horizon case. We assume now that the
performance criterion player i = 1, 2, likes to minimize is

lim
tf →∞ Ji(x0, u1, u2, tf ) (21)

where

J1(u1, u2) :=
tf∫

0

{
xT(t)Q1x(t) + uT

1 (t)R11u1(t) + uT
2 (t)R12u2(t)

}
dt, (22)

and

J2(u1, u2) :=
tf∫

0

{
xT(t)Q2x(t) + uT

1 (t)R21u1(t) + uT
2 (t)R22u2(t)

}
dt. (23)

We make the same assumptions as before w.r.t. the above involved matrices.
The matrix pairs (A, Bi), i = 1, 2, are assumed to be stabilizable. So, in

principle, each player is capable to stabilize the system on his own.
The information both players have at the beginning of the game is similar to

the finite-planning horizon case. Each player only knows the initial state of the
system. The admissible control actions are now functions of time, where time
runs from zero to infinity. Since we only like to consider those outcomes of the
game that yield a finite cost to both players and the players are assumed to have
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a common interest in stabilizing the system, we restrict ourselves to functions
belonging to the set

�(x0) =
{

u ∈ L2 | Ji(x0, u) exists in IR ∪ {−∞, ∞}, lim
t→∞ x(t) = 0

}
.

Notice that �(x0) depends on the inital state of the system. For simplicity of
notation we omit, however, this dependency. Moreover, the restriction to this
set of control functions requires some form of communication between the play-
ers. That is, it is assumed that both players have the meta-objective to stabilize
the system.

Before we present the basic theorem about existence of a unique equilibrium
for this game, we reconsider the nonsymmetric algebraic Riccati equation (12).
A solution X of (12) will be called strongly stabilizing if both σ(A − S̃X) ⊂ lC−
and σ(DT − S̃TXT) ⊂ lC−. The next lemma shows how one can verify whether
(12) has a strongly stabilizing solution.

Lemma 1 (12) has a strongly stabilizing solution (P1, P2) if and only if matrix
M in (13) has an n-dimensional stable graph subspace and M has 2n eigenvalues
(counting algebraic multiplicities) in lC+.

Theorem 6 The linear quadratic differential game (14,21–23) has a unique open-
loop Nash equilibrium for every initial state if and only if

1. The (set of coupled) algebraic Riccati equations

[
AT 0
0 AT

] [
P1
P2

]
+

[
P1
P2

]
A −

[
P1
P2

] [
S1 S2

] [
P1
P2

]
+

[
Q1
Q2

]
= 0 (24)

have a strongly stabilizing solution, and
2. the two algebraic Riccati equations

ATKi(t) + Ki(t)A − Ki(t)SiKi(t) + Qi(t), i = 1, 2, (25)

have a symmetric stabilizing solution.

Moreover, the unique equilibrium actions are given by

u∗
i (t) = −R−1

i BT
i Pi�(t, 0)x0, i = 1, 2.

Here �(t, 0) satisfies the transition equation

�̇(t, 0) = (A − S1P1 − S2P2)�(t, 0) =: Acl�(t, 0); �(t, t) = In.

The costs, by using these actions, for the players are

xT
0 Mix0, i = 1, 2,
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where Mi is the unique solution of the Lyapunov equation

AT
clMi + MiAcl + Qi + PT

i SiPi = 0.

Note that in case the game has a unique open-loop Nash equilibrium, the corre-
sponding Nash actions can also be implemented as a feedback control. That is,

u∗
i (t) = −R−1

i BT
i Pix∗(t), i = 1, 2,

where x∗(t) solves ẋ(t) = (A − S1P1 − S2P2)x(t), x(0) = x0.

To calculate the equilibrium one can either use an algorithm based on the cal-
culation of the eigenstructure of a certain matrix or try to solve the algebraic
Riccati equations iteratively. We will start with the former approach.

Algorithm 2

Step 1: Calculate the eigenstructure of Hi :=
[

A −Si

−Qi −AT

]
.

If Hi, i = 1, 2, has an n-dimensional stable graph subspace, then pro-
ceed. Otherwise there is no unique equilibrium and goto Step 5.

Step 2: Calculate matrix

M :=

 A −S1 −S2

−Q1 −AT 0
−Q2 0 −AT


 .

If M has n stable eigenvalues and 2n unstable eigenvalues (counting
algebraic multiplicities) then proceed. Else there is not a unique equi-
librium and goto Step 5.

Step 3: Calculate the M-invariant subspaces P corresponding with the eigen-
values for which Re λ < 0. If this is a graph subspace then proceed. Else
there exists no unique equilibrium and goto Step 5.

Step 4: Calculate three n × n matrices X, Y and Z such that Im


 X

Y
Z


 = P .

Denote P1 := YX−1 and P2 := ZX−1. Then

u∗
i (t) := −R−1

i BT
i PieAcltx0

is the open-loop Nash equilibrium strategy. Here Acl := A − S1P1 −
S2P2. The spectrum of the corresponding closed-loop matrix Acl equals
σ(M|P ).

Step 5: End of algorithm.

Remark 1 Step 1 in the above algorithm verifies whether the algebraic Riccati
equations (25) have a stabilizing solution. Of course one can use here MATLAB
to verify this.
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Concerning the numerical stability of Algorithm 2 we notice that various
suggestions have been made in literature to calculate solutions of Riccati equa-
tions in a numerical reliable way (see e.g. Laub 1979, 1991; Paige and Van Loan
1981; Van Dooren 1981; Mehrmann 1991; Abou-Kandil et al. 2003 for a more
general survey on various types of Riccati equations). These methods also can
be used to improve the numerical stability of Algorithm 2. Particularly if one
considers the implementation of large scale models one should consult this
literature.

As already indicated one can also try to solve the (set of coupled) alge-
braic Riccati equations (24) iteratively. Particularly for large scale systems one
might hope that such algorithms will be more efficient. For that reason various
iteration schemes have been suggested in literature. However, since in general
(24) admits several solutions, convergence of any algorithm is quite difficult to
obtain under general conditions (see e.g. Azevedo-Perdicoúlis and Jank 2005a).
An important problem with these algorithms is, in case one does not want to ver-
ify the strong stabilizability of the system beforehand, how one should proceed
in case the algorithm terminates at a non-stabilizing solution.

We will present here an iterative scheme based on the Newton-Raphson
method (see e.g. Kwakernaak and Sivan 1972).

To motivate this scheme reconsider (12) and let

F(K) := DK + KA − KS̃K + Q̃.

Suppose that at the kth iteration a solution Pk has been obtained, which is close
to the solution X satisfying F(X) = 0. Now, write

X = Pk + �k.

If �k is small we can approximate F(X) by omitting quadratic terms in �k and
we obtain

F(X) ≈ D(Pk + �k) + (Pk + �k)A − PkS̃Pk − �kS̃Pk − PkS̃�k + Q̃. (26)

The basic idea of the Newton-Raphson method is to estimate �k by setting the
right-hand side of (26) to zero. Denoting Pk + �k =: Pk+1 and substitution of
�k by Pk+1 − Pk yields then from (26) the next iterative scheme for Pk+1:

(D − PkS̃)Pk+1 + Pk+1(A − S̃Pk) + PkS̃Pk + Q̃ = 0. (27)

Notice that (27) is a linear matrix (Sylvester) equation in Pk+1. This equation
can be efficiently solved by using e.g. MATLAB (using the function lyap). Start-
ing the initialization at a strongly stabilizing solution P0 one may hope then that
all Pk will be strongly stabilizing and that the Pk converge. This leads to the
following algorithm.
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Algorithm 3

Step 1: Verify whether the algebraic Riccati equations (25) have a stabilizing
solution (see e.g. Step 1 of Algorithm 2).

Step 2: Calculate a P0 such that both D − P0S̃ and A − S̃P0 are stable. Choose
the desired approximation error ε.

Step 3: Solve Pk+1 from (27).
Step 4: Calculate eps := ‖Pk+1 − Pk‖. If eps > ε, increase k by one and return

to Step 3.
Step 5: Verify whether both D − PkS̃ and A − S̃Pk are stable. If Pk is a strongly

stabilizing solution, goto Step 8. The problem has a solution and Pk can
be used in Theorem 6 to determine the equilibrium actions.

Step 6: If just A − S̃Pk is stable, goto Step 8. The problem has not a unique
equilibrium.

Step 7: If both D − PkS̃ and A − S̃Pk are unstable, goto Step 2 (after maybe
now first a verification of whether the problem has a strongly stabilizing
solution (see Lemma 1)).

Step 8: End of algorithm.

4 The feedback game

As argued in the introduction we now look for actions which are functions of
the current state of the system and time or, so-called, Markov functions.

Since the system we consider is linear, it is often argued that the equilibrium
actions should be also a linear function of the state. We will adopt this point of
view here. We restrict the set of actions the players may choose their actions
from, in case the planning horizon tf is finite, to

�
lfb
i :=

{
ui(·) | ui(t) = Fi(t)x(t) where Fi(·)

is a piecewise continuous function on[0, tf ], i = 1, 2
}

.

So, in this section we say that a set of actions u∗
i (t) = F∗

i (t)x(t) (or with some
abuse of notation (F1, F2)) constitute a feedback Nash equilibrium if

J1(u
∗
1, u∗

2) ≤ J1(u1, u∗
2) and J2(u∗

1, u∗
2) ≤ J1(u

∗
1, u2), forall ui ∈ �

lfb
i .

Since by definition the equilibrium actions are a function of the current state
of the system, they can be interpreted as policy rules (see Reinganum and
Stokey 1985). They require no precommitment of the players, and hence are
also applicable if players are not “credible”.

Similar as for open-loop Nash equilibria, it turns out that linear feedback
Nash equilibria can be explicitly determined by solving a set of coupled Riccati
equations.
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Theorem 7 The linear quadratic differential game (14–16) has for every initial
state a linear feedback Nash equilibrium if and only if the next set of coupled
Riccati differential equations has a set of symmetric solutions K1, K2 on [0, tf ]

K̇1(t) = −(A − S2K2(t))TK1(t) − K1(t)(A − S2K2(t))

+ K1(t)S1K1(t) − Q1 − K2(t)S21K2(t),

K1(tf ) = Q1tf ; (28)

K̇2(t) = −(A − S1K1(t))
TK2(t) − K2(t)(A − S1K1(t))

+ K2(t)S2K2(t) − Q2 − K1(t)S12K1(t),

K2(tf ) = Q2tf . (29)

Moreover, in that case there is a unique equilibrium. The equilibrium actions are

u∗
i (t) = −R−1

i BT
i Ki(t)x(t), i = 1, 2.

The cost incurred by player i is xT
0 Ki(0)x0, i = 1, 2.

To calculate the solutions of the endpoint boundary-value differential
equations (28,29), one usually first rewrites this set of equations as an ini-
tial boundary-value problem by reversing the time axis. That is introduce
K̃i(t) := Ki(tf − t) and s := tf − t. Then (28,29) have a solution on [0, tf ] if
and only if the next set of nonlinear differential equations has a solution:

˙̃K1(s) = (A − S2K̃2(s))TK̃1(s) + K̃1(s)(A − S2K̃2(s))

− K̃1(s)S1K̃1(s) + Q1 + K̃2(s)S21K̃2(s),

K̃1(0) = Q1tf ; (30)

˙̃K2(s) = (A − S1K̃1(s))
TK̃2(s) + K̃2(s)(A − S1K̃1(s))

− K̃2(s)S2K̃2(s) + Q2 + K̃1(s)S12K̃1(s),

K̃2(0) = Q2tf . (31)

(30,31) can be rewritten now as a set of nonlinear differential equations. There
are many numerical tools to solve a set of nonlinear differential equations. A
number of them have been implemented in MATLAB too. Using e.g. the func-
tion ode23 within MATLAB the above differential equations can be solved in
a numerical reliable way.

Next we proceed with the infinite planning horizon case. That is, the mini-
mization of (21–23) subject to (14). We consider here Nash equilibria within
the class of linear time-invariant state feedback policy rules. That is, we shall
restrain our set of permitted controls to the constant linear feedback strategies.
That is, to ui = Fix, with Fi ∈ IRmi×n, i = 1, 2, and where (F1, F2) belongs to the
set

F := {F = (F1, F2) | A + B1F1 + B2F2 is stable}.
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The stabilization constraint is imposed to ensure the finiteness of the infinite-
horizon cost integrals that we will consider.

To make sure that our problem setting makes sense, we assume throughout
this chapter that the set F is non-empty. A necessary and sufficient condition
for this to hold is that the matrix pair (A,

[
B1, B2

]
) is stabilizable.

Summarizing, (F∗
1 , F∗

2 ) ∈ F is called a feedback Nash equilibrium if the
following inequalities hold:

J1(x0, F∗
1 , F∗

2 ) ≤ J1(x0, F1, F∗
2 ) and J2(x0, F∗

1 , F∗
2 ) ≤ J2(x0, F∗

1 , F2)

for each x0 and for each state feedback matrix Fi, i = 1, 2 such that (F∗
1 , F2) and

(F1, F∗
2 ) ∈ F .

Next, consider the set of coupled algebraic Riccati equations

0 = −(A − S2K2)
TK1 − K1(A − S2K2) + K1S1K1 − Q1 − K2S21K2, (32)

0 = −(A − S1K1)
TK2 − K2(A − S1K1) + K2S2K2 − Q2 − K1S12K1. (33)

Theorem 8 states that feedback Nash equilibria are completely characterized
by stabilizing solutions of (32,33). That is, by solutions (K1, K2) for which the
closed-loop system matrix A − S1K1 − S2K2 is stable.

Theorem 8 Let (K1, K2) be a stabilizing solution of (32,33) and define F∗
i :=

−R−1
ii BT

i Ki for i = 1, 2. Then (F∗
1 , F∗

2 ) is a feedback Nash equilibrium. Moreover,
the cost incurred by player i by playing this equilibrium action is xT

0 Kix0, i = 1, 2.
Conversely, if (F∗

1 , F∗
2 ) is a feedback Nash equilibrium, there exists a stabilizing

solution (K1, K2) of (32,33) such that F∗
i = −R−1

ii BT
i Ki.

The above theorem shows that all infinite-planning horizon feedback Nash
equilibria can be found by solving a set of coupled algebraic Riccati equations.
To find all stabilizing solutions of the system (32,33) is in general a difficult
problem.

To get some intuition for the solution set we next consider the scalar two-
player game, where players are not interested in the control actions pursued
by the other player. This case was extensively studied in Engwerda (2005,
Chap. 8.4). In particular it was shown that in this game never more than three
equilibria occur. Furthermore a complete characterization of parameters which
give rise to either 0, 1, 2, or 3 equilibria was provided. Also a numerical algo-
rithm, based on the calculation of invariant subspaces for a certain matrix, was
given to calculate all equilibria. Below we will summarize this algorithm. Notice
that this algorithm can be extended (in a non-obious way, see Engwerda 2005,
Chap. 8.5.3) to the N-player scalar case.

So, for the moment we consider the next game.

Ji(x0, u1, u2) =
∞∫

0

{qix2(t) + riu2
i }dt, i = 1, 2, (34)
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subject to the dynamical system

ẋ(t) = ax(t) + b1u1(t) + b2u2(t), x(0) = x0. (35)

The algebraic Riccati equations which provide the key to finding the feed-
back Nash equilibria for this game (see Theorem 8) are obtained from (32,33)
by substitution of R21 = R12 = 0, A = a, Bi = bi, Qi = qi, Rii = ri and
si := b2

i /ri, i = 1, 2, into these equations. By Theorem 8 then a pair of control
actions f ∗

i := −bi
ri

ki, i = 1, 2, constitute a feedback Nash equilibrium if and only
if the next equations have a solution xi = ki, i = 1, 2 :

s1x2
1 + 2s2x1x2 − 2ax1 − q1 = 0, (36)

s2x2
2 + 2s1x1x2 − 2ax2 − q2 = 0, (37)

a − s1x1 − s2x2 < 0. (38)

Geometrically, the equations (36) and (37) represent two hyperbolas in the
(x1, x2) plane, whereas the inequality (38) divides this plane into a “stable” and
an “anti-stable” region. So, all feedback Nash equilibria are obtained as the
intersection points of both hyperbolas in the “stable” region.
To get a better intuition for the numerical algorithm that looks for all solutions
satisfying (36–38) we recall the next theorem from Engwerda (2005).

Theorem 9

1. Assume that (k1, k2) is a feedback Nash equilibrium strategy. Then the
negative of the corresponding closed-loop system parameter λ := −a +∑2

i=1 siki > 0 is an eigenvalue of the matrix

M :=




−a s1 s2 0
q1 a 0 −s2
q2 0 a −s1

0 1
3 q2

1
3 q1

1
3 a


 . (39)

Furthermore, [1, k1, k2, k1k2]T is a corresponding eigenvector and λ2 ≥ σmax.
2. Assume that [1, k1, k2, k3]T is an eigenvector corresponding to a positive

eigenvalue λ of M, satisfying λ2 ≥ σmax, and that the eigenspace correspond-
ing with λ has dimension one. Then, (k1, k2) is a feedback Nash equilibrium.

From Theorem 9 then the next numerical algorithm can be derived to calcu-
late all feedback Nash equilibria.

Algorithm 4 The following algorithm calculates all feedback Nash equilibria of
the linear quadratic differential game (34,35).

Step 1: Calculate matrix M in (39) and σ := maxi
b2

i qi
ri

.
Step 2: Calculate the eigenstructure (λi,mi), i = 1, . . . , k , of M, where λi are

the eigenvalues and mi the corresponding algebraic multiplicities.
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Step 3: For i = 1, . . . , k repeat the following steps:
(3.1) If (i) λi ∈ IR; (ii) λi > 0 and (iii) λ2

i ≥ σ then proceed with Step
3.2 of the algorithm. Otherwise, return to Step 3.

(3.2) If mi = 1 then
(3.2.1) calculate an eigenvector v corresponding with λi of M.

Denote the entries of v by [v0, v1, v2, . . .]T . Calculate
kj := vj

v0
and fj := −bjkj

rj
. Then, (f1, . . . , fN) is a feedback

Nash equilibrium and Jj = kjx2
0, j = 1, . . . , N. Return to

Step 3.
If mi > 1 then
(3.2.2) Calculate σi := b2

i qi
ri

.
(3.2.2) For all 2N sequences (t1, . . . , tN), tk ∈ {−1, 1},

(i) calculate

yj := λi + tj
√

λ2
i − σj, j = 1, . . . , N

(ii) If λi = −a + ∑
j=1,...,N yj then calculate kj := yjrj

b2
j

and fj := −bjkj
rj

. Then, (f1, . . . , fN) is a feedback

Nash equilibrium and Jj = kjx2
0, j = 1, . . . , N.

Step 4: End of the algorithm.

Generically, one may expect that the eigenvalues of matrix M in the above
algorithm will have an algebraic multiplicity of one. In that case it is quite clear
how to proceed in the above algorithm. In case an eigenvalue has a multiplicity
larger than one, however, one may be forced to proceed with Step 3.2.2 and
3.2.3 in the algorithm. Since this part of the algorithm is somewhat technical we
illustrate this part of the algorithm with an example.

Example 1 Consider A = 3; Bi = Qi = 2 and Ri = 1, i = 1, 2. To calculate
the feedback Nash equilibria for this game, according Algorithm 4, we first
calculate the eigenstructure of matrix

M :=




−3 4 4 0
2 3 0 −4
2 0 3 −4
0 2

3
2
3 1


 .

Using Matlab, we find the eigenvalues {−4.8297, 2.8297, 3, 3}. Since both the
square of 2.8297 and 3 are larger than σ := 8, we have to process Step 3 of the
algorithm for both these eigenvalues.

First, consider the eigenvalue 2.8297. A corresponding eigenvector is

[v0, v1, v2, v3] := [−0.6532, −0.4760, −0.4760, −0.3468].
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So,

k1 := v1

v0
= 0.7287 and k2 := v2

v0
= k1.

This yields the symmetric feedback Nash equilibrium actions

ui = −biki

ri
x(t) = −1.4574x(t).

The corresponding closed-loop system and cost are

ẋ(t) = −2.8297x(t), x(0) = x0; and Ji = 0.7287x2
0, i = 1, 2,

respectively. Next consider the eigenvalue 3. This eigenvalue has an algebraic
multiplicity 2. So we have to proceed with Step 3.2.3 of the algorithm to calcu-
late the equilibria associated with this eigenvalue.
For the sequence (t1, t2) := (1, −1) we obtain in Step 3.2.3(i) y1 = 4 and y2 = 2,
respectively. These numbers satisfy the equality under Step 3.2.3(ii). Therefore,
with

k1 := y1r1

b2
1

= 1 and k2 := y2r2

b2
2

= 1
2

,

the corresponding equilibrium actions are

u1 = −b1k1

r1
x(t) = −2x(t) and u2 = −b2k2

r2
x(t) = −x(t).

The resulting closed-loop system and cost are in this case

ẋ(t) = −3x(t), x(0) = x0; J1 = x2
0 and J2 = 1

2
x2

0.

In a similar way we obtain for the sequence (−1, 1) the “reversed” solution

k1 = 1
2

; k2 = 1; f1 = −1; and f2 = −2,

respectively. Which gives rise to the closed-loop and cost

ẋ(t) = −3x(t), x(0) = x0; J1 = 1
2

x2
0 and J2 = x2

0.

Finally, it is easily verified that the numbers yj implied by both the sequences
(1, 1) and (−1, −1) do not satisfy the equality mentioned under Step 3.2.3(ii).
So, the game has three feedback Nash equilibria.
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Using Algorithm 2 one can verify easily that this game has neither a unique
open-loop Nash equilibrium too. The with this game corresponding matrix M
has two stable eigenvalues.

As already mentioned, one can proceed for the scalar N-player case in a sim-
ilar way to find all equilibria. For the multivariable case there are unfortunately
no computational algorithms available which provide all equilibrium points.
Like for the open-loop information case some iterative schemes have been pro-
posed in literature to find an equilibrium (see e.g. Krikelis and Rekasius 1971;
Tabak 1975; Papavassilopoulos et al. 1979; Li and Gajic 1994). However, all of
them just provide one equilibrium (if convergence occurs). Since the number of
equilibria can vary between zero and infinity it is clear that, particularly when
there is no additional information that a certain type of equilibrium point is
preferred or the number of equilibria is unknown, one would like to have an
overview of all possible equilibria.

Papavassilopoulos et al. considered in Papavassilopoulos and Olsder (1984)
a geometric approach for calculating the stabilizing solutions of the feedback
Nash algebraic Riccati equations similar to the open-loop approach of Sect. 3.
In that approach subspaces have to be calculated which satisfy simultaneously
some invariance properties. However, up to now, it is unknown how to find
these subspaces.

Two other different methods that have been proposed in the past for finding
all isolated solutions to a system of polynomials are interval methods (see e.g.
Van Henterick et al. 1997 for references) and continuation methods (see e.g.
Morgan 1987; Verschelde et al. 1994). Continuation methods have been shown
to be effective for problems for which the total degree of the constraints is
not too high, since the number of paths explored depends on the estimation
of the number of solutions. Interval methods are generally robust but used to
be slow. The approach taken in Van Henterick et al. (1997), however, seems to
overcome this bottleneck and be rather efficient. One important point that has
to be managed in using the interval method is, however, the choice of the initial
interval that contains all equilibria. Moreover, it is unclear how this method
will perform in case there are an infinite number of feedback Nash solutions.
Numerical experience using the above methods to find feedback Nash equilibria
is, unfortunately, still lacking at this moment.

We conclude this section with three iterative schemes that can be used to
calculate equilibria.

Algorithm 5 The following algorithm calculates a feedback Nash equilibrium
of the linear quadratic differential game (14,21–23) (see Li and Gajic 1994).
Step 1: Determine the stabilizing solution K0

1 of

ATK0
1 + K0

1A + Q1 − K0
1S1K0

1 = 0.

Next determine the stabilizing solution K0
2 of the Riccati equation

(A − S1K0
1)

TK0
2 + K0

2(A − S1K0
1) + Q2 + K0

1S12K0
1 − K0

2S2K0
2 = 0.



Algorithms for computing Nash equilibria in deterministic LQ games 135

Step 2: Let i := 0. Repeat the next iterations until the matrices Ki
j , j = 1, 2,

below have converged.
Here Ai

cl := A − S1Ki
1 − S2Ki

2, and Ki+1
j , j = 1, 2, are the solutions of

the Lyapunov equations

AiT
cl Ki+1

1 + Ki+1
1 Ai

cl = −(Q1 + Ki
1S1Ki

1 + Ki
2S21Ki

2)

AiT
cl Ki+1

2 + Ki+1
2 Ai

cl = −(Q2 + Ki
2S2Ki

2 + Ki
1S12Ki

1),

respectively, for i = 0, 1, ....
Step 3: End of the algorithm.

In the above algorithm (5) the hope is that the matrices Ai
cl will be stable

for all i. In case the stability condition is violated at some iteration, this might
indicate that the iteration at hand will have no appropriate solution. The next
iteration scheme we present here is motivated by the fact that its convergence
speed is often faster than that of the previous algorithm.

Algorithm 6 The following algorithm calculates a feedback Nash equilibrium
of the linear quadratic differential game (14,21–23).

Step 1: Determine (K0
1, K0

2) such that A − S1K0
1 − S2K0

2 is stable.
Step 2: Let i := 0. Repeat the next iterations until the matrices Ki

j , j = 1, 2,

below have converged. Here Ki+1
j , j = 1, 2, are the stabilizing solutions

of the algebraic Riccati equations

0 = (A − S2Ki
2)

TKi+1
1 + Ki+1

1 (A − S2Ki
2) − Ki+1

1 S1Ki+1
1

+Q1 + Ki
2S21Ki

2,

0 = (A − S1Ki+1
1 )TKi+1

2 + Ki+1
2 (A − S1Ki+1

1 ) − Ki+1
2 S2Ki+1

2

+Q2 + Ki+1
1 S12Ki+1

1 .

Step 3: End of the algorithm.

The third iteration we present is based on the Newton-Raphson method.
Following the lines of the derivation of Algorithm 3 one obtains the iteration
scheme outlined in Algorithm 7. Notice that in Step 2 below one has to solve a
set of linear matrix equations in Ki+1

1 and Ki+1
2 . To solve this set of equations

one can, e.g., first rewrite them as one big set of linear equations Gx = d (using
Kronecker notation) and then use a numerical reliable computerpackage to
solve this set of equations. Notice that the Ki+1

j are symmetric, which reduces
the number of linear equations that has to be solved.

Algorithm 7 The following algorithm calculates a feedback Nash equilibrium
of the linear quadratic differential game (14,21–23).

Step 1: Determine (K0
1, K0

2) such that A − S1K0
1 − S2K0

2 is stable.
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Step 2: Let i := 0. Repeat the next iterations until the matrices Ki
j , j = 1, 2,

below have converged. Here Ki+1
j , j = 1, 2, are the solutions of the

linear matrix equations

0 = (A − S1Ki
1 − S2Ki

2)
TKi+1

1 + Ki+1
1 (A − S1Ki

1 − S2Ki
2)

+Ki+1
2 (−S2Ki

1 + S21Ki
2) + (−Ki

1S2 + Ki
2S21)K

i+1
2 + Ki

2S2Ki
1

+Ki
1S2Ki

2 + Ki
1S1Ki

1 + Q1 − Ki
2S21Ki

2,

0 = (A − S1Ki
1 − S2Ki

2)
TKi+1

2 + Ki+1
2 (A − S1Ki

1 − S2Ki
2)

+Ki+1
1 (−S1Ki

2 + S12Ki
1) + (−Ki

2S1 + Ki
1S12)K

i+1
1 + Ki

1S1Ki
2

+Ki
2S1Ki

1 + Ki
2S2Ki

2 + Q2 − Ki
1S12Ki

1.

Step 3: End of the algorithm.

5 An Example

Consider the interaction of fiscal stabilization policies of two countries. Assume
that the competitiveness between both countries is described by the differential
equation

ṡ(t) = −as(t) + f1(t) − f2(t), s(0) = s0,

where a > 0, the variable s(t) denotes the difference in prices between both
countries at time t and fi(t) is the fiscal deficit set by the fiscal authority in country
i, i = 1, 2. Each fiscal authority seeks to minimize the following intertemporal
loss function that is assumed to be quadratic in the price differential and fiscal
deficits,

Ji =
∞∫

0

e−rt{s2(t) + rif 2
i (t)}dt, i = 1, 2.

Here r is a discount factor. Assume that both countries do not cooperate their
policies aimed at reducing the initial price differential between both countries.

Introducing x(t) := e− 1
2 rts(t) and ui(t) := e− 1

2 rtfi(t) the problem is equivalent
with the minimization of

Ji =
∞∫

0

{x2(t) + riu2
i (t)}dt, i = 1, 2,
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subject to

ẋ(t) =
(

−a − 1
2

r
)

x(t) + u1(t) − u2(t), x(0) = s0.

Assume a = 0.975, r = 0.05, r1 = 1 and r2 = 2. Then s1 = 1 and s2 = 0.5.
To calculate the open-loop Nash equilibrium actions and involved cost we

follow the lines of Algorithm 2.

Step 1: H1 =
[−1 −1

−1 1

]
and H2 =

[−1 −0.5
−1 1

]
. The eigenvalues of H1 are

{√2, −√
2}. An eigenvector corresponding with the eigenvalue −√

2 is
[1 1 − √

2]T . So, H1 has a one-dimensional stable graph subspace. In
the same way one can show that H2 has a stable graph subspace too.
Therefore we can proceed with the next step in the algorithm.

Step 2: M =

−1 −1 −0.5

−1 1 0
−1 0 1


 .M has the eigenvalues {−1.5811, 1, 1.5811}.

Since M has one stable eigenvalue, we can proceed with step 3.
Step 3: An eigenvector of M corresponding with the eigenvalue −1.5811 is

[0.8770 0.3398 0.3398]T . From this it is clear that M has a one-dimen-
sional stable graph subspace.

Step 4: With p1 = p2 := 0.3398/0.8770 = 0.3874 we obtain the equilibrium
actions:

u∗
1(t) = −0.3874x∗(t) and u∗

2(t) = −0.1937x∗(t),

where x∗(t) = e−1.5811ts0.

The with these equilibrium actions involved cost for player i are mis2
0, where

m1 is the solution of 2 ∗ −1.5811m1 + 1 + 0.38742 = 0 and m2 solves 2 ∗
−1.5811m2 + 1 + 0.5 ∗ 0.38742 = 0 (see Theorem 6). That is, J1 = 0.3637s2

0 and
J2 = 0.34s2

0.
Next we calculate for this example the corresponding feedback equilibrium

actions and involved cost following the lines of Algorithm 4.

Step 1: M =




1 1 0.5 0
1 −1 0 −0.5
1 0 −1 −1
0 1

3
1
3

−1
3


 and σ = 1.

Step 2: The eigenvalues of M are {−1.2715, −0.8012 ± 0.2852i, 1.5405}. An
eigenvector of M corresponding with the eigenvalue 1.5405 is [0.8873
0.3271 0.3050 0.1124].

Step 3: From Step 2 we conclude that there is just one feedback Nash equi-
librium, which results by considering the graph subspace associated
with the eigenvalue 1.5405. It follows from this graph subspace that
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Table 1 Cost and equilibrium strategies for different ri parameters

r1, r2 JOL
1 , JOL

2 JFB
1 , JFB

2 FOL
1 , FOL

2 , aOL
cl FFB

1 , FFB
2 , aFB

cl

1,2 0.3637, 0.34 0.3687, 0.3437 0.3874, 0.1937, −1.5811 0.3687, 0.1718, −1.5405
4,2 0.3955, 0.4130 0.3976, 0.4155 0.1076, 0.2153, −1.3229 0.0994, 0.2078, −1.3072
0.25,2 0.2894, 0.2227 0.2941, 0.2240 1.1957, 0.1495, −2.3452 1.1764, 0.1120, −2.2883

k1 = 0.3271/0.8873 = 0.3687 and k2 = 0.3050/0.8873 = 0.3437. The
resulting equilibrium actions are:

u∗
1(t) = −0.3687x∗(t) and u∗

2(t) = −0.1719x∗(t),

where x∗(t) = e−1.5405ts0.

The with these equilibrium actions involved cost for the players are
J1 = 0.3687s2

0 and J2 = 0.3437s2
0.

In Table 1 we tabulated for some different choices of ri parameters equilib-
rium actions and involved cost. For simplicity we choose s0 = 1. Furthermore
we used the shorthand notation f j

i and aj
cl which are related to the equilibrium

strategies as follows: u∗
i (t) = −Fj

i e
aj

clts0, j = OL, FB. A general observation is
that the involved cost for the players are lowest for the open-loop case. Further-
more, the actions in the feedback case (FB) are initially more cautious than in
the open-loop case (OL) whereas, when time evolves, from some point in time
on this picture reverses. We can also see that if player one likes to follow a more
stringent fiscal policy, this is only partially realized. Comparing the benchmark
case, r1 = 1, with the case r1 = 4 we see that initially indeed its fiscal policy is
less pronounced, but in the end its policy is larger than in the benchmark case.
For player 2 this more stringent fiscal policy goal by player 1 implies a more
active fiscal policy at every point in time.

6 Concluding remarks

In this paper we reviewed some computational schemes to calculate the open-
loop and feedback Nash equilibria in linear quadratic differential games.

For the finite planning horizon problem there exist computationally efficient
tools to implement algorithms to test (and calculate) the (in general) unique
equilibrium. Also for the infinite planning horizon open-loop and scalar feed-
back case we presented algorithms which make it (in principle) possible to
calculate the unique, respectively, all equilibria. Here the addition “in princi-
ple” is added, because for large scale systems the presented invariant subspace
algorithms should be implemented in a numerically reliable way. For the mul-
tivariable infinite planning horizon feedback case there exist unfortunately no
general conditions under which one can conclude that there exists a unique
equilibrium. Therefore, though we presented some iterative schemes which
usually perform quite well, the use of these iterative schemes remains a little



Algorithms for computing Nash equilibria in deterministic LQ games 139

bit unsatisfactory since they do not provide conclusive answers about (in case
convergence occurs) whether still more equilibrium points exist.

For ease of presentation we considered the two-player case. The presented
algorithms can however be generalized for N-players where the cost functions
have a linear quadratic structure and the sytem is linear affine. For the open-
loop infinite planning horizon, e.g., a numerical toolbox in the line of Algorithm
2 is under construction in case dimensions are not too large (see Engwerda et al.
2006). Furthermore, in case the planning horizon is finite, all results can be gen-
eralized for nonstationary systems. In literature also linear uncertain systems
have been considered. In, e.g., Engwerda (2005) one can find both a stochastic
and worst-case approach of such systems together with some related computa-
tional schemes (see also Engwerda 2006).

Several special cases of LQ differential games have been considered in lit-
erature. We like to mention here two cases where also recently new numerical
results were reported.
First, the set of weakly coupled large-scale systems has been studied extensively
by e.g. Mukaidani in a number of papers (see e.g. Mukaidani 2006). This are
systems where each player controls a set of states which are only marginally
affected by other players. So, the corresponding LQ game almost equals an
ordinary optimal LQ control problem. It can be shown that under the assump-
tion that the coupling between the various “subsystems” is marginal the LQ
game will have a unique equilibrium. In Mukaidani (2006) a numerical algo-
rithm which achieves quadratic convergence is proposed, based on Newton’s
method and fixed point iterations, to calculate the feedback Nash equilibrium.
In Azevedo-Perdicoúlis and Jank (2005b) the set of positive systems has recently
been considered. That is, the case that both the state and used controls should
be positive at any point in time. In this paper conditions are stated under which
such a system has an equilibrium and some algorithms are devised to calculate
an equilibrium.

Finally we like to mention that for discrete time systems much work has
been done by Neck and coauthors in the development of the numerical soft-
ware OPTGAME for the calculation of Nash equilibria in (non-)linear systems
in case the performances of players are quadratic (see e.g. Neck et al. 2001).

Acknowledgements I like to thank the referee for his comments which helped to improve the
readability of this paper.
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