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In this paper, we introduce a general framework for situations with decision making under uncertainty
and cooperation possibilities. This framework is based upon a two stage stochastic programming approach.
We show that under relatively mild assumptions the cooperative games associated with these situations are
totally balanced and, hence, have non-empty cores. Finally, we consider several example situations, which
can be studied using this general framework.
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1. Introduction In this paper, we consider situations with multiple players, who choose
strategies to influence their expected profits. We assume two decision epochs for an individual
player. First, he decides on a strategy to play under uncertainty of the future state of the world,
which affects the outcome of the played strategy. After the uncertainty is resolved, the player can
take a recourse action that compensates for any adverse effects that might have been experienced
as a result of the chosen strategy. The optimal strategies and recourse actions for the players are
determined by the solution of a two stage stochastic optimization problem. These players can also
cooperate in a coalition. In this case, the players in the coalition coordinate their strategies and
recourse actions to maximize their total expected profit.

Many real life situations with decision making under uncertainty can be modeled using two
stage stochastic programming. Several applications appeared in the supply chain literature. One
example is the analysis of multi-product inventory systems with substitution. A series of papers
analyzed these systems with random demand (see Bassok et al. [2] and Rao et al. [18]) and random
yield (see Hsu and Bassok [11]), where in the first period a production decision is made and
after uncertainty is resolved an allocation decision follows. Another application concerns inventory
systems with transshipment. Herer and Rashit [10] considered a two-location inventory system
with fixed and joint replenishment costs and they developed the properties of optimal decisions.
Besides the above applications, Doǧru et al. [7] studied a base stock policy for an assemble to
order system where the products have common components. They developed an heuristic where
the stock levels are set by solving a two-stage stochastic program. Moreover, the solution provides a
lower-bound for the system performance. van Mieghem and Rudi [23] introduced a class of models,
called newsvendor networks, that provide a framework to study various problems of stochastic
capacity investment and inventory management. Their approach is based on a similar two-stage
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stochastic programming technique as in this paper. All of the papers above, different from us,
assume single ownership of the problem and focus on the determination of optimal decisions or
developing effective heuristics. Anupindi et al. [1], Granot and Sošić [8] and Rudi et al. [19] analyzed
the performance of decentralized systems, where the centralized (benchmark) performance is given
by the solution of a two-stage stochastic program.

In this paper, we provide a general framework for situations in which multiple players collabo-
rate by coordinating their strategies and recourse actions to maximize their total profits. A main
question is how the increased profits should be shared among the members of the cooperation.
Cooperative game theory mainly studies this issue and proposes the core concept for stability of
the cooperation. The core is the set of all stable profit divisions such that no group of players would
like to split off from cooperation and form a smaller coalition. We provide sufficient conditions for
the associated cooperative games to have non-empty cores. From a similar point of view, several
papers studied cooperation in a newsvendor setting to benefit from inventory pooling (see Hartman
et al. [9], Müller et al. [13], Özen et al. [15], Özen et al. [16], Özen and Sošić [17], Slikker et al. [21]
and Slikker et al. [22]). We remark that these studies fit into our general framework. Moreover,
our framework covers several other situations in which the uncertainty deals with other aspects
in the system, e.g., random yield. Nonemptiness of the core is also investigated in the literature
dealing with investments. Borm et al. [4] studied firms’ cooperative investments in capital deposits
and de Waegenaere et al. [6] considered a cooperative investment situation where the firms bundle
their resources to invest in long term projects. Both studies assume a deterministic setting. In this
paper, we consider a two-stage stochastic variant of these problems as well.

The rest of the paper is organized as follows. In section 2, we give preliminaries on positively
homogeneous functions and cooperative game theory. In section 3, we introduce a framework for
situations with decision making under uncertainty and cooperation possibilities, and we focus on
a special class of situations, called stochastic cooperative decision situations. This class captures
a broad range of cooperation situations under uncertainty. We show that the cooperative games
associated with these situations are totally balanced and, hence, they have non-empty cores. After-
wards, in section 4, we provide some example situations that can be analyzed in this framework.
We conclude the paper with further discussions in section 5.

2. Preliminaries In this section, we give preliminaries on positively homogeneous functions
and cooperative game theory.

A function f on IRn is called positively homogeneous (of degree 1) if for every x ∈ IRn and
λ∈ (0,∞)

f(λx) = λf(x).

Note that if a function f is positively homogeneous, then f(0) = 0. Moreover, all linear functions
are positively homogeneous.

Theorem 1. Let f be a function from IRn to IR. If f is a positively homogeneous concave
function, then for every λ1 ≥ 0, ..., λm ≥ 0 and x1, ..., xm ∈ IRn

f(λ1x1 + ...+λmxm)≥ λ1f(x1)+ ...+λmf(xm). (1)

Proof. Without loss of generality, we may assume that λi > 0 for every i∈ {1, ..,m}. We have

f(λ1x1 + ...+λmxm) = f(
m∑

i=1

λixi)
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=
m∑

j=1

λj


f




m∑
i=1

λi
m∑

j=1

λj

xi







≥
m∑

j=1

λj




m∑
i=1

λi
m∑

j=1

λj

f(xi)




=
m∑

i=1

λif(xi)

= λ1f(x1)+ ...+λmf(xm).

The second equality follows since f is positively homogeneous. The inequality follows from concav-
ity of f . This completes the proof. ¤

Cooperative game theory deals with situations, where a group of players cooperate by coordi-
nating their actions to obtain a joint profit. It is usually assumed that binding agreements between
the players are the mean of the cooperation. A main question of concern is how this profit will be
divided among the cooperating players.

Let N be a finite set of players, N = {1, ..., n}. A subset of N is called a coalition. A function v,
assigning a value v(S) to every coalition S ⊆N with v(∅) = 0, is called a characteristic function.
The value v(S) is interpreted as the maximum total profit that coalition S can obtain through
cooperation. Assuming that the benefit of a coalition S can be transferred between the players of S,
a pair (N,v) is called a cooperative game with transferable utility (TU-game) or a game in coalitional
form. For a game (N,v), S ⊂N and S 6= ∅, the subgame (S,v|S) is defined by v|S(T ) = v(T ) for
each coalition T ⊆ S.

In reality, the players are not primarily interested in benefits of a coalition but in their individual
benefits that they make out of that coalition. A division is a payoff vector y = (yi)i∈N ∈ IRN ,
specifying for each player i∈N the benefit yi. A division y is called efficient if

∑
i∈N yi = v(N) and

individually rational if yi ≥ v({i}) for all i∈N . Individual rationality means that every player gets
at least as much as what he could obtain by staying alone. The set of all individually rational and
efficient divisions constitutes the imputation set:

I(v) = {y ∈ IRN |∑i∈N yi = v(N) and yi ≥ v({i}) for each i∈N}.

If these rationality requirements are extended to all coalitions, we obtain the core:

Core(v) = {y ∈ IRN |∑i∈N yi = v(N) and
∑

i∈S yi ≥ v(S) for each S ⊆N}.

Thus, the core consists of all imputations in which no group of players has an incentive to split off
from the grand coalition N and form a smaller coalition, because they collectively receive at least
as much as what they can obtain by cooperating on their own. Note that the core of a game can
be empty.

Bondareva [3] and Shapley [20] independently made a general characterization of games with
a non-empty core by the notion of balancedness. Let us define the vector eS for all S ⊆ N by
eS

i = 1 for all i ∈ S and eS
i = 0 for all i ∈ N\S. A map κ : 2N\{∅} → [0,1] is called a balanced

map if
∑

S∈2N\{∅} κ(S)eS = eN . Further, a game (N,v) is called balanced if for every balanced
map κ : 2N\{∅}→ [0,1] it holds that

∑
S∈2N\{∅} κ(S)v(S)≤ v(N). The following theorem is due to

Bondareva [3] and Shapley [20].
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Theorem 2. Let (N,v) be a TU-game. Then Core(v) 6= ∅ if and only if (N,v) is balanced.

A TU-game (N,v) is called totally balanced if it is balanced and each of its subgames is balanced
as well.

3. Model Let N be a set of players. Each player i ∈ N is subject to uncertainty, which is
represented by a random variable (or signal) Xi taking values in Υi. The players can either work
alone or they can cooperate in a coalition. Consider a coalition S ∈ 2N\{∅}. Let xS = (xi)i∈S be a
realization of random vector XS = (Xi)i∈S taking values in ΥS =

∏
i∈S Υi. Before the realization of

the random vector XS, the players in the coalition jointly choose a strategy qS from the strategy
space QS ⊆ IRB with B ∈ IN. After observing realization xS of XS, the players decide on a joint
recourse action mS from the action space MS(qS, xS)⊆ IRB×N , which depends on qS and xS. We
assume for all mS ∈MS(qS, xS) that mS

i = 0 if i /∈ S since the coordinates of the players outside
of coalition S are irrelevant for the coalition. We denote the map (qS, xS) 7→MS(qS, xS) shortly
by MS. There is a cost associated with each strategy of the coalition. Suppose the coalition plays
strategy qS, then it pays a cost C(qS), where C : IRB → IR. If the coalition plays recourse action mS

for realization xS of the random vector, each player in the coalition makes a revenue H i(mS
i , xi),

where mS
i ∈ IRB is the i’th coordinate of mS and H i : IRB ×Υi → IR. Hence, the coalition’s total

revenue is
ZS(mS, xS) =

∑
i∈S

H i(mS
i , xi). (2)

A tuple (N, (Xi)i∈N , (QS,MS)S∈2N\{∅},C, (H i)i∈N) with entities as above is called a stochastic
cooperative decision situation if the following conditions hold:

(i) For all T ⊆ N , all qT ∈ QT and every realization xT of XT ,
maxm∈MT (qT ,xT ) Z

T (m,xT ) exists.
(ii) For all T ⊆N and all qT ∈QT , EXT [maxm∈MT (qT ,·) Z

T (m, ·)] exists.
(iii) For all T ⊆N , maxq∈QT

(−C(q)+EXT

[
maxm∈MT (q,·) Z

T (m, ·)]) exists.
(iv) For all T ⊆N , every balanced map κT : 2T\{∅} → [0,1] and every (qS)S⊆T ∈

∏
S⊆T QS, it

holds that ∑

S∈2T \{∅}
κT (S)qS ∈QT .

(v) For all T ⊆N , every balanced map κT : 2T\{∅} → [0,1], every realization xT of XT , every
(qS)S⊆T ∈

∏
S⊆T QS and every (mS)S⊆T ∈

∏
S⊆T MS (qS, xS), it holds that

∑

S∈2T \{∅}
κT (S)mS ∈MT


 ∑

S∈2T \{∅}
κT (S)qS, xT


 .

(vi) For all i∈N and all realizations xi of Xi, H i(·, xi) is a concave function.
(vii) C is a positively homogeneous convex function.

The first three conditions guarantee that optimal strategies and recourse actions that maximize
the total expected profit exist for every coalition, and that the expected profit of a coalition under
optimal strategies and recourse actions is well defined. Conditions (iv) and (v) simply state that
every balanced collection of strategies and recourse actions of coalitions S ⊆ T determines a feasible
strategy and recourse action for coalition T . Condition (vi) states that the revenue of a player
is a concave function of his recourse action. The last condition states that the cost function is a
positively homogenous convex function.
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Suppose that coalition S plays strategy qS ∈ QS, and realization xS of random vector XS

occurs. Let mS∗(qS, xS) be an optimal recourse action, which exists by condition (i). We refer to
ZS(mS∗(qS, xS), xS) as zS(qS, xS), which is the maximum total revenue that coalition S can achieve
by playing its optimal recourse action.

In a stochastic cooperative decision situation, individual players or coalitions are assumed to be
interested in their expected profits, while choosing their strategies and recourse actions. If coalition
S plays strategy qS and optimal recourse actions, its expected profit is given by

τS(qS) =−C(qS)+EXS

[
zS(qS, ·)] .

From condition (ii), we know that the expectation is well defined, and hence the expected profit
function too. Moreover, condition (iii) assures that every coalition has an optimal strategy that
maximizes its expected profit.

For a stochastic cooperative decision situation, the associated cooperative game (N,v) is defined
by

v(S) = max
qS

τS(qS).

In other words, the value of a coalition is the maximum expected profit that the coalition can obtain
playing its optimal strategy and recourse actions. Therefore, we call the associated cooperative
game an expected profit game.

The following theorem states that expected profit games associated with stochastic cooperative
decision situations are totally balanced.

Theorem 3. Let (N, (Xi)i∈N , (QS,MS)S∈2N\{∅},C, (H i)i∈N) be a stochastic cooperative deci-
sion situation. Then the associated expected profit game is totally balanced.

Proof. Consider a coalition T ⊆N . Let κT : 2T\{∅}→ [0,1] be a balanced map. Let (qS∗)S⊆T :S 6=∅
and (mS∗(qS∗, xS))S⊆T :S 6=∅,xS∈ΥS be the optimal strategies and recourse actions of different coali-
tions, respectively. Let tT =

∑
S∈2T \{∅} κT (S)qS∗ ∈QT (condition (iv)). Then, for every realization

xT of XT ,

ZT
(
mT∗ (

tT , xT
)
, xT

)
≥ ZT

( ∑

S∈2T \{∅}
κT (S)mS∗(qS∗, xS), xT

)

=
∑
i∈T

H i


 ∑

S∈2T \{∅}:i∈S

κT (S)mS∗
i (qS∗, xS), xi




≥
∑
i∈T

∑

S∈2T \{∅}:i∈S

κT (S)H i
(
mS∗

i (qS∗, xS), xi

)

=
∑

S∈2T \{∅}
κT (S)

∑
i∈S

H i
(
mS∗

i (qS∗, xS), xi

)

=
∑

S∈2T \{∅}
κT (S)ZS

(
mS∗(qS∗, xS), xS

)
.

The first inequality follows since mT∗(tT , xT ) ∈ M(tT , xT ) is an optimal recourse action and∑
S∈2T \{∅} κT (S)mS∗(qS∗, xS)∈M(tT , xT ) from condition (v). The first equality holds by definition

of ZT and since mS∗
j = 0 for all j /∈ S for all S ⊆ T . The second inequality holds since H i(·, xS) is

concave for all i ∈N and realization xS of XS (condition (vi)), 0≤ κT (S)≤ 1 for all S ∈ 2T\{∅},
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and
∑

S∈2T \{∅}:i∈S κT (S) = 1 for all i∈ T . The second equality follows from interchanging the order
of summation. The last equality holds by definition of ZS.

Taking the expectation of both sides, we find that

EXT

[
ZT

(
mT∗(tT , ·), ·)]≥

∑

S∈2T \{∅}
κT (S)EXS

[
ZS

(
mS∗(qS∗, ·), ·)] . (3)

Then,

v(T ) = −C(qT∗)+EXT

[
ZT (mT∗(qT∗, ·), ·)]

≥ −C(tT )+EXT

[
ZT (mT∗(tT , ·), ·)]

≥ −C(tT )+
∑

S∈2T \{∅}
κT (S)EXS

[
ZS

(
mS∗(qS∗, ·), ·)]

≥ −
∑

S∈2T \{∅}
κT (S)C(qS∗)+

∑

S∈2T \{∅}
κT (S)EXS

[
ZS

(
mS∗(qS∗, ·), ·)]

=
∑

S∈2T \{∅}
κT (S)

(−CS(qS∗)+EXS

[
ZS

(
mS∗(qS∗, ·), ·)])

=
∑

S∈2T \{∅}
κT (S)v(S).

The first equality holds since qT∗ and mT∗(qT∗, ·) are an optimal strategy and optimal recourse
actions for coalition T . The first inequality follows from tT ∈ QT (condition (iv)). The second
inequality holds by (3). The third inequality follows from Theorem 1 since −C is a positively
homogeneous concave function (from condition (vii)) and κT (S)≥ 0 for all S ∈ T in balanced map
κT . The last equality holds since qS∗ and mS∗(qS∗, ·) are an optimal strategy and optimal recourse
actions for coalition S, respectively. ¤

We remark that from the proof of Theorem 3, the associated cooperative game is balanced even
if conditions (iv) and (v) only hold for optimal strategies and recourse actions with T = N .

From Theorems 2 and 3, the following corollary follows immediately.

Corollary 1. Let (N, (Xi)i∈N , (QS,MS)S∈2N\{∅},C, (H i)i∈N) be a stochastic cooperative deci-
sion situation. Then the associated expected profit game has a non-empty core.

4. Examples In this section, we present several example situations that fit into the general
framework in section 3. The first one concerns newsvendor situations with multiple warehouses
(see Özen et al. [16]).

Example 1. Newsvendor situations with multiple warehouses. Consider a set of retailers N ,
who sell the same product in separate markets with stochastic demand. Because of long production
and transportation lead times, the retailers have to place their orders before the start of the selling
period without knowing the realization of stochastic demand, but knowing its distribution. After
the lead time elapses, the demand is realized and the orders become available at the warehouses.
Finally, the orders are sent to the retailers and the demand is satisfied as much as possible. Let Xi

be the stochastic demand of retailer i and let Fi be its cumulative distribution function. Moreover,
let xS denote a realization of demand vector XS = (Xi)i∈S. The retailers can give their orders to
several warehouses. Let W be the set of warehouses and let Wi ⊆W be the set of warehouses from
which retailer i can supply the goods. Let kw, fwi ≥ 0 and pi ≥ 0 be the unit cost of ordering to
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warehouse w ∈W , the unit cost of transporting goods from warehouse w ∈W to retailer i ∈ N
and selling price of retailer i, respectively. This newsvendor situation can be represented by the
tuple Γ = (N,W, (Xi)i∈N , (kw)w∈W , (fwi)w∈W,i∈N , (Wi)i∈N , (pi)i∈N). In this newsvendor situation,
the retailers can increase their expected total profit, if they cooperate. By cooperating, they decide
on a joint order and can allocate the joint order that becomes available at the warehouse after
demand realization. Hence, they benefit from inventory pooling and coordinated ordering. Consider
coalition S ⊆N . Forming a coalition, the manufacturers can give a joint order to any manufacturing
facility that is available for any of them. Let WS = ∪i∈SWi be the set of available facilities for
coalition S. Then, the set of possible order vectors is given by

QS := {q ∈ IRW
+ |qw = 0 for all w /∈WS }.

Suppose that coalition S gives an order qS ∈ QS at a cost of C(qS) =
∑

w∈WS
kwqS

w and the
realization of random vector XS appears to be xS. An allocation of qS is represented by a matrix
mS ∈ IRW×N

+ with

mS
wi = 0 if i∈N\S or w ∈W\WS ;∑

i∈S

mS
wi = qS

w for all w ∈WS.

Here, mS
wi denotes the amount of products that is sent from warehouse w to retailer i. We denote

the set of all possible allocations for order vector qS and realization xS of XS by MS(qS, xS). For
an allocation mS ∈MS(qS, xS), coalition S makes a total revenue given by

RS(mS, xS) =
∑
i∈S

(
−

∑
w∈W

fwim
S
wi + pi min{

∑
w∈W

mS
wi, xi}

)
.

Let mS∗(qS, xS)∈M(qS, xS) be an optimal allocation maximizing RS(mS, xS). In the remainder of
this example, we refer to RS(mS∗(qS, xS), xS) as rS(qS, xS). The expected total profit of coalition
S is given by

π(qS) =−C(qS)+EXS [rS(qS, ·)].

In this newsvendor situation, we assume that the retailers in coalition S choose an order vector
and an allocation after demand realization to maximize their expected total profit. The associated
cooperative game (N,vΓ) is given by

vΓ(S) = max
q∈QS

π(q)

In the following part of the example, we will show that (N,vΓ) is an expected profit game.
Consider a situation represented by Λ = (N, (Xi)i∈N , (QS,MS)S∈2N\{∅},C, (H i)i∈N) with N , Xi,
QS, MS and C as in newsvendor situation Γ. Moreover, H i : IRW ×Υi → IR is defined by

H i(mi, xi) =−
∑
w∈W

fwimwi + pi min{
∑
w∈W

mwi, xi}

for all i∈N .
In the following part of the example, we will check conditions (i)− (vii) for Λ to be a stochastic

cooperative decision situation. Conditions (i) and (iii) hold since the respective functions ZS(·, xS)
and τS(·) are continuous and we can easily derive that each maximum is obtained in a compact
set. Condition (ii) holds under the very mild and natural assumption: each random variable Xi

has a finite expectation. We refer to Özen [14] for the formal proofs of conditions (i)-(iii). It is
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easy to check that conditions (iv), (vi) and (vii) hold as well. The only condition left for Λ to be a
stochastic cooperative decision situation is condition (v). Consider coalition T and realization xT of
XT . Let κT : 2T\{∅}→ [0,1] be a balanced map. Moreover, let (qS)S⊆T ∈

∏
S⊆T QS be a collection

order quantities and let (mS)S⊆T ∈
∏

S⊆T MS (qS, xS) be a collection of allocations of production
quantities. We can rewrite condition (v) for this situation as

∑
S∈2T \{∅}

κT (S)mS
wi = 0 if i∈N\T or w ∈W\WT ; (4)

∑
i∈T

∑
S∈2T \{∅}|i∈S

κT (S)mS
wi =

∑
S∈2T \{∅}

κT (S)qS
w for all w ∈WT . (5)

It is easy to verify that (4) holds. Equation (5) holds since
∑

i∈S mS
wi = qS

w for all w ∈ W and
S ⊆ T . Therefore, we conclude that the game (N,wΛ) associated with Λ is an expected profit
game. Moreover, (N,wΛ) and (N,vΓ) coincide since for any coalition S ⊆N , order vector qS ∈QS,
realization xS of XS and allocation mS ∈MS(qS, xS), ZS(mS, xS) = RS(mS, xS) and, moreover,
τS(qS) = πS(qS). Therefore, cooperative game (N,vΓ) is an expected profit game, which is totally
balanced. ♦

The following example considers a production situation with random yield.

Example 2. Cooperative production with random yield. Consider a set of manufacturers N ,
who produce an identical product every period to satisfy their deterministic demand. Production
can be performed in one or more production facilities, whose availability differs for each manufac-
turer. Let B denote the set of production facilities and let Bi ⊆B be the set of production facilities
available for manufacturer i∈N . Because of the nature of the production process, the production
yield is random in each production facility. Let Yj be the random variable representing the uncer-
tainty in production facility j for all j ∈B. We assume that Yj is taking values in [0,∞) usually close
to 1. The production yield of an order q ∈ IR+ given to production facility j depends on the realiza-
tion yj of Yj and is given by Lj

yj
(q) = yjq. Let cj, pi, vi, bi and Di be the unit ordering cost at facility

j, selling price, salvage value, penalty cost and deterministic demand of manufacturer i, respectively.
We assume that cj ≥ 0 for all j ∈B, pi, vi, bi,Di ≥ 0 and pi + bi > vi for all i ∈N . This production
situation can be represented by a tuple Γ = (N,B, (Yj)j∈B, (cj)j∈B, (Bi)i∈N , (pi)i∈N , (vi)i∈N , (bi)i∈N).
In this production situation, the manufacturers can either work alone or they can cooperate in a
coalition. Being alone, a manufacturer gives an ordering decision and satisfies his demand with the
random output as much as possible. On the other hand, if a group of manufacturers cooperates,
they decide on a joint order and can allocate the total production quantity to maximize their
total expected profit. Hence, they benefit from reduced risk of random production and coordi-
nated ordering. This production situation fits into the general framework in section 3 and it can
be represented as the tuple Λ = (N, (Xi)i∈N , (QS,MS)S∈2N\{∅},C, (H i)i∈N) with entities specified
below.

Consider coalition S ⊆N . Forming a coalition, the manufacturers can give a joint order to any
manufacturing facility that is available for any of them. Let BS = ∪i∈SBi be the set of available
facilities for coalition S. Then, the set of possible order vectors is given by

QS := {q ∈ IRB
+|qj = 0 for all j /∈BS }.

Let Xi = (Yj)j∈Bi
be the vector representing randomness faced by manufacturer i and XS = (Xi)i∈S.

Suppose that coalition S gives an order qS ∈QS at a cost of C(qS) =
∑

j∈BS
cjq

S
j and the realization

of random vector XS appears to be xS. This leads to production output Lj
yj

(qj) where yj is the
coordinate of some xi with j ∈Bi associated with j ∈BS. Note that yj is independent of selection of
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i with manufacturing facility j ∈Bi. After the production quantities are known, the manufacturers
make an allocation decision represented by a matrix mS ∈ IRB×N with

mS
ji = 0 if i∈N\S or j ∈B\BS ;∑

i∈S

mS
ji = Lj

yj
(qj) for all j ∈BS.

Here, mS
ji denotes the amount of products that is assigned in facility j to manufacturer i. We denote

the set of all possible allocations for order vector qS and realization xS of XS by MS(qS, xS). For
an allocation mS ∈MS(qS, xS), manufacturer i makes a revenue given by

H i(mS
i , xi) = pi min{

∑
j∈BS

mji,Di}+ vi(
∑

j∈BS

mji−Di)+− bi(Di−
∑

j∈BS

mji)+,

and hence the total revenue of coalition S is ZS(mS, xS) =
∑

i∈S H i(mS
i , xi).

In the following part of the example, we will show that (N,vΛ) is an expected profit game by
checking the conditions (i)− (vii) for Λ to be a stochastic cooperative decision situation1. Using
similar arguments and assumptions (i.e., E[Yj] <∞ for all j ∈B) as in Example 1, conditions (i),
(ii) and (iii) are met. It is easy to check that conditions (iv), (vi) and (vii) hold as well. The
only condition left for Λ to be a stochastic cooperative decision situation is condition (v). Consider
coalition T and realization xT of XT . Let κT : 2T\{∅} → [0,1] be a balanced map. Moreover, let
(qS)S⊆T ∈

∏
S⊆T QS be a collection of order quantities and let (mS)S⊆T ∈

∏
S⊆T MS (qS, x) be a

collection of allocations of the production quantities. We can rewrite condition (v) for this situation
as

∑
S∈2T \{∅}

κT (S)mS
ji = 0 if i∈N\T or j ∈B\BT ; (6)

∑
i∈T

∑
S∈2T \{∅}|i∈S

κT (S)mS
ji = Lj

yj
(

∑
S∈2T \{∅}

κT (S)qS
j ) for all j ∈BS. (7)

It is easy to verify that (6) holds. (7) holds since
∑
i∈T

∑

S∈2T \{∅}|i∈S

κT (S)mS
ji =

∑

S∈2T \{∅}

∑
i∈S

κT (S)mS
ji

=
∑

S∈2T \{∅}
κT (S)Lj

yj
(qS

j )

= Lj
yj

(
∑

S∈2T \{∅}
κT (S)qS

j ).

The last equality follows since Lj
yj

is linear. Therefore, we conclude that the game (N,vΛ) associ-
ated with Λ is an expected profit game, which is totally balanced. ♦

The following example considers a cooperative borrowing situation.

Example 3. Cooperative borrowing. Consider a set of companies N , who need to get loans to
support their operations in the following two periods. In the first period, each firm i ∈N needs
deterministic amount of loan D1

i , whereas the need for the second period is stochastic and it is
denoted by random variable Xi. In the first period, the firms have two loan options: 1-period loan
and 2-period loan. Let c1 and c2 be the unit costs of borrowing 1-period loan and 2-period loan,

1 We remark that the value of coalition S in (N,vΛ) is the maximum expected profit that coalition S can obtain by
joint ordering and allocating the output optimally.
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respectively. We assume that the cost of 2-period loan is lower than borrowing 1-period loan in
two periods separately, i.e., c2 ≤ 2c1. We also assume that firm i makes a fixed revenue pi form its
operations in the two periods and a unit revenue r by investing unused loans on several options
in each period. Moreover, we assume c2 − r > c1. For ease of presentation, we disregard the time
value of money. The sequence of events is as follows. At the start of the first period, the firms
decide on how much 1-period and 2-period loan they would like to borrow. Afterwards, at the
start of the second period each firm observes his loan need and borrows additional 1-period loan
accordingly. For each period, the available amount of loan should be at least what the firms need.
This borrowing situation can be represented by a tuple Γ = (N, (Di,Xi)i∈N , c1, c2, (pi)i∈N , r). In
this borrowing situation, the firms can cooperate in a coalition to decrease their total expected
borrowing cost by making joint borrowing decisions, and hence increase their total expected profit.
This borrowing situation fits into the general framework in section 3 and it can be represented as
a tuple Λ = (N, (Xi)i∈N , (QS,MS)S∈2N\{∅},C, (H i)i∈N) with entities specified below.

Consider coalition S ⊆N . Forming a coalition, the companies can decide jointly how much 1-
period and 2-period loan to borrow. Observe that for the companies in S, it is optimal to order
the exact total amount of loan to cover their needs

∑
i∈S Di, since ordering more would create

extra cost for them, i.e., ordering extra 1-period loan is redundant since r < c2 − c1 ≤ c2/2 ≤ c1,
and ordering extra 2-period loan is redundant since c2 − r > c1 and hence it is better to borrow
1-period loan to cover possible needs in the second period. The problem can be formulated as how
much 2-period loan to borrow in the first period. Therefore, the set of possible loan vectors is given
by

QS := {q ∈ IR+|q≤
∑

i∈S Di}.

Here, q denotes the amount of 2-period (long term) loan borrowed and the rest of the needs will be
covered by 1-period loans, which amount is

∑
i∈S Di− q. Let XS = (Xi)i∈S be the random vector

representing randomness faced by coalition S. Suppose that coalition S borrows qS ∈ QS at an
additional cost of C(qS) = (c2− c1)qS. Note that the companies could also cover their needs in the
first period by borrowing 1-period loan with a fixed cost c1

∑
i∈S Di. We will consider this cost

in the companies revenue functions and hence function C denotes the additional cost of ordering
2-period loan instead of 1-period loan in the first period. Moreover, suppose that the realization of
random vector XS appears to be xS. Hence, the firms need in total

∑
i∈S xS

i loan for the second
period. Since they already have qS amount of loan from period 1, they can allocate this amount
among themselves and borrow additional 1-period loan if necessary. An allocation is represented
by a vector mS ∈ IRN

+ with

mS
i = 0 if i∈N\S;∑

i∈S

mS
i = qS.

We denote the set of all possible allocations for borrowing qS and realization xS of XS by
MS(qS, xS). For an allocation mS ∈MS(qS, xS), firm i makes a revenue given by

H i(mS
i , xi) = pi− c1(xi−mS

i )+ + r(mS
i −xi)+− c1Di,

and hence the total revenue of coalition S is ZS(mS, xS) =
∑

i∈S H i(mS
i , xi).

In the following part of the example, we will show that (N,vΛ) is an expected profit game by
checking the conditions (i)− (vii) for Λ to be a stochastic cooperative decision situation2. From

2 We remark that the value of coalition S in (N,vΛ) is the maximum expected profit that coalition S can obtain by
joint borrowing.
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similar arguments and assumptions (i.e., E[Xi] <∞ for all i∈N) as in Example 1, conditions (i),
(ii) and (iii) are met. It is easy to check that conditions (iv), and (vii) hold as well. Condition (vi)
holds since c1 > r. The only condition left for Λ to be a stochastic cooperative decision situation is
condition (v). Consider coalition T and realization xT of XT . Let κT : 2T\{∅}→ [0,1] be a balanced
map. Moreover, let (qS)S⊆T ∈

∏
S⊆T QS be a collection of loans and let (mS)S⊆T ∈

∏
S⊆T MS (qS, x)

be a collection of allocations. We can rewrite condition (v) for this situation as

∑
S∈2T \{∅}

κT (S)mS
i = 0 if i∈N\T ; (8)

∑
i∈T

∑
S∈2T \{∅}:i∈S

κT (S)mS
i =

∑
S∈2T \{∅}

κT (S)qS. (9)

It is easy to verify that (8) holds. (9) holds similar as (7) in Example 2. Therefore, we conclude
that the game (N,vΛ) associated with Λ is an expected profit game, which is totally balanced. ♦

5. Concluding comments In this paper, we provided a framework for cooperative situations
under uncertainty. We focused on two types of structural elements in the construction of the
framework: strategy and recourse action spaces, and cost and revenue functions. We identified a set
of sufficiency conditions on these elements for the cooperative games associated with the situations
in this framework to have non-empty cores. We call the situations that satisfy these conditions and
their associated cooperative games stochastic cooperative decision situations and expected profit
games, respectively. Some of these conditions have already been used implicitly to show that the
core is non-empty for special newsvendor situations in the literature (Müller et al. [13] and Slikker
et al. [22]). Our proof technique differs from theirs in the following way. Our technique requires the
revenue functions to be concave whereas their technique requires profit functions to be positively
homogeneous on order quantity and demand realization (a stronger condition). Moreover, with our
technique, it is also possible to handle convex cost structures.

After knowing that the cores of expected profit games are non-empty, the first question one would
ask is whether there is a simple algorithm to determine a core division of total profit. Unfortunately,
the way that we prove this result does not imply an algorithm for this purpose. There are two
recent studies studying this issue in newsvendor situations. In a recent study, Montrucchio and
Scarsini [12] showed that the core of a simple newsvendor game is non-empty by identifying a core
element. Chen and Zhang [5] considered cost games associated with the newsvendor situation with
multiple warehouses as introduced by Özen et al. [16]. They offered a way to find a core element
by solving the dual of a stochastic linear program. Moreover, they proved that it is NP-hard to
determine whether a given allocation of total profit is in the core for the associated games, even in
a very simple setting. This result also holds for the expected profit games considered in this paper.
A promising direction of research would be the development of heuristics methods to identify core
elements.
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[8] Granot, D., G. Sošić. 2003. A three stage model for a decentralized distribution system of retailers.
Operations Research 51 771–784.

[9] Hartman, B., M. Dror, M. Shaked. 2000. Cores of inventory centralization games. Games and Economic
Behavior 31 26–49.

[10] Herer, Y.T., A. Rashit. 1999. Lateral stock transshipments in a two-location inventory system with
fixed and joint replenishment costs. Naval Research Logistics 46 525–547.

[11] Hsu, A., Y. Bassok. 1999. Random yield and random demand in a production system with downward
substitution. Operations Research 47 277–290.

[12] Montrucchio, L., M. Scarsini. 2007. Large newsvendor games. Games and Economic Behavior 58
316–337.

[13] Müller, A., M. Scarsini, M. Shaked. 2002. The newsvendor game has a non-empty core. Games and
Economic Behavior 38 118–126.
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