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1 Introduction

Multi-choice games were introduced by Hsiao and Raghavan (1993a,b) to al-
low players in a cooperative environment to exert any of a finite number of
activity levels suitable to the situation at stake. An extension of this model of
cooperative games was introduced by Nouweland et al. (1995) to cope with
situations where different players might have different sets of activity levels
to participate with when cooperating with other players. Results on multi-
choice games can be also found in Calvo and Santos (2000), Calvo, Gutiérrez
and Santos (2000), Grabisch and Xie (2007), Klijn, Slikker and Zarzuelo
(1999), Nouweland (1993), Peters and Zank (2005). Additionally, the reader
can look at the survey on multi-choice cooperative games in Branzei, Dim-
itrov, and Tijs (2005). Our work on convex multi-choice games in this paper
is based on definitions and results from Nouweland et al. (1995) and Branzei,
Dimitrov and Tijs (2005), that we briefly recall in Section 2. Then, in Sec-
tion 3, we give new characterizations of convex multi-choice games using the
notions of exactness and superadditivity. Inspired by Sprumont (1990), we
introduce (level-increase) monotonic allocation schemes (limas) for convex
multi-choice games in Section 4, and prove that each element of the We-
ber set of a convex multi-choice game is extendable to a limas. We also
show there that the (total) Shapley value of a convex multi-choice game (cf.
Nouweland et al., 1995) generates a limas of the game.

2 Preliminaries on multi-choice games

Let N be a set of players, usually of the form {1, 2, ..., n}, that consider
cooperation in a multi-choice environment, i.e. each player i ∈ N has a
finite number of feasible participation levels whose set we denote by Mi =
{0, 1, ...,mi}, where mi ∈ N = {1, 2, . . .}. We consider the product MN =
∏

i∈N Mi. Each element s = (s1, s2, ..., sn) ∈ MN specifies a participation
profile for players and is referred to as a multi-choice coalition. So, a multi-
choice coalition indicates the participation level of each player. Then, m =
(m1,m2, ...,mn) is the players’ maximal participation level profile that plays
the role of the ”grand coalition”, whereas 0 = (0, 0, ..., 0) plays the role of
the ”empty coalition”. We also use the notation M+

i = Mi \ {0} and MN
+ =

MN \ {0}. A cooperative multi-choice game is a triple 〈N,m, v〉, where
v : MN → IR is the characteristic function with v(0) = 0 that specifies the

2



players’ potential worth, v(s), when they join their efforts at any activity level
profile s = (s1, ..., sn). For s ∈ MN we denote by (s−i, k) the participation
profile where all players except player i play at levels defined by s while
player i plays at level k ∈ Mi. A useful particular case is (0−i, k), when only
player i is active. We define the carrier of s by car(s) = {i ∈ N | si > 0}.
For s, t ∈ MN we use the notation s ≤ t iff si ≤ ti for each i ∈ N and define
s ∧ t = (min(s1, t1), ..., min(sn, tn)) and s ∨ t = (max(s1, t1), ..., max(sn, tn)).
We denote the set of all multi-choice games with player set N and maximal
participation profile m by MCN,m. Often, we identify a multi-choice game
〈N,m, v〉 with its characteristic function v. For a game v ∈ MCN,m the
zero-normalization of v is the game v0 that is obtained by subtracting from
v the additive game a with a(jei) := v(jei) for all i ∈ N and j ∈ M+

i , where
ei is the i-th standard vector in IRN . Recall that a game v ∈ MCN,m is
called additive if the worth of each coalition s equals the sum of the worths
of the players when they all work alone at their level in s, i.e. v(s) =
∑

i∈N v(sie
i) for all s ∈ MN . A game v ∈ MCN,m is zero-monotonic if its

zero-normalization is monotonic, that is v0(s) ≤ v0(t) for all s, t ∈ MN with
s ≤ t. A game v ∈ MCN,m is called superadditive if v(s∨ t) ≥ v(s) + v(t) for
all s, t ∈ MN with s ∧ t = 0. A game v ∈ MCN,m is called convex if

v(s ∧ t) + v(s ∨ t) ≥ v(s) + v(t) for all s, t ∈ MN . (2.1)

Relation (2.1) is equivalent with

v(s + t) − v(s) ≥ v(s̄ + t) − v(s̄) (2.2)

for all s, s̄, t ∈ MN satisfying s̄ ≤ s, s̄i = si for all i ∈ car(t) and s + t ∈
MN . Clearly, a convex multi-choice game is superadditive. In the sequel,
we denote the class of convex multi-choice games with player set N and
maximal participation profile m by CMCN,m. Let v ∈ MCN,m. We define
M := {(i, j) | i ∈ N, j ∈ Mi} and M+ := {(i, j) | i ∈ N, j ∈ M+

i }. A
(level) payoff vector for the game v is a function x : M → IR, where for i ∈ N
and j ∈ M+

i , xij denotes the payoff to player i corresponding to a change
of activity level of i from j − 1 to j, and xi0 = 0 for all i ∈ N . One can

represent a payoff vector for a game v as a
∑

i∈N

mi-dimensional vector whose

coordinates are numbered by corresponding elements of M+, where the first
m1 coordinates represent payoffs for successive levels of player 1, the next
m2 coordinates are payoffs for successive levels of player 2, and so on. Let x
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and y be two payoff vectors for the game v. We say that x is weakly smaller

than y if for each s ∈ MN ,

X(s) =
∑

i∈N

si
∑

j=0

xij ≤
∑

i∈N

si
∑

j=0

yij =: Y (s).

A level payoff vector x : M → IR is called efficient if X(m) =
∑

i∈N

mi
∑

j=1

xij =

v(m), and is called level-increase rational if, for all i ∈ N and j ∈ M+
i , xij

is at least the increase in worth that player i can obtain on his own (i.e.
working alone) when he changes his activity level from j − 1 to j, that is
xij ≥ v(jei) − v((j − 1)ei), or, equivalently, xij ≥ v(0−i, j) − v(0−i, j − 1).
A payoff vector which is both efficient and level-increase rational is called
an imputation. We denote by I(v) the set of imputations of v ∈ MCN,m.
The core C(v) of a game v ∈ MCN,m consists of all x ∈ I(v) that satisfy
X(s) ≥ v(s) for all s ∈ MN , i.e.

C(v) = {x ∈ I(v) | X(s) ≥ v(s) for each s ∈ MN}.

A game whose core is nonempty is called a balanced game. The set Cmin(v)
of minimal core elements of v is defined as

{x ∈ C(v) |6 ∃y ∈ C(v) s.t. y 6= x and y is weakly smaller than x}.

Two important solution concepts for multi-choice games, namely the Shapley
value (cf. Nouweland et al. (1995)) and the Weber set (cf. Nouweland et
al. (1995)), are based on marginal payoff vectors which are defined by using
admissible orderings. Let v ∈ MCN,m. An admissible ordering (for v) is a

bijection σ : M+ →

{

1, ...,
∑

i∈N

mi

}

satisfying σ((i, j)) < σ((i, j + 1)) for

all i ∈ N and j ∈ {1, ...,mi − 1}. The number of admissible orderings for

v is

(

∑

i∈N

mi

)

!/
∏

i∈N

(mi!); we denote the set of all admissible orderings for a

game v by Ξ(v). Now, let σ ∈ Ξ(v) and k ∈

{

1, ...,
∑

i∈N

mi

}

. Denote by sσ,k

the coalition defined by

sσ,k
i := max ({j ∈ Mi | σ((i, j)) ≤ k} ∪ {0})
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for all i ∈ N . The coalition sσ,k is the participation profile reached after k
steps according to the ordering σ. The marginal vector wσ,v : M → IR of v
corresponding to σ is defined by

wσ,v
ij := v

(

sσ,σ((i,j))
)

− v
(

sσ,σ((i,j))−1
)

,

for all i ∈ N and j ∈ M+
i . In general, the marginal vectors wσ,v, σ ∈ Ξ(v), of

a multi-choice game v are not necessarily imputations, but for zero-monotonic
games they are. For multi-choice games, several different Shapley-like values
are known. The Shapley value Φ(v) of v ∈ MCN,m is (cf. Nouweland et al.
(1995)) the average of all marginal vectors of wσ,v, in formula

Φ(v) = (Φij(v))
i∈N,j∈M+

i

, Φij(v) :=

∏

i∈N

(mi!)

(

∑

i∈N

mi

)

!

∑

σ∈Ξ(v)

wσ,v
ij .

The Weber set, W (v), of a multi-choice game v is the convex hull of the
marginal vectors of v, i.e. W (v) = co{wσ,v | σ ∈ Ξ(v)}. Basic results for
convex multi-choice games that are used in this paper are: v ∈ CMCN,m iff
W (v) = co(Cmin(v)) (Theorem 11.12 in Branzei, Dimitrov and Tijs (2005)),
and if v ∈ CMCN,m then W (v) ⊂ C(v) (Theorem 11.9 in Branzei, Dimitrov
and Tijs1 (2005)).

3 New characterizations of convex multi-choice

games

Our aim is to extend some characterizations of traditional convex games for
convex multi-choice games. Recall that a traditional cooperative game is
a pair 〈N, v〉, where N is a set of players and v is a characteristic function
v : 2N → IR with v(∅)=0. A game 〈N, v〉 is called convex if v(S∪T )+v(S∩T ) ≥
v(S) + v(T ) for all S, T ⊆ N .

We start this section by introducing the notions of exact multi-choice
game, subgame of a multi-choice game, and marginal game of a multi-choice
game with respect to a multi-choice coalition.

1Grabisch and Xie (2007) proposed notions related to the core and the Weber set of
a multi-choice game, and showed that in case of convexity there is still equality between
that core and that Weber set of the game.
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We call a balanced multi-choice game 〈N,m, v〉 an exact game if for each
s ∈ MN there is an x ∈ C(v) such that x(s) = v(s). Let v ∈ MCN,m and let
u ∈ MN . We denote by MN

u the subset of MN consisting of multi-choice
coalitions s ≤ u. The subgame of v with respect to u, 〈N, u, vu〉, is defined by
vu(s) := v(s) for each s ∈ MN

u . We define the marginal game of v based on u
(or the u-marginal game of v), 〈N,m − u, v−u〉, by v−u(s) := v(s + u)− v(u)
for each s ∈ MN

m−u.

Lemma 3.1 Let v ∈ CMCN,m and let u ∈ MN
+ . Then, v−u ∈ CMCN,m−u.

Proof. Note that for s, t ∈ MN
m−u we have

v−u(s ∨ t) + v−u(s ∧ t) = v((s ∨ t) + u) + v((s ∧ t) + u) − 2v(u)
= v((s + u) ∨ (t + u)) + v((s + u) ∧ (t + u)) − 2v(u)
≥ v(s + u) + v(t + u) − 2v(u) = v−u(s) + v−u(t),

where the inequality follows from the convexity of 〈N,m, v〉 .

Remark 3.1 Since each convex game is also superadditive, we conclude
from Lemma 3.1 that if v ∈ CMCN,m then all its marginal games are super-
additive. The converse also holds true. This result has been independently
obtained for traditional cooperative games 〈N, v〉 by Branzei, Dimitrov and
Tijs (2004) and Martinez-Legaz (2006).

Theorem 3.1 Let v ∈ MCN,m and let u ∈ MN
+ . Then the following asser-

tions are equivalent:

(i) Each u-marginal game of v, v−u, is superadditive;

(ii) v is a convex game.

Proof. We need still to prove that (i)=⇒(ii). Suppose that v−u is superad-
ditive. Then (2.1) holds true for all s, t ∈ MN with s∧t = 0 because v = v−0

is superadditive.
For s∧ t = f 6= 0, take p = s− f and q = t− f. Since

〈

N,m − s ∧ t, v−f
〉

is superadditive, we obtain

0 ≤ v−f (p ∨ q) − v−f (p) − v−f (q) =
= v(p ∨ q + f) − v(p + f) − v(q + f) + v(f) =
= v(s ∨ t) − v(s) − v(t) + v(s ∧ t),
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i.e. v is convex.

For a traditional cooperative game 〈N, v〉, Biswas et al. (1999) (see also
Azrieli and Lehrer (2005)) proved that the game is convex if and only if each
subgame 〈S, v〉, with S ⊂ N, is an exact game. In the sequel, we prove that
a similar characterization holds true for multi-choice games.

Proposition 3.1 Each convex multi-choice game v is an exact game.

Proof. According to Theorem 11.12 in Branzei, Dimitrov and Tijs (2005), for
v ∈ CMCN,m, W (v) = co(Cmin(v)), implying that all marginal vectors wσ,v

are core elements. Take σ such that s is one of the ”intermediate coalitions”.
Then, x(s) = wσ,v(s) = v(s).

Theorem 3.2 Let v ∈ MCN,m. Then the following assertions are equiva-

lent:

(i) 〈N,m, v〉 is convex;

(ii) 〈N, u, vu〉 is exact for each u ∈ MN
+ .

Proof. (i) → (ii) follows from Proposition 3.1 because each subgame of a
convex game is convex, and hence exact.

(ii) → (i): Take s, t ∈ MN . Since the subgame vs∨t is exact, there is
x ∈ C(vs∨t) such that x(s ∧ t) = vs∨t(s ∧ t) = v(s ∧ t).

Now, using x(s ∨ t) = vs∨t(s ∨ t) = v(s ∨ t), we obtain

v(s ∨ t) + v(s ∧ t) = x(s ∨ t) + x(s ∧ t) = x(s) + x(t) ≥ v(s) + v(t).

4 Monotonic allocation schemes

for multi-choice games

Inspired by Sprumont (1990) (see also Hokari (2000), Thomson (1983,1995))
who introduced and studied the interesting notion of population monotonic
allocation scheme (pmas) for traditional cooperative games, we introduce
here for multi-choice games the notion of level-increase monotonic allocation
scheme (limas). Recall that a pmas for a (traditional) cooperative game
〈N, v〉 is an allocation scheme [aS,i]S∈2N\{∅},i∈S such that:
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(i) (aS,i)i∈S ∈ C(vS) for each S ∈ 2N \ {∅}, where vS is the subgame
corresponding to S, i.e. vS : 2S → IR is the restriction of v : 2N → IR
to 2S;

(ii) aS,i ≤ aT,i for all S, T ∈ 2N \ {∅} with S ⊂ T and i ∈ S.

Let v ∈ MCN,m and let t ∈ MN
+ . For i ∈ N , denote the set {1, 2, ..., ti} by

M t
i . A scheme a = [at

ij]
t∈MN

+

i∈N,j∈Mt

i

is called a level-increase monotonic allocation

scheme (limas) if:

(i) at ∈ C(vt) for all t ∈ MN
+ (stability condition);

(ii) as
ij ≤ at

ij for all s, t ∈ MN
+ with s ≤ t, for all i ∈ car(s) and for all

j ∈ M s
i (level-increase monotonicity condition).

Remark 4.1 Note that such a limas is a defective |MN
+ | × |M+|-matrix,

whose rows correspond to multi-choice coalitions and whose columns corre-
spond to elements of M+ arranged according with the increasing ordering for
players and for each player with respect to his participation levels. In each
row t there is a core element of the multi-choice subgame vt, with ”∗” for
all components xij, with i ∈ N and j ∈ {ti + 1, ...,mi}. The level-increase
monotonicity condition implies that, if the scheme is used as regulator for
the (level) payoff distributions in the multi-choice subgames players are paid
for each one-unit level increase (weakly) more in larger coalitions than in
smaller coalitions.

Remark 4.2 A necessary condition for the existence of a limas for a multi-
choice game v is the existence of core elements for vt for each t ∈ MN .
But this is not sufficient, as in the case of traditional cooperative games
which can be seen as multi-choice games where each player has exactly two
participation levels. A sufficient condition is the convexity of the game as we
see in Theorem 4.1.

Let v ∈ MCN,m and x ∈ W (v). Then we call x limas extendable if there

exists a limas [at
ij]

t∈MN

+

i∈N,j∈Mt

i

such that am
ij = xij for each i ∈ N and j ∈ M+

i .

In the next theorem we show that convex multi-choice games have a limas.
Specifically, we prove that each Weber set element is limas extendable. In
the proof, restrictions of σ ∈ Ξ(v) to subgames vt of v will play a role. It
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will be useful to look at such σ as being a sequence of flags f i, i ∈ N,
signaling the players’ turns to one-unit level increase according with their
sets of participation levels. Then, for each t ∈ MN

+ , the restriction of σ
to t, denoted here by σt, can be obtained from the sequence of flags of σ
by ”removing” (notation ”∗”) for each player i ∈ N exactly mi − ti flags
f i starting from the back of that sequence. We illustrate this procedure in
Example 4.1.

Example 4.1 Consider the multi-choice game 〈N,m, v〉 with N = {1, 2, 3},
m = (2, 1, 2) and v a supermodular function. Consider σ1 ∈ Ξ(v) expressed
in terms of flags as σ1 = (f 3, f 1, f 3, f 2, f 1). Note that this ordering generates
the following maximal chain of multi-choice coalitions in MN :

(0, 0, 0)
f3

−→ (0, 0, 1)
f1

−→ (1, 0, 1)
f3

−→ (1, 0, 2)
f2

−→ (1, 1, 2)
f1

−→ (2, 1, 2).

Now, consider the multi-choice coalition t = (1, 1, 1) and the correspon-
ding subgame 〈N, t, vt〉. Then, the restriction of σ1 to t is the ordering σ1

t

which can be expressed in terms of flags as (f 3, f 1, ∗, f 2, ∗); it generates the
following maximal chain of multi-choice coalitions in MN

t :

(0, 0, 0)
f3

−→ (0, 0, 1)
f1

−→ (1, 0, 1)
f2

−→ (1, 1, 1).

Theorem 4.1 Let v ∈ CMCN,m and let x ∈ W (v). Then x is limas exten-

dable.

Proof. Since x is in the convex hull of the marginal vectors wσ,v of v, it
suffices to prove that each marginal vector wσ,v is limas extendable, because
then the right convex combination of these limas extensions gives a limas
extension of x.

Take σ ∈ Ξ(v) and define [at
ij]

t∈MN

+

i∈N,j∈Mt

i

by at
ij := wσt,vt

ij for each t ∈ MN
+ ,

i ∈ N and j ∈ M t
i , where σt is the restriction of σ to t (obtained via the

procedure described above and illustrated in Example 4.1). We claim that
this scheme is a limas extension of wσ,v.

Clearly, am
ij = wσ,v

ij for each i ∈ N and j ∈ M+
i since vm = v. Further,

each multi-choice subgame vt, t ∈ MN
+ , is a convex game, and since mσt,vt ∈

W (vt) ⊂ C(vt) (cf. Theorem 11.9 in Branzei, Dimitrov and Tijs (2005)), it
follows that (at

ij)i∈N,j∈Mt

i
∈ C(vt). Hence, the scheme satisfies the stability

condition.
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To prove the participation monotonicity condition, take s, t ∈ MN
+ with

s ≤ t, i ∈ car(s), and j ∈ M s
i ⊂ M t

i . We have to show that as
ij ≤ at

ij. Now,
as

ij = wσs,vs

ij = v(u−i, j) − v(u−i, j − 1), where (u−i, j) is the intermediary
multi-choice coalition in the maximal chain generated by the restriction of σ
to s, when player i increased his participation level from j−1 to j. Similarly,
at

ij = wσt,vt

ij = v(ū−i, j) − v(ū−i, j − 1).
Note that, since s ≤ t, in the maximal chain generated by σs the turn

of i to increase his participation level from j − 1 to j will come not later
than the same turn in the maximal chain generated by σt, implying that
(u−i, j) ≤ (ū−i, j). Furthermore, (ū−i, j) ≤ m. Then,

as
ij = v(u−i, j) − v(u−i, j − 1) ≤ v(ū−i, j) − v(ū−i, j − 1) = at

ij,

where the inequality follows from the convexity of v.
Specifically, we used relation (2.2) with (u−i, j − 1) in the role of s̄,

(ū−i, j − 1) in the role of s, and (0−i, 1) in the role of t. Hence, [at
ij]

t∈MN

+

i∈N,j∈Mt

i

is a limas extension of wσ,v.

Further, the total Shapley value (cf. Nouweland et al., 1995) of a convex

multi-choice game, which is the scheme [Φt
ij]

t∈MN

+

i∈N,j∈Mt

i

with the Shapley value

of the multi-choice subgame vt in each row t, is a limas.

Example 4.2 Consider the convex multi-choice game 〈N,m, v〉 with N =
{1, 2}, m = (2, 1), v((0, 0)) = 0, v((1, 0)) = 5, v((2, 0)) = 6, v((0, 1)) = 3,
v((1, 1)) = 9, v((2, 1)) = 13.

There are three orderings on M+ = {(1, 1), (1, 2), (2, 1)} : σ1 = (f 1, f 1, f 2),
σ2 = (f 1, f 2, f 1) and σ3 = (f 2, f 1, f 1). The corresponding marginal vectors
mσ1,v, mσ2,v, mσ3,v are extendable to the following level-increase monotonic
schemes:

(2, 1) 5 1 7 5 4 4 6 4 3
(1, 1) 5 ∗ 4 5 ∗ 4 6 ∗ 3
(2, 0) 5 1 ∗ ; 5 1 ∗ ; 5 1 ∗
(0, 1) ∗ ∗ 3 ∗ ∗ 3 ∗ ∗ 3
(1, 0) 5 ∗ ∗ 5 ∗ ∗ 5 ∗ ∗

.
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Then, the total Shapley value Φ(v) generates the limas

(2, 1) 16/3 3 14/3
(1, 1) 16/3 ∗ 11/3
(2, 0) 5 1 ∗
(0, 1) ∗ ∗ 3
(1, 0) 5 ∗ ∗

.
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