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On the Consistency of Individual Classification Using Short Scales

Wilco H. M. Emons and Klaas Sijtsma
Tilburg University

Rob R. Meijer
University of Twente

Short tests containing at most 15 items are used in clinical and health psychology, medicine,
and psychiatry for making decisions about patients. Because short tests have large measure-
ment error, the authors ask whether they are reliable enough for classifying patients into a
treatment and a nontreatment group. For a given certainty level, proportions of correct
classifications were computed for varying test length, cut-scores, item scoring, and choices of
item parameters. Short tests were found to classify at most 50% of a group consistently.
Results were much better for tests containing 20 or 40 items. Small differences were found
between dichotomous and polytomous (5 ordered scores) items. It is recommended that short
tests for high-stakes decision making be used in combination with other information so as to
increase reliability and classification consistency.

Keywords: classification consistency, decision-making on short scales, individual decision
making, reliability of short scales

Long cognitive tests and personality inventories can be
stressful to children and adults suffering from, for example,
concentration and attention problems, chronic physical fa-
tigue, or brain damage due to hereditary defects or traumatic
events (Donders, 2001; Goring, Baldwin, Marriot, Pratt, &
Roberts, 2004; Kosinski et al., 2003; Reise & Henson, 2003;
Stuss, Meiran, Guzman, Lafleche, & Willmer, 1996). Thus,
there is a need for short tests and inventories that alleviate
the burden of testing in various domains, such as clinical
child psychology, mental health care, and medicine. Also,
short questionnaires may increase response rates to mailed
questionnaires (Edwards, Roberts, Sandercock, & Frost,
2004) in, for example, opinion and marketing research.

An example of a short inventory is the Mini-Mental State
Examination (Folstein, Folstein, & McHugh, 1975), which
consists of 11 questions and requires only 5–10 min to
administer. This inventory is aimed at evaluating the mental
state of psychiatric patients and consists of vocal responses
in the domains of orientation, memory, and attention. As the
authors emphasize, the quantitative assessment of cognitive
performance via lengthy tests is a problem for elderly pa-
tients suffering from, for example, dementia syndromes

because they are able to cooperate only for short periods.
Other examples include an 8-item questionnaire that mea-
sures pathological dissociative experiences (Waller, Put-
nam, & Carlson, 1996), a 5-item version of the Test Anxiety
Inventory (J. Taylor & Deane, 2002), and a 7-item ques-
tionnaire on alcohol drinking behaviors (Koppes, Twisk, Snel,
van Mechelen, & Kemper, 2004); see Cooke, Michie, Hart,
and Hare (1999) and Denollet (2005) for other examples.

Tests, including short ones, are often used in practice for
classifying individuals, for example, into groups of those
who will receive treatment and those who will not receive
treatment. Treatment might refer to psychological or med-
ical therapy but might also refer to counseling, a job, or a
course. Classification problems can also involve three or
more proficiency levels identified as nonoverlapping inter-
vals on a continuous scale that are determined by standard
setting procedures (e.g., Ercikan & Julian, 2002).

This study deals with the influence of random measure-
ment error when observed test scores are used to classify
individuals. In particular, the smaller the number of items in
the test, the greater we expect the influence of measurement
error to be on test scores and the decisions based on these
test scores. The level of uncertainty caused by measurement
error varies across individuals taking the test: Individuals
closer to the cut-score are classified with less certainty than
are respondents farther away. This suggests that an interval
should be around the cut-score in which uncertainty may be
unacceptably large for individual decision making in some
classification problems. We hypothesize that for short scales
this interval covers a large part of the scale, even if highly
discriminating items that provide maximum information with
respect to measurement in the vicinity of the cut-score have
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been used. Support of this hypothesis by research results may
provide grounds for careful and perhaps reserved use of short
tests when decisions have far-reaching consequences.

Goals of This Study

Before we discuss the goals of this study, we introduce
two important proportions. The first proportion, denoted �,
is called the certainty level. Proportion � is chosen by the
researcher to reflect the importance of correct decisions for
the classification problem at hand: It defines the lower
bound of the proportion of hypothetical independent repe-
titions of the test (Lord & Novick, 1968; to be defined
shortly) in which an individual is classified correctly. For
example, if � � .9 the researcher requires at least 90% of
the hypothetical independent repetitions of the test to lead to
the correct classification, and a lower value of � obviously
expresses that a lower certainty level is deemed acceptable.
The second proportion is called the classification consis-
tency (CC). The value of CC varies for different values of �.
For example, for � � .9 the CC equals the proportion of
individuals from a given diagnostic group for whom the
classification decision is correct in at least 90% of hypo-
thetical independent repetitions of the test. Suppose that for
� � .9 we find that CC � .64; this means that 64% of the
individuals in the group are classified correctly in at least
90% of the hypothetical test administrations. It also means
that for 36% of the individuals, the test score contains too
much random measurement error to classify them correctly
with a lower bound given by �. These people are located
closer to the cut-score than are the other 64% (e.g., Hamble-
ton & Slater, 1997; Subkoviak, 1976).

The first goal of this study is to establish, for given
certainly level �, the influence of test length and other test
and item characteristics on the CC in a particular diagnostic
category. The second goal of the study is to determine the
bounds of the interval around the cut-score in which the
individuals for whom the test score contains too much
measurement error, in our example 36% of the group, are
located. This interval is called the unreliability interval.
Like the CC, the unreliability interval is studied in relation
to test length given realistic test and item characteristics. It
will become clear that the bounds of the unreliability inter-
val are needed for computing the CC; thus, the bounds and
the CC are related, and predictions for one have implica-
tions for the other. Because the classification problem is a
problem of random measurement error, we predict that the
CC is smaller, and the unreliability interval is longer as test
length decreases, holding constant all other properties of the
test, the population, and the cut-score.

This article is organized as follows. First, we give a
general definition of classification consistency. Second, we
discuss some psychometric prerequisites that are needed in
this study. Third, we discuss how the unreliability intervals

and the CC are found, given a fixed certainty level �.
Fourth, we discuss the design of a computational study in
which, for a given distribution of test scores and a given
certainty level, the test length, the cut-score, and the psy-
chometric properties of the test and its constituent items are
varied. Each of the design factors is expected to influence
the unreliability intervals and the CC. Fifth, we present the
results of a computational study. Finally, we discuss the
results and provide directions for future research.

CC and Related Topics

CC

Lord and Novick (1968, p. 30) define for each indivdual
taking a particular test a distribution of observable test
scores with a mean that is equal to the true score. An
individual’s test score resulting from one administration of
the test can be conceived of as a random draw from his or
her distribution of test scores conditional upon his or her
true score. This distribution is known as the propensity
distribution. Now, suppose that, hypothetically, the same
test is administered infinitely many times to the same indi-
vidual and that these repetitions are independent (Lord &
Novick, 1968, pp. 29–30). Also suppose that we know the
individual’s true score and, on the basis of the comparison
of the true score and the cut-score of the classification
problem, the individual’s correct classification. Then we can
determine the percentage of observable test scores from the
propensity distribution that would classify the individual
correctly. This percentage can be computed exactly in a
computational study with the known properties of the test,
the individual’s true score, and a known cut-score. Given a
desirable certainty level �, within a particular diagnostic
category we select the individuals for whom the proportion
of observable test scores from their propensity distributions
that classify them correctly exceeds �; this selection deter-
mines the CC for that category. Because the spread within
the propensity distributions is caused only by random mea-
surement error, classification is more often correct for peo-
ple whose true scores are far away from the cut-score
(Hambleton & Slater, 1997).

For the sake of simplicity, we only consider classification
into two disjoint, mutually exhaustive categories that are
separated by a cut-score. On the basis of his or her true
score, each individual belongs to one of these categories,
and it is known which category this is. A test with known
psychometric properties is administered infinitely many
times to each individual. The only source of variation in an
individual’s test scores is random measurement error. We
set the certainty level equal to, for example, � � .9, and we
compute the corresponding CC for the group of people who
belong to this category. The bounds of the unreliability
intervals are also determined.
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Additional Remarks

A high certainty level such as .9 represents a situation in
which a decision is considered highly important. For exam-
ple, the treatment might be expensive or it might involve a
risk of some mental or physical damage for those who do
not need it. Thus, one has to be certain to a high degree that
individuals are assigned correctly to (non) treatment—that
is, � must be high—one wants the number of these indi-
viduals to cover a large part of the group—that is, the CC
also must be high. Other classification problems might
involve other certainty levels and more than two disjoint
and mutually exhaustive categories (e.g., Ercikan & Julian,
2002). A greater number of categories would involve de-
velopments similar to those outlined in this study for the
simple case of two categories.

CC was originally defined (Ercikan & Julian, 2002; also,
see Bechger, Maris, Verstralen, & Béguin, 2003; Huynh,
1976; Livingston & Lewis, 1995) as the percentage of
people assigned to the same diagnostic category by two
hypothetical independent repetitions of the same test. No-
tice that two draws from the propensity distribution provide
less accurate information about CC than infinitely many
draws, thus evaluating the whole propensity distribution.

CC is different from classification accuracy (e.g., Ercikan
& Julian, 2002; also, Hambleton & Slater, 1997; Livingston
& Lewis, 1995; Swaminathan, Hambleton, & Algina, 1974;
Traub & Rowley, 1980). Classification accuracy is the
degree to which, for a certain cut-score, a single test ad-
ministration leads to the same classifications when either the
true ability score or the estimated ability score is used.
Ercikan and Julian (2002) express classification accuracy as
the proportion of agreement across categories. Unlike CC,
classification accuracy evaluates classification effects of a
single test administration, and each individual is assumed to
be classified equally reliably.

Psychometric Prerequisites

Let the test contain J items, and let items be indexed by
j and k, with j, k � 1, . . . , J. Let random variable Xj denote
the score on item j and xj denote the realization of this score;
for example, xj � 0, 1 for incorrect or correct solutions of
items from cognitive tests, or xj � 0, . . . , m for ordered
levels of agreement on rating scales in personality invento-
ries or other questionnaires. Let respondents be indexed by
v and the sample size be denoted N so that v � 1, . . . , N.

Given a fixed certainty level �, the unreliability interval
and the CC were determined in a computational study that
used item response theory (IRT) models. IRT models are
ideal probabilistic test models for manipulating the test
situation in a computational study (Embretson & Reise,
2000; Van der Linden & Hambleton, 1997). IRT models
also enable the evaluation of the contribution of each indi-

vidual item to the measurement precision of the test by
means of Fisher’s information function (e.g., Baker & Kim,
2004; Van der Linden, 2005; also see Reise & Henson,
2000).

IRT models define the relationship between the probabil-
ity of obtaining a particular score on an item and the latent
trait that is assumed to drive responses to the items in the
test. We define the probability of obtaining a score xj as a
function of latent trait � as P(Xj � xj��). For binary item
scores, this is the item response function (IRF), also denoted
as Pj(� � P(Xj � 1��), and for polytomous item scores this
is the category response function (CRF), also denoted
as Pjxj

(�) � P(Xj � xj��), for xj � 0, . . . , m.
Unreliability intervals and the CC were studied by using

tests consisting entirely of binary scored items and tests
consisting entirely of polytomously scored items. For binary
items, we used the Rasch (1960) model or the one-param-
eter logistic model (1PLM). Let bj be the parameter that
locates the IRF on the � scale such that Pj(�) � .5; hence,
bj is the location or difficulty parameter. The IRF of the
1PLM is defined as

Pj�� � �
exp�� � bj�

1 � exp�� � bj�
. (1)

For ordered polytomous item scores, we used the graded
response model (GRM; Samejima, 1997). For each item
score, xj � 1, . . . , m, a response function is defined. This
response function has location or threshold parameters bjxj

(xj � 1, . . . , m) and a slope parameter aj, which depends on
j only, such that

P�Xj � xj�� � �
exp�aj�� � bjxj

��

1 � exp�aj�� � bjxj
��

. (2)

Note that P(Xj � 0��) � 1 by definition. This response
function, which is also known as the item step response
function (ISRF), is related to the CRF by means of

Pjxj
�� � � P�Xj � xj�� � � P�Xj � xj � 1�� �. (3)

Notice that if aj � a for all J items, the ISRFs reduce to
functions that are similar to those in the 1PLM (Equation 1),
and if a � 1 they are equal. Fixing a in both models is a
convenient way to make dichotomous-item tests and poly-
tomous-item tests comparable when different choices of a
represent different levels of discrimination.

The contribution of the J item scores Xj to the maximum-
likelihood estimation of latent trait � (the result of which is
the maximum-likelihood estimate �̂) is given by Fisher’s
information function. Let I(�) denote the information func-
tion for the whole test and let Ij(�) denote the information
function for item j. Then, the contribution of the J items to
the maximum-likelihood estimation of � is the sum of the
item contributions (Baker & Kim, 2004, chap. 3),
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I�� � � �
j�1

J

Ij�� �, (4)

and the standard error of the asymptotic normal �̂�� is given
by

SE��̂�� � � I�� �	1/ 2. (5)

The information function and the standard error can be used
to assemble tests such that they measure the most reliably at
the cut-score, denoted �c, that is used to separate the treat-
ment and the nontreatment groups. For the 1PLM, the
smallest standard error at �c is obtained for items with bj �
�c (Figure 1A; see also Baker & Kim, 2004, p. 73). For the
GRM, Ij(�) can have several peaks. For classification, it
often suffices to choose items for which �c lies somewhere
in between the m location parameters, provided Ij (�) has a
near constant and relatively high value in that region (Figure
1B; see also Baker & Kim, 2004, pp. 220–223).

Finally, the “classical” test score or total score on J items
is defined as random variable X
, such that

X
 � �
j�1

J

Xj. (6)

Because both the �̂ scale and the X
 scale are used in
practice for decision making, we point out the monotone
relationship between both scales. Let Tv be the expected
(i.e., true score) value of X
v, as defined in classical test
theory (Lord & Novick, 1968, p. 30). For binary items with
monotone nondecreasing IRFs, �v and Tv are monotone
related as

Tv � �
j�1

J

Pj ��v� (7)

(Lord, 1980, p. 46) and for polytomously scored items with
monotone nondecreasing ISRFs as

Tv � �
j�1

J �
x�1

m

xPjxj
��v� � �

j�1

J �
x�1

m

P�Xj � xj��v� (8)

(e.g., Sijtsma & Hemker, 2000). Because of these monotone
relationships, we may switch from one scale to the other.
This proves to be convenient in this study.

Classification Into Two Categories

We study the following situation. We choose a cut-score
�c and assume that people with � � �c do not need treatment
and that people with � � �c do need treatment. Because �
and the true score T are monotonically related, classification

on the basis of T and a cut-score Tc that corresponds to �c is
identical to classification on the basis of � and �c. In
practice, one has �̂ or X
 but not � or T, respectively. We
use a distribution for �, a cut-score �c, and the 1PLM and
the GRM to simulate a testing and classification problem,
and we use X
 and Tc for the actual classification. This
enables us to study the exact influence of random measure-
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Figure 1. Information curves for (A) dichotomous item j, with
bj � 0 for the one-parameter logistic model, at �c � 0, for low
discrimination power (aj � 1.5; solid curve) and high discrimina-
tion power (aj � 2.5; dashed-dotted curve); and for (B) polyto-
mous (m 
 1 � 5) item k, with bk1 � 	1.5, bk2 � 	0.5, bk3 � 0.5
and bk4 � 1.5 (i.e., b�k � 0) for the graded response model, again
at �c � 0, for low discrimination power (ak � 1.5; solid curve) and
high discrimination power (ak � 2.5; dashed curve).
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ment error in X
 on the unreliability interval and the CC
given a preset certainty level �.

The closer � is to �c, the more the conditional distribu-
tions of X
�� and X
��c overlap, and the more classification
on the basis of the fallible X
 score resembles flipping an
unbiased coin. Thus, only for �s that are far enough from �c

in either direction will classification on the basis of X


exceed certainty level �. On the basis of this line of rea-
soning, we identify a lower bound, �l � �c, below which the
probability of being classified correctly as not needing treat-
ment on the basis of X
 exceeds a preset value �; and,
similarly, an upper bound, �u � �c, above which the prob-
ability of being classified correctly as needing treatment on
the basis of X
 exceeds that same value �. Interval (�l, �u)
is the unreliability interval. The higher the value of �, the
further the bounds are driven away from �c in either direc-
tion, and the longer the unreliability interval becomes.

The bounds �l and �u are formalized as follows. Given the
choice of �, and given the cut-score �c, the psychometric
properties of the test and the items, and the distribution of �
in the group under consideration, we determine lower bound
�l (�l � �c), such that

P�X
 � Tc�� � �l� � �; (9)

and, similarly, upper bound �u (�u � �c), such that

P�X
 � Tc�� � �u� � �. (10)

Figure 2 graphically shows how the bounds �l and �u are
determined for a hypothetical test of J � 10 binary items
(technical details are given later and in the Appendix).
Figure 2 shows the test response function, defined as
E(X
��) (Lord, 1980, p. 49). We use either Equation 7 or
Equation 8 to determine the value of Tc that corresponds to
�c. For decreasing values of � (� � �c), we determine for
each � the distribution of X
��. As � decreases further, the
distribution X
�� shifts further down along the X
-axis (see
Figure 2), whereas its spread becomes smaller as it ap-
proaches the bounds of X
; that is, for smaller � the distri-
bution of X
�� has both smaller mean and variance. For
decreasing �, we continue determining distributions X
��
until a proportion � of the X
 values fall below Tc. The
value of � at which this happens is the lower bound �l. Only
for individuals whose � values are smaller than �l do we
know that in at least a proportion � of the repetitions are
they assigned to nontreatment. The procedure for finding
upper bound �u is similar.

Given the availability of bounds �l and �u, CC is opera-
tionalized as follows. For notational convenience, we use
set notation D� if � � {� � �c} and D if � � {� � �c}.
Consistent (C) classification can either refer to category D� ,
denoted as CD� , or to category D, denoted as CD. For a given
� and corresponding unreliability interval (�l, �u), we de-
termine proportions P�(CD� ) and P�(CD); both represent

levels of CC but for different diagnostic categories. Given a
distribution for �, these proportions are equal to

P��CD� � �
P�� � �l�

P�� � �c�
, and P�(CD) �

P(� � �u)

P(� � �c)
. (11)

The values of �l and �u for which Equation 9 and Equa-
tion 10 hold were obtained by using an iterative algorithm
based on interval bisection; details can be found in the
Appendix. Each iteration requires the distribution of X
��,
which was obtained as follows. For dichotomous items with
varying location parameters bj, the distribution of X
��,
denoted 
(X
��), is the generalized binomial (Kendall &
Stuart, 1969, p. 127; Lord, 1980, p. 45). The generalized
binomial cannot be expressed in closed form and, therefore,
a recursion formula (Lord & Wingersky, 1984; see also
Kolen & Brennan, 1995, pp. 182–183) was used to generate
this distribution. For polytomous item scores with varying
threshold parameters bjxj

, the distribution 
(X
��) is a gen-
eralized multinomial (e.g., Kolen & Brennan, 1995, pp.
219). The generalized multinomial distribution cannot be
expressed in closed form either, and a recursive algorithm
was used to generate this distribution (Kolen & Brennan,
1995, pp. 219–221; Thissen, Pommerich, Billeaud, & Wil-
liams, 1995). More specifically, the recursion formula first
evaluates 
(X
��) for the first two items, which contains the
probabilities of X
 given � for X
 � 0, 1, . . . , 2m. In each
of the J 	 2 consecutive steps s (s � 1, . . . , J 	 2), the
distribution of X
�� is expanded to the distribution 
(X
��)
for s 
 2 items. For dichotomous items, this recursion
formula specializes to the recursion formula of Lord and
Wingersky (1984). More details can be found in the Ap-
pendix.
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Research Questions

The goal of this study can now be formulated in terms of
research questions that can be investigated in a computa-
tional study. For different certainty levels � and a standard
normal distribution of latent trait �, we determine the influ-
ence of (a) test length (J), (b) cut-score (�c), (c) item score
(dichotomous or polytomous), (d) item discrimination (pa-
rameter aj), and (e) item difficulty (parameter bj), on the CC
proportions P�(CD� ) and P�(CD) and the bounds of the
unreliability interval (�l, �u).

Method

Analysis Steps

The computations that lead to the bounds �l and �u and
the proportions P�(CD� ) and P�(CD) follow the next se-
quence of steps:

1. We choose a cut-score �c that defines a particular
area under the right-hand tail of the standard nor-
mal distribution for �, denoted f(�).

2. Given �c, we obtain the corresponding cut-score,
Tc, by using either Equation 7 or Equation 8.

3. We choose the certainty level, �. This choice
determines the length of the (�l, �u) unreliability
interval.

4. We determine interval (�l, �u) by using the algo-
rithm explained in the Appendix.

5. We compute the proportions P�(CD� ) and P�(CD)
by using areas under the standard normal given
values of �c, �l, and �u.

An interval (Tl, Tu) corresponding to (�l, �u) may be
obtained by using Equation 7 or Equation 8, but such an
interval will prove to be problematic, as we explain later.
Thus, we only report a few noteworthy results for true score
intervals.

The analysis steps were repeated for several combinations
of (a) test length, (b) cut-score, (c) item score (dichotomous
or polytomous; implied by the chosen IRT model), (d) item
discrimination power, and (e) location and spread of item
difficulties. The design characteristics and their expected
influence on the proportions P�(CD� ) and P�(CD) and on the
unreliability interval (�l, �u), are discussed next.

Independent Variables

First we enumerate the expected influence of each of the
independent variables on the proportions P�(CD� ) and P�(CD)
and on the unreliability interval (�l, �u). Second, we describe

the specific choices made for each of the independent vari-
ables. We had the following expectations about effects:

1. Test length: Longer tests are expected to yield
greater proportions P�(CD� ) and P�(CD) and
shorter intervals (�l, �u) because the influence of
random measurement error variance relative to
true score variance is smaller.

2. Cut-score: Let group D be a minority of the pop-
ulation and let its members have the highest �s. It
is expected that a more extreme cut-score—equiv-
alent to a smaller group D size—yields a greater
proportion P�(CD� ) and a smaller proportion
P�(CD), a result that is well-known from person-
nel selection problems (Wiggins, 1973; H.C. Tay-
lor & Russell, 1939). Unreliability intervals are
expected to be shorter as the cut-score is more
extreme.

3. Item scores: It is expected that J polytomous items
will yield greater proportions P�(CD� ) and P�(CD)
than J dichotomous items because the variance of
the corresponding X
 scores is greater for polyto-
mous items and this is expected to reduce the
influence of random measurement error variance
relative to true score variance. As a result, the
unreliability intervals are expected to be shorter
for polytomous-item tests than for dichotomous-
item tests.

4. Discrimination values: Test information increases
as item discrimination increases. Thus, it is ex-
pected that proportions P�(CD� ) and P�(CD) will
increase and that unreliability intervals will be
shorter as item discrimination increases.

5. Location of items and spread of item difficulties:
For the 1PLM, the closer an item’s location pa-
rameter is to �c, the greater this item’s contribution
is to the test information function (Equation 4)
and, equivalently, to the reduction of the standard
error of the maximum-likelihood estimate �̂
(Equation 5). The shape of the test information
function is determined by the locations of the J
items. The next three predictions about the influ-
ence of the item difficulties on the proportions
P�(CD� ) and P�(CD) and the unreliability interval
(�l, �u) can be made safely.
If bj � �c (j � 1, . . . , J), test information is
maximal at �c. As a result, the interval (�l, �u) has
minimal length and the proportions P�(CD� ) and
P�(CD) are maximal.

If individual bjs are different and their mean (de-
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noted b�) equals �c (i.e., b� � �c), the proportions are
smaller and the intervals longer the more the bs
differ.

If bj � �0 (bj � 1, . . . , J), the greater the absolute
distance between �0 and �c the smaller the propor-
tions and the longer the intervals.

In other cases, the interplay of the mean and the
spread of the item difficulties produces a test infor-
mation function for which the influence on the pro-
portions P�(CD� ) and P�(CD) and the unreliability
intervals is difficult to predict. For the GRM, predic-
tions similar to those for the 1PLM are more difficult
because each item has m location parameters, and the
relationship between item location and maximum
information is not as straightforward as in the 1PLM.

Specific choices of values of independent variables:
1. Test length: Test length was J � 6, 8, 10, 12, 20, and

40. We consider the first four values typical of short tests,
J � 20 typical of medium-length tests, and J � 40 typical
of long tests.

2. Cut-score: Given a standard normal density f(�), dif-
ferent sizes of Group D correspond with 50%, 25%, 10%,
and 5% of the right-hand tail of f(�). The corresponding
cut-scores are �c � 0, 0.675, 1.285, and 1.645, respectively.
The cut-score is meaningful given that we know to what
percentage of the right-hand tail of f(�) it refers. Thus, in
discussing results it is sometimes more convenient to talk
about this percentage (denoted as PERC) instead of the
cut-score.

3. Item scores: Binary item scores were modeled using
the 1PLM (Equation 1) and polytomous item scores were
modeled with the GRM (Equation 2). Each of the J poly-
tomous items had five ordered-answer categories (m � 4),
meaning that four ISRFs are defined as each having a
difficulty parameter (bjxj

, xj � 1, . . . , 4). Tests consisted of
J dichotomous items or J polytomous items.

4. Discrimination power: We used simulations to deter-
mine realistic values for the discrimination parameters, such
that for the shortest tests (i.e., J � 6) the as would produce
values of Cronbach’s (1951) alpha approximately between
.60 and .80. These are values typically reported for short
tests (e.g., Goring et al., 2004; Knight, Goodman, Pulerwitz,
& DuRant, 2000; Murphy & Davidshofer, 1998, p. 142). On
the basis of these simulations, both the 1PLM and the GRM
items were found to have relatively low discrimination
power when aj � 1.5 (alpha was approximately .60) and
relatively high discrimination power when aj � 2.5 (alpha
was approximately .80). For all J items within the same test,
the as were chosen to be equal.

5. Location of items and spread of item difficulties: For
the 1PLM, the mean item difficulty, b� , was either equal
(Figures 3A and 3C) or unequal (Figure 3B) to the cut-
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Figure 3. Item response functions for six one-parameter logistic
model items with aj � 2.5, j � 1 . . . , 6: (A) all six items located
at �c (bj � �c � 0.675, j � 1, . . . , 6); (B) all six items located at
�c 
 �, with �c � 0.675 and � � 0.3 (bj � �c 
 � � 0.975, j �
1, . . . , 6); (C) all six items evenly spread around �c � 0.675,
within range (�c 	 �;�c 
 �), and with mean b� � �c and � � 0.5.
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score, �c. This was formalized as b� � �c 
 �, with � �
	.30, 	.15, 0, .15, .30. Notice that � gives the distance of
the mean b� to the cut-score �c; thus, it quantifies how much
the items are “off target” on average. For example, � � 0
means that b� � �c; so the items are centered at the cut-score.
Also, the J item difficulties within one test were either equal
(zero spread; see Figures 3A and 3B) or unequal (positive
spread; see Figure 3C). Item difficulties varied in equidis-
tant steps from �c 	 � to �c 
 �, for � fixed at either 0, .50,
or 1. For � � 0, zero spread was obtained.

To keep the study within manageable proportions, only
main effects of the item locations (�) and the spread of the
item difficulties (�) were studied. In particular, for each
combination of the other design factors—test length, cut-
score, item score (IRT model), and item discrimination
power—results were obtained for the following: � � 0 and
� � 0, .50, 1; and for � � 	.30, 	.15, .15, .30 and � � 0.

Given that predictions about the influence of item loca-
tions on proportions and intervals are not straightforward
for polytomous items, we make use of the knowledge that
item j is more informative about the maximum likelihood
estimate �̂ as cut-score �c is more in the middle of the m
location parameters bjxj

, xj � 1, . . . , m, with m � 4. Thus,
for item j (j � 1, . . . , J) the four difficulty parameters bjxj

.
Across the J polytomous items, we defined b� � �c 
 �, with
� � 	.30, 	.15, 0, .15, .30, similar to the definition for the
1PLM. Similar to 1PLM items, for GRM items the mean
item step difficulties, b� j, were equidistant from �c 	 � to
�c 
 �, or � fixed at 0, .50, or 1. The choices of � and �
were similar to those for the 1PLM.

We chose certainty level � � .9, which expresses that
highly consistent decisions are considered important. We
also discuss some results for � � .8, .7 and .6, keeping other
design characteristics fixed. The design of the study is
summarized in Table 1.

Dependent Variables

The dependent variables were the proportions P�(CD� )
and P�(CD) (Equation 11) and the bounds of the unreliabil-
ity interval, �l and �u.

Results

The results are manyfold and show much detail, but we
concentrate on the main results with respect to the influence
of the design factors on the proportions P.9(CD� ) and
P.9(CD). First, results are discussed for � � .9 and all items
located at the cut-score. Main effects for test length, cut-
score, item score, and item discrimination are discussed,
followed by some interesting detailed results. Then, some
results are discussed for smaller values of � and for � � .9
and items that show variation in item locations. Finally, we
discuss some results for the (�l, �u) unreliability intervals,
translate them to Tl, Tu intervals, and discuss the problems
encountered.

Results for � � .9: All Items Located
at Cut-Score �c

For � � .9 and all items located at the cut-score �c,
Tables 2 and 3 give the (�l, �u) intervals and the CC
proportions, P.9(CD� ) and P.9(CD), for varying test length,
cut-score (expressed as percentage PERC of the area under
the standard normal � distribution for the treatment group
D), and item discrimination. Table 2 gives results for di-
chotomous items generated by means of the 1PLM, and
Table 3 gives corresponding results for polytomous items
generated by means of the GRM.

Test length. Longer tests were predicted to produce
greater CC proportions, P.9(CD� ) and P.9(CD). This result
was found consistently as shown in each panel in Tables 2
and 3.

Table 1
Factors and Factor Levels of the Computational Study

Factor description Symbol Levels/values

Fully crossed factors

Cut-score (percentage of individuals in diagnostic category) �c, PERC 0 (50%), 0.675 (25%), 1.285 (10%), 1.645 (5%)
Test length J 6, 8, 10, 12, 20, 40
IRT model (dichotomous vs. polytomous items) 1PLM, GRM
Item discrimination power aj 1.5, 2.5

Fully crossed factors combinations: Item parameters

Distance between mean difficulty and �c with no spread of
item difficulties � 	.30, 	.15, 0, .15, .30

Spread of difficulties with mean difficulty equal to �c � 0.00, 0.50, 1.00

Note. The latent trait � has a standard normal distribution. PERC � percentage of individuals in diagnostic category; IRT � item response theory;
1PLM � one-parameter logistic model; GRM � graded response model.
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Cut-score. A more extreme cut-score—equivalent to a
smaller PERC—was predicted to yield a greater proportion
P.9(CD� ) and a smaller proportion P.9(CD). This result was
found consistently for different test lengths and item dis-
criminations; the reader may follow the four panels for
different PERCs from top to bottom in Tables 2 (dichoto-
mous items) and 3 (polytomous items).

Item scores. Polytomous items were predicted to yield
greater proportions, P.9(CD� ) and P.9(CD), than dichotomous
items. Indeed this was found; one may compare correspond-
ing entries in Tables 2 and 3. However, differences were
small, often no more than a few hundredths. Thus, although
the effect is in the predicted direction, it is not as pro-
nounced as expected.

Item discrimination. Greater item discrimination was
predicted to produce greater proportions, P.9(CD� ) and

P.9(CD), than was lower item discrimination. Tables 2 and
3 show that this prediction was supported by the results: In
each table, one may compare the proportions in the left half
with the corresponding proportions in the right half.

Some detailed results. We concentrate on classification
in category D. For PERC � 50 (i.e., �c � 0), for J � 6
dichotomous items and low item discrimination, P.9(CD) �
.46; this means that 46% of the persons who had � � �c

were assigned to D by at least 90% of the test repetitions
(Table 2). For smaller PERC values, P.9(CD) decreased
considerably: .31 (PERC � 25), .21 (PERC � 10), and .17
(PERC � 5). Although one could be tempted to blame these
low values on weak item discrimination, for high item
discrimination corresponding proportions were indeed
higher but were not impressive: P.9(CD) � .66, .52, .42, and
.33, as PERC values became smaller. Thus, for short tests

Table 2
Intervals (�l, �u) and Proportions of Consistent Classification P.9 (CD� ) and P.9 (CD) for Dichotomous-Item Tests (1PLM), Different
Test Lengths, Discrimination Levels, and PERCs

Low discrimination High discrimination

J �l �u P.9(CD� ) P.9(CD) �l �u P.9(CD� ) P.9(CD)

PERC � 50 (�c � 0)

6 	0.74 0.74 .46 .46 	0.45 0.45 .66 .66
8 	0.64 0.64 .53 .53 	0.38 0.38 .70 .70
10 	0.56 0.56 .58 .58 	0.34 0.34 .74 .74
12 	0.51 0.51 .61 .61 	0.31 0.31 .76 .76
20 	0.39 0.39 .70 .70 	0.23 0.23 .82 .82
40 	0.27 0.27 .79 .79 	0.17 0.17 .87 .87

PERC � 25 (�c � 0.675)

6 	0.07 1.42 .63 .31 0.23 1.12 .79 .52
8 0.04 1.31 .69 .38 0.29 1.06 .82 .58
10 0.11 1.24 .73 .43 0.34 1.01 .84 .62
12 0.17 1.18 .75 .47 0.37 0.98 .86 .65
20 0.29 1.06 .81 .58 0.44 0.91 .89 .73
40 0.40 0.95 .88 .69 0.51 0.84 .93 .81

PERC � 10 (�c � 1.285)

6 0.54 2.03 .78 .21 0.84 1.73 .89 .42
8 0.65 1.92 .82 .28 0.90 1.66 .91 .48
10 0.72 1.84 .85 .33 0.94 1.62 .92 .53
12 0.77 1.79 .87 .37 0.98 1.59 .93 .56
20 0.89 1.67 .90 .47 1.05 1.51 .95 .65
40 1.01 1.55 .94 .60 1.12 1.44 .97 .74

PERC � 5 (�c � 1.645)

6 0.90 2.39 .86 .17 1.20 2.09 .92 .33
8 1.01 2.28 .89 .23 1.26 2.03 .94 .40
10 1.08 2.21 .91 .27 1.31 1.98 .95 .44
12 1.14 2.16 .92 .31 1.34 1.95 .95 .48
20 1.26 2.03 .94 .42 1.41 1.88 .97 .58
40 1.37 1.92 .96 .55 1.48 1.81 .98 .71

Note. All item locations at �c. 1PLM � one-parameter logistic model; PERC � percentage of individuals in diagnostic category.
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(J � 6), CC proportions in D were nearly always smaller
than .50, a result which is due to random measurement error
having a great impact on classification. It can be verified in
the tables that results did not rapidly become better for J �
8, 10, and 12 and that polytomous scoring did not boost
proportions relative to dichotomous scoring (cf. Tables 2
and 3).

For medium (J � 20) and long (J � 40) tests, propor-
tion P.9(CD) was considerably larger than for smaller J.
Often it was far over .50, and when items had high
discrimination, approximately three quarters of the group
with � � �c were classified in D by at least 90% of the
test repetitions. For example, for PERC � 50 and dichot-
omous, highly discriminating items, we found that
P.9(CD) � .82 (J � 20) and P.9(CD) � .87 (J � 40), and

for PERC � 5 we found corresponding probabilities of
.58 and .71.

Results for Smaller Values of �

Lowering � to .8, .7, and .6 (results not tabulated here)
resulted in an increase of P�(CD) relative to � � .9, but for
short tests and small PERCs these proportions remained
small. For example, for � � .8 and dichotomous-item tests
consisting of items with low discrimination, P.8(CD) was at
most .50 for combinations of short tests and small PERC
values. These results mean that for less than 50% of the
respondents with � � �c classification in group D was
correct for at least 80% of the test repetitions. For smaller
� � .6, and .7, proportions P�(CD) were higher than .50.

Table 3
Intervals (�l, �u) and Proportions of Consistent Classification P.9(CD� ) and P.9 (CD) for Polytomous-Item Tests (GRM),
Different Test Lengths, Discrimination Levels, and PERCs

Low discrimination High discrimination

J �l �u P.9(CD� ) P.9(CD) �l �u P.9(CD� ) P.9(CD)

PERC � 50 (�c � 0)

6 	0.64 0.64 .52 .52 	0.42 0.42 .67 .67
8 	0.55 0.55 .58 .58 	0.36 0.36 .72 .72
10 	0.49 0.49 .62 .62 	0.32 0.32 .75 .75
12 	0.45 0.45 .65 .65 	0.29 0.29 .77 .77
20 	0.35 0.35 .73 .73 	0.23 0.23 .82 .82
40 	0.24 0.24 .81 .81 	0.16 0.16 .87 .87

PERC � 25 (�c � 0.675)

6 0.04 1.31 .69 .38 0.26 1.09 .80 .55
8 0.12 1.23 .73 .44 0.32 1.03 .83 .60
10 0.18 1.17 .76 .49 0.36 0.99 .85 .64
12 0.22 1.13 .78 .52 0.38 0.97 .87 .67
20 0.33 1.02 .84 .62 0.45 0.90 .90 .74
40 0.43 0.92 .89 .72 0.52 0.83 .93 .81

PERC � 10 (�c � 1.285)

6 0.64 1.92 .82 .27 0.86 1.70 .90 .45
8 0.73 1.84 .85 .33 0.92 1.64 .91 .51
10 0.79 1.78 .87 .38 0.96 1.60 .93 .55
12 0.83 1.73 .89 .42 0.99 1.57 .93 .58
20 0.94 1.63 .92 .52 1.06 1.51 .95 .66
40 1.04 1.53 .95 .64 1.12 1.44 .97 .75

PERC � 5 (�c � 1.645)

6 1.01 2.28 .89 .22 1.23 2.06 .94 .39
8 1.09 2.20 .91 .28 1.29 2.00 .95 .45
10 1.15 2.14 .92 .32 1.33 1.96 .96 .50
12 1.19 2.10 .93 .36 1.35 1.94 .96 .53
20 1.30 1.99 .95 .47 1.42 1.87 .97 .62
40 1.40 1.89 .97 .59 1.49 1.80 .98 .71

Note. All item locations at �c. GRM � graded response model; PERC � percentage of individuals in diagnostic category.
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For dichotomous item tests and high item discrimination,
setting � � .8 resulted in P�(CD) greater than .50 in all
conditions. In particular, P.8(CD) was greater than .77 for
PERC � 50, and greater than .67 for PERC � 25. For short
tests (J � 12) and PERC � 10, however, it was necessary
to lower � to .7 or .6 for obtaining P.7(CD) and P.6(CD) of
at least .70.

Location of Items and Spread of Item Difficulties

Table 4 provides proportions P.9(CD� ) and P.9(CD) for
dichotomous-item tests, in which items have varying spread
of item difficulties (�); and Table 5 provides similar results
for polytomous-item tests. The three predictions about the
influence of the item difficulties on the CC proportions were
all confirmed, but the effects were small.

In particular, for dichotomous-item tests, proportions
P.9(CD� ) and P.9(CD) decreased little with increasing spread
in item difficulty (�). One may compare results for equal
item locations (i.e., � � 0; in Table 2 with those for varying
item locations [Table 4]). For low item discrimination,
differences between the P.9(CD)s for equal item locations
(i.e., � � 0) and varying item locations were small (varying
from .00 to .06). For high item discrimination, differences
ranged from .00 to .11. For polytomous-item tests, differ-
ences between items having the same locations and items
having varying item locations showed minor differences
(largest absolute difference equal to .01).

Results for different mean item locations are not tabu-
lated. In general, different mean item difficulties produced
small differences in the proportions P.9(CD� )s and P.9(CD).

Table 4
Proportions P.9 (CD� ) and P.9 (CD) for Dichotomous-Item Tests (1PLM), Different Test Lengths, Discrimination Levels, PERCs, and
Spread of Item Locations (�)

J

Low discrimination High discrimination

� � 0.50 � � 1.00 � � 0.50 � � 1.00

P.9(CD� ) P.9(CD) P.9(CD� ) P.9(CD) P.9(CD� ) P.9(CD) P.9(CD� ) P.9(CD)

PERC � 50 (�c � 0)

6 .44 .44 .40 .40 .62 .62 .55 .55
8 .51 .51 .48 .48 .68 .68 .62 .62
10 .56 .56 .53 .53 .72 .72 .67 .67
12 .60 .60 .57 .57 .74 .74 .70 .70
20 .69 .69 .67 .67 .80 .80 .77 .77
40 .78 .78 .77 .77 .86 .86 .84 .84

PERC � 25 (�c � 0.675)

6 .62 .30 .58 .26 .76 .49 .71 .41
8 .68 .37 .65 .33 .81 .55 .76 .49
10 .72 .42 .69 .39 .83 .60 .80 .54
12 .75 .46 .73 .43 .85 .63 .82 .58
20 .81 .57 .80 .54 .89 .71 .87 .67
40 .87 .68 .86 .66 .92 .79 .91 .76

PERC � 10 (�c � 1.285)

6 .77 .20 .74 .17 .87 .38 .84 .31
8 .82 .26 .80 .23 .90 .45 .87 .38
10 .84 .31 .83 .28 .91 .50 .89 .44
12 .86 .35 .85 .32 .92 .54 .91 .48
20 .90 .46 .89 .44 .94 .63 .93 .58
40 .94 .59 .93 .57 .96 .73 .96 .69

PERC � 5 (�c � 1.645)

6 .85 .16 .83 .13 .92 .33 .90 .25
8 .88 .22 .87 .19 .94 .40 .92 .33
10 .90 .26 .89 .23 .95 .44 .94 .38
12 .91 .30 .91 .27 .95 .48 .94 .42
20 .94 .41 .94 .38 .97 .58 .96 .53
40 .96 .54 .96 .52 .98 .69 .97 .65

Note. 1PLM � one-parameter logistic model; PERC � percentage of individuals in diagnostic category.

115CLASSIFICATION CONSISTENCY OF SHORT SCALES



For high item discrimination, different mean item locations
had more effect on the proportions than different degrees of
spread (�), in particular for large J. These effects were
found across all PERC values.

Some Results for (�l, �u) and Corresponding Tl, Tu
Intervals

The (�l, �u) intervals were shorter as test length and item
discrimination increased and for polytomous items relative
to dichotomous items, but their length was constant for
different cut-scores (PERCs) and all J items located at the
cut-score, whereas everything else remained constant (see
Tables 2 and 3). This result contradicts the prediction that
intervals are shorter as the cut-score is more extreme. For

example, in Table 2, for J � 6 dichotomous items with low
discrimination, one finds that the (�l, �u) intervals shift to
the right of the scale as �c shifts to the right (i.e., as PERC
becomes smaller) but that the length of each of these inter-
vals equals approximately 1.48. This constant length is due
to all J items being located at �c for all values of �c. To find
the cut-score on the true-score scale, Tc, and the unreliabil-
ity interval (Tl, Tu), we insert (� � �c) and bj � �c (j � 1,
. . . , J) in the 1PLM; this yields probabilities equal to .5 and,
consequently, Tc � J/2 (Equation 7). Thus, for this setup of
the computational study, Tc is always located at the middle
of the true-score scale and (Tl, Tu) intervals are always
located around the middle of this scale.

Next, we argue that these (Tl, Tu) intervals have the same

Table 5
Proportions P.9 (CD� ) and P.9 (CD) for Polytomous-Item Tests (GRM), Different Test Lengths, Discrimination Levels, PERCs, and
Spread of Item Locations (�)

J

Low discrimination High discrimination

� � 0.50 � � 1.00 � � 0.50 � � 1.00

P.9(CD� ) P.9(CD) P.9(CD� ) P.9(CD) P.9(CD� ) P.9(CD) P.9(CD� ) P.9(CD)

PERC � 50 (�c � 0)

6 .52 .52 .52 .52 .68 .68 .67 .67
8 .58 .58 .58 .58 .72 .72 .72 .72
10 .62 .62 .62 .62 .75 .75 .75 .75
12 .65 .65 .65 .65 .77 .77 .77 .77
20 .73 .73 .73 .73 .82 .82 .82 .82
40 .81 .81 .80 .80 .87 .87 .87 .87

PERC � 25 (�c � 0.675)

6 .68 .38 .68 .37 .81 .55 .80 .55
8 .73 .44 .73 .44 .83 .60 .83 .60
10 .76 .49 .76 .48 .85 .64 .85 .64
12 .78 .52 .78 .52 .87 .67 .87 .67
20 .84 .61 .84 .61 .90 .74 .90 .74
40 .89 .72 .89 .71 .93 .81 .93 .81

PERC � 10 (�c � 1.285)

6 .82 .27 .82 .27 .90 .45 .90 .45
8 .85 .33 .85 .33 .91 .51 .91 .51
10 .87 .38 .87 .38 .93 .55 .93 .55
12 .89 .42 .88 .41 .93 .58 .93 .58
20 .92 .51 .92 .51 .95 .66 .95 .66
40 .95 .64 .94 .63 .97 .75 .97 .75

PERC � 5 (�c � 1.645)

6 .87 .22 .89 .22 .94 .40 .94 .40
8 .91 .28 .91 .28 .95 .45 .95 .45
10 .92 .32 .92 .32 .96 .50 .96 .50
12 .93 .36 .93 .36 .96 .53 .96 .53
20 .95 .46 .95 .46 .97 .62 .97 .62
40 .97 .59 .97 .58 .98 .71 .98 .71

Note. GRM � graded response model; PERC � percentage of individuals in diagnostic category.
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length. For different cut-scores �c, we saw that, except for
small rounding errors, the length of (�l, �u) intervals was the
same. A shift of �c and the (�l, �u) interval and the J Rasch
IRFs that are located at �c cause an equal shift of the test
response function (Figure 2). Figure 2 can be used to infer
that the true scores Tl and Tu are not affected by such a shift
and, as a result, that the length of the (Tl, Tu) interval is the
same for different �c values. Unlike the results for �l, �u

intervals, however, the length of (Tl, Tu) intervals remains
constant even for varying item discrimination. Figure 2 can
also be used to see what happens when the test response
function becomes steeper (which is due to a higher value of
item discrimination a for all J items) and everything else
remains constant. Such an increase produces a shorter �l, �u

interval, but it does not affect the (Tl, Tu) interval.
What does change when item discrimination increases is

the distribution of T. Thus, the same (Tl, Tu) intervals for
different levels of discrimination may have different im-
pacts on CC proportions P�(CD� ) and P�(CD), and this is
revealed by Tables 2–5. Some noteworthy results are given
in Table 6, in which values for T were obtained by using
Equations 7 and 8. The last column reveals that polytomous-
item tests produce (Tl, Tu) intervals that are shorter relative
to scale length than those produced by dichotomous-item
tests. Useful as this may be, for classification problems as
studied here one needs to consider CC proportions P�(CD� )
and P�(CD) to be able to evaluate the impact of such
differences. Tables 2–5 show that for fixed test length,
differences in CC proportions between dichotomous-item
and polytomous-item tests were not impressive.

Discussion

This study has dealt with a phenomenon that is familiar,
at least at an intuitive level, to everyone who has tested
individuals. In particular, if someone’s score on a short test,
questionnaire, or inventory is close to the cut-score, we feel
uncertain about the decision: admit or reject, pass or fail?
More information would be helpful and, moreover, fairer to
the patient or to the student. For test performance that is
clearly below or above the cut-score, this concern is not felt
as explicitly. The situation described here has been formal-
ized in this study.

The results of this study show that for scales consisting of
6–12 items, random measurement error exercised an unduly
large influence on CC, even when items had the best quality
encountered in test practice: That is, items had good dis-
crimination power and locations at the cut-score �c, where
they contribute maximally to estimating � by means of
maximum-likelihood methods. For longer tests, the results
were much better but became more worrisome as the cut-
score was more extreme (i.e., the PERC was smaller), a
result well-known from personnel selection (e.g., Wiggins,
1973). Tests consisting of polytomous items did not sub-
stantially improve CC.

The main conclusion is two-fold. First, even if items
have high quality, short tests must be used only for
making decisions about people who are located outside
the unreliability interval for that test. Tables 2–5 can be
used to find the intervals for the conditions that corre-
spond the best with the test at hand. This implies that the

Table 6
Intervals for True Scores, Low Discrimination, Dichotomous-Item Tests (1PLM),
Polytomous-Item Tests (GRM), and Different Test Lengths

J Tl Tu Tu 	 Tl

(Tu 	 Tl)

max(X
)

Dichotomous-item tests

6 1.49 4.51 3.02 .50
8 2.22 5.78 3.56 .45
10 3.02 6.98 3.96 .40
12 3.81 8.19 4.38 .37
20 7.16 12.84 5.68 .28
40 16.00 24.00 8.00 .20

Polytomous-item tests

6 8.54 15.46 6.92 .29
8 12.02 19.98 7.96 .25
10 15.56 24.44 8.88 .22
12 19.10 28.90 9.80 .20
20 33.64 46.36 12.72 .16
40 71.26 88.74 17.48 .11

Note. Items maximally informative about �c. 1PLM � one-parameter logistic model; GRM � graded response
model.
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test cannot be used for all those people who are located
in the unreliability intervals, unless one is prepared to
make many incorrect decisions. In a particular diagnostic
category, this may easily concern half of the group, as the
computational study has shown. This is a situation one
likely wants to avoid in many classification problems.

The second conclusion is that one needs a long test (or
a composite of several short tests) if one wants the test
score to produce an acceptable CC that satisfies a re-
quired certainty level expressing the importance of the
decision. Test length is easier to manipulate than any of
the other factors included in our study. For a particular
classification problem, the cut-score is often fixed given
properties of the test and the nature of the diagnostic
categories. Dichotomous items are not easily transformed
into polytomous versions of those same items. The dif-
ficulty of items often can be predicted only within global
intervals. Finally, highly discriminating items often have
limited meaning or validity, and moderately or even
poorly discriminating items are more often the rule than
the exception. To identify membership in a particular
diagnostic category, it is often easier to construct a larger
number of items— either dichotomous or polytomous—
than to try to tailor their difficulties exactly to the cut-
score and hope that their discrimination will be the high-
est possible in practice. And even if all of this succeeds,
this study has demonstrated that a short test simply will
not suffice for large numbers of people.

This study corroborated our hypothesis that test scores
based on short scales contain too much measurement error
to make decisions with enough certainty for the majority of
respondents. Thus, some final remarks are in order.

First, even experts in test theory may find it difficult to
believe that a number of well-chosen items, albeit a limited
number, select so few people for (non) treatment (i.e., low
CC) with a sufficiently high certainty level (�). The prob-
lem becomes more serious with shorter tests, despite the use
of highly discriminating items that are located at the cut-
score (i.e., providing a great amount of statistical informa-
tion).

Second, this study has made clear that one needs CC
proportions like P�(CD� ) and P�(CD) to evaluate consis-
tency of decision making on the basis of short tests. The
information function or the standard error of maximum-
likelihood estimate �̂ conditional on � does not provide the
information necessary for this evaluation. Exactly how
Cronbach’s alpha and other reliability estimates are related
to consistent decision making is a topic for future research.

Third, especially in clinical and medical practice there is
a tendency to work with short scales to alleviate the burden
on patients who are too confused or too ill to answer large
numbers of questions. Understandable as these practical
considerations are, they cannot make a short test produce
higher CC.

More research is needed that directly links the use of
test scores for classification—in clinical, medical, but
also job selection contexts—to classification consistency.
Utility of outcomes may be included as a variable that
affects the choice of certainty level � and the classifica-
tion consistency. Apart from that, we predict that the
conclusion will be that either long, high-quality tests
(i.e., containing at least 20 and preferably 40 items; for
many tests, this is not an excessive test length) are needed
or that decision making should be based on many small
pieces of information, each of which covers a unique
aspect of the construct to be measured or the criterion to
be predicted. The collection of small pieces of informa-
tion requires that patients and clients need to be bothered
several times but only for a short period each time. This
could provide a compromise between practical demands
set by the clinical or medical reality and psychometric
demands to ensure consistent classification.
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Appendix

Finding Total Score Distributions and Unreliability Intervals

Recursion Formula for Expanding 
(X
��) for
Polytomous Items

Let Pj be the (column) vector of the CRFs of item j; that
is, Pj � (P*j0(�), . . . , P*jm(�)); see Equation 3.

Initialization Step

In the initialization step (indexed s � 0), the vectors containing
the CRFs of items 1 and 2 are multiplied. This results in an (m 

1) � (m 
 1) matrix R0 that contains the joint probabilities of all
combinations of category scores on items 1 and 2; that is,

R0 � P1 � P�2.

Matrix R0 is transformed into the discrete distribution

(X
��) for the first two items. This is done as follows:


�X
 � x
�� � � ��l�0

x
 Rl
1, x

1	l
0 if x
 � m

�
l�x
	m
1

m
1 Rl,x
 � 2 � l
0 if x � � m � 1

.

The discrete distribution 
(X
��) can be expressed as a prob-
ability vector of length 2m 
 1, which will be denoted by W0

and defined as W0 � (
(X
 � 0��), . . . , 
(X
 � 2m��)).

Recursion Steps

The initialization step is followed by J 	 2 recursion
steps. Each step s (s � 1, . . . , J 	 2) proceeds as follows.

1. Multiply the CRFs of item s 
 2 with the row vector
W� obtained from the previous step; that is,

Rs � Ps
2 � W�s	1.

The matrix Rs has (m 
 1) rows and [m(s 
 1) 
 1]
columns.

2. Obtain the expanded distribution 
s(X
��) from Rs as
follows:


s�X
 � x
�� �

� �
�

l�0

x
 Rl
1, x

1	l
s if 0 � x
 � m

�
l�0

m Rl
1,x

1	l
s if m � 1 � x
 � m�s � 1)

�
l�x
	m�s
1�
1

m
1 Rl, x
	ms
2
s if m�s � 1� � 1 � x
 � m�s � 2�.

The discrete distribution is expressed in the new probability
vector Ws, which is now of length m(s 
 2) 
 1.

After all steps are accomplished, we have obtained the
intended distribution 
(X
��) for the set of J items.

Bisectional Method for Determining Boundaries of
the Unreliability Intervals

The boundaries �l and �u for a given level of � were
obtained using interval bisection with r � 12 iterations.

Lower Bound
The lower bound �l was found as follows:

�l,r � �l,r	1 � �l,r ,

with �l,0 � �c and �l,r being the shifting parameter for
obtaining values of �l with increased precision. For the first
four iterations (r � 1, . . . , 4):

�l,r � � � 0.5 if 
�X
 � Tc��l,r	1� � �.
0 otherwise

In the remaining iterations (r � 5, . . . , 12),

�l,r � �
� 0.5

2r	4 if 
�X
 � Tc��l,r	1� � �

0.5

2r	4 if 
�X
 � Tc��l,r	1� � �
.

Upper Bound
The upper bound �u was found as follows:

�u,r � �u,r	1 � �u,r ,

with �u,0 � �c and �u,r being the shifting parameter for
obtaining values of �u with increased precision. For the first
four iterations (r � 1, . . . , 4),

�u,r � � 0.5 if 
�X
 � Tc��u,r	1� � �.
0 otherwise

In the remaining iterations (r � 5, . . . , 12),

�u,r � �
0.5

2r	4 if 
�X
 � Tc��u,r	1� � �

� 0.5

2r	4 if 
�X
 � Tc��u,r	1� � �

The first four iterations are used to approximately locate �l

and �u with a precision of .50, assuming that �l and �u are
within two standard deviations from �c. If this assumption is
unreasonable, more iterations are used to approximately
locate �l and �u. The remaining eight iterations are used to
obtain more precise values of �l and �u. In our study, the
eight remaining iterations guarantee that the imprecision of

�l and �u is smaller than
.5

2r	4 � .002. More precise values

of �l and �u can be obtained by using more iterations (r).
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