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1 Introduction

Choosing between alternatives according to the maximin criterion essentially

involves associating with each alternative the worst possible consequence and

then choosing the alternative(s) for which this worst-case scenario offers the

best possible result. Different ways of modeling these actions, consequences

(or states), and preferences/utilities over them yield an abundance of applica-

tions of this decision principle and its sibling, minimax behavior, in the social

sciences:

• Game theory: The minimax theorem of von Neumann (cf. von Neumann,

1928) is one of the cornerstones of game theory. It establishes maximin

behavior as an equilibrating device that assigns to every mixed extension

of a finite two person zero-sum (or purely antagonistic) game a well-defined

value.

• Experimental economics: Sarin and Vahid (1999, 2001) show that max-

imin behavior is the outcome of a natural and simple dynamic process of

strategy adjustment and provides a good prediction of human behavior in

several experimental settings.

• Statistical decision theory: Next to the Bayesian paradigm, the max-

imin approach is standard in statistical decision theory (cf. Blackwell and
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Girshick, 1954; Ferguson, 1967).

• Social choice and welfare: Rawlsian welfare aims for the maximiza-

tion of the utility of the least “happy” member of a society; see Moulin

(1988) for a textbook treatment.

• Operations research: Problems like the optimal location of warehouses

often involve the minimization of suitable distance functions. Among these

distance functions, the Chebychev/supremum norm is a common one, trans-

forming the problem in one of the minimax type (cf. Love et al., 1988).

• Constrained optimization: The Lagrangean dual of a constrained min-

imization problem is of the maximin type (cf. Bazaraa et al., 1993, Ch.

6).

Given the ubiquity of the maximin principle, it is hardly surprising that also

its foundations have been the subject of study. These studies tend to focus

on one of two aspects: (a) characterizing the order induced by the maximin

criterion, like in the classical study Milnor (1954) and in Barberà and Jackson

(1988), or (b) characterizing the solution that assigns to each decision problem

its set of maximin actions, like in Maskin (1979). 1

Both Milnor (1954) and Maskin (1979) deal with decision problems in which

the set of actions and the set of states are finite; moreover, both authors remark

that their results can be extended to an infinite setting. Indeed, Milnor’s results

1 The paper by Arrow and Hurwicz (1972) is a hybrid between the two different

approaches: it shows that a set of solutions has certain properties if and only if

there is an order with certain properties on the set of vectors{(
min
ω∈Ω

u(a, ω),max
ω∈Ω

u(a, ω)
)
∈ R2 : a ∈ A

}
of minimal and maximal payoffs associated with each action.
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can be extended in a more or less direct way. This, however, is not the case for

Maskin’s characterizations. In this paper, we clarify the problems underlying

an extension of Maskin’s results. See, in particular, Remarks 4 and 5.

Moreover, in this paper we provide an axiomatic characterization of the solu-

tion that assigns to each decision problem, with arbitrary sets of actions and

states, its (possibly empty) set of maximin actions. An explicit comparison

between the properties used in our characterization and those used by Milnor

and Maskin is provided in Remark 7.

This general setting is required in a number of the applications mentioned

above, where the sets of actions or states may be infinite. Think, for instance,

of estimating an unknown probability in the area of statistical decision theory.

The main challenge posed by such a general setting — apart from the possible

emptiness of the set of maximin actions — is that (all) maximin actions can

be strictly dominated. See Example 2. Consequently, the classical domination

axioms upon which many characterizations rely no longer hold: they exclude

dominated actions from the solution of the problem. We introduce a new

axiom, Inclusion of Weak Dominators, that changes the negative focus of the

classical axioms (excluding ‘bad’ actions) to a positive one (including ‘good’

ones): it requires that any action weakly dominating a selected action should

also be selected.

That maximin actions may be strictly dominated should not be seen as some-

thing negative. It simply stresses the fundamental difference in choice theory

between rational choice on the one hand and our setting of cautious choice on

the other. Rational choice involves searching for a best action, cautious choice

involves trying to avoid disastrous outcomes, and even if one action strictly
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dominates another, their worst-case scenarios may well be the same. This is

elaborated upon in Remarks 4 and 7.

In the next section, we formally define the class of decision problems, list the

properties used in our characterization, state the characterization theorem

and make some comments on the relationship between our results and others

already existing in the literature. The proof of our characterization is contained

in section 3.

2 A characterization of the set of maximin actions

A decision problem is a tuple (A,Ω, u), where A is a nonempty set of actions,

Ω is a nonempty set of states, and u : A×Ω→ R is a bounded function which

represents the decision-maker’s payoff/utility function. The set of all decision

problems is denoted by D.

A solution on D is a correspondence ϕ that assigns to every (A,Ω, u) ∈ D a

set ϕ(A,Ω, u) ⊂ A of actions. Our aim is to characterize the solution M that

assigns to every decision problem (A,Ω, u) ∈ D its set of maximin actions

M(A,Ω, u) :=

{
a ∈ A : inf

ω∈Ω
u(a, ω) = sup

a′∈A
inf
ω∈Ω

u(a′, ω)

}
.

Let us make a few remarks on our domain D of decision problems.

Remark 1 Since only the order of the payoffs matters, order-preserving trans-

formations do not affect the solution and the assumption that our payoffs are

bounded entails no loss of generality. 2

2 Simply apply an order-preserving transformation making the decision-maker’s
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The next two examples illustrate the difficulties one faces when passing from

finite decision problems to general decision problems. Recall that an action

a ∈ A in a decision problem D = (A,Ω, u) ∈ D is strictly dominated if there

is an action a′ ∈ A with u(a′, ω) > u(a, ω) for all ω ∈ Ω.

Example 2 Consider a decision problem (A,Ω, u) with A = Ω = Z and

u(a, ω) = arctan(a−ω) for all (a, ω) ∈ Z×Z. Then infω∈Z u(a, ω) = −π/2 for

all a ∈ Z. Hence, every a ∈ Z is a maximin action, but also strictly dominated,

for instance by a+1. Moreover, if one were to restrict the action space to only

two elements, say Ā = {1, 2}, then M(Ā,Ω, u) = Ā, and the maximin action

1 is strictly dominated.

Example 3 Consider a decision problem (A,Ω, u) with A = N, Ω is any

nonempty set, and u(a, ω) = a/(a+1) for all (a, ω) ∈ A×Ω. Then infω∈Ω u(a, ω) =

a/(a+ 1), a function which does not achieve a maximum: M(A,Ω, u) = ∅.

In our general setting, some properties of simpler, finite problems no longer

hold: (all) maximin actions can be strictly dominated (Example 2) and the set

of maximin actions may be empty (Example 3). The following table displays

the difficulties one may find in infinite cases.

payoff function bounded, like the arc-tangent transformation: M(A,Ω, u) =

M(A,Ω, arctanu).
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A finite

Ω infinite

A infinite

Ω finite

A infinite

Ω infinite

A maximin action can be

strictly dominated

Possible

(Example 2)

Impossible
Possible

(Example 2)

The set of maximin actions

can be empty

Impossible
Possible

(Example 3)

Possible

(Example 3)

Remark 4 Regarding Example 2, a referee observed that “. . . the maximin

choice rule is not so appealing in this context. . . In particular, it violates the

basic requirement that a strictly dominated action should not be chosen.” It is a

requirement in the standard ‘rational’ (payoff maximizing) approach to choice

theory, but definitely not in behavioral models like the satisficing approach of

Simon (1956), nor in our setting of cautious choice, where the idea is to avoid

‘disastrous’ outcomes, rather than achieving a best one. It will be obvious from

Example 2 that in an infinite setting the property (5) of strong domination

that Maskin (1979) uses in the characterization of the maximin solution is

not applicable.

Remark 5 In the choice of our domain D, our aim was to be as nonrestric-

tive as possible: the sets of actions A and states Ω are only required to be

nonempty to avoid trivialities. The sets may be finite, infinite, and in the lat-

ter case countably or uncountably infinite. The payoff function u is assumed

to be bounded, which by Remark 1 entails no loss of generality. We believe

that this generality is more natural than explicitly restricting oneself to a do-

main where the set of maximin actions is nonempty: it leaves no ghosts in
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the closet. Consequently, a characterization of the set of maximin actions in

an infinite setting calls for some additional properties related to the possible

non-existence. This is another reason why the results of Maskin (1979) do not

extend to the infinite setting: he explicitly assumes that solutions assign to

each problem a nonempty set of actions.

We introduce some properties for a solution ϕ on D. They are relatively stan-

dard and adapted from properties in Milnor (1954), Barberà and Jackson

(1988), and Maskin (1979). An explicit discussion of the relations and dif-

ferences is provided in Remark 7 after all properties have been introduced.

Anonymity requires that the solution does not depend on the way actions and

states are labeled.

Anonymity (ANO). Let (A,Ω, u), (A′,Ω′, u′) ∈ D. If there are bijections

f : A → A′ and g : Ω → Ω′ such that u(a, ω) = u′(f(a), g(ω)) for all

(a, ω) ∈ A× Ω, then ϕ(A′,Ω′, u′) = f(ϕ(A,Ω, u)).

Independence of irrelevant actions states that if the action set of a decision

problem is reduced, but some elements in the solution set of the large problem

remain feasible, then the solution set of the small problem consists of the

feasible elements in the solution set of the original problem.

Independence of irrelevant actions (IIA). Let (A,Ω, u), (A′,Ω, u′) ∈

D be such that A ( A′ and u′|A×Ω = u. If ϕ(A′,Ω, u′) ∩ A 6= ∅, then

ϕ(A′,Ω, u′) ∩ A = ϕ(A,Ω, u).

Inheritance of nonemptiness states that adding finitely many actions to a

decision problem with a nonempty solution set yields a new decision problem

whose solution set is also nonempty.
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Inheritance of nonemptiness (INH-NEM). Let (A,Ω, u), (A′,Ω, u′) ∈

D be such that A ( A′ and u′|A×Ω = u. If ϕ(A,Ω, u) 6= ∅ and A′ \ A is a

finite set, then ϕ(A′,Ω, u′) 6= ∅.

In a decision problem (A,Ω, u) ∈ D, action a′ ∈ A weakly dominates action

a ∈ A if u(a′, ω) ≥ u(a, ω) for all ω ∈ Ω, with a strict inequality for some

ω ∈ Ω. The inclusion of weak dominators property states that if an action

weakly dominates an action in the solution set of the problem, then also the

weakly dominating action belongs to the solution set.

Inclusion of weak dominators (IWD). Let (A,Ω, u) ∈ D and a∗, a′ ∈ A.

If a∗ ∈ ϕ(A,Ω, u) and a′ weakly dominates a∗, then a′ ∈ ϕ(A,Ω, u).

The next property requires that duplicating states does not affect the solution

set.

Duplication of states (DOS). Let (A,Ω, u), (A,Ω′, u′) ∈ D with Ω ( Ω′.

If there is a surjection g : Ω′ → Ω such that u′(a, ω′) = u(a, g(ω′)) for all

(a, ω′) ∈ A× Ω′, then ϕ(A,Ω′, u′) = ϕ(A,Ω, u).

Continuity states that if an action is always contained in the solution set of

a sequence of decision problems in D with fixed action and state spaces and

pointwise convergent utility functions, then this action is also contained in the

solution set of the limiting problem.

Continuity (CONT). Let (A,Ω, u) ∈ D and let {(A,Ω, uk)}k∈N be a se-

quence in D such that limk→∞ uk(a, ω) = u(a, ω) for all (a, ω) ∈ A × Ω. If

there is an a∗ ∈ A with a∗ ∈ ϕ(A,Ω, uk) for all k ∈ N, then a∗ ∈ ϕ(A,Ω, u).

Restricted nonemptiness states that, for a given decision problem, if there
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exists some maximin action, then there also exists some element of the solution

set. In the literature, this type of property is used in both cooperative games

(cf. Voorneveld and van den Nouweland, 1998) and noncooperative games (cf.

Dufwenberg et al., 2001; Norde et al., 1996; Voorneveld et al., 1999). In our

context, it is related with the possible emptiness of the set of maximin actions.

Restricted Nonemptiness (r-NEM). Let (A,Ω, u) ∈ D. If M(A,Ω, u)

is nonempty, then ϕ(A,Ω, u) is also nonempty.

Convexity states that if two actions belong to the solution set of a decision

problem and an action is added whose payoff is the (1
2
, 1

2
)-convex combination

of the above actions’ payoffs, then the new action belongs to the solution

set of the new problem. This is a standard risk neutrality property already

present in Milnor (1954): if two actions belong to the problem’s solution set,

the decision-maker does not mind tossing a coin to decide between them.

Convexity (CONV). Let (A,Ω, u), (A′,Ω, u′) ∈ D be such that A′ =

A∪{a′} for some a′ /∈ A and u′|A×Ω = u. If there are a∗, ã ∈ ϕ(A,Ω, u) such

that

u′(a′, ω) =
1

2
u(a∗, ω) +

1

2
u(ã, ω)

for all ω ∈ Ω, then a′ ∈ ϕ(A′,Ω, u′).

Finally, if there is only one state, then the solution chooses the actions that

maximize the payoff.

One state rationality (OSR). Take (A,Ω, u) ∈ D with |Ω| = 1. Writing

Ω = {ω}, ϕ(A,Ω, u) = arg maxa∈A u(a, ω).

The former properties characterize the solution M on D which assigns to each

decision problem its set of maximin actions:
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Theorem 6 The maximin solution M is the unique solution on D satisfying

ANO, IIA, INH-NEM, IWD, DOS, CONT, r-NEM, CONV, and OSR.

The proof is given in the next section. First, in Remark 7, we relate the current

properties to existing properties in the literature, in particular Milnor (1954)

and Maskin (1979).

Remark 7 ANO corresponds to Milnor’s Symmetry axiom and Maskin’s Prop-

erty (11). IIA implies Milnor’s Row Adjunction axiom and it combines Maskin’s

properties (1) and (2). DOS corresponds to Milnor’s Column Duplication ax-

iom and Maskin’s Property (12). CONT is analogous to Milnor’s Continuity

axiom and Maskin’s Property (10). CONV corresponds to Milnor’s Convex-

ity axiom and Maskin’s Property (9). IWD is a bit stronger than Maskin’s

Property (4) and it takes the role of Milnor’s Strong Domination axiom and

Maskin’s Property (5), although IWD is essentially different from these two

properties. Finally, OSR, INH-NEM and r-NEM are properties related with

the emptiness issue that arises in our general setting; they are not connected

to any of the properties in Milnor (1954) or in Maskin (1979). OSR is a

rather natural property, while INH-NEM and r-NEM are of a more technical

nature. Nevertheless, the following example shows that these properties cannot

be dispensed with in our characterization of the maximin solution.

Example 8 Define the solution ϕ on D as follows:

ϕ(A,Ω, u) =


M(A,Ω, u) if for each a ∈ A, u(a, ·) is a constant function,

∅ otherwise.

One readily verifies that ϕ satisfies all properties in Theorem 6, except for

INH-NEM and r-NEM.
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Remark 9 indicates which properties are violated by other well-known solu-

tions; the reader is referred to the papers cited below for their definitions.

Remark 9 The minimax solution satisfies all properties in Theorem 6 ex-

cept IWD and r-NEM. The maximax solution satisfies all except CONV and

r-NEM. The minimin solution satisfies all with the exception of IWD, r-NEM,

and CONV. In our general setting, technical difficulties arise in defining the

leximin, protective (cf. Barberà and Jackson, 1988), and leximax solutions (cf.

Naeve, 2000), as well as the Laplacian criterion of insufficient reason (cf. Mil-

nor, 1954). If one were to restrict attention to decision problems with a finite

set of states, the leximin solution does not satisfy DOS, CONT, and r-NEM,

the protective solution does not satisfy CONT and r-NEM; the leximax so-

lution does not satisfy DOS, CONT, r-NEM, and CONV, and, finally, the

Laplacian principle of insufficient reason does not satisfy DOS and r-NEM.

Remark 10 Theorem 6 remains valid on other domains of decision problems,

as long as these domains are closed under certain transformations mentioned

in our characterizing properties (like the duplication of states). For instance,

Theorem 6 is still true if we deal with the subsets of D where A is finite, where

Ω is finite, or where both A and Ω are finite. In fact, some of the properties

(like r-NEM in case of finite action sets) may be dispensed with.

3 Proof of the characterization theorem

The purpose of this section is to prove our characterization theorem. The proof

is based on a series of lemmas.

The properties ANO and IIA of a solution guarantee that if an action has the
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same payoff function as an element of the solution set of the problem — up to

relabeling of the states — then also the former action belongs to the solution

set. We only use a simple version:

Lemma 11 Let ϕ be a solution on D satisfying ANO and IIA, and let D =

(A,Ω, u) ∈ D. If a∗ ∈ ϕ(D) and a′ ∈ A is such that, for some ω1, ω2 ∈ Ω,

(i) u(a′, ω1) = u(a∗, ω2) and u(a′, ω2) = u(a∗, ω1),

(ii) u(a′, ω) = u(a∗, ω) for all ω ∈ Ω \ {ω1, ω2},

then a′ ∈ ϕ(D).

PROOF. Assume that u(a∗, ω1) 6= u(a∗, ω2) (otherwise ANO concludes the

result). The utility functions for actions a∗ and a′ are represented in the table

below, where 2 and × represent two different values:

H
HHH

HHH
HHH

Actions

States
· · · ω1 · · · ω2 · · ·

a∗
�� ��· · · 2

�� ��· · · ×
�� ��· · ·

‖ ‖ ‖

a′
�� ��· · · ×

�� ��· · · 2
�� ��· · ·

Consider decision problems

D1 = ({a∗, a′} ,Ω, u|{a∗,a′}×Ω), D2 = ({a∗, a′} ,Ω, v),
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where the utility for a∗ and a′ is interchanged, i.e.

v(a∗, ω1) = v(a′, ω2) := u(a∗, ω2),

v(a∗, ω2) = v(a′, ω1) := u(a∗, ω1),

and v(b, ω) := u(b, ω) for all other (b, ω) ∈ {a∗, a′}× (Ω \ {ω1, ω2}). By (i) and

(ii), D2 is isomorphic to D1, either via switching the labels of a∗ and a′ or via

switching the labels of ω1 and ω2.

Note that D can be obtained from D1 by adding actions and, moreover,

a∗ ∈ ϕ(D) ∩ {a∗, a′}. Therefore, by IIA:

ϕ(D1) = ϕ(D) ∩ {a∗, a′} , (1)

so that a∗ ∈ ϕ(D1). It is shown that also a′ ∈ ϕ(D1). Consider the bijection

f : {a∗, a′} → {a∗, a′} with f(a∗) = a′, f(a′) = a∗ and let g : Ω→ Ω be the

identity function. Since u(a, ω) = v(f(a), g(ω)) for all (a, ω) ∈ {a∗, a′} × Ω,

ANO implies that ϕ(D2) = f(ϕ(D1)), so a′ = f(a∗) ∈ ϕ(D2). Next, con-

sider the bijection ḡ : Ω→ Ω with ḡ(ω1) = ω2, ḡ(ω2) = ω1, keeping other

states unchanged, and let f̄ : {a∗, a′} → {a∗, a′} be the identity function. Since

v(a, ω) = u(f̄(a), ḡ(ω)) for all (a, ω) ∈ {a∗, a′}×Ω, ANO implies that ϕ(D1) =

f̄(ϕ(D2)) = ϕ(D2). Remember that a′ ∈ ϕ(D2), so a′ ∈ ϕ(D1). This shows

that {a∗, a′} = ϕ(D1).

Finally, by (1), a′ ∈ ϕ(D). 2

With the INH-NEM property and Lemma 11 one can establish the following

consequence. If we add an action to a decision problem with the same utility

as an action in the solution set of the original problem, except in two states

14



where the utilities are interchanged, then both actions belong to the solution

set of the new problem:

Lemma 12 Let ϕ be a solution on D satisfying ANO, IIA, and INH-NEM,

and let D = (A,Ω, u) ∈ D. Take D′ = (A′,Ω, u′) ∈ D satisfying that A′ = A∪

{a′} for some a′ /∈ A and u′|A×Ω = u. Suppose that there exist a∗ ∈ ϕ(A,Ω, u)

and ω1, ω2 ∈ Ω such that

(i) u′(a′, ω1) = u′(a∗, ω2) and u′(a′, ω2) = u′(a∗, ω1),

(ii) u′(a′, ω) = u′(a∗, ω) for all ω ∈ Ω \ {ω1, ω2}.

Then {a∗, a′} ⊆ ϕ(D′).

PROOF. Note that D′ is well-defined. Suppose that a′ /∈ ϕ(D′). Since ϕ

satisfies INH-NEM, A′ \A = {a′} is a finite set, and ϕ(D) 6= ∅: ϕ(D′) 6= ∅. So

ϕ(D′)∩A 6= ∅ and IIA implies that ϕ(D′)∩A = ϕ(D). Therefore a∗ ∈ ϕ(D′).

By Lemma 11, also a′ ∈ ϕ(D′), a contradiction. Hence, a′ ∈ ϕ(D′) and using

Lemma 11 again it follows that a∗ ∈ ϕ(D′). So {a∗, a′} ⊂ ϕ(D′). 2

Consider the following modification of weak dominance. In a decision problem

(A,Ω, u) ∈ D, action a′ ∈ A quasi-dominates action a ∈ A if there exist

ω1, ω2 ∈ Ω such that:

(i) u(a′, ω) ≥ u(a, ω) for all ω ∈ Ω \ {ω1}, and

(ii) u(a′, ω2) ≥ u(a, ω1) > u(a′, ω1) ≥ u(a, ω2).

Intuitively, a′ quasi-dominates a if it is at least as good as a in all states except

some ω1, and the loss from choosing a′ in state ω1 is compensated for by a

utility gain in another state ω2.
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The next Lemma shows that a solution satisfying ANO, IIA, INH-NEM, and

IWD, satisfies the following property: if an action quasi-dominates an action

in the solution set, then the former action also belongs to the solution set.

Lemma 13 Let ϕ be a solution on D satisfying ANO, IIA, INH-NEM, and

IWD, and let D = (A,Ω, u) ∈ D. If a∗ ∈ ϕ(D) and a′ ∈ A quasi-dominates

a∗, then a′ ∈ ϕ(D).

PROOF. Let ω1, ω2 ∈ Ω be as in the definition of quasi-dominance. De-

fine the decision problem D′ = (A ∪ {α} ,Ω, u′) ∈ D with α /∈ A, u′|A×Ω =

u, u′(α, ω) = u(a∗, ω) for all ω ∈ Ω \ {ω1, ω2}, u′(α, ω1) = u(a∗, ω2), and

u′(α, ω2) = u(a∗, ω1). By Lemma 12: {a∗, α} ⊂ ϕ(D′). Now a′ weakly domi-

nates α unless u′(a′, ω) = u′(α, ω) for all ω ∈ Ω (in which case a′ ∈ ϕ(D′) by

ANO). So, by IWD, a′ ∈ ϕ(D′).

Hence, {a∗, α, a′} ⊂ ϕ(D′). Now ϕ(D) = ϕ(D′) ∩A by IIA, so a′ ∈ ϕ(D). 2

If a solution satisfies ANO, IIA, INH-NEM, IWD, DOS, and CONT, then

whether or not an action belongs to the solution set of a decision problem

depends exclusively on the infimum and supremum of its payoffs.

Lemma 14 Let ϕ be a solution on D satisfying ANO, IIA, INH-NEM, IWD,

DOS, and CONT, and let D = (A,Ω, u) ∈ D. If a∗ ∈ ϕ(D) and a′ ∈ A is such

that

inf
ω∈Ω

u(a′, ω) = inf
ω∈Ω

u(a∗, ω) = m and sup
ω∈Ω

u(a′, ω) = sup
ω∈Ω

u(a∗, ω) = M,

then a′ ∈ ϕ(D).
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PROOF. Ifm = M , then a∗ and a′ yield the same, constant payoff, regardless

of ω, so ANO and a∗ ∈ ϕ(D) imply that a′ ∈ ϕ(D). So henceforth assume

that m < M . This means that Ω has at least two elements. Let ω1 ∈ Ω. Define

for each (ε, δ) ∈ R2
+ the decision problem Dε,δ = (A ∪ {α, β} ,Ω, uε,δ) with

α, β /∈ A as follows. For all (ã, ω) ∈ (A ∪ {α, β})× Ω,

uε,δ(ã, ω) =



u(a′, ω) + δ if ã = a′,

m+ ε if (ã, ω) = (α, ω1),

m if ã = β and ω 6= ω1,

M if (ã, ω) = (β, ω1) or (ã = α and ω 6= ω1),

u(ã, ω) otherwise.

The table below summarizes the definition of Dε,δ.

H
HHH

HHH
HHH

Actions

States
ω1 ω ∈ Ω \ {ω1}

a∗ u(a∗, ω1) u(a∗, ω)

a′ u(a′, ω1) + δ u(a′, ω) + δ

α m+ ε M

β M m

all other a u(a, ω1) u(a, ω)

Let D′ = (A \ {a′} ,Ω, u|(A\{a′})×Ω) ∈ D. Since a∗ ∈ ϕ(D) ∩ (A \ {a′}), IIA

implies that ϕ(D′) = ϕ(D) ∩ (A \ {a′}) 6= ∅. For all (ε, δ) ∈ R2
+, Dε,δ is

obtained from D′ by adding finitely many actions, so INH-NEM implies that
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ϕ(Dε,δ) 6= ∅.

Step 1: Let {εk}k∈N be a sequence of strictly positive real numbers with

limk→∞ εk = 0. We show that α ∈ ϕ(Dεk,0) for all k ∈ N. By CONT, we then

have α ∈ ϕ(D0,0).

Let k ∈ N and suppose, to the contrary, that α 6∈ ϕ(Dεk,0). Since ϕ(Dεk,0) 6= ∅,

we have two cases:

• β ∈ ϕ(Dεk,0). This is not possible, because α quasi-dominates β and apply-

ing Lemma 13 one obtains that α ∈ ϕ(Dεk,0).

• β 6∈ ϕ(Dεk,0). Since ϕ(Dεk,0) 6= ∅ and α, β 6∈ ϕ(Dεk,0) there is an a ∈

ϕ(Dεk,0) ∩ A. By IIA: ϕ(Dεk,0) ∩ A = ϕ(D), so a∗ ∈ ϕ(Dεk,0).

· If u(a∗, ω1) ≤ m+ εk, then α weakly dominates a∗: u(a∗, ω) ≤ u(α, ω) for

all ω ∈ Ω, and there is an ω0 ∈ Ω such that u(a∗, ω0) < u(α, ω0), because

otherwise u(a∗, ω) = u(α, ω) for all ω ∈ Ω, so that m = infω∈Ω u(a∗, ω) =

infω∈Ω u(α, ω) = min {m+ εk,M} > m, a contradiction. Using IWD, it

follows that α ∈ ϕ(Dεk,0).

· If u(a∗, ω1) > m+εk, then α quasi-dominates a∗: u(α, ω) ≥ u(a∗, ω) for all

ω ∈ Ω \ {ω1} and by definition of m = infω∈Ω u(a∗, ω), there is an ω2 ∈ Ω,

different from ω1 (since u(a∗, ω1) > m+ εk) with u(a∗, ω2) ≤ m+ εk. This

implies that M = u(α, ω2) ≥ u(a∗, ω1) > m + εk ≥ u(a∗, ω2). By Lemma

13, α ∈ ϕ(Dεk,0).

In both subcases, we established that α ∈ ϕ(Dεk,0), in contradiction with

our assumption. Conclude that α ∈ ϕ(Dεk,0).

Step 2: We show that β ∈ ϕ(D0,0).
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Let ω2 ∈ Ω, ω2 6= ω1, and consider the decision problems

D1 =
(
{α, β} , {ω1, ω2} , u0,0|{α,β}×{ω1,ω2}

)
and D2 =

(
{α, β} ,Ω, u0,0|{α,β}×Ω

)
.

D2 can be obtained from D0,0 by deleting actions. By step 1, ϕ(D0,0)∩{α, β} 6=

∅. So IIA implies that

ϕ(D0,0) ∩ {α, β} = ϕ(D2). (2)

Therefore, α ∈ ϕ(D2). By DOS, ϕ(D1) = ϕ(D2), so α ∈ ϕ(D1). Now Lemma

11 implies that β ∈ ϕ(D1). Since ϕ(D1) = ϕ(D2), equation (2) gives that

β ∈ ϕ(D0,0).

Step 3: Let {δk}k∈N be a sequence of strictly positive real numbers with

limk→∞ δk = 0. We show that a′ ∈ ϕ(D0,δk) for all k ∈ N. By CONT, we then

have a′ ∈ ϕ(D0,0).

Consider the decision problem

D3 =
(
A3,Ω, u0,0|A3×Ω

)

where A3 = (A ∪ {α, β})\{a′} for some α, β /∈ A. By steps 1 and 2, ϕ(D0,0)∩

A3 6= ∅, so IIA implies that ϕ(D0,0) ∩ A3 = ϕ(D3). Hence, from step 2,

β ∈ ϕ(D3).

Let δk > 0 and suppose that a′ 6∈ ϕ(D0,δk). Since ϕ(D0,δk) 6= ∅ one obtains that

ϕ(D0,δk)∩A3 6= ∅ and then IIA implies that β ∈ ϕ(D0,δk). So, reasoning as in

step 1: if u(a′, ω1) + δk ≥ M , then a′ weakly dominates β and, by IWD, a′ ∈

ϕ(Dδk,0); otherwise, a′ quasi-dominates β and by Lemma 13: a′ ∈ ϕ(Dδk,0). In

both cases we reach a contradiction. Conclude that a′ ∈ ϕ(Dδk,0).

Step 4: Finally, we show that a′ ∈ ϕ(D).

19



By step 3 a′ ∈ ϕ(D0,0) ∩ A. Hence, IIA implies ϕ(D0,0) ∩ A = ϕ(D), and so

a′ ∈ ϕ(D). 2

These results will help us prove Theorem 6:

Proof of Thm. 6 It is easy to verify that the solution M satisfies all the

properties.

Let ϕ be a solution on D satisfying all the properties and let D = (A,Ω, u) ∈

D. If ϕ(D) = ∅, then by r-NEM: M(D) = ∅. So, assume that ϕ(D) 6= ∅.

Under the assumption that whether or not an action belongs to ϕ(D) depends

exclusively on the infimum of its payoffs, it is true that ϕ(D) = M(D). Namely,

consider the decision problem D̂ = (A, Ω̂, û) where |Ω̂| = 1 and û(a, ω̂) =

infω∈Ω u(a, ω) for all (a, ω̂) ∈ A× Ω̂. We show that

ϕ(D) = ϕ(D̂) (3)

Consider the decision problem D̃ = (Ã,Ω, ũ) ∈ D obtained from D by adding

to the action space a replica r(a) of every action a ∈ A, i.e., Ã = {a, r(a)}a∈A

and with payoffs ũ|A×Ω = u and ũ(r(a), ω) = infω∈Ω u(a, ω) for all a ∈ A and

ω ∈ Ω.

By the assumption: a ∈ ϕ(D) if and only if {a, r(a)} ⊆ ϕ(D̃). Since ϕ(D) 6= ∅,

deletion of all non-replica actions and IIA imply that

a ∈ ϕ(D)⇔ r(a) ∈ ϕ(({r(a)}a∈A ,Ω, ũ{r(a)}a∈A×Ω)). (4)

ANO and DOS imply that

r(a) ∈ ϕ(({r(a)}a∈A ,Ω, ũ{r(a)}a∈A×Ω))⇔ a ∈ ϕ(D̂). (5)
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The equality (3) now follows from (4) and (5).

Write Ω̂ = {ω̂}. By OSR we know that ϕ(D̂) = M(D̂) = arg maxa∈A û(a, ω̂).

Finally, since M satisfies all the properties we also have that M(D̂) = M(D).

Therefore ϕ(D) = M(D).

Now it remains to prove that whether or not an action belongs to ϕ(D) de-

pends exclusively on the infimum of its payoffs.

Let a∗ ∈ ϕ(D) and let m = infω∈Ω u(a∗, ω) and M = supω∈Ω u(a∗, ω). If m =

M , then u(a∗, ω) = m for all ω ∈ Ω. Let a ∈ A be such that infω∈Ω u(a, ω) =

m. If supω∈Ω u(a, ω) = m, then u(a, ω) = u(a∗, ω) for all ω ∈ Ω and, by

ANO, a ∈ ϕ(D); otherwise, a weakly dominates a∗, so, by IWD, a ∈ ϕ(D).

Therefore, if m = M , then whether or not an action belongs to ϕ(D) depends

exclusively on the infimum of its payoffs.

So henceforth assume that m < M . This implies in particular that Ω contains

at least two elements. Choose ω1, ω2 ∈ Ω, ω1 6= ω2.

Take D′ = (A,Ω′, u′) ∈ D where Ω′ = {ω1, ω2, ω3} with ω3 /∈ Ω and, for all

a ∈ A:

u′(a, ω′) =


sup
ω∈Ω

u(a, ω) if ω′ = ω1

inf
ω∈Ω

u(a, ω) otherwise

The table below summarizes the definition of D′.
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HHH
HHH

HHHH
Actions

States
ω1 ω2 ω3

...
...

a∗ M m m

a sup
ω∈Ω

u(a, ω) inf
ω∈Ω

u(a, ω) inf
ω∈Ω

u(a, ω)

...
...

Similar to the proof of (3), using Lemma 14 instead of the assumption, it

follows that ϕ(D) = ϕ(D′).

Define the sequence of decision problems {Dk}k∈N = {(A ∪ {α, β, γ} ,Ω′, uk)}k∈N

where α, β, γ /∈ A, uk |A×Ω′ = u′ and, for all (a, ω) ∈ {α, β, γ} × Ω′,

uk(a, ω) =



m+
1

2k−1
(M −m) if (a, ω) ∈ {(α, ω1), (β, ω2)}

m+
1

2k
(M −m) if (a, ω) ∈ {(γ, ω1), (γ, ω2)}

m otherwise.

The table below summarizes the definition of Dk.
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HHH
HHH

HHHH
Actions

States
ω1 ω2 ω3

...
...

...
...

a∗ M m m

...
...

...
...

α m+
1

2k−1
(M −m) m m

β m m+
1

2k−1
(M −m) m

γ m+
1
2k

(M −m) m+
1
2k

(M −m) m

...
...

...
...

For all k ∈ N, Dk can be obtained from D′ by adding three actions. So,

ϕ(D′) 6= ∅ and INH-NEM imply that ϕ(Dk) 6= ∅. We show by induction that

γ ∈ ϕ(Dk) for all k ∈ N.

Step 1: γ ∈ ϕ(D1).

D1 can be obtained from D′ by adding actions α, β, and γ in two steps:

First, add α and β to obtain the decision problemD′1 = (A∪{α, β} ,Ω′, u′1)

with u′1 = u1|(A∪{α,β})×Ω′ . Lemma 14 implies that α ∈ ϕ(D′1) if and only if

β ∈ ϕ(D′1). Suppose that α, β /∈ ϕ(D′1). INH-NEM and ϕ(D′) 6= ∅ imply

that ϕ(D′1) 6= ∅, so there is an a ∈ ϕ(D′1) ∩ A. Then, by IIA, ϕ(D′1) ∩ A =

ϕ(D′). Hence, a∗ ∈ ϕ(D′1). Lemma 14 then implies that α, β ∈ ϕ(D′1), which

is a contradiction. Thus α, β ∈ ϕ(D′1).

Second, add action γ, whose utility is the (1
2
, 1

2
)-convex combination of

the utility of the actions α and β, and by CONV: γ ∈ ϕ(D1).
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Step 2: Let k ∈ N and assume that γ ∈ ϕ(Dn) for all n ∈ N, n ≤ k. We

show that γ ∈ ϕ(Dk+1).

The decision problem Dk+1 can be obtained from Dk in two steps:

First, delete actions α and β from Dk to obtain a new decision problem.

By IIA and the assumption that γ ∈ ϕ(Dk), its solution set contains γ.

Next, introduce actions α and β again, but now with their utility functions

equal to those in the problem Dk+1. Since α and β have the same infimum

and supremum, α belongs to the solution set if and only if β belongs to the

solution set of this new problem. Suppose that α and β do not belong to the

solution set. By INH-NEM and IIA, γ belongs to the solution set. But then

Lemma 14 implies that α and β should belong to the solution set, which is

a contradiction. Thus α and β belong to the solution set.

Second, delete γ from this new problem to obtain the decision problem

D′k+1 = (A ∪ {α, β} ,Ω′, u′k+1) with u′k+1 = uk+1|(A∪{α,β})×Ω′ . By IIA α, β ∈

ϕ(D′k+1). Next, introduce action γ again, but now with utility function

equal to the (1
2
, 1

2
)-convex combination of the payoffs of actions α and β

in D′k+1, so the decision problem Dk+1 is obtained. By CONV it follows

that γ ∈ ϕ(Dk+1).

Conclude, by induction, that γ ∈ ϕ(Dk) for all k ∈ N.

Let D∞ = (A ∪ {α, β, γ} ,Ω′, u∞) be the limiting decision problem of the

sequence {Dk}k∈N. Notice that u∞|A×Ω′ = u′ and u∞(α, ω) = u∞(β, ω) =

u∞(γ, ω) = m for all ω ∈ Ω′. Since γ ∈ ϕ(Dk) for all k ∈ N, CONT implies

that γ ∈ ϕ(D∞).

Take a ∈ A such that infω∈Ω′ u
′(a, ω) = m. If supω∈Ω′ u

′(a, ω) = m, then

u∞(a, ω) = u′(a, ω) = m = u∞(γ, ω) for all ω ∈ Ω, so that a ∈ ϕ(D∞) by
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ANO. Otherwise, a weakly dominates γ and, by IWD, a ∈ ϕ(D∞). Hence

a ∈ ϕ(D∞) ∩ A, and using IIA it follows that ϕ(D∞) ∩ A = ϕ(D′) = ϕ(D).

Hence, a ∈ ϕ(D) for all a ∈ A with infω∈Ω u(a, ω) = infω∈Ω u(a∗, ω) = m. 2
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