
  

 

 

Tilburg University

On 3-chromatic distance-regular graphs

Blokhuis, A.; Brouwer, A.E.; Haemers, W.H.

Published in:
Designs Codes and Cryptography

Publication date:
2007

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Blokhuis, A., Brouwer, A. E., & Haemers, W. H. (2007). On 3-chromatic distance-regular graphs. Designs Codes
and Cryptography, 44(1-3), 293-305.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Jan. 2022

https://research.tilburguniversity.edu/en/publications/d70ce0f7-81bd-4de5-a087-e4c32db82b15


Des. Codes Cryptogr. (2007) 44:293–305
DOI 10.1007/s10623-007-9100-7

On 3-chromatic distance-regular graphs

Aart Blokhuis · Andries E. Brouwer ·
Willem H. Haemers

Received: 30 November 2006 / Accepted: 13 June 2007 / Published online: 28 July 2007
© Springer Science+Business Media, LLC 2007

Abstract We give some necessary conditions for a graph to be 3-chromatic in terms of
the spectrum of the adjacency matrix. For all known distance-regular graphs it is determined
whether they are 3-chromatic. A start is made with the classification of 3-chromatic dis-
tance-regular graphs, and it is shown that such graphs, if not complete 3-partite, must have
λ ≤ 1.
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1 Introduction

Throughout the paper � is a graph without loops on v vertices with adjacency matrix A and
eigenvalues λ1 ≥ · · · ≥ λv . A proper coloring of � is a partition of the vertex set of � into
cocliques (i.e., independent sets of vertices). Such cocliques are called color classes. The
chromatic number χ(�) of � is the minimum number of color classes in a proper coloring.

If χ(�) ≤ 2, then � is bipartite. Bipartite graphs are easily recognized and there is a
characterization in terms of the eigenvalues (see [6]):

A. Blokhuis · A. E. Brouwer
Department of Mathematics, Technological University Eindhoven,
Eindhoven, The Netherlands

A. Blokhuis
e-mail: aartb@win.tue.nl

A. E. Brouwer
e-mail: aeb@cwi.nl

W. H. Haemers (B)
Department of Econometrics & O.R., Tilburg University, Tilburg, The Netherlands
e-mail: haemers@uvt.nl

123



294 Des. Codes Cryptogr. (2007) 44:293–305

Proposition 1.1 χ(�) ≤ 2 if and only if λi = −λv−i+1 for i = 1, . . . , v.

However, for graphs with a given chromatic number greater than 2, there is no
characterization in terms of the spectrum. Indeed, there exist pairs of graphs with the same
spectrum, but different chromatic number (for example the complement of the 4×4 grid and
the complement of the Shrikhande graph). Moreover, if χ ≥ 3 it is an NP-complete problem
to decide whether a given graph has chromatic number χ (see [13]).

In this paper we will present some necessary eigenvalue conditions for being 3-chromatic.
Then we will look at distance-regular graphs, determine for all known ones whether they are
3-chromatic, and make a start with the classification of all 3-chromatic distance-regular
graphs.

The classification of all bipartite distance-regular graphs is hopeless.
We use [3] as a general reference on distance-regular graphs.

2 Eigenvalue conditions

2.1 Hoffman colorings

For general graphs, Hoffman [16] proved the following lower bound for the chromatic
number:

Theorem 2.1 If � has at least one edge, then χ(�) ≥ 1 − λ1/λv .

When equality holds we call the coloring a Hoffman coloring. Note that by Proposi-
tion 1.1, all 2-chromatic graphs have a Hoffman coloring. For a k-regular graph Hoffman
(unpublished, see [3]) proved:

Proposition 2.2 If � is k-regular, and C is a coclique in �, then

|C | ≤ v
−λv

k − λv

.

Equality implies that every vertex not in C has exactly −λv neighbors in C.

If C is the largest color class in a coloring of � with χ(�) colors, then clearly χ(�)|C | ≥ v.
Since k = λ1, Proposition 2.2 gives the same lower bound for χ(�) as Theorem 2.1, but in
this case we have more information about the case of equality.

Proposition 2.3 If � is regular, then all color classes of a Hoffman coloring have equal
size, and the color partition is equitable (that is, each vertex x has exactly −λv neighbors
in each color class not containing x). Moreover, the multiplicity of λv is at least χ(�) − 1
and equality implies that � has a unique coloring with χ(�) colors (up to permutation of
the colors).

Proof All color classes are cocliques for which Hoffman’s coclique bound is tight. So the first
sentence follows from Proposition 2.2. A vector that is 1 on one color class, −1 on another,
and 0 elsewhere, is an eigenvector with eigenvalue λv . This shows that the eigenvalue λv

has multiplicity at least χ(�) − 1. If there is another coloring with χ(�) colors, we find
eigenvectors that are not in the span of those just found. �

In fact, the last sentence of the above proposition is also true for a Hoffman coloring in a
non-regular connected graph.
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2.2 3-chromatic graphs

Hoffman’s theorem for the chromatic number implies that if � has chromatic number 3 then
λ1 ≤ −2λv . In [15, p. 22] more bounds of a similar nature were obtained, and especially in
case of small chromatic numbers, they can be useful (see Sect. 2.3 for an alternative proof).

Theorem 2.4 If � has chromatic number 3, then

2λ1+� ≥ −λv−2� and λ1+2� ≤ −2λv−� (0 ≤ � ≤ v/3).

For example, let � be the folded 11-cube (with d = 5 and v = 1024). The spectrum of
� (see [3]) is 111, 755, 3330, −1462, −5165, −911 (with multiplicities written as exponents).
So λv−176 = −1 and λ353 = 3, and the second inequality of this theorem is violated for
� = 176. So χ(�) > 3. This argument works for folded (2d + 1)-cubes when d ≤ 5, but
unfortunately not for d ≥ 6. See Theorem 3.10 below for a proof that the chromatic number
of the folded (2d + 1)-cube is 4 for all d .

Proposition 2.5 Let � be 3-chromatic, and let C be any color class in a 3-coloring.

i. If � is k-regular then |C | ≥ v(k + λv)/(2k + λv). Equality implies that all vertices
outside C have the same number of neighbors in C.

ii. λi ≥ −λv+1−i−|C | and λv+1−i ≤ −λi+|C | for 1 ≤ i ≤ v − |C |.
Proof Consider the bipartite subgraph �′ of � induced by the remaining two color classes.
Put c = |C | and let λ′

1 ≥ · · · ≥ λ′
v−c be the eigenvalues of �′.

If � is k-regular, �′ has kv/2 − kc edges, hence λ′
1 ≥ k(v − 2c)/(v − c) with equality if

and only if �′ is regular. Using λv ≤ λ′
v−c = −λ′

1, statement i follows.
Eigenvalue interlacing gives λi ≥ λ′

i = −λ′
v−c+1−i ≥ −λv+1−i−c and λv+1−i ≤

λ′
v−c+1−i = −λ′

i ≤ −λi+c. �

For example, consider the unique distance-regular graph with intersection array
{15, 14, 12; 1, 1, 9}. This graph has 506 vertices and spectrum 151, 4230, −3253, −822. If
there is a 3-coloring, then |C | ≤ 168 for some color class C . But then the second inequality
of Proposition 2.5.i i with i = 23 gives −3 = λ484 ≤ −λ|C |+23 = −4. Therefore this graph
is not 3-colorable.

Theorem 2.6 Suppose � is a 3-chromatic edge-regular graph with parameters (v, k, λ) (i.e.,
� is k-regular and every edge is in exactly λ triangles). If λ �= 0 then every 3-coloring is a
Hoffman coloring.

Proof Let A and N be the adjacency matrix and the vertex-triangle incidence matrix of �,
respectively. Then N N� = λA + 1

2 kλI . Since N N� is positive semi-definite, λv ≥ −k/2.
So Hoffman’s bound is tight. �

2.3 The inertia bound

For a graph �, let α(�) be the independence number of �, that is, the size of the largest coc-
lique. The following proposition is due to Cvetković (see [6]; it is an immediate consequence
of eigenvalue interlacing).

Proposition 2.7 Let � be a graph of order v, and let B be a matrix indexed by the vertex set
of � such that if x �∼y then Bxy = 0. Let n+(B) and n−(B) be the number of positive and
negative eigenvalues of B, respectively. Then α(�) ≤ v − n+(B) and α(�) ≤ v − n−(B).
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For example, if � is the unique distance-regular graph with intersection array
{21, 20, 16, 9, 2, 1; 1, 2, 3, 16, 20, 21} on v = 2048 vertices (see [3]), then � has 1387
positive eigenvalues, so α(�) ≤ 661 < v/3. Therefore � is not 3-colorable (note that the
result also follows from Theorem 2.4).

There are less trivial ways to obtain bounds on the chromatic number from bounds on the
independence number, cf. Godsil [14]. Indeed, the independence number of the Cartesian
product Km × � equals the size of the largest m-colorable subgraph of �. In particular, � is
m-colorable if and only if Km × � has independence number v.

Let r be a real number, and consider the Cartesian product Km × �, where the ‘vertical’
edges (in a copy of Km) are weighted r and the ‘horizontal’ ones (in a copy of �) get weight
1. The weighted adjacency matrix B has eigenvalues λ + (m − 1)r (once) and λ − r (m − 1
times) for each eigenvalue λ of �. Now choose r in such a way that B has as few nonpositive
or nonnegative eigenvalues as possible, and obtain a bound on the chromatic number of �.

The technique can be used to give an alternative proof of Theorem 2.4.

Proof (of Theorem 2.4). Suppose that 0 ≤ � < v/3 and λ1+2� > −2λv−�. If λv−� > 0 then
n+(A) ≥ v − � so that α(�) ≤ � < v/3 and χ(�) > 3. So, we may assume λv−� ≤ 0. It
follows that λ1+2� > 0. Use m = 3 and r with − 1

2λ1+2� < r < λv−�. Then the weighted
adjacency matrix B has at most 2� + (v − 2� − 1) = v − 1 nonpositive eigenvalues, so that
� is not 3-chromatic. The other cases go similarly. �

Similarly, Proposition 2.5.i i is the special case m = 2 of this argument: if there is a
3-coloring with color class C , then the independence number of K2 × � is at least v − |C |.

3 Distance-regular graphs

Assume � is a distance-regular graph with diameter d , intersection array

{b0, . . . , bd−1; c1, . . . , cd}
and degree k = b0. As usual we define bd = c0 = 0, k = b0, ai = k − bi − ci for
i = 0, . . . , d , λ = a1, and µ = c2.

3.1 Diameters 1 and 2

If d = 1, the triangle K3 is the only 3-chromatic distance-regular graph. A distance-regular
graph with d = 2, is a connected strongly regular graph. The 3-chromatic strongly regular
graphs are easily determined (see [15]):

Theorem 3.1 If � is a connected 3-chromatic strongly regular graph, then � is the pentagon,
the Hamming graph H(2, 3), the Petersen graph O3, or the complete 3-partite graph Km,m,m

(m > 1).

In fact, all 4-chromatic strongly regular graphs [15] and almost all 5-chromatic strongly
regular graphs [11] have been determined.

3.2 Generalized polygons

Theorem 3.2 If � is the collinearity graph of a generalized n-gon G of order (s, t), then �

is 3-chromatic if and only if s = 2 and t = 1, or s = t = 1 and n is odd.
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Proof Assume � is 3-chromatic. If s = 1 then � is an odd cycle. Otherwise it is clear that
s = 2 and n ≥ 4. If n = 4, then � is strongly regular and Theorem 3.1 gives t = 1. If n > 4
and t > 1, then (see [3]) (n, t) = (6, 2), (6, 8), or (8, 4).

If n = 6, t = 2, then G is a generalized hexagon of order 2 (on 63 points). There exist
exactly two such hexagons (one is the dual of the other). For both cases De Wispelaere [9]
showed that � is not 3-colorable.

If n = 6, t = 8, then G is the unique generalized hexagon of order (2, 8) (on 819 points).
This generalized hexagon contains a subhexagon of order 2, and therefore � is not 3-colorable
(see [9]).

If n = 8, t = 4, G is a generalized octagon of order (2, 4) (on 1755 points). Then the
eigenvalues of � are

101, 5351, 1650, −3675, −578.

It follows that � is not 3-colorable by Theorem 2.4 (take � = 352).
Finally, if � is the collinearity graph of a generalized 2m-gon of order (2, 1), then �

is 3-chromatic. Indeed, such a graph is the flag graph of a generalized m-gon of order 2,
which is the line graph of the bipartite incidence graph of a generalized m-gon of order 2.
These bipartite graphs have valency 3 and hence have edge-chromatic number 3 (by König’s
theorem), so that their line graphs have chromatic number 3. �

3.3 Near polygons

A 3-chromatic distance-regular graph with λ > 0 must be similar to a regular near polygon
with lines of size 3.

Theorem 3.3 Let � be a 3-chromatic distance-regular graph with λ > 0, not a complete
tripartite graph Km,m,m. Then λ = 1 and µ ≤ 2 and � has no induced 5-cycle and no
2-colored 4-cycle.

Proof Let W (hite), B(lue) and R(ed) denote the sets of points in the different color classes
for a proper 3-coloring of �. By Theorem 2.6 and Proposition 2.3, W , B and R have the
same size, and every point in one class has k/2 neighbors in each of the other classes.

Writing down the diagram from a white point w ∈ W , we see that the points in �1(w) are
partitioned into k/2 red and k/2 blue points. For �2(w) we find a partition into (k/2)(k/2 −
λ)/µ red points, the same number of blue points and k(k/2 − 1)/µ white points.

If λ = k/2 then we obtain a complete tripartite graph. If λ < k/2, there exists a red-blue
edge {x, y} between �1(w) and �2(w), and any common neighbor of x and y is white and
hence in �2(w). Therefore a2 > 0. If λ > 1 this is impossible since then there are more
white vertices in �2(w) than blue and red together. Therefore λ = 1.
The number of white vertices in �2(w) equals the number of blue and red together so we
get a bipartite graph, and in particular there are no edges between red and blue in �2(w). It
follows that we cannot have 2-colored quadrangles in the graph, for the unique point of the
third color adjacent to an edge has to have a further neighbor, but λ = 1. As a consequence
µ = 1 or 2. It also follows that we cannot have any induced 5-cycle in the graph, for one of
the colors is present only once and opposite to it there is a forbidden edge. �

We would like to show that in case λ = 1 we have a regular near polygon or an antipodal
cover of one. Some steps in this direction:
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Lemma 3.4 Let � be a 3-chromatic distance-regular graph with λ = 1, and call its triangles
lines. If a point x has distance at most 2 to a line L, then there is a unique point on L closest
to x. In particular, a2 = c2.

Proof Let us continue with the case λ = 1 in the above proof and consider an adjacent
white-blue pair of vertices p, q in �2(w) and suppose the common red neighbor r is in
�3(w). The blue point q has a red common neighbor x with w, and the white point p must
have a common neighbor y with w, and x and y must be adjacent, otherwise we have an
induced pentagon. In particular, y is unique and µ = 1. On the other hand, y, q have the two
common neighbors x, p, contradicting µ = 1. So, r is not in �3(w). �

For example, the graph with intersection array {6, 4, 2, 1; 1, 1, 4, 6}, the triple cover of
G Q(2, 2), is not 3-chromatic.

Lemma 3.5 Let � be a 3-chromatic distance-regular graph with λ = 1, and call its triangles
lines. There are nonzero numbers ui satisfying u0 = 1, ud+1 = 0 and ci ui−1 +(ai + 1

2 k)ui +
bi ui+1 = 0 (1 ≤ i ≤ d) such that if w is a point, and L = {x, y, z} is a line, and w has
distances h, i, j to x, y, z, respectively, then uh +ui +u j = 0. In particular, x does not have
the same distance to the three points on L.

Proof The smallest eigenvalue of � is θ = −k/2. Apply [3, Proposition 4.4.1], to find num-
bers ui (0 ≤ i ≤ d) and a representation of the vertices of � as unit vectors in a Euclidean
space such that two vertices at distance i have representing unit vectors with inner product
ui . Since θ is the smallest eigenvalue, the ui alternate in sign, and in particular are nonzero.
We have u0 = 1 and u1 = − 1

2 .
Looking at the Gram matrix of the image of a line {x, y, z} we see that the sum of the

images of x, y, z is 0. It follows that if w is any point, and the distances of w to x, y, z are
h, i, j , then uh + ui + u j = 0. �

Theorem 3.6 A 3-chromatic distance-regular graph with d = 3 and λ �= 0 is one of the
following.

i. the flag graph of the Fano plane (v = 21),
ii. the Hamming graph H(3, 3) (v = 27),

iii. the coset graph of the extended ternary Golay code (v = 729).

Proof By Lemmas 3.4 and 3.5, � is (the collinearity graph of) a regular near hexagon, and
we saw that µ ≤ 2. Now near hexagons with λ = 1 and µ ≥ 2 were classified in [4], and
only H(3, 3) and the near hexagon on 729 points have µ = 2. On the other hand, if µ = 1,
then we have (the collinearity graph of) a generalized hexagon and Theorem 3.2 applies. �

It is not true that every 3-chromatic distance-regular graph with λ = 1 is a near polygon.
However, we have the following.

Proposition 3.7 Let � be a 3-chromatic distance-regular graph with λ = 1, µ = 2, d ≥ 3.
Then there is a number e, 3 ≤ e ≤ d, such that ai = ci if i < e, ai = k/2 if i = e, and
ai = bi if i > e. If ad > 0 (equivalently, if e = d), then � is a near polygon.

Proof Assume λ = 1 and µ = 2. View the graph as the collinearity graph of a geometry
with lines of size 3. Any two vertices at distance 2 determine a quad 3 × 3 (that is, H(2, 3)):
since µ = 2 they determine a quadrangle, and using the fact shown above that if a point
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has distance 2 to two vertices on a line, it has distance 1 to the third point, we see that the
quadrangle completes to a quad.

Now apply Lemma 3.5 to find nonzero ui such that if w is any point, and {x, y, z} any
line, and the distances of w to x, y, z are h, i, j , then uh + ui + u j = 0.

As already observed, the case h = i = j does not occur. This means that two points of
the line have the same distance, say i , to w, and the third point has distance i + 1 or i − 1 to
w. In the former case 2ui + ui+1 = 0, in the latter 2ui + ui−1 = 0.

For small distances we know that only the triples 0,1,1 and 1,2,2 and 2,3,3 occur, so that
u0 = 1, u1 = − 1

2 , u2 = 1
4 , u3 = − 1

8 .
It is impossible to have both i − 1, i − 1, i and i, i + 1, i + 1, since otherwise ui =

−2ui−1 = −2ui+1 and no line i, i, ∗ is possible. Now make a quad on two intersecting lines
with patterns i −1, i −1, i and i, i +1, i +1, and see that i, i, i ±1 does occur, contradiction.

So, there is a unique distance e, the largest i ≤ d such that ui = (− 1
2 )i , such that if i < e

lines with i, i, ∗ have i, i, i − 1, and if i > e they have i, i, i + 1.
The graph � is a near polygon precisely when ud = −ud−1/2 = (− 1

2 )d . In this case
ad = cd = k/2. If it is not a near polygon, then ud = −2ud−1. In this case there are no lines
with distance pattern d, d, ∗, and it follows that ad = 0. �

The coset graph of the shortened extended ternary Golay code (that is, the dual of the
perfect ternary Golay code) on 729 vertices (see [3, p. 365]) has λ = 1, µ = 2, d = 5 and
ad = 0 (hence is not a near polygon), and is 3-chromatic.

Proposition 3.8 Let � be a 3-chromatic distance-regular graph with λ = 1, µ = 2, d > 3,
ad > 0. Then � is H(d, 3).

Proof (Use notation as in [2]. Here ti + 1 = ci and s = 2.) A regular near polygon with
λ > 0 and µ > 1 contains geodetically closed sub near polygons of all diameters [4]. If the
near polygon is 3-chromatic, then by Theorem 3.6 the sub near hexagons (‘hexes’) must be
either H(3, 3) or the near hexagon on 729 vertices. According to [7, p. 56], no regular near
octagon has hexes isomorphic to the 729-point near hexagon. Indeed, if such a near octagon
has t + 1 lines/point, then by [2] we have t + 1 ≤ (s2 + 1)(t3 + 1) = 60 and for these t the
multiplicity of the eigenvalue −t − 1 is integral only when t + 1 = 40. But then the number
of hexes on a quad is (t − t2)/(t3 − t2) = 38/10, contradiction. It follows by induction on
d that if d �= 3 we necessarily have H(d, 3). Indeed, let d ≥ 4. By induction ci = i for
i < d . We have a quotient of H(d, 3), cf. [3, p. 155]: there is a map from H(d, 3) to � that
is an isomorphism on subgraphs H(d − 1, 3). The fibers of the quotient map are codes of
covering radius d and minimal distance at least 2d . A truncated code has covering radius
d − 1 (a point at distance d has a neighbour at distance d − 1 on each line through it) and
minimal distance at least 2d − 1, so is perfect, and for d ≥ 3 no such codes exist other than
the perfect ternary Golay code. �

It should be possible to completely classify the case λ = 1, µ = 2, but we have not done
so. Some partial results are: e > d/2, and for e ≥ 4 there are subgraphs H(3, 3), and using
those, one finds that � is a quotient of H( 1

2 k, 3). In particular, if e ≥ 4 then v is a power of 3.
If d ≥ 4 and λ = µ = 1 there is only one known regular near polygon that is not a

generalized polygon: the Cohen-Tits near octagon on 315 points. However, this near octagon
contains generalized hexagons of order 2 (see [8, p. 461]) and hence its collinearity graph
is not 3-chromatic.
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3.4 Known 3-chromatic distance-regular graphs

Below we list the known 3-chromatic distance-regular graphs. We give diameter d , number
of vertices v, the intersection array, and a very short description.

d v Intersection array Comment

a d 2d + 1 {2, 1, . . . , 1; 1, . . . , 1} (2d + 1)-cycle
b d 3d {2d, 2d − 2, . . . , 2; 1, 2, . . . , d} Hamming graph 3d

c d
(2d+1

d
) {d + 1, d, d, . . . , m + 1; 1, 1, 2, . . . , m} Odd graph Od+1

where m = 	d/2

d 2 3m {2m, m − 1; 1, 2m} (m > 1) Km,m,m
e 3 21 {4, 2, 2; 1, 1, 2} flags of PG(2,2)
f 3 57 {6, 5, 2; 1, 1, 3} Perkel graph
g 3 729 {24, 22, 20; 1, 2, 12} cosets of extd. Golay
h 4 28 {3, 2, 2, 1; 1, 1, 1, 2} Coxeter graph
i 4 45 {4, 2, 2, 2; 1, 1, 1, 2} flags of GQ(2,2)
j 5 20 {3, 2, 1, 1, 1; 1, 1, 1, 2, 3} dodecahedron
k 5 729 {22, 20, 18, 2, 1; 1, 2, 9, 20, 22} cosets of dual Golay
l 6 189 {4, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 2} flags of GH(2,2)
m 7 102 {3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1, 3} Biggs–Smith graph

3.4.1 Discussion

None of these graphs is bipartite, so in order to prove that they are 3-chromatic it suffices to
indicate a 3-coloring. For d = 1, each of the graphs under (a), (b), (c) is a triangle, and also
K1,1,1 is a triangle.

(a) For d ≥ 1 the (2d + 1)-cycle is 3-chromatic.
(b) The Hamming graph H(d, 3) consists of all ternary vectors of length d , adjacent

when they differ in one coordinate position. One finds a 3-coloring (where the
colors are the elements of GF(3)) by assigning to the vector u the color (u, 1),
where 1 is the all-1 vector.

(c), (h) The Odd graph Od+1 consists of all subsets of size d of a 2d +1 set �, adjacent
when they are disjoint. Let � = {1, 2, . . . , 2d + 1}, then a 3-coloring is given
by coloring all d-sets containing 1 red, all remaining d-sets containing 2 white,
and the remaining d-sets blue. The graph Od+1 is a Kneser graph, and more
generally the chromatic number of Kneser graphs is known. The Coxeter graph
is an induced subgraph of O4.

(d) The complete 3-partite graphs Km,m,m has an obvious 3-coloring. The restriction
m > 1 in the table only serves to ensure d = 2.

(e), (i), (l) A generalized 2n-gon of order (1,2) is the flag graph of a generalized n-gon of
order 2, that is, the line graph of the bipartite point-line incidence graph. The
known generalized n-gons of order 2 are: if n = 2 then K3,3, giving rise to
H(2, 3); if n = 3 then the Fano plane, giving rise to case e); if n = 4 then
the Sp(4, 2) generalized quadrangle, giving rise to case i); and if n = 6 then
the G2(2) generalized hexagon and its dual, giving rise to case l). (Note that a
hexagon and its dual have the same point-line incidence graph, and hence the
same flag graph.) As mentioned before, the incidence graphs are bipartite and
regular of degree 3 and therefore have chromatic index 3 (by König’s theorem),
so that their line graphs have chromatic number 3.
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(f) The Perkel graph is the unique distance-regular graph with intersection array
{6, 5, 2; 1, 1, 3}. See [3, p. 402] for the structure (and 3-coloring), and [5] for
uniqueness. A slightly nicer description: take vertex set Z3 ×Z19 and join (i, j)
to (i + 1, k) when (k − j)3 = 26i .

(g), (k) If C is a ternary code contained in 1⊥, then the coset graph of C , where two
cosets are adjacent when they have representatives that differ in a single coor-
dinate position, has the 3-coloring assigning u + C to (u, 1). Case b) above is
the special case C = {0}. Case g) is the case where C is the extended ternary
Golay code (a self-dual [12, 6, 6]3 code). The resulting graph is a near hexa-
gon, uniquely determined by its intersection array (see [1]). Case k) is the case
where C is the dual of the perfect ternary Golay code (an [11, 5, 6]3 code). We
show below in Theorem 3.9 that also this graph is uniquely determined by its
parameters.

(h), (j), (m) The non-bipartite distance-regular graphs of degree 3, except K4, are 3-chro-
matic by Brooks’ theorem. There are exactly four such graphs: the Petersen
graph O3, the dodecahedron (j), the Coxeter graph (h) and the Biggs-Smith
graph (m).

3.4.2 Uniqueness

For each of the above distance-regular graphs uniqueness given the parameters is known
now. In [3, p. 365], it is asked whether the graph of case (k) is uniquely determined by its
parameters. But it is easy to see that it is.

Theorem 3.9 There is a unique distance-regular graph with intersection array
{22, 20, 18, 2, 1; 1, 2, 9, 20, 22}, namely the coset graph of the dual of the ternary Golay
code.

Proof Given a graph � with this intersection array, one checks that � := �1 ∪ �5, the dis-
tance 1-or-5 graph of �, has intersection array {24, 22, 20; 1, 2, 12} and hence (see [1], or
[3, Theorem 11.3.1]) is the coset graph of the extended ternary Golay code, the near hexagon
on 729 points. Calling the triangles in this graph lines, we have lines that were triangles in �

and lines that were antipodal classes in �. If C and D are antipodal classes, and some point
of C is adjacent to some point of D, then each point of C is adjacent to some point of D,
so that C and D are parallel in the near hexagon. Now � is obtained from � by removing
a parallel class of lines, and by transitivity of the group a different choice of parallel class
gives an isomorphic graph. �

3.5 Ternary codes

We saw that the Hamming graph 3n is 3-chromatic. More precisely, given any 3-coloring of
a vertex and its 2n neighbors, there is a unique way to complete that to a 3-coloring of 3n .
In other words, if the three colors are called 0, 1, 2, then any 3-coloring in which the origin
is colored 0 is represented by a ±1-vector c, where the color of a vertex x (represented by a
ternary vector of length n) is the inner product (x, c).

It follows that the coset graph of a ternary linear code C with minimum distance more than
1 will be 3-chromatic precisely when C� contains a ±1-vector, that is, a vector of weight n.
(Indeed, this coset graph is a quotient of 3n where vectors that differ by an element of C are
identified. The colorings of the coset graph correspond to the colorings of 3n that are constant
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on cosets of C .) For example, the coset graph (of diameter 3) of the extended ternary Golay
code is 3-chromatic, but the (strongly regular) coset graph of the perfect ternary Golay code
is not. And the coset graph (of diameter 5) of the dual of the perfect ternary Golay code is
again 3-chromatic.

3.6 Cube-like graphs

A cube-like graph is by definition a Cayley graph for the elementary abelian group 2m .
According to Payan [18] a cube-like graph does not have chromatic number 3. Let us briefly
sketch the argument. First we need the chromatic number of the folded (2d + 1)-cube,
determined in [19]. The argument used in the second proof is from [10].

Theorem 3.10 The chromatic number of the folded (2d + 1)-cube is 4.

First proof It suffices to show that given a 3-coloring of the folded (2d + 1)-cube, we can
find a 3-coloring of the folded (2d − 1)-cube, since then going down to the folded 3-cube,
which is K4, yields a contradiction. So, suppose we have a 3-coloring (with colors 0,1,2)
of the (2d + 1)-cube, such that antipodes have the same color. In order to color the point u
(viewed as binary word of length 2d − 1) of the (2d − 1)-cube, look at the colors of the two
vertices 01u and 10u of the (2d + 1)-cube. Color u with i when both have color i , or when
one has color i and the other i + 1 (mod 3). Then u and its antipode ū get the same color.
And adjacent vertices get different colors: if u and v are adjacent and get the same color i ,
then 01u, 10u and 01v, 10v both have colors i, i + 1 so that 11u and 11v both have color
i + 2 (mod 3), contradiction. �

Second proof Consider the folded (2d + 1)-cube � defined as the collection of subsets
of size at most d of the cyclic group Z2d+1, adjacent when they differ by a single ele-
ment, or when they are disjoint d-sets. We indicate a vertex-critical subgraph. Put cm,i =
{i, i + 2, . . . , i + 2(m − 1)} and Cm = {cm,i | i ∈ Z2d+1} and C = ⋃

0≤m≤d Cm , so that
C is a set of 1 + d(2d + 1) vertices cm,i in �. Note that cm,i+1∼cm+1,i±1 and cd,i∼cd,i±1.
The edges meeting both Cm and Cm+1 form a (4d + 2)-cycle (1 ≤ m ≤ d − 1), C0 contains
a single point, adjacent to all vertices in C1, and Cd induces a (2d + 1)-cycle.

Now suppose we have a 3-coloring of C . In any 3-coloring of a cycle, the number of
vertices such that both neighbors have the same color is even. That means that the parity
of the number of i such that cm,i−1 and cm,i+1 have the same color does not depend on m
(1 ≤ m ≤ d). For m = d this parity is even. For m = 1 it is odd. Contradiction.

It is easy to see that the folded (2d + 1)-cube has a 4-coloring. �

Theorem 3.11 The chromatic number of a cube-like graph is not 3.

Proof Let � be a cube-like graph, defined by the difference set S in the abelian group G = 2m .
If the graph is bipartite, its chromatic number is 2. Otherwise, let C be an odd cycle in �,
say C = {c0, . . . , c2d}. Then ei = ci + ci+1 ∈ S for all i (with indices mod 2d + 1) and∑

ei = 0. Consider the folded (2d + 1)-cube, and map it into � via u → ∑
i∈u ei . This map

is a homomorphism: it sends edges to edges. That means that the chromatic number of the
folded (2d + 1)-cube, which is 4, is not larger than the chromatic number of �. �

If C is a binary code, then the coset graph is cube-like. Consequently, no coset graph of
a binary code is 3-chromatic.
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3.7 Petersen graphs

The Petersen graph is the set of 10 pairs of symbols from a 5-set, adjacent when the pairs
are disjoint. It has independence number 4 and chromatic number 3. The five independent
sets of size 4 are the sets of four pairs on a given symbol. The twenty 3-colorings are found
by taking two independent sets of size four (they have one vertex x in common) and the
remaining triple (the neighbors of x).

Knowledge of the 3-colorings of the Petersen graph helps in the study of graphs that
contain Petersen graphs as subgraph.

Theorem 3.12 Let � be a triangle-free k-regular graph such that any two vertices at dis-
tance 2 lie in a unique induced Petersen subgraph. If � is 3-colorable, then � is the Petersen
graph.

Proof Each vertex lies in 1
6 k(k − 1) Petersen subgraphs, so there are 1

60 k(k − 1)v Petersen
subgraphs in �. Fix a 3-coloring of �. It induces a 3-coloring on each Petersen subgraph P ,
and selects from each P the unique point xP of which the three neighbors in P have the same
color. A vertex is on average special point in 1

60 k(k − 1) Petersen subgraphs. Pick a vertex w

that is special point in at most this number of Petersen subgraphs. The Petersen graphs on w

induce a Steiner triple system on the neighbors of w. The k points of this Steiner triple system
have a 2-coloring with at most 	 1

60 k(k − 1)
 monochromatic triples. But if k = 2m + 1 then
there are at most m(m + 1) non-monochromatic pairs, and each non-monochromatic triple
uses two, so there are at most 1

2 m(m + 1) non-monochromatic triples. The total number of
triples is 1

6 k(k − 1) and we find 1
6 k(k − 1) ≤ 	 1

60 k(k − 1)
 + 1
2 m(m + 1). It follows that

m = 1, k = 3 and � is the Petersen graph. �
Consequently, the unique distance-regular graphs with arrays {15, 14, 12; 1, 1, 9} (v=506),

{9, 8, 6, 3; 1, 1, 3, 8} (v=280), {7, 6, 4, 4; 1, 1, 1, 6} (v=330) and {7, 6, 4, 4, 4, 1, 1, 1;
1, 1, 1, 2, 4, 4, 6, 7} (v = 990), are not 3-chromatic.

3.8 Pentagons

In the previous section we used that every 3-coloring of a Petersen graph has a special vertex.
The same is true for every 3-coloring of a pentagon.

Proposition 3.13 Let � be a distance-regular graph of diameter at least 2 with λ = 0,
a2 �= 0. If � possesses a 3-coloring such that each vertex has equally many neighbors of
each of the two other colors, then k = 6.

Proof Consider a white vertex w. It has k/2 red and k/2 blue neighbors. At distance 2 from
w there are ( 1

2 k − 1)k/µ white vertices and 1
4 k2/µ blue, and as many red vertices. Inside

�2(w) there are k(k − 1)a2/(2µ) edges, k(k − 2)a2/(2µ) with a white vertex, and ka2/(2µ)

blue-red edges. This means that there are ka2µ/2 pentagons on w for which w is the only
white vertex. Since every pentagon has a unique vertex with a color that occurs only once,
the total number of pentagons is vka2µ/2. On the other hand, direct counting yields that
there are vk(k − 1)a2µ/10 pentagons, so that k = 6. �

An example of this situation is the Perkel graph, which has d = 3, v = 57, k = 6, λ = 0
and is 3-chromatic.

As an application of this proposition we see that a putative distance-regular graph with
intersection array {8, 7, 5; 1, 1, 4} cannot be 3-chromatic. Indeed, such a graph has smallest
eigenvalue −4, and by Proposition 2.2 in any 3-coloring each vertex has four neighbors of
each of the other two colors.
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3.9 Remaining cases

In Sect. 3.4 we gave the known 3-chromatic distance-regular graphs. Examining the list of
known distance-regular graphs that survive the Hoffman bound (λv ≤ − 1

2 k with equality if
λ > 0) and Theorem 3.3 (λ ≤ 1 and µ ≤ 2 if λ = 1), and noting the above discussions
about generalized polygons, near polygons, coset graphs of ternary codes, and coset graphs
of binary codes (never 3-chromatic), a short list of possible candidates is left.

Four candidates were ruled out in the section on Petersen graphs.
Ad hoc inspection of the Wells graph with d = 4, v = 32 shows that its independence

number is 10, so that it cannot be 3-chromatic.
Ad hoc inspection of the Sylvester graph with d = 3, v = 36 shows that its independence

number is 12, and the union of two disjoint 12-cocliques is regular of valency 3; the subgraph
on the remaining 12 vertices is regular of valency 1, so that there is no 3-coloring.

A 3-coloring of the second subconstituent � (with d = 3, v = 42) of the Hoffman–
Singleton graph � would be a partition into three 14-cocliques, and require three 15-cocli-
ques pairwise meeting in 1 point in �. But 15-cocliques in � meet in 0, 3, 5, 8 or 15 points,
so � is not 3-chromatic. (It follows that no antipodal graph of diameter 3 is 3-chromatic.)

That exhausts all graphs known to us. The tables of [3] also list feasible parameter sets for
certain small graphs where no example is known. Only two parameter sets required further
inspection. (Nonexistence of graphs with intersection arrays
{15, 14, 12, 6, 1, 1; 1, 1, 3, 12, 14, 15} (d = 6, v = 1, 518), and {5, 4, 3; 1, 1, 2} (d = 3,
v = 56) was proved by Ivanov & Shpectorov [17] and Fon-Der-Flaass [12], respectively.)

A graph with intersection array {7, 6, 6; 1, 1, 2} (d = 3, v = 176) is not 3-chromatic by
Theorem 2.4. And a graph with intersection array {8, 7, 5; 1, 1, 4} (d = 3, v = 135) was
shown to be not 3-chromatic in the section on pentagons.

Acknowledgments We thank Bart De Bruyn and Hennie Wilbrink for information about near polygons and
discussions on 3-chromatic distance-regular graphs.
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