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The performance of five simple multiple imputation methods for dealing with

missing data were compared. In addition, random imputation and multivariate nor-

mal imputation were used as lower and upper benchmark, respectively. Test data

were simulated and item scores were deleted such that they were either missing

completely at random, missing at random, or not missing at random. Cronbach’s

alpha, Loevinger’s scalability coefficient H , and the item cluster solution from

Mokken scale analysis of the complete data were compared with the corresponding

results based on the data including imputed scores. The multiple-imputation meth-

ods, two-way with normally distributed errors, corrected item-mean substitution

with normally distributed errors, and response function, produced discrepancies in

Cronbach’s coefficient alpha, Loevinger’s coefficient H , and the cluster solution

from Mokken scale analysis, that were smaller than the discrepancies in upper

benchmark multivariate normal imputation.

Tests and questionnaire data consist of the scores of N subjects on J items.

Together these items measure one or more psychological traits. Scores in test and

questionnaire data can be missing for several reasons. For example, a respondent

accidentally skipped an item or even a whole page of items, he/she found a

particular question too personal to answer, or he/she became bored filling out

the test or questionnaire and skipped some questions on purpose.

Let X be an incomplete data matrix of size N � J with an observed part

Xobs and a missing part Xmis, so that X D .Xobs, Xmis). Let R be an N � J

Correspondence concerning this article should be addressed to Joost van Ginkel, Department

of Methodology and Statistics, FSW, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The

Netherlands. E-mail: j.r.vanginkel@uvt.nl
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388 VAN GINKEL ET AL.

indicator matrix of which an element equals one if the corresponding score in X

is observed, and zero if the corresponding score in X is missing. Furthermore,

let Ÿ be an unknown parameter vector that characterizes the missingness mech-

anism. Missingness mechanisms can be divided into three categories: missing

completely at random (MCAR), missing at random (MAR), and not missing at

random (NMAR) (Little & Rubin, 2002, p. 12; Rubin, 1976). MCAR is formal-

ized as

P.R j Xobs; Xmis; Ÿ/ D P.R j Ÿ/: (1)

MCAR means that the missing scores in the data are a random sample of all

scores in the data, and that the missingness does not depend on either the

observed scores (Xobs) or values of the missing scores (Xmis).

MAR means that the missing values depend on the observed scores,

P.R j Xobs; Xmis; Ÿ/ D P.R j Xobs; Ÿ/: (2)

For example, if gender is observed for all subjects it may be found that men

find it more difficult or embarrassing to answer a question about depression than

women do. Therefore, the probability of not answering such a question is higher

for men than for women. If in addition the missing scores within each covariate

class are a random sample of all scores, the scores are said to be MAR.

Any missingness mechanism that cannot be formalized as in Equation (1) or

Equation (2) is NMAR. NMAR means that the missingness on variable X either

depends on variables that are not part of the investigation, or on the missing

score on variable X itself, or both. If people, who are depressed, have a higher

probability of not responding to a question about depression than people who

are not depressed, the missingness is NMAR.

A popular method for dealing with missing data is listwise deletion. This

method entails the removal of all cases with at least one missing score from

the statistical analysis. Listwise deletion reduces the sample size and therefore

results in a loss of power. Moreover, if listwise deletion results in only a few

complete cases statistical analyses may be awkward. Additionally, when the

missingness mechanism is not MCAR, the resulting sample may be biased.

Another procedure of missing-data handling is imputation of scores to re-

place missing data. Examples are hot-deck imputation (Rubin, 1987, p. 9) and

regression imputation (Rubin, 1987, pp. 166–169). Hot-deck imputation matches

to each nonrespondent another respondent who resembles the nonrespondent

on variables that are observed for both, and donates the observed scores of

this respondent to the missing scores of the nonrespondent (Bernaards et al.,

2003; Huisman, 1998). Regression imputation estimates scores under a regres-

sion model, using one or more independent variables to predict the most likely

scores (Bernaards et al., 2003; Smits, Mellenbergh, & Vorst, 2002).
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MULTIPLE IMPUTATION IN TEST DATA 389

In multiple imputation (Rubin, 1987, p. 2), an imputation method is applied

w times to the same incomplete data set, so as to produce w different plausible

versions of the complete data set. Each of these w data sets is analyzed by

standard complete-data methods and the results are combined into one overall

estimate of the statistics of interest. This way, the uncertainty about the imputed

values is taken into account when drawing a final conclusion. Software programs

for multiple imputation under the multivariate normal model are, for example,

NORM (Schafer, 1998) and the missing-data module of S-plus 6 for Windows

(2001). The method used by NORM is also available in SAS 8.1, in the procedure

PROC MI (Yuan, 2000). The program AMELIA by King, Honaker, Joseph, and

Scheve (2001a,b) imputes scores according to a multivariate normal model, but

uses another computational method (Schafer & Graham, 2002). The stand-alone

software package SOLAS (2001) performs hot-deck imputation and multiple

imputation that relies on regression models (Schafer & Graham, 2002). Multiple

imputation under the saturated logistic model and the general location model can

be applied by means of the missing-data module of S-plus 6 for Windows (2001)

(Schafer & Graham, 2002).

Simulation studies on the performance of multiple-imputation methods have

been conducted (Ezzati-Rice et al., 1995; Graham & Schafer, 1999; Schafer,

1997; Schafer et al., 1996). These studies showed that these methods produce

small bias in statistical analyses, and are robust against departures of the data

from the imputation model. Most of these methods require the use of algorithms

like EM (Dempster, Laird, & Rubin, 1977; Rubin, 1991) or data augmentation

(Tanner & Wong, 1987), that appear complicated to social scientists who lack

enough training in statistics and programming to effectively apply these methods.

Instead, these researchers often resort to listwise deletion.

Alternatively, simpler methods have been developed, such as corrected item-

mean substitution (CIMS; Huisman, 1998, p. 96), two-way imputation (TW;

Bernaards & Sijtsma, 2000), and response-function imputation (RF; Sijtsma &

Van der Ark, 2003). Subroutines in SPSS (2004) for methods TW, RF, and

CIMS have been made available by van Ginkel and van der Ark (2005a,b).

These methods are easy to comprehend and can be useful alternatives to listwise

deletion. The question is to what extent the simplicity of these methods goes

at the expense of their performance. The aim of this study was to determine

the extent to which multiple-imputation versions of simple methods produced

discrepancies in results of statistical techniques, and the extent to which they

produced stable results over replicated data sets. Moreover, the aim was to

compare the results of these methods to those obtained by means of lower and

upper benchmark methods.

Bernaards and Sijtsma (1999, 2000) found that factor loadings could be re-

covered well using simple single-imputation methods. Huisman (1998) used

real data to study the effects of nine imputation methods on the discrepancy
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390 VAN GINKEL ET AL.

in Cronbach’s (1951) alpha and Loevinger’s (1948) H , and found that method

CIMS performed best in recovering these statistics. Smits (2003, chap. 3) inves-

tigated the influence of simple and more advanced single-imputation methods

on the reliability, the test score, and the external validity of a test. Van der Ark

and Sijtsma (2005) used multiple-imputation methods to recover item clusters

from Mokken (1971) scale analysis in real data sets.

In the present study, we investigated the influence of six imputation methods

on Cronbach’s alpha, coefficient H , and the cluster solution from Mokken scale

analysis. The results of the analyses of completely observed data sets were com-

pared with the results of analyses of the same data sets but with some scores

missing according to some specified research design, and replaced by imputed

scores. The data were simulated following methodology used by Bernaards and

Sijtsma (1999, 2000). Unlike the studies of Bernaards and Sijtsma (1999, 2000)

and Huisman (1998, chap. 5 & chap. 6), multiple-imputation versions of impu-

tation methods were studied.

METHOD

Data sets were simulated according to an item response theory (IRT) model pro-

posed by Kelderman and Rijkes (1994). In these data sets, denoted original data,

missingness was simulated according to either MCAR, MAR, or NMAR. The

resulting data sets were denoted incomplete data. Next, the missing scores were

estimated according to multiple-imputation versions of six imputation meth-

ods, and the resulting data sets were denoted completed data. The results of

Cronbach’s alpha, coefficient H , and the cluster solution from Mokken scale

analysis based on the original data were compared with the results based on the

completed data. Differences were denoted discrepancies.

Imputation Methods

Random imputation (RI). Let the random variable for the score on item

j be denoted Xj , with integer values xj D 0; : : : ; m. RI inserts an integer item

score for missing item scores. This value is drawn at random from a uniform

distribution of integers 0; : : : ; m. RI was used as a lower benchmark.

Two-way imputation (TW). Method TW (Bernaards & Sijtsma, 2000) cor-

rects both for a person effect and an item effect. Let PMi be the mean of the

observed item scores of person i , IMj the mean of the observed item scores

of item j , and OM the overall mean of all observed item scores; then in cell
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MULTIPLE IMPUTATION IN TEST DATA 391

.i; j / of the data matrix, define

T Wij D PMi C IMj � OM (3)

A random component is added to the result of Equation (3) as follows: If T Wij

is a real number that lies between integers a and b, it is rounded to a with

probability jT Wij � bj or to b with probability jT Wij � aj (Sijtsma & Van der

Ark, 2003), and the result is imputed in cell .i; j /. If T Wij is outside the range

of the scores 0; : : : ; m, it is rounded to the nearest feasible score.

Two-way with normally distributed errors (TW-E). Bernaards and Si-

jtsma (2000) added a random error to T Wij , denoted ©ij , which was drawn

from a normal distribution with zero mean and a variance ¢2
© . In order to obtain

values of ©ij , first the expected item scores are computed for all observed scores

by means of Equation (3). Second, let obs denote the set of all observed cells

in data matrix X, and let #obs be the size of set obs. The sample error variance

S2
© is computed as

S2
© D

X X

i;j 2obs

.Xij � T Wij /2=.#obs � 1/:

Third, ©ij is drawn from N.0; S2
© /. The imputed value in cell .i; j / then equals

T Wij .E/ D T Wij C ©ij :

T Wij .E/ is rounded to the nearest integer within the range of the scores

0; : : : ; m.

Corrected item-mean substitution with normally distributed errors (CIMS-

E). Let obs.i/ be the set of all observed cells in X for person i and let #obs.i/

be the size of set obs.i/. Then CIMSij is defined as

CIMSij D

0

B

B

B

B

@

PMi

1

#obs.i/

X

j 2obs.i/

IMj

1

C

C

C

C

A

� IMj

(Huisman, 1998, p. 96; also, see Bernaards & Sijtsma, 2000). Thus, the item

mean is corrected for person i ’s score level relative to the mean of the items to

which he/she responded. Normally distributed errors are added to CIMSij using

a procedure similar to the procedure used for adding normally distributed errors

in method TW-E. The final result is rounded to the nearest integer within the

range 0; : : : ; m.
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392 VAN GINKEL ET AL.

Response-function imputation (RF). In IRT, the regression of the score

on item j on latent variable ™, P.Xj D x j ™/, is called the response function.

Method RF (Sijtsma & Van der Ark, 2003) uses the estimated response function

to impute item scores. Restscore R.�j / (this is the total score on J � 1 items

without Xj ) is used as an estimate of person parameter ™ (Junker & Sijtsma,

2000), and the response function is estimated by means of P ŒXj D x j R.�j /�.

Method RF has three steps.

1. The restscore of respondent i on item j is estimated by means of

OR.�j /i D PMi � ŒJ � 1�:

If respondent i has no missing values, OR.�j /i D R.�j /i D
PJ

k¤j Xik is

an integer, but if respondent i has missing values OR.�j /i need not be an

integer.

2. Probability P ŒXj D x j R.�j / D r� is estimated for x D 0; : : : ; m and

r D 0; : : : ; m.J � 1/, by dividing the number of respondents with both

Xj D x and OR.�j / D r by the number of respondents with OR.�j / D r . If r

is not an integer and the nearest integers are a and b, such that a < r < b,

then P ŒXj D x j R.�j / D r� is estimated by linear interpolation of

P ŒXj D x j R.�j / D a� and P ŒXj D x j R.�j / D b�. See Sijtsma and

Van der Ark (2003) for details.

3. An integer score is drawn from a multinomial distribution with category

probabilities corresponding to the estimated probabilities P ŒXj D x j

R.�j / D r�. This integer score is imputed for a missing score of person i

on item j , with restscore OR.�j /i .

When restscore groups contain few observations, adjacent restscore groups

are joined until resulting groups exceed an acceptable minimum size, denoted

minsize. In a pilot study, it was found that minsize D 10 was the optimal value

for estimating the response function that, while adequately balancing bias and

accuracy, recovered the estimates of Cronbach’s alpha, coefficient H , and the

cluster solution from Mokken scale analysis best.

Multivariate normal imputation (MNI). Method MNI assumes that the data

are a random sample from a multivariate normal distribution. An iterative pro-

cedure is used to obtain the distribution of the missing item scores, given the

observed item scores and the model parameters. This procedure is known as

data augmentation (Schafer, 1997; Tanner & Wong, 1987). Initial estimates of

the model parameters are obtained by means of the EM algorithm. EM posterior

modes estimates serve as the starting values for the data augmentation chain.

Finally, scores are imputed by randomly drawing values from the conditional
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MULTIPLE IMPUTATION IN TEST DATA 393

distribution P.Xmis j Xobs/. MNI was implemented using the missing-data li-

brary in S-plus 6 for Windows (2001). The imputed scores were rounded to the

nearest integer within the range of 0; : : : ; m. We used method MNI as an upper

benchmark because it is a well-known method with readily available software,

and simulation studies indicated that the method works well.

Note that a saturated logistic model (Schafer, 1997, chap. 7 & chap. 8) may

be a more logical upper benchmark because item scores in test and question-

naire data are discrete. However, estimating the parameters of a logistic model

requires the evaluation of a contingency table with .mC1/J cells, which makes

the logistic model inappropriate for test and questionnaire data sets with large

numbers of items. Van der Ark and Sijtsma (2005) found that the missing-data

procedure in S-plus could not estimate a logistic model for a data set with 17

items. Graham and Schafer (1999) found that method MNI is robust against

departures from the multivariate normal model.

Simulating the Original Data

All respondents in the population had scores on a two-dimensional latent vari-

able, ™, driving the item responses, and a binary score on an observed covariate

Y . Both covariate scores had equal probability, P.Y D 1/ D P.Y D 2/ D :50.

The latent variable had a bivariate normal distribution with mean vectors �1 D

Œ�0:25; �0:25� for Y D 1, and mean vector �2 D Œ0:25; 0:25� for Y D 2. The

covariance matrix (which is also the correlation matrix) was in both classes

† D

�

1

¡ 1

�

:

Responses to J items with m C 1 ordered answer categories were generated

using the multidimensional polytomous latent trait (MPLT) model (Kelderman

& Rijkes, 1994).

Let ™iq (i D 1; : : : ; N ; q D 1; : : : ; Q) be the score of respondent i on

latent variable q; let §jqx (j D 1; : : : ; J ; q D 1; : : : ; Q, x D 0; : : : ; m) be the

separation parameter of item j , latent variable q, and answer category x; and

let Bjqx (j D 1; : : : ; J ; q D 1; : : : ; Q; x D 0; : : : ; m) be the (nonnegative)

discrimination parameter of item j , latent variable q, and answer category x.

The MPLT model is defined as

P.Xij D x j ™i1; : : : ; ™iQ/ D

exp

2

4

Q
X

qD1

.™iq � §jqx/Bjqx

3

5

x
X

yD0

8

<

:

exp

2

4

Q
X

qD1

.™iq � §jqy/Bjqy

3

5

9

=

;

: (4)
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394 VAN GINKEL ET AL.

Parameters Bjq0 and §jq0 must be set to 0 to ensure uniqueness of the pa-

rameters.

The following factors were considered for simulating of the original data:

Test length. The test length was fixed at J D 20 items.

Number of answer categories. The number of answer categories was

either two (dichotomous items) or five (polytomous items).

Sample sizes. The sample size were N D 200 and N D 1000, represent-

ing small and large samples, respectively.

Correlation between latent variables. The correlation ¡ was varied to be

0, .24, and .50 (these values were based on Bernaards & Sijtsma, 1999).

Discrimination parameters for polytomous items. In the main design,

item sets were either unidimensional (meaning one ™ in Equation (4)), or con-

sisted of ten items that were mainly driven by one latent variable (™1) and to a

lesser degree by another latent variable (™2), and ten other items that were mainly

driven by ™2 and to a lesser degree by ™1. In a specialized design, the first ten

items were completely driven by ™1 and the other ten items were completely

driven by ™2. The degree to which item responses were driven by latent vari-

ables was manipulated by means of the discrimination parameters, Bjqx (in the

simulation study the discrimination parameters were equivalent for categories

1; : : : ; m; therefore, the subscript x will be dropped.)

For unidimensional tests, for an item j , discrimination parameters Bj1 and

Bj 2 were either both equal to 0.25 or both equal to 1, summing up to 0.5 or 2,

respectively (choices loosely based on Thissen & Wainer, 1982). This means that

responses to items were driven in the same degree by the two latent variables,

either weakly (B D 0:25) or strongly (B D 1). This is expressed by the ratio

of Bj1 and Bj 2, which is called a latent-variable ratio and denoted Mix 1:1.

The responses to all items in a test may be driven in the same degree by two

latent variables, such as reading ability and arithmatic ability. Mathematically,

this is an instance of unidimensionality because all items measure the two latent

variables in the same ratio.

In the second dimensionality configuration, for fixed item j , parameters Bj1

and Bj 2 were unequal, expressing dependence on the latent variables in different

degrees. For the first ten items, Bj1 was three times Bj 2. For the last ten items

this ratio was reversed. Numerically, for the same item the two B parameters

were either 0.125 and 0.375 (summing up to 0.5; this represents weak discrimi-

nation) or 0.5 and 1.5 (summing up to 2; this represents strong discrimination).

The ratio of the B parameters was 3:1 for the first ten items and 1:3 for the last
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MULTIPLE IMPUTATION IN TEST DATA 395

TABLE 1

Discrimination Parameters, Bjq, of All ISRFs of the Items

Mix 1:0 Mix 3:1 Mix 1:1

Items ™1 ™2 ™1 ™2 ™1 ™2

1, 3, 5, 7, 9 0.5 0 0.375 0.125 0.25 0.25

2, 4, 6, 8, 10 2 0 1.5 0.5 1 1

11, 13, 15, 17, 19 0 2 0.5 1.5 1 1

12, 14, 16, 18, 20 0 0.5 0.125 0.375 0.25 0.25

ten items. This latent-variable ratio is denoted Mix 3:1. For example, the first

ten items may be influenced more by reading ability than by arithmetic ability,

and for the last ten items this may be reversed.

The third latent-variable ratio (to be treated in a specialized design) had the

B parameter of one latent variable set to 0 and of the other set to either 0.5

or 2. For the first ten items Bj 2 D 0 and for the last ten items Bj1 D 0. Thus,

the ratio of the B parameters was 1:0 for the first ten items and 0:1 for the

last ten items. This latent-variable ratio is denoted Mix 1:0. See Bernaards and

Sijtsma (1999) for the use of the same three latent-variable ratios. For the first

ten items in each data set, items with even numbers had Bj1 and Bj 2 values

adding up to 2, and items with odd numbers had Bj1 and Bj 2 values adding up

to 0.5. For the last ten items, this was reversed. Table 1 shows the discrimination

parameters for all items, latent-variable ratios, and latent variables.

Separation parameters for polytomous items. Because the polytomous

items had five answer categories, each item had four adjacent response func-

tions defined by Equation (4). The distance between two adjacent separation

parameters, §jq;x�1 and §jqx, was 0.5, for all j ; q D 1, 2; and x D 1, 2, 3, 4.

These values fell within the interval (�3, 3), which Thissen and Wainer (1982)

considered to be realistic, given a standard normal distribution of ™. Because

the responses to the items were driven by two latent variables and because there

were four adjacent response functions per latent variable, each item had eight §

parameters. The values of the separation parameters are given in Table 2. The

separation parameters of the first ten items for ™1 were equal to the separation

parameters of the last ten items for ™2. Likewise, the separation parameters of

the last ten items for ™1 were equal to the separation parameters of the first ten

items for latent ™2. This way, within the same test items had varying difficulty.

For example, if an item is difficult with respect to ™1 but easy with respect to

™2, the four values of the separation parameters for ™1 were higher on average

than the four values of the separation parameters for ™2.
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TABLE 2

Separation Parameters, §jqx, of Polytomous Items

Items §j11 §j12 §j13 §j14 §j21 §j22 §j23 §j24

1, 2, 19, 20 �2.75 �2.25 �1.75 �1.25 1.25 1.75 2.25 2.75

3, 4, 17, 18 �1.75 �1.25 �0.75 �0.25 0.25 0.75 1.25 1.75

5, 6, 15, 16 �0.75 �0.25 0.25 0.75 �0.75 �0.25 0.25 0.75

7, 8, 13, 14 0.25 0.75 1.25 1.75 �1.75 �1.25 �0.75 �0.25

9, 10, 11, 12 1.25 1.75 2.25 2.75 �2.75 �2.25 �1.75 �1.25

Item parameters for dichotomous items. The discrimination parameters

for dichotomous items had the same values as those for polytomous items; see

Table 1. For dichotomous item j , the separation parameter §jqx was chosen

such that it was equal to the mean of the four § parameters of polytomous

item j . This resulted in integer §jqx values ranging from �2 to 2.

Simulating Missing Item Scores: Incomplete Data

After simulating the original data sets, incomplete data sets were created by

removing some values from the original data. Two steps were taken to achieve

this result:

1. The percentages of missingness that were studied were 5 and 15. For

example, for N D 200, J D 20 and 5% missing scores, 200 item scores

were selected to be missing.

2. Missingness was simulated by removing item scores from the data follow-

ing particular missingness mechanisms. Covariate variable Y was always

observed. For MCAR all item scores had equal probability of being miss-

ing. For MAR the probability of item scores being missing was twice as

high for subjects within covariate class Y D 1 as for subjects within co-

variate class Y D 2. Using these relative probabilities, a sample of scores

was removed from the complete data. Finally, NMAR was simulated as

follows: Let trunc(m=2) be a cut-off value that divides item scores into low

scores and high scores (Van der Ark & Sijtsma, 2005). For scores above

this cut-off value, the probability of being missing was twice as high as

for scores below this cut-off value. Using these relative probabilities, a

sample of item scores was removed from the complete data.

Imputing Item Scores: Completed Data

After simulating the incomplete data, completed data sets were created. Two

aspects of the impution process were varied.
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MULTIPLE IMPUTATION IN TEST DATA 397

Imputation method. Missing data were estimated according to six impu-

tation methods: methods RI, TW, TW-E, RF, CIMS-E, and MNI.

Including or excluding the covariate. In using the imputation methods,

the covariate may either be included or excluded. When missingness depends on

the covariate and this covariate is used in the imputation procedure, missingness

is MAR. When the covariate is excluded, missingness becomes NMAR because

it depends on a variable that is not used in the imputation procedure.

Methods RI, TW, TW-E, RF, and CIMS-E, were applied to each covariate

class separately. For method MNI, covariate Y was included in the multivariate

normal model estimated from the data. When the covariate was excluded, meth-

ods RI, TW, TW-E, RF, and CIMS-E were applied to the whole dataset, and for

method MNI the covariate was not included in the multivariate normal model.

Both options were studied.

Designs

Main Design

The six factors relevant to the main study were: (1) Latent-variable ratio (Mix

1:1 and Mix 3:1); (2) Sample size (N D 200 and N D 1000); (3) Percentage

of missingness (5% and 15%); (4) Missingness mechanism (MCAR, MAR,

and NMAR); (5) Imputation method (RI, TW, TW-E, RF, CIMS-E, and MNI),

and (6) Covariate treatment (included, excluded). The correlation between the

latent variables was .24 throughout. The number of answer categories was 5, the

number of items was 20, and the number of imputations in multiple imputation

was 5. The design consisted of 2 (latent-variable ratio) � 2 (sample size) �

2 (percentage of missingness) � 3 (missingness mechanism) � 6 (imputation

method) � 2 (covariate treatment) D 288 cells. In each cell 100 replicated

original data sets, indexed by v, were drawn. Table 3 gives an overview of the

factors and the fixed design characteristics.

Specialized Designs

The four factors held constant in the specialized designs were sample size

(N D 1000), percentage of missingness (5%), missingness mechanism (MAR),

and covariate treatment (it was included in the imputation procedure). The fol-

lowing factors were varied.

Correlation between latent variables. In practice, latent variables are of-

ten correlated. In this specialized design, performance of the imputation meth-

ods was studied for different correlations between latent variables. Following

Bernaards and Sijtsma (2000), the correlation between latent variables was 0,
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398 VAN GINKEL ET AL.

TABLE 3

Factors and Fixed Characteristics of the Main Design

Factors Levels

Latent-variable ratio Mix 1:1, Mix 3:1

Sample size 200, 1000

Missingness percentage 5%, 15%

Missingness mechanism MCAR, MAR, NMAR

Imputation methods RI, TW, TW-E, RF, CIMS-E, MNI

Covariate Included, Excluded

Fixed Design Characteristics Value

Number of latent variables 2; bivariate normal

Correlation between latent variables .24

Number of items 20

Number of answer categories 5

Number of imputations 5

Separation parameter, §jqx Fixed per item, see Table 2

.24, and .50. Only latent-variable ratio Mix 3:1 was considered. This design had

3 (correlation) � 6 (imputation method) D 18 cells.

Latent-variable ratios. According to Sijtsma and Van der Ark (2003), im-

putation methods produce the smallest discrepancies when a test is unidimen-

sional. In the main design, latent-variable ratios Mix 1:1 and Mix 3:1 were

studied, representing unidimensional tests and two-dimensional tests, respec-

tively. To study the effects of larger deviations from unidimensionality, Mix 1:0

was investigated in a specialized design. The correlation between latent variables

was .24. All imputation methods were studied, resulting in a completely crossed

3 (latent-variable ratio) � 6 (imputation method) design with 18 cells.

Number of answer categories. In this design, dichotomous items were

studied, and the results were compared with the results based on polytomous

items. The number of answer categories could either be 2 or 5. Only latent-

variable ratio Mix 1:1 was considered, and the correlation between the latent

variables was .24. A completely crossed 2 (number of answer categories) �

6 (imputation method) design (12 cells) was used.

Dependent Variables

The dependent variables were the discrepancy in Cronbach’s (1951) alpha, coef-

ficient H , and in the cluster solution from Mokken (1971) scale analysis. Cron-
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MULTIPLE IMPUTATION IN TEST DATA 399

bach’s alpha is reported in almost every study that uses tests or questionnaires;

Loevinger’s H is an easy-to-use coefficient that is important in nonparametric

IRT for evaluating the scalability of a set of items (Sijtsma & Molenaar, 2002,

pp. 149–150, provide a list of 22 studies in which H was used, many of which

had incomplete data); and Mokken’s item selection cluster algorithm is used for

investigating the dimensionality of test and questionnaire data (see, e.g., Van

Abswoude, Van der Ark, & Sijtsma, 2004). Together these dependent variables

provide a good impression of the degree of success of the proposed imputation

methods.

Discrepancy in Cronbach’s alpha. Within each design cell, Cronbach’s

alpha was computed for each original data set (indexed v D 1; : : : ; 100), and

denoted ’or;v; and for each of the five completed data sets corresponding to

original data set v. The mean of these five values was denoted ’imp;v . The

discrepancy in alpha was defined as ’imp;v � ’or;v , and served as dependent

variable in an ANOVA. The mean (M ) and standard deviation (SD) of the

discrepancy were computed within each design cell across 100 replications. The

tables show results that have been aggregated across design cells.

Discrepancy in coefficient H . Let Cov.Xj ; Xk/ be the covariance be-

tween items j and k, and Cov.Xj ; Xk/max the maximum covariance given the

marginal distributions of the bivariate frequency table for the item scores. The H

coefficient, which is a scalability coefficient for all J items together, is defined as

H D

J �1
X

j D1

J
X

kDj C1

Cov.Xj ; Xk/

J �1
X

j D1

J
X

kDj C1

Cov.Xj ; Xk/max

(Mokken, 1971, pp. 148–153, 1997; Sijtsma & Molenaar, 2002, pp. 49–64).

Similar to discrepancy in Cronbach’s alpha, the discrepancy in coefficient H in

the vth replication is defined as Himp;v �Hor;v . This was the dependent variable

in an ANOVA. The mean (M ) and standard deviation (SD) of the discrepancy

were computed within each design cell across 100 replications. The results in

the tables have been aggregated across design cells.

Discrepancy in cluster solution from Mokken scale analysis. Mokken

(1971) scale analysis is a method for test construction based on nonparametric

item response theory (Boomsma, Van Duijn & Snijders, 2001; Sijtsma & Mole-

naar, 2002; Van der Linden & Hambleton, 1997). It may be used for exploratory
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400 VAN GINKEL ET AL.

test construction. Exploratory test construction selects one or more scales from

the data, and uses the H coefficient as a selection criterion. The algorithm for

the selection of items into clusters is contained in the computer program MSP

(Molenaar & Sijtsma, 2000). The discrepancy in the cluster solution, to be de-

noted cluster discrepancy, was determined as follows: For each original data

matrix, the five replicated completed data matrices yielded five cluster solutions

of which one or more could be different from the others. From these five cluster

solutions, one modal cluster solution was obtained, which was compared with

the cluster solution based on the original data matrix.

A plausible measure for the discrepancy in the modal cluster solution relative

to the original-data cluster solution is the minimum number of items that have to

be moved from the modal cluster solution in order to reobtain the original-data

cluster solution (Van der Ark & Sijtsma, 2005). In doing this, the nominal cluster

numbering is ignored. The minimum number of items to be moved was computed

for each data set, and these numbers were used as the dependent variable in

logistic regression with binomial counts. The mean (M ) cluster discrepancy

over replications and the standard deviation (SD) of the cluster discrepancy

over replications are reported.

Statistical Analyses

Two full-factorial 2 (latent-variable ratio) � 2 (sample size) � 2 (percentage of

missingness) � 3 (missingness mechanism) � 5 (imputation method: TW, TW–E,

RF, CIMS–E, MNI) � 2 (include/exclude covariate) ANOVAs had the discrep-

ancies in Cronbach’s alpha and coefficient H as dependent variables. Sample

size was a between-subjects factor. Percentage of missingness and missingness

mechanism were within-subjects factors because different kinds of missingness

were simulated per replication in the same original data set. Because each of the

five imputation methods plus method RI were applied to the same incomplete

data set in each replication, imputation method was also treated as a within-

subjects factor. Variation of the factors latent-variable ratio, correlation between

latent variables, and the number of answer categories resulted in different data

sets. These data sets were mutually dependent because the same seeds were

used in each cell of the design. Thus, these factors also had to be treated as

within-subjects factors.

A logistic regression with binomial counts was used to analyze the cluster

discrepancies because this variable was ordinal (implying that it was not nor-

mally distributed). Let yvt be the cluster discrepancy of data set v in design

cell t , and let evt be the maximum number of items that can be incorrectly

clustered. Theoretically, for a test of 20 items the cluster discrepancy can be 19

at most. This happens if in the original cluster solution all items form one scale,

and in the modal cluster solution of five completed data sets all items remain
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MULTIPLE IMPUTATION IN TEST DATA 401

unselected (Van der Ark & Sijtsma, 2005); thus, evt D 19. Furthermore, let “

be a column vector with regression coefficients, and for simulated data set v,

let zv be a row vector with responses to the independent (dummy) variables.

The probability of one incorrectly clustered item is

 t;zv D
exp.zv“/

1 C exp.zv“/
:

The logistic regression model with binomial counts is

P.yvt j zv; evt/ D

�

evt Š

yvt.evt � yvt/Š

�

. t;zv /yvt .1 �  t;zv /evt �yvt

(see Vermunt & Magidson, 2005b, p. 11). To correct for dependency among mea-

sures, primary sampling units were used (Vermunt & Magidson, 2005b, p. 97).

As in the ANOVAs for the discrepancy in Cronbach’s alpha and coefficient H ,

sample size was the only factor treated as an independent measure.

We excluded method RI from the analyses because it is a lower benchmark

not recommended for practical purposes and we expected that this method would

have a large effect on the results of the statistical analyses, which would have

a disproportional effect on significance tests. For method RI, only the means

and standard deviations of the discrepancy are reported. Leaving out method

RI reduced the design from 288 to 240 cells. The ANOVAs were conducted in

SPSS (2004), the logistic regressions with binomial counts were conducted in

Latent Gold 4.0 (Vermunt & Magidson, 2005a).

RESULTS

ANOVA is robust in some degree against violations of normality (e.g., Stevens,

2002, pp. 261–262) and, in balanced designs, equal variances (e.g., Stevens,

2002, p. 268). Histograms of discrepancy in Cronbach’s alpha and coeffi-

cient H showed approximate normality. The designs in this study were bal-

anced. Based on this information conclusions from ANOVA were considered

valid.

Main Design

Discrepancy in Cronbach’s Alpha

Thirty-five effects out of 61 from the ANOVA of the discrepancy in Cron-

bach’s alpha were significant. Following Cohen’s (1988) guidelines for effect
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402 VAN GINKEL ET AL.

TABLE 4

ANOVA for Discrepancy in Cronbach’s Alpha and Discrepancy in Coefficient H.

All p-Values Were Less Than .001

Effect F df1 df2 ˜2

Discrepancy in Cronbach’s alpha

Imputation method 24057.81 4 792 .67���

Percentage missingness 458.99 1 198 .02�

Percentage of missingness � method 16947.73 4 792 .17���

Discrepancy in coefficient H

Imputation method 55778.37 4 792 .67���

Percentage missingness 735.45 1 198 .02�

Percentage of missingness � method 36295.45 4 792 .19���

�Small effect. ��Medium effect. ���Large effect.

sizes, only small (˜2 > :01), medium (˜2 > :06), and large effects (˜2 > :14)

are reported. Table 4 (upper panel) shows the effects that have a discernable

effect size.

Interaction Effects

Effect of percentage of missingness � imputation method. Table 5

shows that in general, mean discrepancy (M ) and standard deviation of discrep-

ancy (SD) were small. For all combinations of percentage of missingness and

imputation method, mean discrepancy ranged from M D �:059 (SD D :012;

15% missingness, method RI) to M D :015 (SD D :002; 15% missingness,

method TW).

The discrepancy in Cronbach’s alpha was larger for 15% missingness (upper

panel, third and fourth column) than for 5% missingness (upper panel, first two

columns). This effect was stronger for imputation methods that already produced

a relatively large discrepancy for 5% missingness. Upper benchmark method

MNI produced a small discrepancy in Cronbach’s alpha for 5% missingness

and a somewhat larger discrepancy for 15% missingness. With the exception of

methods RI and TW, the simple methods produced smaller discrepancies and

also smaller increases in discrepancy in going from 5% to 15% missingness.

Methods TW-E and CIMS-E in particular produced almost no discrepancy in

results for both 5% and 15% missingness. Methods RF and MNI produced small

negative discrepancy for 5% missingness and larger negative discrepancy for

15% missingness (Table 5, middle panel, columns 1–4). Method TW produced
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TABLE 5

Mean (M ) and Standard Deviation (SD) of the Discrepancy in Cronbach’s Alpha and

Discrepancy in Coefficient H for All Combinations of Percentage of Missingness and

Imputation Method. Totals Represent Results Aggregated Across Either Imputation

Method (Rows), Percentage of Missingness (Columns), or Both (Lower Right Corner in

Both Panels). Entries in the Table Must Be Multiplied by 10�3

Percentage of Missingness

5% 15% Total

Dependent

Variable Method M SD M SD M SD

Discrepancy

in alpha

RI �18 4 �59 12 �38 22

TW 5 1 15 2 10 6

TW-E 0 1 1 2 0 2

RF �1 2 �3 3 �2 3

CIMS-E 0 1 0 2 0 2

MNI �1 1 �3 3 �2 2

Total� 1 3 2 7 1 5

Discrepancy

in H

RI �37 7 �100 14 �68 33

TW 13 3 41 5 27 15

TW-E 0 3 0 5 0 4

RF �1 3 �6 7 �4 6

CIMS-E 0 3 0 5 0 4

MNI �2 3 �6 6 �4 5

Total� 2 6 6 19 4 4

�Aggregated across all imputation methods, except method RI.

relatively large positive discrepancy for 5% missingness, and discrepancy that

was three times larger for 15% missingness.

For most imputation methods the standard deviation of the discrepancy was

close to .001 for 5% missingness, and close to .004 for 15% missingness. This

means that if mean discrepancy equals .003 for 15% missingness, then assuming

normality the 95% confidence interval of the discrepancy ranges from �.005

to .011.

Main Effects

Effect of percentage of missingness. Table 5 (last row of upper panel,

first two columns) shows that the discrepancy in Cronbach’s alpha was smaller

for 5% missingness than for 15% missingness (last row of upper panel, third

and fourth column).
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404 VAN GINKEL ET AL.

Effect of imputation method. Table 5 (last two columns of upper panel)

shows the mean discrepancy and the standard deviation of discrepancy in Cron-

bach’s alpha for all imputation methods, aggregated across all other design fac-

tors. Method MNI produced small discrepancy in Cronbach’s alpha, but the

simple methods TW-E and CIMS-E produced even smaller discrepancy. The

positive discrepancy produced by method TW and the negative discrepancy pro-

duced by method RI were substantially larger.

Discrepancy in Coefficient H

Conclusions about discrepancy in H based on effect sizes and F -values (Table 4,

lower panel) were similar to those for Cronbach’s alpha. All means and standard

deviations of discrepancy in H were approximately two times larger than the

corresponding statistics for Cronbach’s alpha (Table 5, lower panel). For all

combinations of percentage of missingness and imputation method, discrepancy

in coefficient H ranged from M D �:100 (SD D :014; 15% missingness,

method RI) to M D :041 (SD D :005; 15% missingness, method TW).

Cluster Discrepancy

Logistic regression with binomial counts produced many small significant ef-

fects; only the means and standard deviations of the largest effects are discussed.

Interaction Effects

Effect of percentage of missingness � imputation method. A Wald-

test for individual effects revealed a significant interaction of percentage of

missingness and imputation method [¦2.4/ D 348:66, p < :001]. Table 6 (last

two columns) shows that for all methods the minimum number of items to

be moved was larger for 15% missingness than for 5% missingness. Method

MNI produced small discrepancy for 5% missingness, and a small increase in

discrepancy in going to 15% missingness. For methods TW-E and RF similar

results were found. Method TW produced the largest increase in discrepancy

(not counting method RI) when going from 5% (second row of upper panel) to

15% missingness (second row of middle panel), followed by method CIMS-E

(fifth row of upper panel; fifth row of middle panel). Compared to the theoretical

maximum cluster discrepancy of 19, the means and standard deviations reported

in Table 6 are small.

Effects of sample size � imputation method. The interaction effect of

sample size and imputation method was significant [¦2.4/ D 120:22, p < :001].
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TABLE 6

Mean (M ) and Standard Deviation (SD) of the Cluster Discrepancy for all Combinations of

Percentage of Missingness, Imputation Method, and Sample Size. In Each Panel, Totals

Represent Results Aggregated Across Either Imputation Method (Rows), Sample Size

(Columns), or Both (Lower Right Corner in Each Panel). Bottom Panel Represents All

Totals Aggregated Across Percentage of Missingness

Sample Size

200 1000 Total

Percentage

Missingness Method M SD M SD M SD

5% RI 2.08 1.14 1.93 .76 2.01 .97

TW 1.12 1.03 1.18 .94 1.15 .99

TW-E 1.01 1.04 .79 1.03 .90 1.04

RF 1.01 1.00 .79 .99 .90 1.00

CIMS-E 1.02 1.04 .91 1.09 .97 1.07

MNI 1.05 1.05 .74 .97 .89 1.02

Total� 1.04 1.03 .88 1.02 .96 1.03

15% RI 4.16 1.32 2.95 .97 3.55 1.31

TW 2.70 1.14 3.45 1.04 3.08 1.16

TW-E 1.67 1.23 1.42 1.19 1.55 1.22

RF 1.67 1.23 1.38 1.16 1.52 1.20

CIMS-E 1.81 1.24 1.81 1.32 1.81 1.28

MNI 1.80 1.28 1.32 1.20 1.56 1.26

Total� 1.93 1.29 1.87 1.44 1.90 1.36

Total RI 3.12 1.61 2.44 1.01 2.78 1.39

TW 1.91 1.34 2.31 1.51 2.11 1.44

TW-E 1.34 1.19 1.10 1.16 1.22 1.18

RF 1.34 1.17 1.08 1.12 1.21 1.15

CIMS-E 1.41 1.21 1.36 1.29 1.39 1.25

MNI 1.42 1.23 1.03 1.19 1.22 1.19

Total� 1.49 1.25 1.38 1.34 1.43 1.30

�Aggregated across all imputation methods, except method RI.

Table 6 (lower panel) shows that with the exception of method TW, the other

imputation methods produced smaller discrepancy for N D 1000 than for N D

200. Methods TW and CIMS–E produced larger discrepancy for N D 1000

than for N D 200. With the exception of method TW, all other methods had a

larger standard deviation for N D 200 than for N D 1000. For methods TW

and CIMS–E this was reversed.
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Main Effects

Effect of percentage of missingness. Percentage of missingness had a

main effect [¦2.1/ D 899:08, p < :001]. Table 6 shows that cluster discrepancy

was smaller for 5% missingness (last row of upper panel, last two columns) than

for 15% missingness (last row of middle panel, last two columns).

Effect of imputation method. Imputation method had a main effect [¦2.4/ D

549:82, p < :001]. Table 6 (last two columns, bottom panel) shows that the re-

sults of methods TW-E, RF, and CIMS-E differed little from those of method

MNI. Of the other methods except method RI, method TW produced the largest

discrepancy.

Specialized Designs

Correlation between latent variables. A 3 (correlation) � 6 (imputation

method) ANOVA had discrepancy in Cronbach’s alpha as a dependent variable.

A similar ANOVA was done for discrepancy in coefficient H . For cluster dis-

crepancy, a 3 (correlation) � 6 (imputation method) logistic regression with

binomial counts was done. All effects of all analyses were significant.

For Cronbach’s alpha, the interaction effect of imputation method and cor-

relation was small [F.8; 792/ D 1068:25, p < :001, ˜2 D :02], the effect of

correlation was small [F.2; 198/ D 211:01, p < :001, ˜2 D :01], and the effect

of imputation method was large [F.4; 396/ D 6636:21, p < :001, ˜2 D :92].

The effect sizes showed that most variance was explained by differences between

imputation methods. The large effect of imputation method was mainly caused

by method TW, which produced a larger discrepancy than the other imputation

methods. Because of the large contribution of method TW to effect size, we

also compared the cell means (multiple t-tests using Bonferroni corrections) of

the interaction of imputation method and correlation between latent variables.

These tests revealed that as the correlation between latent variables increased,

discrepancy decreased for methods TW, TW-E, and CIMS-E, but this decrease

was small (Table 7, upper panel). For methods RF and MNI discrepancy was

the same for different correlations.

For discrepancy in coefficient H (Table 7, middle panel), only the effect of

imputation method was large [F.4; 396/ D 8950:37, p < :001, ˜2 D :92];

the other effects were not discernable. Furthermore, multiple t-tests using Bon-

ferroni correction revealed that methods TW, TW-E, and CIMS-E produced a

downward shift of discrepancy in H which was greater as the data came closer

to unidimensionality (represented by a correlation of ¡ D :50).

For cluster discrepancy, the largest effect was the main effect of correlation

[¦2.2/ D 42:62, p < :001]. As correlation increased, more items had to be

moved to reobtain the original cluster solution (Table 7, bottom panel). The
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MULTIPLE IMPUTATION IN TEST DATA 407

TABLE 7

Mean (M ) and Standard Deviation (SD) of the Discrepancy of Cronbach’s Alpha,

Coefficient H, and Cluster Solution for the Specialized Design With Different Correlations

Between Latent Variables. Totals Represent Results Aggregated Across Either Imputation

Method (Rows), Correlation (Columns), or Both (Lower Right Corner in Each Panel).

Entries of Discrepancy in Alpha and Coefficient H Must Be Multiplied by 10�3

Correlation

0 .24 .50 Total

Dependent

Variable Method M SD M SD M SD M SD

Discrepancy

in alpha

RI �23 2 �20 2 �17 2 �20 3

TW 7 1 6 1 5 1 6 1

TW-E 1 1 0 1 0 1 1 1

RF 0 1 0 1 0 1 0 1

CIMS-E 1 1 0 1 0 1 0 1

MNI 0 1 �1 1 �1 1 �1 1

Total� 2 3 1 3 1 2 1 3

Discrepancy

in H

RI �34 3 �38 4 �42 4 �38 5

TW 13 2 13 2 13 2 13 2

TW-E 1 2 0 2 0 2 0 2

RF 0 2 0 2 0 2 0 2

CIMS-E 1 2 0 2 �1 2 0 2

MNI �1 2 �1 2 �1 2 �1 2

Total� 2 5 2 6 2 6 2 5

Discrepancy

in cluster

solution

RI .45 .61 1.88 .73 2.80 .79 1.71 1.20

TW .59 .55 1.04 .95 1.53 1.16 1.05 1.00

TW-E .29 .56 .54 .83 1.00 1.21 .61 .95

RF .27 .57 .74 .93 .96 .99 .66 .90

CIMS-E .27 .51 .79 .98 1.04 1.29 .70 1.03

MNI .28 .59 .50 .86 .95 1.05 .58 .89

Total� .33 .57 .71 .92 1.09 1.14 .71 .96

�Aggregated across all imputation methods, except method RI.

imputation methods had a larger standard deviation of cluster discrepancy as

correlation increased.

Latent-variable ratio. For the specialized design with different latent-variable

ratios, a 3 (mix) � 7 (method) ANOVA was carried out, with discrepancy

in Cronbach’s alpha as the dependent variable. All effects were significant.
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TABLE 8

Mean (M ) and Standard Deviation (SD) of the Discrepancy of Cronbach’s Alpha,

Coefficient H , and Cluster Solution for the Specialized Design With Different

Latent-Variable Ratios. Totals Represent Results Aggregated Across Either Imputation

Method (Rows), Latent-Variable Ratio (Columns), or Both (Lower Right Corner in Each

Panel). Entries of Discrepancy in Alpha and Coefficient H Must Be Multiplied by 10�3

Latent-Variable Ratio

Mix 1:0 Mix 3:1 Mix 1:1 Total

Dependent

Variable Method M SD M SD M SD M SD

Discrepancy

in alpha

RI �32 3 �20 2 �16 2 �19 3

TW 8 1 6 1 5 1 6 2

TW-E 1 1 0 1 0 1 1 1

RF �1 1 0 1 0 1 0 1

CIMS-E 0 1 0 1 0 1 0 1

MNI �1 1 �1 1 0 1 �1 1

Total� 2 4 1 3 1 2 1 3

Discrepancy

in H

RI �39 4 �38 4 �36 3 �38 4

TW 12 2 13 2 13 2 13 2

TW-E 0 2 0 2 1 2 0 2

RF �1 2 0 2 0 2 0 2

CIMS-E 0 2 0 2 1 2 0 2

MNI �2 2 �1 2 �1 2 �1 2

Total� 1 5 2 6 2 5 2 5

Discrepancy

in cluster

solution

RI 3.27 1.04 1.88 .73 1.98 .82 2.38 1.08

TW .57 .71 1.04 .95 1.38 1.04 1.00 .97

TW-E .72 .98 .54 .83 1.00 1.20 .75 1.03

RF .82 .97 .74 .93 .90 1.02 .82 .97

CIMS-E .82 .95 .79 .98 1.04 1.18 .88 1.04

MNI .51 .69 .50 .86 .88 1.04 .63 .89

Total� .72 .90 .71 .92 1.02 1.10 .82 .99

�Aggregated across all imputation methods, except method RI.

The interaction effect of imputation method and latent-variable ratio was small

[F.8; 792/ D 1184:15, p < :001, ˜2 D :04], and the main effect of imputation

method was large [F.4; 396/ D 6613:77, p < :001, ˜2 D :71] .

For all imputation methods, discrepancy in Cronbach’s alpha decreased as the

data approached unidimensionality more closely (from Mix 1:0, via Mix 3:1,

to Mix 1:1); this decrease was small for all methods (Table 8, upper panel).

Method TW produced a larger (positive) discrepancy than the other methods
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MULTIPLE IMPUTATION IN TEST DATA 409

(not counting method RI). Differences in discrepancies found between imputa-

tion methods were small.

All effects on discrepancy in H were significant, but only the main effect of

imputation method was discernable [F.4; 396/ D 8873:46, p < :001, ˜2 D :89].

Table 8 (middle panel) shows that the discrepancy in H varied little across

different latent-variable ratios (not counting method RI). Method TW, which

showed the largest differences in discrepancy over the three latent-variable ratios,

produced discrepancies of .012 (SD D :002), .013 (SD D :002) and .013

(SD D :002) for Mix 1:0, Mix 3:1, and Mix 1:1, respectively.

All effects on cluster discrepancy were significant. Logistic regression yielded

the following results: for the interaction of imputation method and latent-variable

ratio: ¦2.8/ D 45:29, p < :001; for the main effect of imputation method:

¦2.4/ D 44:14, p < :001; and for the main effect of latent-variable ratio:

¦2.2/ D 11:13, p < :001. Table 8 (bottom panel) shows that for most methods

discrepancy decreased in going from Mix 1:0 to Mix 3:1, but increased in going

from Mix 3:1 to Mix 1:1. For method TW discrepancy increased as the data

came closer to unidimensionality. The standard deviation of discrepancy showed

an irregular pattern. Methods TW-E and RF had the smallest standard deviation

for Mix 3:1, and the largest standard deviation for Mix 1:1. For methods TW,

CIMS-E, and MNI the standard deviation increased as the data came closer to

unidimensionality.

Number of answer categories. All effects of the ANOVAs for the spe-

cialized design with dichotomous and polytomous items were significant. For

discrepancy in Cronbach’s alpha, the interaction effect of imputation method and

number of answer categories was medium [F.4; 396/ D 797:54, p < :001, ˜2 D

:07], and the main effect of imputation method was large [F.4; 396/ D 3524:56,

p < :001, ˜2 D :66]. Table 9 (upper panel) shows that method MNI produced

larger means and larger standard deviations of discrepancy in Cronbach’s alpha

for dichotomous items than for polytomous items. For methods TW, TW-E, RF,

and CIMS-E only small differences in discrepancy were found between dichoto-

mous and polytomous items. The standard deviations of discrepancy were larger

for dichotomous items than for polytomous items.

For discrepancy in coefficient H , the interaction effect of imputation method

and number of answer categories was medium [F.4; 396/ D 3932:28, p < :001,

˜2 D :11], the main effect of imputation method was large [F.4; 396/ D

6071:88, p < :001, ˜2 D :71], and the main effect of number of answer cat-

egories was small [F.1; 99/ D 243:55, p < :001, ˜2 D :05]. The results for

coefficient H (Table 9, middle panel) differed from the results for Cronbach’s

alpha. Discrepancy in coefficient H was smaller for dichotomous items, than

for polytomous items. This was found for five imputation methods but not for

method MNI: this method showed larger discrepancy for dichotomous items
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TABLE 9

Mean (M ) and Standard Deviation (SD) of the Discrepancy of Cronbach’s Alpha,

Coefficient H, and Cluster Solution for the Specialized Design With Different Number of

Answer Categories. Totals Represent Results Aggregated Across Either Imputation

Method (Rows), Number of Answer Categories (Columns), or Both (Lower Right Corner in

Each Panel). Entries of Discrepancy in Alpha and Coefficient H Must Be Multiplied by 10�3

Number of Answer Categories

2 5 Total

Dependent

Variable Method M SD M SD M SD

Discrepancy

in alpha

RI �21 2 �17 2 �19 3

TW 7 2 1 1 4 3

TW-E 0 2 0 1 0 2

RF 0 2 0 1 0 1

CIMS-E 0 2 0 1 0 2

MNI �4 2 �1 1 �2 2

Total� 0 4 0 1 0 3

Discrepancy

in H

RI �14 2 �36 3 �25 11

TW 5 1 13 2 9 4

TW-E 0 2 1 2 0 2

RF 0 1 0 2 0 2

CIMS-E 0 2 1 2 0 2

MNI �3 1 �1 2 �2 2

Total� 0 3 2 5 1 4

Discrepancy

in cluster

solution

RI 2.55 1.77 1.98 .82 2.26 1.41

TW .20 .53 1.38 1.04 .79 1.02

TW-E .55 .81 1.00 1.20 .78 1.04

RF .15 .48 .90 1.02 .53 .88

CIMS-E .51 .85 1.04 1.18 .78 1.06

MNI .24 .49 .88 1.04 .56 .87

Total� .31 .65 1.02 1.10 .66 .97

�Aggregated across all imputation methods, except method RI.

than for polytomous items. Unlike Cronbach’s alpha, the standard deviation of

the discrepancy in coefficient H was smaller for dichotomous items than for

polytomous items.

For cluster discrepancy, all effects were significant: interaction of imputa-

tion method and number of answer categories [¦2.4/ D 38:91, p < :001];

imputation method [¦2.4/ D 54:07, p < :001]; and number of answer cate-

gories [¦2.1/ D 37:22, p < :001]. In general, cluster discrepancy was larger
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MULTIPLE IMPUTATION IN TEST DATA 411

for polytomous items than for dichotomous items, but the difference varied

across methods. Table 9 (lower panel, first two columns) shows that method

MNI produced a small cluster discrepancy for dichotomous items. For dichoto-

mous items, discrepancies produced by TW and RF resembled discrepancy pro-

duced by method MNI. Methods TW-E and CIMS-E produced largest clus-

ter discrepancy for dichotomous items (not counting method RI). However,

for polytomous items (third and fourth column of lower panel), method TW

produced the largest cluster discrepancy (not counting method RI), followed

by method CIMS-E. Methods TW-E, RF, and MNI produced smaller cluster

discrepancy for polytomous than the other methods. For method RI the stan-

dard deviation of the cluster discrepancy was larger for dichotomous items than

for polytomous items. For the other imputation methods, the opposite result

was found.

DISCUSSION

The aim of this study was to determine the influence of simple multiple-

imputation methods on results of psychometric analyses of test and questionnaire

data. The statistically more elegant and advanced multiple-imputation method

MNI was included as an upper benchmark for these simpler methods.

Surprisingly, in most situations multiple-imputation method TW-E produced

the smallest discrepancy, which often was even smaller than that produced by

upper benchmark MNI. For MAR and MCAR with 5% missingness, the dis-

crepancy in Cronbach’s alpha and the H coefficient produced by method TW-E

came close to 0. Method TW-E also produced small cluster discrepancy.

Methods CIMS-E and RF were the next best methods. Method CIMS-E pro-

duced discrepancy in Cronbach’s alpha and coefficient H similar to that pro-

duced by method TW-E, but larger cluster discrepancy. Method RF produced

larger discrepancy in Cronbach’s alpha and coefficient H than method TW-E,

but cluster discrepancy close to that of method TW-E. For dichotomous items,

method RF produced the smallest cluster discrepancy of all methods.

Method MNI has been claimed to be robust against departures from multivari-

ate normality (Graham & Schafer, 1999) but the highly discrete item-response

data used here nevertheless may have led MNI to produce larger discrepancy

relative to statistically simpler methods that are free of these distributional as-

sumptions.

A noticeable result was that, although significant, missingness mechanism

did not have much influence on the discrepancy measures. This may be due

to the large number of variables (20 items and one covariate) included in the

imputation procedures causing even NMAR mechanisms to closely approach

MAR (see, e.g., Schafer, 1997, p. 28).



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

11
:4

2 
25

 A
pr

il 
20

08
 

412 VAN GINKEL ET AL.

Finally, it may be noted that for data sets other than those obtained from

typical ‘multiple-items’ tests and questionnaires, such as medical data contain-

ing variables like age, body mass, and total serum cholesterol, and data sets

containing only total scores for various scales (but no underlying item scores),

the simple methods investigated in this study cannot be used. For these kinds of

data sets method MNI is recommended. For test and questionnaire data, meth-

ods TW-E, CIMS-E, and RF may be preferred, but differences relative to MNI

with respect to expected discrepancy often are so small that advocates of this

method can also use it for analyzing such data sets without running serious risks

of obtaining distorted results.

REFERENCES

Bernaards, C. A., & Sijtsma, K. (1999). Factor analysis of multidimensional polytomous item re-

sponse data suffering from ignorable item nonresponse. Multivariate Behavioral Research, 34,

277–313.

Bernaards, C. A., & Sijtsma, K. (2000). Influence of imputation and EM methods on factor analysis

when item nonresponse in questionnaire data is nonignorable. Multivariate Behavioral Research,

35, 321–364.

Bernaards, C. A., Farmer, M. M., Qi, K., Dulai, G. S., Ganz, P. A., & Kahn, K. L. (2003). Comparison

of two multiple imputation procedures in a cancer screening survey. Journal of Data Science, 1,

293–312.

Boomsma, A., Van Duijn, M. A. J., & Snijders, T. A. B. (Eds.). (2001). Essays on item response

theory. New York: Springer.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:

Erlbaum.

Cronbach, J. L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,

297–334.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the EM algorithm (with discussion). Journal of the Royal Statistical Society Series B, 39,

1–38.

Ezzati-Rice, T. M., Johnson, W., Khare, M., Little, R. J. A., Rubin, D. B., & Schafer, J. L. (1995).

A simulation study to evaluate the performance of model-based multiple imputations in NCHS

health examination surveys. Proceedings of the Annual Research Conference (pp. 257–266).

Washington, DC: Bureau of the Census.

Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate

data with small sample size. In R. Hoyle (Ed.), Statistical strategies for small sample research

(pp. 1–29). Thousand Oaks, CA: Sage.

Huisman, M. (1998). Item nonresponse: Occurrence, causes, and imputation of missing answers to

test items. Leiden, The Netherlands: DSWO Press.

Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models.

Applied Psychological Measurement, 24, 65–81.

Kelderman, H., & Rijkes, C. P. M. (1994). Loglinear multidimensional IRT models for polytomously

scored items. Psychometrika, 59, 149–176.

King, G., Honaker, J., Joseph., A., & Scheve, K. (2001a). Analyzing incomplete political science

data. American Political Science Review, 95, 49–69.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

11
:4

2 
25

 A
pr

il 
20

08
 

MULTIPLE IMPUTATION IN TEST DATA 413

King, G., Honaker, J., Joseph., A., & Scheve, K. (2001b). AMELIA: A program for missing data

Version 2.1. Retrieved May 29, 2006, from http://gking.harvard.edu/stats.shtml

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York:

Wiley.

Loevinger, J. (1948). The technique of homogeneous tests compared with some aspects of ‘scale

analysis’ and factor analysis. Psychological Bulletin, 45, 507–530.

Mokken, R. J. (1971). A theory and procedure of scale analysis. The Hague, The Netherlands:

Mouton/Berlin, Germany: De Gruyter.

Mokken R. J. (1997). Nonparametric models for dichotomous responses. In W. J. van der Linden,

& R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 352–367). New York:

Springer.

Molenaar, I. W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows. Groningen, The Nether-

lands: IecProGAMMA.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

Rubin, D. B. (1991). EM and beyond. Psychometrika, 56, 241–254.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.

Schafer, J. L. (1998). NORM: Version 2.02 for Windows 95/98/NT. Retrieved May 29, 2006, from

http://www.stat.psu.edu/�jls/misoftwa.html

Schafer, J. L., Ezzati-Rice, T. M., Johnson, W., Khare, M., Little, R. J. A., & Rubin, D. B.

(1996). The NHANES III multiple imputation project. Proceedings of the survey research meth-

ods section of the American Statistical Association (pp. 28–37). Retrieved May 29, 2006, from

http://www.amstat.org/sections/srms/Proceedings/papers/1996_004.pdf

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological

Methods, 7, 147–177.

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thousand

Oaks, CA: Sage.

Sijtsma, K., & Van der Ark, L. A. (2003). Investigation and treatment of missing item scores in test

and questionnaire data. Multivariate Behavioral Research, 38, 505–528.

Smits, N. (2003). Academic specialization choices and academic achievement: Prediction and in-

complete data. Unpublished doctoral dissertation, University of Amsterdam.

Smits, N., Mellenbergh, G. J., & Vorst, H. C. M. (2002). Alternative missing data techniques to

grade point average: Imputing unavailable grades. Journal of Educational Measurement, 39, 187–

206.

SOLAS (2001). SOLAS for missing data analysis 3.0 [Computer software]. Cork, Ireland: Statistical

solutions.

S-Plus 6 for Windows [Computer software]. (2001). Seattle, WA: Insightful Corporation.

SPSS Inc. (2004). SPSS 12.0.1 for Windows [Computer software]. Chicago: Author.

Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Hillsdale, NJ:

Erlbaum.

Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmen-

tation. Journal of the American Statistical Association, 82, 528–540.

Thissen, D., & Wainer, H. (1982). Some standard errors in item response theory. Psychometrika,

47, 397–412.

Van Abswoude, A. A. H., Van der Ark, L. A., & Sijtsma, K. (2004). A comparative study of test data

dimensionality assessment procedures under nonparametric IRT models. Applied Psychological

Measurement, 28, 3–24.

Van der Ark, L. A., & Sijtsma K. (2005). The effect of missing data imputation on Mokken scale

analysis. In L. A. van der Ark, M. A. Croon, & K. Sijtsma (Eds.), New developments in categorical

data analysis for the social and behavioral sciences (pp. 147–166). Mahwah, NJ: Erlbaum.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

11
:4

2 
25

 A
pr

il 
20

08
 

414 VAN GINKEL ET AL.

Van der Linden, W. J., & Hambleton, R. K. (Eds.). (1997). Handbook of modern item response

theory. New York: Springer.

Van Ginkel, J. R., & Van der Ark, L. A. (2005a). TW.ZIP, RF.ZIP, and CIMS.ZIP [Computer code].

Retrieved May 29, 2006, 2005, from http://www.uvt.nl/mto/software2.html

Van Ginkel, J. R., & Van der Ark, L. A. (2005b). SPSS syntax for missing value imputation in test

and questionnaire data. Applied Psychological Measurement, 29, 152–153.

Vermunt, J. K., & Magidson, J. (2005a). Latent GOLD 4.0 [Computer software]. Belmont MA:

Statistical Innovations.

Vermunt, J. K., & Magidson, J. (2005b). Technical Guide for Latent GOLD: Basic and Advanced

[Software manual]. Belmont, MA: Statistical Innovations.

Yuan, Y. C. (2000). Multiple imputation for missing data: Concepts and new development. Proceed-

ings of the Twenty-Fifth Annual SAS Users Group International Conference (Paper, No. 267).

Cary, NC: SAS Institute. Retrieved May 29, 2006, from http://www.ats.ucla.edu/stat/sas/library/

multipleimputation.pdf


