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1 Introduction

Multi-choice cooperative games introduced by Hsiao and Raghavan (1993a,b)
and van den Nouweland et al. (1995) are natural extensions of traditional
cooperative games. Whereas in a traditional cooperative game each player
may have only two options concerning cooperation, being either active or
inactive, in a multi-choice context each player may have additional partici-
pation opportunities in a finite set of activity levels. Recall that a traditional
cooperative game is a pair 〈N, v〉, where N is the set of players, usually of
the form {1, 2, ..., n} and v : 2N → IR with v(∅) = 0 is the characteristic
function. Each element S ∈ 2N is called a coalition and v(S) measures the
reward reachable by S on its own. Often, we identify a game 〈N, v〉 with
its characteristic function v. We denote here by GN the set of characteristic
functions with player set N . A basic issue in traditional game theory is how
to distribute the worth v(N) of the grand coalition N among the players,
when the grand coalition N forms. We refer to such a distribution as an
efficient payoff vector. When such a payoff vector is also individual rational,
i.e. it guarantees to each player i ∈ N at least the amount v({i}), it is called
an imputation. The set of imputations of a game v ∈ GN is usually denoted
by I(v), where

I(v) =

{
x ∈ IRn |

n∑

i=1

xi = v(N) and xi ≥ v({i}) for each i ∈ N

}
.

The concept of egalitarianism has generated several so-called egalitarian
solutions. We mention here for arbitrary cooperative games: the equal di-
vision core (Selten, 1972), the constrained egalitarian solution (Dutta and
Ray, 1989), the strong-constrained egalitarian allocations (Dutta and Ray,
1991), the egalitarian set, the preegalitarian set and the stable egalitarian
set (Arin and Inarra, 2002), and the equal split-off set (Branzei, Dimitrov
and Tijs, 2006). A central solution concept in cooperative game theory is the
core (Gillies, 1953). For any game v ∈ GN the core C(v) of v is defined by

C(v) =

{
x ∈ I(v) | ∑

i∈S

xi ≥ v(S) for each S ∈ 2N

}
.

The core of a cooperative game v is included in the equal division core
EDC(v) of v which is the set

EDC(v) =

{
x ∈ I(v) |6 ∃S ∈ 2N \ {∅} s.t.

v(S)

|S| > xi for all i ∈ S

}
,
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consisting of efficient payoff vectors which cannot be improved upon by the
equal division allocation of any subcoalition. Note that in the definition
of EDC(v), the average worth a(S, v) := v(S)/|S| of coalition S with res-
pect to v, called also the per capita value of S with respect to v, plays a
role. Axiomatic characterizations of the equal division core on two classes
of cooperative games can be found in Bhattacharya (2004). The well-known
Bondareva-Shapley theorem (Bondareva, 1963; Shapley, 1967) states that a
game is balanced iff its core is non-empty. For balanced games, interesting
egalitarian solution concepts are: the Lorenz stable set, the leximin stable al-
location, the egalitarian core (Arin and Inarra, 2001) and the Lorenz solution
(Hougaard et al., 2001). In most of the above mentioned egalitarian solu-
tions, an egalitarian criterion, namely the Lorenz criterion, plays a central
role. The Lorenz criterion is based on the so-called Lorenz domination.

Let x, y ∈ IRn with
∑n

i=1 xi =
∑n

i=1 yi = I ∈ IR. Denote by x̂ = (x̂1, ..., x̂n)
and ŷ = (ŷ1, ..., ŷn) the vectors obtained from x and y by rearranging their
coordinates in non-decreasing order, that is x̂1 ≤ x̂2 ≤ ... ≤ x̂n and ŷ1 ≤ ŷ2 ≤
... ≤ ŷn. We say that x Lorenz dominates y, and denote this by x ÂL y, iff∑p

i=1 x̂i ≥ ∑p
i=1 ŷi for all p ∈ {1, ..., n− 1}, with at least one strict inequality.

The Lorenz domination yields a measure of inequality; for this and other
measures of inequality the reader is referred to Atkinson (1970), Dasgupta,
Sen and Starret (1973), Fields and Fei (1978) and Sen (1973, 1997).

In case the characteristic function of a game v is supermodular, i.e.
v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N , the game is called
convex (Shapley, 1971). Convex games are balanced games; moreover, they
have large cores (Sharkey, 1982). For convex games the constrained egalita-
rian solution exists, belongs to the core and Lorenz dominates each other core
allocation. For further use we denote the class of convex games with player
set N by CGN . Furthermore, all the above mentioned egalitarian solutions,
except the equal division core, coincide with the constrained egalitarian solu-
tion on the class of convex games. An algorithm, which we call henceforth the
Dutta-Ray algorithm (Dutta and Ray, 1989), and a formula (Hokari, 2000)
for computing the constrained egalitarian solution of a game v ∈ CGN are
available. Both proved to be useful tools to show that the constrained egali-
tarian solution for such games possesses a population monotonicity property
(see Lemma 5.5 and Remark 5.1 in Dutta (1990) and Section 3 in Hokari
(2000)) which tells us that when new players arrive, the original players are
weakly better off. We refer the reader to Thomson (1995) for a survey of
results concerning this property in game theory and several models of eco-
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nomics. The Dutta-Ray algorithm for convex games is suitable whenever the
players believe in equal share cooperation and agree upon successive weak
split-off of largest groups with highest equal share, as soon as each player in
such a group receives the maximal equal share at stake. We notice that after
each round of equal share distribution, the players remained in the allocation
process play a related (convex) marginal game by applying the equal share
principle in a consistent way. Axiomatic characterizations of the constrained
egalitarian solution on the class CGN can be found in Dutta (1990) and
Klijn, Slikker and Zarzuelo (2000).

The main purpose of this paper is to introduce and study the equal di-
vision core for arbitrary multi-choice games (cf. van den Nouweland et al.,
1995) and the constrained egalitarian solution for convex multi-choice games,
and to cope with the equal split-off set for arbitrary multi-choice games in
an informal way.

The outline of the paper is as follows. Section 2 provides basic defini-
tions, notations and results on (convex) multi-choice games. In Section 3,
the equal division core for multi-choice games is introduced and it is shown
that it is a refinement of the precore (Grabisch and Xie, 2007), which is
a straightforward generalization of the core for traditional games. Section
4 is devoted to the constrained egalitarian solution for convex multi-choice
games, which is obtained by adjusting for convex multi-choice games the
Dutta-Ray algorithm for games v ∈ CGN . We prove that the constrained
egalitarian allocation of a convex multi-choice game belongs to the precore of
the game and Lorenz dominates each other precore allocation. Moreover, it
turns out that the constrained egalitarian solution of a convex multi-choice
game belongs to the equal division core of the game. This property, which
we call the equal division stability, together with the efficiency property and
a max-consistency property are used to axiomatically characterize the con-
strained egalitarian solution on the class of convex multi-choice games. In
Section 5 we briefly discuss the extension of the equal split-off set for arbi-
trary traditional games (cf. Branzei, Dimitrov and Tijs, 2006) to arbitrary
multi-choice games and its properties.
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2 Preliminaries on multi-choice cooperative

games

Let N be a set of players that consider cooperation in a multi-choice envi-
ronment, i.e. each player i ∈ N has a finite number of feasible participation
levels whose set we denote by Mi = {0, 1, ..., mi}. We consider their product
MN =

∏
i∈N Mi. Each element s = (s1, s2, ..., sn) ∈ MN specifies a partici-

pation profile for players and is referred to as a multi-choice coalition. Then,
m = (m1,m2, ..., mn) is the players’ maximal participation level profile that
plays the role of the ”grand coalition”, whereas 0 = (0, 0, ..., 0) plays the
role of the ”empty coalition”. We also use the notation M+

i = Mi \ {0} and
MN

+ = MN \ {0}. A cooperative multi-choice game is a triple 〈N,m, v〉,
where v : MN → IR is the characteristic function with v(0) = 0 that spec-
ifies the players’ potential worth, v(s), when they join their efforts at any
activity level profile s = (s1, ..., sn). We note that games v ∈ GN can be seen
as special multi-choice games 〈N,m, v〉 where m = (1, 1, ..., 1). For s ∈ MN

we denote by (s−i, k) the participation profile where all players except player
i play at levels defined by s while player i plays at level k in Mi. A useful
particular case is (0−i, k), when only player i is active. We define the carrier
of s by car(s) = {i ∈ N | si > 0}. For s, t ∈ MN we use the notation s ≤ t
iff si ≤ ti for each i ∈ N and define s ∧ t = (min(s1, t1), ..., min(sn, tn)) and
s ∨ t = (max(s1, t1), ..., max(sn, tn)). We denote the set of all multi-choice
games with player set N and maximal participation profile m by MCN,m. Of-
ten, we identify a multi-choice game 〈N, m, v〉 with its characteristic function
v. A game v ∈ MCN,m is called convex if

v(s ∧ t) + v(s ∨ t) ≥ v(s) + v(t) for all s, t ∈MN . (2.1)

Relation (2.1) is equivalent to

v(s + t)− v(s) ≥ v(s̄ + t)− v(s̄) (2.2)

for all s, s̄, t ∈MN satisfying s̄ ≤ s, s̄i = si for all i ∈ car(t) and s+t ∈MN .
In the sequel, we denote the class of convex multi-choice games with player
set N and maximal participation profile m by CMCN,m.

Let v ∈ MCN,m. We define M := {(i, j) | i ∈ N, j ∈ Mi} and M+ :=
{(i, j) | i ∈ N, j ∈ M+

i }. A (level) payoff vector for the game v is a function
x : M → IR, where for each i ∈ N and each j ∈ M+

i , xij denotes the increase
in payoff for player i corresponding to a change of his activity level from
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j − 1 to j, and xi0 = 0 for all i ∈ N . One can represent a payoff vector for a
game v as a

∑
i∈N mi-dimensional vector whose coordinates are numbered by

the corresponding elements of M+, where the first m1 coordinates represent
payoffs for successive level increases of player 1, the next m2 coordinates are
payoffs for successive level increases of player 2, and so on. A level payoff
vector x : M → IR is called

• efficient if X(m) =
∑

i∈N

∑mi
j=1 xij = v(m);

• level-increase rational if, for all i ∈ N and j ∈ M+
i , xij is at least

the increase in worth that player i can obtain on his own (i.e. work-
ing alone) when he changes his activity level from j − 1 to j, that is
xij ≥ v(jei)−v((j−1)ei), or, equivalently, xij ≥ v(0−i, j)−v(0−i, j−1).

A payoff vector which is both efficient and level-increase rational is called an
imputation. We denote by I(v) the set of imputations of v ∈ MCN,m.

3 The equal division core for multi-choice

games

The core C(v) of a game v ∈ MCN,m consists of all x ∈ I(v) that satisfy
X(s) ≥ v(s) for all s ∈MN , i.e.

C(v) = {x ∈ I(v) | X(s) ≥ v(s) for all s ∈MN}.

A game whose core is nonempty is called a balanced game. Clearly, for each
v ∈ MCN,m, the set C(v) is a convex set.

In this paper, a notion related to the core, which is called the precore
(cf. Grabisch and Xie (2007)) and is a direct generalization of the core for
traditional cooperative games, will play a central role. The precore PC(v) of
v ∈ MCN,m is defined by

PC(v) = {x : M → IR | X(m) = v(m) and X(s) ≥ v(s) for all s ∈MN}.

Clearly, the precore PC(v) of v is a convex polyhedron with infinite di-
rections which includes the (unbounded) set C(v). (Note that precore al-
locations are not necessarily imputations). A game v ∈ MCN,m is called a
pre-balanced game iff it has a non-empty precore.
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In this paper, the marginal game of a multi-choice game with respect to a
multi-choice coalition, introduced by Branzei, Tijs and Zarzuelo (2007), will
play an important role, too. Let v ∈ MCN,m and let u ∈ MN

+ . We denote
by MN

u the subset of MN consisting of multi-choice coalitions s ≤ u. The
marginal game of v based on u (or, shortly, the u-marginal game of v), is the
multi-choice game 〈N,m− u, v−u〉, where v−u(s) := v(s + u)− v(u) for each
s ∈ MN

m−u. For each v ∈ CMCN,m and each u ∈ MN
+ , it holds true that

v−u ∈ CMCN,m−u (see Lemma 3.1 in Branzei, Tijs and Zarzuelo (2007)).
For v ∈ MCN,m and t ∈ MN

+ we also need the notation M t
i = {1, ..., ti}

for each i ∈ N and MN
t =

∏
i∈N M t

i .
Let v ∈ MCN,m and let s ∈ MN . Let ‖s‖1 =

∑n
i=1 si be the cumulate

number of levels of players according to the participation profile s. Given
v ∈ MCN,m and s ∈MN

+ , we denote by α(s, v) the (per levels) average worth
of s with respect to v, i.e.

α(s, v) :=
v(s)

‖s‖1

·

Note that α(s, v) can be interpreted as a per one-unit level increase value of
coalition s. Given a cooperative multi-choice game v ∈ MCN,m, we define
the equal division core EDC(v) of v as the set {x : M → IR | X(m) = v(m);
6 ∃s ∈MN

+ s.t. α(s, v) > xij for all i ∈ car(s), j ∈ M+
i }. So, x ∈ EDC(v) can

be seen as a distribution of the value of the grand coalition m, where for each
multi-choice coalition s, there exists a player i with a positive participation
level in s and an activity level j ∈ M+

i such that the payoff xij is at least as
good as the equal division share α(s, v) of v(s).

The relation between the equal division core of a game v ∈ GN and the
corresponding core can be extended for multi-choice games with the precore
of such games in the role of the core for games in v ∈ GN .

Theorem 3.1 Let v ∈ MCN,m. Then PC(v) ⊂ EDC(v).

Proof. Let x ∈ PC(v) and let us suppose that x /∈ EDC(v). Then there
exists s ∈ MN

+ such that α(s, v) > xij for all i ∈ car(s) and j ∈ {1, ..., si}.
Then

Xisi
=

si∑

j=1

xij < siα(s, v), implying that

X(s) =
∑

i∈N

Xisi
<

∑

i∈N

siα(s, v) = α(s, v) · ∑

i∈N

si = v(s).
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So, x /∈ PC(v).
We notice that the inclusion relation in Theorem 3.1 may be strict, as

in the case of traditional cooperative games (which are special multi-choice
games).

Corollary 3.1 For each v ∈ MCN,m, C(v) ⊂ PC(v) ⊂ EDC(v).

4 The constrained egalitarian solution

for convex multi-choice games

Now, we introduce the multi-choice counterpart of the constrained egalitarian
solution of a game v ∈ CGN by using an adjusted version of the Dutta-Ray
algorithm (Dutta and Ray, 1989).

To formulate the Dutta-Ray algorithm in a multi-choice setting we need
to prove that for each convex multi-choice game there exists a unique multi-
choice coalition with the largest accumulated number of one-unit level in-
creases of players among all coalitions with the highest (per one-unit level
increase) average worth.

Lemma 4.1 Let v ∈ CMCN,m. Then, the set

A(v) :=

{
t ∈MN

+ | α(t, v) = max
s∈MN

+

α(s, v)

}

is closed with respect to the join operator ∨.

Proof. Let ᾱ = maxs∈MN
+

α(s, v) and take t1, t2 ∈ A(v). We have to prove

that t1 ∨ t2 ∈ A(v), that is α(t1 ∨ t2, v) = ᾱ. Since v(t1) = ᾱ‖t1‖1 and
v(t2) = ᾱ‖t2‖1, we obtain

ᾱ‖t1‖1 + ᾱ‖t2‖1 = v(t1) + v(t2) ≤ v(t1 ∨ t2) + v(t1 ∧ t2)

≤ ᾱ‖t1 ∨ t2‖1 + ᾱ‖t1 ∧ t2‖1 = ᾱ‖t1‖1 + ᾱ‖t2‖1,

where the first inequality follows from the convexity of v, and the second
inequality follows from the definition of ᾱ and the fact that v(0) = 0 (in case
t1 ∧ t2 = 0). This implies that v(t1 ∨ t2) = ᾱ‖t1 ∨ t2‖1. Hence, t1 ∨ t2 ∈ A(v),
in case t1 ∧ t2 ∈ A(v) as well as in case ‖t1 ∧ t2‖1 = 0.
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We can conclude from the proof of Lemma 4.1 that for any t1, t2 ∈ A(v)
not only t1 ∨ t2 ∈ A(v) holds true, but also t1 ∧ t2 ∈ A(v) if t1 ∧ t2 6= 0.
Further, A(v) is closed with respect to finite ”unions”, where t1 ∨ t2 is seen
as the ”union” of t1 and t2. Thus, Proposition 4.1 holds true.

Proposition 4.1 Let v ∈ CMCN,m. Then, there exists a unique element
in arg maxs∈MN

+
α(s, v) with the maximal number of cumulate one-unit level

increases.

Proof. The set A(v)∪{0} has a lattice structure and
∨

t∈A(v) t is the largest
element in A(v).

Now, we introduce, in a similar way to that of Dutta and Ray (1989), an
egalitarian rule on the class of convex multi-choice games. In view of Lemma
3.1 (in Branzei, Dimitrov and Tijs, 2007), Lemma 4.1 and Proposition 4.1,
it is easy to adjust the Dutta-Ray algorithm for convex multi-choice games.
In Step 1, one puts m1 := m, v1 := v, and considers the unique element
in arg maxs∈MN

m1\{0} α(s, v1) with the maximal cumulate number of one-unit

level increases, say s1. Define dij := α(s1, v1) for each i ∈ car(s1) and
j ∈ M s1

i . If s1 = m, then we stop. Otherwise, in Step 2, we consider the
convex multi-choice game 〈N,m2, v2〉, where m2 := m1 − s1 and for each
s ∈MN

m2 , v2(s) := v1(s + s1)− v1(s
1). Once again, by using Proposition 4.1,

we can take the largest element s2 in arg maxs∈MN
m2\{0} α(s, v2) and define

dij := α(s2, v2) for all i ∈ car(s2) and j ∈ {s1
i +1, ..., s1

i +s2
i }. If s1+s2 = m we

stop; otherwise we continue by considering the multi-choice game 〈N, m3, v3〉,
etc.

Step p: Suppose that s1, s2, ..., sp−1 have been defined recursively and
s1 + s2 + ... + sp−1 6= m. We define a new multi-choice game with player set
N and maximal participation profile mp := m − ∑p−1

i=1 mi. For each multi-
choice coalition s ∈MN

mp , we define vp(s) := vp−1(s+sp−1)−vp−1(s
p−1). The

game 〈N, mp, vp〉 is convex. We denote by sp the (unique) largest element in
arg maxs∈MN

mp\{0} α(s, vp) and define dij := α(sp, vp) for all i ∈ car(sp) and

j ∈
{∑p−1

k=1 sk
i + 1, ...,

∑p
k=1 sk

i

}
.

In P ≤ |M+| steps the algorithm will end, and the constructed allocation
(dij)(i,j)∈M+ is called the (Dutta) constrained egalitarian solution d(v) of the
convex multi-choice game v.
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Remark 4.1 Note that the above described Dutta-Ray algorithm deter-
mines in P steps for each v ∈ CMCN,m a sequence of (per one-unit level
increase) average values α1, α2, ..., αp with αp := α(sp, vp) for each p ∈
{1, ..., P}, and a sequence of multi-choice coalitions in MN

+ , which we denote
by t1 := s1, t2 := s1+s2,..., tp := s1+ ...+sp, ..., tP := s1+ ...+sP = m. Thus,
a unique path

〈
t0., t1, ..., tP

〉
, with t0 = 0 from 0 to m is obtained, to which

we can associate a suitable ordered partition D1, D2, ..., DP of M , such that
for all p ∈ {1, ..., P}, Dp := {(i, j) | i ∈ car(tp − tp−1), j ∈ {tp−1

i + 1, ..., tpi },
where for each (i, j) ∈ Dp, dij = αp, and the coalition tp−tp−1 is the maximal
participation profile in the ”box” Dp with average worth αp. Note that each
other participation profile in Dp can be expressed as s ∧ tp − s ∧ tp−1 + tp−1,
where s ∈ MN

+ . Clearly, the average worth of such a participation profile is
weakly smaller than αp.

The next example illustrates the Dutta-Ray algorithm for convex multi-
choice games.

Example 4.1 Consider the game 〈N, m, v〉 with N = {1, 2}, m = (2, 1),
v(0, 0) = 0, v(1, 0) = 3, v(2, 0) = 4, v(0, 1) = 2, v(1, 1) = 8, v(2, 1) = 10.
The game is convex and we apply the Dutta-Ray algorithm. In Step 1,
α1 = 4, t1 = s1 = (1, 1), and we have d11 = d21 = 4. In Step 2, α2 = 2,
t2 = (1, 1)+ (1, 0) and we have d12 = 2. We obtain d(v) = (4, 2, 4). Note that
α1 > α2. This is true in general, as we show in Proposition 4.2.

Proposition 4.2 Let v ∈ CMCN,m and let αp = maxs∈MN
mp\{0}

vp(s)
‖s‖1 be the

egalitarian distribution share determined in Step p of the Dutta-Ray algo-
rithm. Then αp ≥ αp+1 for all p ∈ {1, ..., P − 1}.
Proof. By definition of vp and αp, and in view of Remark 4.1, we have

v(tp)− v(tp−1)

‖tp − tp−1‖1

≥ v(tp+1)− v(tp−1)

‖tp − tp−1‖1 + ‖tp+1 − tp‖1

·

By adding and subtracting v(tp) in the numerator of the right-hand term, we
obtain

v(tp)− v(tp−1)

‖tp − tp−1‖1

≥ v(tp+1)− v(tp) + v(tp)− v(tp−1)

‖tp − tp−1‖1 + ‖tp+1 − tp‖1

·
This inequality is equivalent to

(v(tp)− v(tp−1))‖tp − tp−1‖1 + (v(tp)− v(tp−1))‖tp+1 − tp‖1

≥ (v(tp+1)− v(tp))‖tp − tp−1‖1 + (v(tp)− v(tp−1))‖tp − tp−1‖1,
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which is, in turn, equivalent to

(v(tp)− v(tp−1))‖tp+1 − tp‖1 ≥ (v(tp+1)− v(tp))‖tp − tp−1‖1.

Next, we prove that the constrained egalitarian solution for convex multi-
choice games has similar properties as the constrained egalitarian solution for
traditional convex games; in particular, it belongs to the precore and Lorenz
dominates each other precore allocation.

Lemma 4.2 Let v ∈ CMCN,m. Let P be the number of steps in the Dutta-
Ray algorithm for constructing the constrained egalitarian solution d(v) of v,
and let t1, t2, ..., tP be the corresponding sequence of multi-choice coalitions in
MN

+ . Then, for each s ∈MN
+ and each p ∈ {1, ..., P},

v(s ∧ tp − s ∧ tp−1 + tp−1)− v(tp−1) ≥ v(s ∧ tp)− v(s ∧ tp−1).

Proof. First, notice that, for each i ∈ N ,

min{si, t
p−1
i } = min{min{si, t

p
i }, tp−1

i }

because tpi ≥ tp−1
i , implying that s ∧ tp−1 = (s ∧ tp) ∧ tp−1.

Second, notice that, for i ∈ N , either min{si, t
p−1
i }=tp−1

i or min{si, t
p−1
i }=si,

and in both situations we have

min{si, t
p
i } −min{si, t

p−1
i }+ tp−1

i = max{min{si, t
p
i }, tp−1

i },

implying that

(s ∧ tp)− (s ∧ tp−1) + tp−1 = (s ∧ tp) ∨ tp−1.

Now, by convexity of v (with s ∧ tp in the role of s and tp−1 in the role
of t), we obtain

v((s ∧ tp) ∨ tp−1) + v(s ∧ tp−1) ≥ v(s ∧ tp) + v(tp−1).

Theorem 4.1 Let v ∈ CMCN,m. Then the constrained egalitarian alloca-
tion (dij)i∈N,j∈M+

i
belongs to the precore PC(v) of v.
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Proof. Let P be the number of steps in Dutta-Ray algorithm, t1, t2, ..., tP be
the corresponding sequence of multi-choice coalitions inMN

+ , and α1, α2, ..., αP

be the sequence of average values of these coalitions. Note that each s ∈MN
+

can be expressed as

s = (s ∧ t1) + (s ∧ t2 − s ∧ t1) + ... + (s ∧ tP − s ∧ tP−1),

where some of the terms could be zero. Then, by definition of D(s) and αp,
p ∈ {1, ..., P}, D(s) can be rewritten as follows:

D(s) =
∑

i∈N

si∑

j=1

dij

= ‖s ∧ t1‖1α1 + ‖s ∧ t2 − s ∧ t1‖1α2 + ... + ‖s ∧ tP − s ∧ tP−1‖1αP

= ‖s ∧ t1‖1
v(t1)

‖t1‖1

+ ‖s ∧ t2 − s ∧ t1‖1
v(t2)− v(t1)

‖t2 − t1‖1

+... + ‖s ∧ tP − s ∧ tP−1‖ v(tP )− v(tP−1)

‖tP − tP−1‖1

.

Now, in view of Remark 4.1, we obtain

D(s) ≥ ‖s ∧ t1‖1
v(t1)

‖s ∧ t1‖1

+ ‖s ∧ t2 − s ∧ t1‖1
v((s ∧ t2)− (s ∧ t1) + t1)− v(t1)

‖s ∧ t2 − s ∧ t1‖1

+... + ‖s ∧ tP − s ∧ tP−1‖1
v((s ∧ tP )− (s ∧ tP−1)− tP−1)− v(tP−1)

‖s ∧ tP − s ∧ tP−1‖1

≥ ‖s ∧ t1‖1
v(s ∧ t1)

‖s ∧ t1‖1

+ ‖s ∧ t2 − s ∧ t1‖1
v(s ∧ t2)− v(s ∧ t1)

‖s ∧ t2 − s ∧ t1‖
+... + ‖s ∧ tP − s ∧ tP−1‖1

v(s ∧ tP )− v(s ∧ tP−1)

‖s ∧ tP − s ∧ tP−1‖1

= v(s ∧ t1) + (v(s ∧ t2)− v(s ∧ t1)) + ... + (v(s ∧ tP )− v(s ∧ tP−1))

= v(s ∧ tP ) = v(s),

where the last inequality follows from Lemma 4.2. Hence, D(s) ≥ v(s) for
each s ∈MN

+ . Finally, D(m) = v(m) follows from the constructive definition
of d, too.

The constrained egalitarian solution of a multi-choice game does not nec-
essarily belong to the imputation set of the game, as we illustrate in the next
example.
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Example 4.2 Consider the convex multi-choice game 〈N, m, v〉, with N =
{1, 2}, m = (3, 2), and v(0, 0) = 0, v(1, 0) = v(0, 1) = 1, v(2, 0) = v(1, 1) =
v(0, 2) = 2, v(2, 1) = v(1, 2) = 3, v(3, 0) = v(2, 2) = 5, v(3, 1) = 6, v(3, 2) =
12. The constrained egalitarian allocation is d(v) = (2.4, 2.4, 2.4, 2.4, 2.4).
Note that d13 = 2.4 < v(3e1)− v(2e1) = 5− 2 = 3. Hence, d(v) /∈ I(v).

Theorem 4.2 Let v ∈ CMCN,m. The constrained egalitarian solution d(v)
of v Lorenz dominates each other precore element of v.

Proof. Let x ∈ PC(v). We prove that x ÂL d implies x = d. Suppose that
0 = t0, t1, ..., tP = m is the sequence of the Dutta-Ray multi-choice coalitions
in MN for d (see Remark 4.1). We use backward induction to prove two
assertions:

(i) (Induction basis) dij = xij for each (i, j) ∈ (tP−1, tP ], i.e. for all j s.t.
tP−1
i < j ≤ tPi , i ∈ N.

(ii) (Induction step) For each k ∈ {P−1, ..., 1} it holds true that if dij = xij

for each (i, j) ∈ (tk, tP ], then dij = xij for each (i, j) ∈ (tk−1, tP ].

By Proposition 4.2, the smallest elements of d = (dij)i∈N,j∈M+
i

correspond

precisely to elements (i, j) ∈ (tP−1, tP ], and there

dij =
v(tP )− v(tP−1)

‖tP − tP−1‖1

= αP .

Since x ÂL d, it follows that xij ≥ dij for all (i, j) ∈ (tP−1, tP ], implying that

x((tP−1, tP ]) =
∑

(i,j)∈(tP−1,tP ]

xij ≥
∑

(i,j)∈(tP−1,tP ]

dij

= d((tP−1, tP ]) = αP‖tP − tP−1‖1.

Suppose that (i) does not hold. Then, we obtain

x((tP−1, tP ]) > d(tP−1, tP ] = v(tP )− v(tP−1).

But, since x ∈ PC(v), we also have

x((tP−1, tP ]) = x((0, tP ])− x((0, tP−1]) = v(tP )− x((0, tP−1])

≤ v(tP )− v(tP−1) = αP‖tP − tP−1‖1,

13



where the second equality follows from the efficiency condition for precore
elements and the inequality from the stability conditions for precore elements.
So, we conclude that (i) holds true.

Now, we prove (ii). Suppose d = x on (tk, tP ]. Then, by Proposition 4.2,
the worst ‖tP − tk‖1 elements of d and x are in (tk, tP ] and ”coincide”. Since
x ÂL d we have:

(1) xij ≥ αk = dij for all (i, j) ∈ (tk−1, tk], k ∈ {1, ..., P},
and

(2) x((0, tk]) =
∑

(i,j)∈(0,tk] xij = v(tk) because v(tP )− v(tk) = d((tk, tP ]) =
x((tk, tP ]) and v(tP ) = x((0, tP ]).

Then, x ∈ PC(v) implies

(3) x((tk−1, tk]) = x((0, tk])−x((0, tk−1]) ≤ v(tk)−v(tk−1) = αk‖tk−tk−1‖1,

where the inequality follows from (2) and the stability conditions. Then,
from (1) and (3) it follows that xij = dij for (i, j) ∈ (tk−1, tk], and so, x = d
on (tk−1, tP ].

Theorem 4.3 Let v ∈ CMCN,m. Then d(v) ∈ EDC(v).

Proof. According to Theorems 3.1 and 4.1, we have d(v)∈PC(v)⊂EDC(v).

Remark 4.2 In Peters and Zank (2005), a Shapley-type value, called the
egalitarian solution for multi-choice games, was introduced and axiomati-
cally characterized by the properties of efficiency, zero contribution, addi-
tivity, anonymity, and level-symmetry. However, this solution concept has
no connection with the average worth of a multi-choice coalition and with
the Lorenz criterion, and makes incomplete use of information regarding the
characteristic function. This entitles us to claim that on the class of con-
vex multi-choice games the egalitarian solution neither coincides with the
constrained egalitarian solution nor belongs to the equal division core.

Given Theorem 4.3, it is not difficult to provide an axiomatic characteriza-
tion of the constrained egalitarian solution on the class of convex multi-choice
games in line with Theorem 3.3 of Klijn et al. (2000), using the properties
of efficiency, equal division stability and max-consistency. We start with
introducing the multi-choice counterparts of these properties.

14



Given a single-valued solution Ψ : CMCN,m → IR

∑
i∈N

mi

, we denote by sm

the multi-choice coalition such that for each i ∈ N , for all k ∈ {1, ..., sm
i },

Ψik(v) = max(i,j)∈M+ Ψij(v). We say that Ψ satisfies

• Efficiency, if for all v ∈ CMCN,m:
∑

i∈N

∑mi
j=1 Ψij(v) = v(m);

• Equal division stability, if for all v ∈ CMCN,m: Ψ(v) ∈ EDC(v);

• Max-consistency, if for all v ∈ CMCN,m and all (i, j) ∈ M+, Ψij(v) =
Ψij(v

−sm
), where v−sm

is the multi-choice game defined by v−sm
(t) =

v(t + sm)− v(sm) for all t ∈MN
m−sm .

Theorem 4.4 There is a unique solution on CMCN,m satisfying the pro-
perties efficiency, equal division stability and max consistency, and it is the
constrained egalitarian solution.

5 On the equal split-off set for multi-choice

games

In Branzei, Dimitrov and Tijs (2006) the equal split-off set (ESOS) was in-
troduced for arbitrary cooperative games v ∈ GN as a new set valued solution
concept based on egalitarian considerations and inspired by the Dutta-Ray
algorithm (cf. Dutta and Ray (1989)). It was proved that for superadditive
games v ∈ GN the equal split-off set is a refinement of the equal division
core, and for each game v ∈ CGN the equal split-off set ESOS(v) consists
of a single allocation which is the Dutta-Ray constrained egalitarian solu-
tion E(v) of that game. The multi-choice extension of the ESOS can be
obtained by adjusting, in the same spirit as in Branzei, Dimitrov and Tijs
(2006), for arbitrary multi-choice games the Dutta-Ray algorithm for con-
vex multi-choice games. Specifically, in each step of the new procedure, one
of the multi-choice coalitions with the highest (per one-unit level increase)
average value is chosen and the corresponding levels divide equally the value
of that coalition. We note that such multi-choice coalitions need not be the
largest coalitions with the highest average value. Moreover, in a straightfor-
ward way, but technically cumbersome, we can also extend the properties of
ESOS for traditional cooperative games to its multi-choice counterpart. In
particular, for each convex multi-choice game v ∈ MCN,m, the equal split-off
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set ESOS(v) consists of a single element which is the constrained egalitarian
solution d(v) of v.
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