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A SCALED GAUSS–NEWTON PRIMAL-DUAL SEARCH
DIRECTION FOR SEMIDEFINITE OPTIMIZATION∗

E. DE KLERK† , J. PENG† , C. ROOS† , AND T. TERLAKY‡

SIAM J. OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 11, No. 4, pp. 870–888

Abstract. Interior point methods for semidefinite optimization (SDO) have recently been stud-
ied intensively, due to their polynomial complexity and practical efficiency. Most of these methods
are extensions of linear optimization (LO) algorithms. As opposed to the LO case, there are sev-
eral different ways of constructing primal-dual search directions in SDO. The usual scheme is to
apply linearization in conjunction with symmetrization to the perturbed optimality conditions of the
SDO problem. Symmetrization is necessary since the linearized system is overdetermined. A way
of avoiding symmetrization is to find a least squares solution of the overdetermined system. Such a
“Gauss–Newton” direction was investigated by Kruk et al. [The Gauss–Newton Direction in Semidef-
inite Programming, Research report CORR 98-16, University of Waterloo, Waterloo, Canada, 1998]
without giving any complexity analysis. In this paper we present a similar direction where a local
norm is used in the least squares formulation, and we give a polynomial complexity analysis and
computational evaluation of the resulting primal-dual algorithm.

Key words. semidefinite optimization, primal-dual search directions, interior point algorithms

AMS subject classification. 65K

PII. S1052623499352632

1. Introduction. Interior point methods for semidefinite optimization (SDO)
became a popular research area when it became clear that the algorithms for linear
optimization (LO) can often be extended to the more general SDO case. Following
the trend in LO, primal-dual algorithms soon enjoyed the most attention. Unlike
the LO-case, however, there are many ways to obtain primal-dual search directions.
Different directions arise when the perturbed optimality conditions are linearized and
subsequently symmetrized (see section 1); a quite comprehensive survey of the search
directions obtained this way may be found in [11]. The need for symmetrization
arises from the fact that the system of linearized perturbed optimality conditions is
overdetermined.

A recent idea by Kruk et al. [6] was to avoid symmetrization by solving a least
squares problem by the Gauss–Newton method (see section 1). The authors obtained
a numerically robust search direction in this way, but did not give convergence proofs
for their search direction. The work in our paper was inspired by their approach:
here we show that, by using scaling and a different (local) norm in the definition of
the least squares problem, a direction is obtained which allows a polynomial time
convergence analysis. We further show that the new direction is closely related to
the well-known (primal) H..K..M and dual H..K..M directions (see the definitions in
section 1); the primal part of the new direction coincides with the dual part of the
(primal) H..K..M direction, and the dual part of the new direction is simply the primal
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part of the dual H..K..M direction. Finally, we present some numerical experiments
with the new direction.

Preliminaries. We consider the SDO problem in the standard form. Thus the
primal problem (P) is given by

(P) p∗ = inf {TrCX : Tr (AiX) = bi (1 ≤ i ≤ m), X � 0}

and its dual problem (D) is

(D) d∗ = sup

{
bT y :

m∑
i=1

yiAi + S = C, S � 0

}
,

where C and the Ai’s are symmetric n × n matrices, b, y ∈ R
m, and X � 0 means

that X is symmetric positive semidefinite. The matrices Ai are further assumed to
be linearly independent. We will assume that a strictly feasible pair (X � 0, S � 0)
exists. This ensures the existence of an optimal primal-dual pair (X∗, S∗) with zero
duality gap (Tr (X∗S∗) = 0).

The optimality conditions for the pair of problems are

Tr (AiX) = bi, i = 1, . . . ,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = 0.

If these conditions are perturbed to

Tr (AiX) = bi, i = 1, . . . ,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = µI

for some µ > 0 where I denotes the identity matrix, then a unique solution of the
perturbed system exists. This solution is denoted by {X(µ), y(µ), S(µ)}. This solution
may be seen as a parameterized curve in the Cartesian product of the primal and dual
feasible regions,1 called the central path, which converges to the analytic center of the
optimal primal-dual set as µ → 0. The existence and uniqueness of the central path
follow from the fact that {X(µ), y(µ), S(µ)} corresponds to the unique minimum of
the strictly convex primal-dual barrier function

Φ(X,S, µ) =
1

µ
Tr (XS) − log det(XS) − n + n log(µ)

defined on the primal-dual feasible region. Because of the two different associations,
the parameter µ is called either the barrier parameter, or the centering parameter.

Primal-dual interior point methods solve the system of perturbed optimality con-
ditions approximately, followed by a reduction in µ. Ideally, the goal is to obtain pri-
mal and dual steps ∆X and ∆S, respectively, which satisfy X +∆X � 0, S +∆S � 0

1This Cartesian product of the primal and dual feasible sets will be called the primal-dual feasible
region.
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Table 1
Choices for the scaling matrix P .

P Reference Abbreviation[
X

1
2

(
X

1
2 SX

1
2

)− 1
2
X

1
2

]− 1
2

Nesterov and Todd [9] NT

X− 1
2 Monteiro [7], Kojima, Shindoh, and Hara [5]; DH..K..M

S
1
2 Monteiro [7], Helmberg et al. [3], Kojima, PH..K..M

Shindoh, and Hara [5];
I Alizadeh, Haeberly, and Overton [1] AHO

and

(X + ∆X) (S + ∆S) = µI,(1)

Tr (Ai∆X) = 0, i = 1, . . . ,m,(2)
m∑
i=1

∆yiAi + ∆S = 0,(3)

(∆X)
T

= ∆X, (∆S)
T

= ∆S.(4)

Note that the requirement ∆ST = ∆S in (4) is redundant, due to the fact that the
matrices Ai in (3) are symmetric. Furthermore, (1) is nonlinear, and primal-dual
methods differ with regard to how it is linearized. Care must be taken to ensure that
the resulting linear system is not overdetermined. Zhang [14] suggested discarding
the symmetry requirements (4) and replacing the nonlinear equation by

HP (XS + ∆XS + X∆S − µI) = 0,

where HP is the linear transformation given by

HP (M) :=
1

2

[
PMP−1 + P−TMTPT

]
for any matrix M and where the scaling matrix P determines the symmetrization
strategy. Some popular choices for P are listed in Table 1. The resulting linear
systems are now solvable (for the AHO direction (P = I) solvability is only guaranteed
if (X,S) lies in a certain neighborhood of the central path), and the solution matrices
∆Xand ∆S are symmetric.

In the recent paper by Kruk et al. [6], the symmetrization operator HP is not
used, and the following least squares problem is solved instead:

min ‖XS + ∆XS + X∆S − µI‖2
(5)

subject to (s.t.)

Tr (Ai∆X) = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0,

∆X = ∆XT ,

where the norm is the Frobenius norm. Note that the symmetry of ∆X is forced. The
authors proved (among other things) the following about the resulting Gauss–Newton
(GN) direction:
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• its existence and uniqueness;
• it reduces to the familiar primal-dual direction in the special case of linear

optimization;
• it coincides with all the other primal-dual directions from Table 1 if the least

squares residual in (5) is zero at optimality.
The new direction we propose can be introduced in a similar way as the GN direction—
as will be shown in the next section—and it shares all the above-mentioned features
of the GN direction. Moreover, it allows a polynomial convergence analysis in the
usual primal-dual algorithmic framework, as will become clear in section 4.

2. The new search direction. Using the well-known NT-scaling (see Table 1),
we now reformulate the system (1)–(3). Defining

D = S− 1
2

(
S

1
2 XS

1
2

) 1
2

S− 1
2 = X

1
2

(
X

1
2 SX

1
2

)− 1
2

X
1
2 ,

one has D−1X = SD. Using this, we introduce

V := D− 1
2 XD− 1

2 = D
1
2 SD

1
2 .

The matrices D and V are symmetric positive definite. We also introduce the scaled
search directions D̂X and D̂S :

D̂X := D− 1
2 ∆XD− 1

2 , D̂S := D
1
2 ∆SD

1
2 .

Finally, scaling the data matrices Ai to

Ãi := D
1
2 AiD

1
2 , 1 ≤ i ≤ m,

the system (1)–(4) can be reformulated as follows:(
V + D̂X

)(
V + D̂S

)
= µI,(6)

Tr
(
ÃiD̂X

)
= 0, i = 1, . . . ,m,(7)

m∑
i=1

∆yiÃi + D̂S = 0,(8)

(
D̂X

)T
= D̂X .(9)

Equation (6) can be rewritten as

V 2 + V D̂S + D̂XV + D̂XD̂S − µI = 0.

Thus the desired scaled displacements are the (unique) solutions of the least squares
problem

min
∥∥∥V 2 + V D̂S + D̂XV + D̂XD̂S − µI

∥∥∥2

,

subject to the constraints (7)–(9), and the optimal value of this problem is zero. We
now omit the nonlinear term D̂XD̂S from the objective function of the least squares
problem. This omission makes it important to specify which norm is used, since the
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optimal solution to our new least squares problem will depend on the norm. The
norm which we choose is the norm induced by the inner product:

〈A,B〉 := Tr
(
V −1AV −1BT

) ∀A ∈ R
n×n, B ∈ R

n×n.

This can also be viewed as the local norm induced by the Hessian of the self-concordant
barrier

f(V ) = − log det(V ),

since the Hessian of f evaluated at V is the linear operator

∇2f(V ) : H �→ V −1HV −1.

Thus we obtain the least squares problem

min
∥∥∥V − 1

2

(
V 2 + V D̂S + D̂XV − µI

)
V − 1

2

∥∥∥2

,

subject to the constraints (7)–(9) and where the norm now indicates the Frobenius
norm. For convenience, we also introduce the notation

U :=
1√
µ
V, DX :=

1√
µ
D̂X , DS :=

1√
µ
D̂S , ∆ỹ :=

1√
µ

∆y.

Using this notation, we can reformulate the above least squares problem as follows:

(LQ)




min f (DX , DS) := 1
2

∥∥∥U + U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 − U−1

∥∥∥2

,

s.t. Tr
(
ÃiDX

)
= 0, i = 1 . . . ,m,

DX
T = DX ,

DS = −
m∑
i=1

∆ỹiÃi.

In what follows we will frequently use the notation

R := U + U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 − U−1.(10)

In other words, f (DX , DS) = 1
2‖R‖2 is the residual of the least squares problem

(LQ). Note that the derivatives of f with respect to DX and DS are, respectively,
given by

∇DX
f(DX , DS) = U− 1

2 RU
1
2 , ∇DS

f(DX , DS) = U
1
2 RU− 1

2 .(11)

Optimality conditions for the least squares problem. We can formulate the
optimality conditions for the least squares problem (LQ) by forming the Lagrangian:

L(DX , DS ,∆ỹ, λ,M1,M2) := f(DX , DS) −
m∑
i=1

λiTr
(
ÃiDX

)
+ Tr

((
DX −DT

X

)
M1

)

+Tr

(
M2

(
DS +

m∑
i=1

∆ỹiÃi

))
,
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where λ ∈ R
m, M1 ∈ R

n×n, and M2 ∈ R
n×n are Lagrange multipliers. Using the

expressions in (11), one can easily rewrite the optimality condition

∇L(DX , DS ,∆ỹ, λ,M1,M2) = 0

as

U− 1
2 RU

1
2 =

m∑
i=1

λiÃi + M,(12)

Tr
(
ÃiU

1
2 RU− 1

2

)
= 0, i = 1, . . . ,m,(13)

Tr
(
ÃiDX

)
= 0, i = 1, . . . ,m,(14)

DX −DT
X = 0,(15)

DS = −
m∑
i=1

∆ỹiÃi,(16)

where M = MT
1 −M1 is a skew-symmetric matrix.

Existence and uniqueness of the new direction. We now state an existence
and uniqueness result for the new search direction.

Theorem 2.1 (existence and uniqueness of the new direction). The problem
(LQ) determines the displacements DX , ∆ỹ, and DS uniquely. Furthermore, one
has DX = 0 and ∆ỹ = 0 (whence DS = 0), if and only if U = I or, equivalently,
XS = µI.

This result can be proved by using the optimality conditions of (LQ). We omit
such a proof here, since the theorem will follow from results in section 5, where we
will explore the relation between the new direction and directions from literature.

3. Estimating the least squares residual. In the analysis of the new search
direction it is essential to show that the residual of the least squares problem, ‖R‖, is
“small enough” at the optimal solution of (LQ) if the current iterate is close enough to
the central path. The residual can be bounded from above in terms of the proximity
to the target point µI, where the proximity is measured by

δ(X,S, µ) :=
1

2

∥∥U − U−1
∥∥ .(17)

Note that δ(X,S, µ) = 0 if and only if XS = µI. In what follows, we will use the
notation δ := δ(X,S, µ) if no confusion is possible.

Let us define DV := DX + DS and QV := DX − DS . Note that ‖DV ‖ = ‖QV ‖.

We can now decompose R := U−1 − U + U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 into a symmetric

and skew-symmetric component, say

R := Rsym + Rskew,

where

Rsym = U−1 − U +
1

2

(
U

1
2 DV U− 1

2 + U− 1
2 DV U

1
2

)
and

Rskew =
1

2

(
U− 1

2 QV U
1
2 − U

1
2 QV U− 1

2

)
.
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By construction, one has

‖R‖2 = ‖Rsym‖2 + ‖Rskew‖2.

The new direction DV ≡ DX + DS is chosen such that ‖R‖ is minimized. In order
to get an upper bound on the value ‖R‖ for the new direction, we can consider the

value of ‖R‖ for a class of search directions where U
1
2 DV U− 1

2 = DV . In this way we
obtain the bound

‖R‖2 ≤ 4δ2+2Tr
(
(U−1 − U)DV

)
+‖DV ‖2+

∥∥∥∥1

2

(
U− 1

2 QV U
1
2 − U

1
2 QV U− 1

2

)∥∥∥∥
2

,(18)

where we have used
∥∥U − U−1

∥∥2
= 4δ2. In order to get an upper bound on ‖Rskew‖2

(the last term in (18)) we use the following lemma.
Lemma 3.1. Suppose that the n× n matrix A is symmetric positive definite and

ξ(A) = Tr
(
A2
)− 2n + Tr

(
A−2

)
. Then for any symmetric matrix Ā, one has

‖AĀA−1 −A−1ĀA‖2 ≤ ξ(A2)

2
‖Ā‖2.

Proof. Since A is symmetric positive definite, we can assume in general that A is
a diagonal matrix with ai > 0 on the ith diagonal position, by taking an orthogonal
transformation if necessary. Denoting Â = AĀA−1 −A−1ĀA, one has

Âii = 0, Âij =

(
ai
aj

− aj
ai

)
Āij (i �= j).

The above relation means that

‖Â‖2≤ max
i,j

(
a2
i

a2
j

− 2 +
a2
j

a2
i

)
‖Ā‖2

≤ 1

2
max
i,j

(
a4
i + a4

j − 4 +
1

a4
i

+
1

a4
j

)
‖Ā‖2

≤ ξ(A2)

2
‖Ā‖2,

where the second inequality can easily be verified by calculus, and the third inequality
follows by noting that

ξ(A2) =

n∑
i=1

(
a4
i +

1

a4
i

− 2

)
.

The lemma implies that

‖Rskew‖2 ≡
∥∥∥∥1

2

(
U− 1

2 QV U
1
2 − U

1
2 QV U− 1

2

)∥∥∥∥
2

≤ 1

8
ξ
(
U−1

) ‖QV ‖2

=
1

2
δ2‖DV ‖2,
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where we have used ‖DV ‖ = ‖QV ‖ and ξ(U−1) = 4δ2. Substituting the bound for
‖Rskew‖ into (18) yields

‖R‖2 ≤ 4δ2 + 2Tr
(
DV (U−1 − U)

)
+

(
1 +

1

2
δ2

)
‖DV ‖2.(19)

The right-hand side is a convex quadratic function of DV and is minimized by

DNT
V = − 1

1 + 1
2δ

2

(
U−1 − U

)
,(20)

which happens to be a damped step along the Nesterov–Todd direction (see, e.g., de
Klerk [2]). Substituting (20) into (19) yields

‖R‖2 ≤ 4δ2 + 2Tr
(
DNT

V (U − U−1)
)

+

(
1 +

1

2
δ2

)
‖DNT

V ‖2

= 4δ2 − 2

1 + 1
2δ

2
(4δ2) +

1

1 + 1
2δ

2
(4δ2)

= 4δ2

(
δ2

2 + δ2

)
.(21)

Let us now suppose that DX , DS are the solutions of (LQ), and denote

RU := U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 .

Our main result in this section can be stated as follows.
Lemma 3.2. Let δ be defined by (17). One has

2δ√
1 + 1

2δ
2
≤ ‖RU‖ ≤ 2δ.(22)

Proof. From the optimality conditions of (LQ) we immediately derive that

Tr
(
RTRU

)
= 0,

by noting that (12), (15), and (14) imply

Tr
(
RTU− 1

2 DXU
1
2

)
= 0

and (13) and (16) imply

Tr
(
RTU

1
2 DSU

− 1
2

)
= 0.

Since R = U−1 − U + RU and R and RU are orthogonal, we have

4δ2 ≡ ∥∥U−1 − U
∥∥2

= ‖R‖2
+ ‖RU‖2 ≤ 4δ2

(
δ2

2 + δ2

)
+ ‖RU‖2

,(23)

where the inequality follows from (21). The equations in (23) together with the
nonnegativity of ‖R‖ imply

4δ2 ≡ ∥∥U−1 − U
∥∥2 ≥ ‖RU‖2

,



878 E. DE KLERK, J. PENG, C. ROOS, AND T. TERLAKY

and the inequality in (23) implies

‖RU‖2 ≥ 4δ2 − 4δ2

(
δ2

2 + δ2

)
= 4δ2

(
2

2 + δ2

)
.

Thus we have shown that

2δ ≥ ‖RU‖ ≥ 2δ√
1 + 1

2δ
2
.(24)

4. Complexity analysis of a primal-dual method. In the present section,
we will first propose a primal-dual path following method based on the new search
direction, and we will subsequently perform a complexity analysis of the algorithm.

Generic primal-dual path following algorithm.
Input

A strictly feasible starting pair (X0, S0), satisfying δ
(
X0, S0, µ0

) ≤ τ.
Parameters

A centering parameter τ > 0;
An accuracy parameter ε > 0;
An updating parameter θ < 1;
An initial centering parameter µ0 > 0.

X := X0; S := S0;
while Tr(XS) > ε do

if δ(X,S, µ) ≤ τ do (outer iteration)
µ := (1 − θ)µ;

else if δ(X,S, µ) > τ do (inner iteration)
Compute ∆X,∆S by solving (LQ);
Find α such that Φ(X,S, µ)−Φ(X +α∆X,S +α∆S, µ) is sufficiently

large;
(A suitable default choice for α is given by (26).)
X := X + α∆X, S := S + α∆S;

end
end

Recall that

Φ(X,S, µ) =
Tr (XS)

µ
− n− log det(XS) + n log µ.

In the update of the iterate, we require that the step length α be chosen such that
the barrier function Φ(X,S, µ) decreases sufficiently. Lemma 4.2 will give a default
value for α.

It is easy to verify that the barrier function can also be rewritten as

f(U) = Φ(X,S, µ) = Tr
(
U2
)− n− log det

(
U2
)
.

Assuming that DX , DS are solutions of (LQ), we want to estimate the decreasing
value of the barrier function, given by

∆Φ(α)= f(U) − (Tr ((U + αDX)(U + αDS)) − n− log det (U + αDX)(U + αDS))

= −αTr (UDS + DXU) + log det (I + αU− 1
2 DXU− 1

2 )(I + αU− 1
2 DSU

− 1
2 ),

where we have used the orthogonality of DX and DS . Now we have the following
general bound on the reduction ∆Φ(α) which holds for any search direction. (For a
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Fig. 1. The graph of ψ.

proof see, e.g., Jiang [4] and Roos, Terlaky, and Vial [10, Lemma II.69] for the linear
optimization case.)

Theorem 4.1. Let (X,S) be a strictly feasible pair and let (DX , DS) be any
feasible solution to problem (LQ); define DV := DX + DS. Then

∆Φ(α) ≥ −αTr (UDV ) + αTr
(
U−1DV

)− ψ(−αh),

where ψ(t) := t− log(1 + t) (see Figure 1), and

h2 = Tr
(
U−1DXU−1DX + U−1DSU

−1DS

)
.

Moreover any value of α satisfying α ≤ 1
h is a feasible step length.

Corollary 4.1. Let (DX , DS) denote the optimal solution of (LQ). One has

∆Φ(α) ≥ α‖RU‖2 − ψ(−αh).

Proof. Using the definition of R in (10) and Tr
(
RTRU

)
= 0 one has

−Tr (UDV )+Tr
(
U−1DV

)
= Tr

(
RT

U

(
U−1 − U

))
= Tr

(
RT

U (RU −R)
)

= ‖RU‖2
.

(25)
The required result now follows from Theorem 4.1.

All that remains is to give an upper bound for the term −ψ(−αh). This can be
done by using the following lemma.

Lemma 4.1. Let (DX , DS) denote the optimal solution of (LQ). One has

h ≤ ρ(δ)‖RU‖,
where ρ(δ) := δ +

√
1 + δ2.

Proof. By definition,

h2 = Tr
(
U−1DXU−1DX + U−1DSU

−1DS

)
= Tr

(
U−2

(
UDXU−1DX + UDSU

−1DS

))
≤ λmax

(
U−2

)
Tr
(
UDXU−1DX + UDSU

−1DS

)
≤ ρ2(δ)Tr

(
UDXU−1DX + UDSU

−1DS

)
= ρ2(δ)‖RU‖2,
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where the last inequality is a result by Jiang [4]. (See Roos, Terlaky, and Vial [10,
Lemma II.60] for the analogous result in the linear optimization case.)

Lemma 4.2. Let (DX , DS) denote the optimal solution of (LQ). One has

∆Φ(ᾱ) ≥ ψ

(‖RU‖
ρ(δ)

)
≥ ψ


 2δ

ρ(δ)
√

1 + 1
2δ

2


 ,

for

ᾱ :=
1

h
− 1

‖RU‖2 + h
.

Proof. From Corollary 4.1 we have

∆Φ(α) ≥ α‖RU‖2 − ψ(−αh)

≡ α‖RU‖2 + αh + log(1 − αh).

The right-hand side of the inequality is maximized by

ᾱ =
1

h
− 1

‖RU‖2 + h
.(26)

This maximizer yields the bound

∆Φ(ᾱ) ≥ ψ

(‖RU‖2

h

)
,

which, by Lemma 4.1, implies

∆Φ(ᾱ) ≥ ψ

(‖RU‖
ρ(δ)

)
.

Finally we use Lemma 3.2 to complete the proof.

Now we show that δ is bounded in terms of the barrier function Φ, and vice versa.
To this end, we use the following lemma which was proved for linear optimization by
Roos, Terlaky, and Vial [10, Lemma II.67]. The extension of the proof to the SDO
case is mechanical and is therefore omitted.

Lemma 4.3. Let δ := δ(X,S;µ) and ρ(δ) := δ +
√

1 + δ2. Then

ψ

(−2δ

ρ(δ)

)
≤ Φ(X,S, µ) ≤ ψ (2δρ(δ)) .

The statement of the lemma is illustrated in Figure 2.

Small update methods. We are now in a position to perform the complexity
analysis for a small update version of the algorithm. To fix our ideas, we choose the
parameters

τ =
1

2
, θ =

1

10
√

n
.



A SCALED GAUSS–NEWTON DIRECTION FOR SDO 881

Fig. 2. Bounds for Φ(X,S, µ).

We assume that at the current iterates (X,S) the proximity measure satisfies δ(X,S, µ) ≤
τ = 1

2 . In this situation, we perform the update µ+ = (1−θ)µ (outer iteration). Anal-
ogously to the linear optimization case, one has (see Lemma IV. 36 in [10])

δ(X,S, µ+) ≤ 2δ + θ
√

n

2
√

1 − θ
≤ 2τ +

√
nθ

2
√

1 − θ
< 0.58.

This also means (by Lemma 4.3) that at the beginning of the inner iterative procedure,
one has

Φ(X,S, µ+) ≤ ψ(2δρ(δ)) ≤ 0.910.

This bound implies that the proximity δ(X,S, µ+) is also bounded from above by a
constant during all inner iterations, by Lemma 4.3 (see Figure 2):

δ ≤ 0.98.

At each inner iteration one has δ ≥ 1
2 , which implies

‖RU‖ ≥ 2δ√
1 + 1

2δ
2

=
1√

1.125
≥ 0.9428

by Lemma 3.2. Lemma 4.2 shows that the reduction of the barrier function is at least

ψ

(‖RU‖
ρ(δ)

)
≥ 0.062.(27)

In order to guarantee that δ(X,S, µ+) ≤ 1
2 at the end of the inner iteration phase,

one must reduce the value of Φ to below 0.344 (see Figure 2). The bound in (27)
implies that, after at most

�(0.910 − 0.344)/0.062� = 10(28)

inner iterations, we have computed a pair (X,S) such that δ(X,S, µ+) ≤ 1
2 . Hence

we have the following complexity bound for the algorithm.
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Theorem 4.2. If τ = 1
2 and θ = 1

10
√
n
, the total number of iterations required by

the primal-dual path following algorithm is no more than⌈
100

√
n log

2.5nµ0

ε

⌉
.

Proof. It can easily be shown that after⌈
1

θ
log

nµ0

ε

⌉
(29)

barrier parameter updates (outer iterations) one has nµ ≤ ε (cf. Lemma II.17 in [10]).
At the end of the inner iterations with respect to µ one has computed a pair

(X,S) such that δ(X,S, µ) ≤ 1
2 . Using the definition of δ, it is trivial to show that

this implies

Tr (XS) ≤ 2.5nµ,

and consequently Tr (XS) ≤ 2.5ε.
Replacing ε by ε/2.5 and multiplying the number of outer iterations in (29) by

the bound (28) yields the theorem.
Remark 4.1. We have only analyzed one special small update algorithm, but one

can easily derive similar results for any fixed τ > 0 and θ of the order O( 1√
n

).

5. Relation to other search directions. In this section we show that the
scaled Gauss–Newton (SGN) direction introduced in this paper is closely related to
the primal and dual H..K..M directions (see Table 1). In particular, the ∆X part of
the SGN direction is simply the ∆X part of the dual H..K..M direction, while the ∆S
part of the SGN direction is the same as the ∆S part of the primal H..K..M direction.
Note that this relationship implies Theorem 2.1.

The key in proving this is to decompose problem (LQ) into two independent
subproblems. To this end, recall that for all feasible DX and DS , it holds that
Tr (DXDS) = 0. Using this fact, we can rewrite the objective of problem (LQ) as

∥∥∥U + U
1
2 DSU

− 1
2 − U−1

∥∥∥2

+
∥∥∥U + U− 1

2 DXU
1
2 − U−1

∥∥∥2

− ∥∥U − U−1
∥∥2

.(30)

Omitting the last (constant) term in the last expression, we can separate problem
(LQ) into two subproblems,

(SGN1) min
DX

∥∥∥U + U− 1
2 DXU

1
2 − U−1

∥∥∥2

,

Tr
(
ÃiDX

)
= 0, DX = DT

X ;

and

(SGN2) min
DS

∥∥∥U + U
1
2 DSU

− 1
2 − U−1

∥∥∥2

,

DS = −
m∑
i=1

∆yiÃi.
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To compute the SGN direction, one can solve the two independent subproblems
(SGN1) and (SGN2). Now let us recall the definition of the primal H..K..M direction.
As observed by Monteiro (see Lemma 2.1 in [7] and Kojima, Shindoh, and Hara [5]),
the primal H..K..M direction is the unique solution of the following linear system:

XS + X∆S + (∆X + W )S = µI,

Tr(Ai∆X) = 0; i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0, W + WT = 0, ∆X = ∆XT .

Premultiplying the first equation in the above system by D−1/2 and postmultiplying
by D1/2, and then dividing by µ, we can rewrite the above system in the scaled space
as

U2 + UDS + (DX + W̃ )U = I,

Tr
(
ÃiDX

)
= 0, i = 1, . . . ,m,(31)

m∑
i=1

∆ỹiÃi + DS = 0, W̃ + W̃T = 0, DX = DT
X ,(32)

where W̃ = 1
µD− 1

2 WD− 1
2 is skew symmetric and ∆ỹi = 1

µ∆yi as before. Again by

pre- and postmultiplying the first equation by U−1/2 we obtain

U − U−1 + U
1
2 DSU

− 1
2 + U− 1

2 (DX + W̃ )U
1
2 = 0.(33)

Now we state our main result in this section.
Proposition 5.1. Suppose that ∆S∗ is the solution of the primal H..K..M di-

rection. Then D∗
S = 1

µD
1
2 ∆S∗D

1
2 is the unique solution of the problem (SGN2).

Proof. The KKT system for problem (SGN2) can easily be written in the form
(33), (31), and (32).

We can approach the solution of problem (SGN1) in exactly the same way, by
observing that the dual H..K..M direction is the unique solution of the following
problem (see [5]):

XS + X(∆S + W ) + ∆XS = µI,
Tr(Ai∆X) = 0, i = 1, . . . ,m,∑m

i=1 ∆yiAi + ∆S = 0,
∆X = ∆XT , W + WT = 0.

(34)

In the same way as before, one can now prove the following.
Proposition 5.2. Suppose that ∆X∗ is the solution of the dual H..K..M direc-

tions. Then

D∗
X =

1

µ
D− 1

2 ∆X∗D− 1
2

is the unique solution of the problem (SGN1).
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Table 2
Average number of iterations for the SDTP3 algorithm IPF using various search directions.

Test set AHO PH..K..M NT GT SGN DH..K..M
1: Random SDP
n = m = 50

16.2 19.3 17.7 16.6 17.9 16.8

2: Norm min. problem
n = 100,m = 26

18.9 21.3 20.4 19.9 21.1 19.5

3: Cheby. approx. in R
n×n

n = 100,m = 26
16.6 19.6 17.6 16.9 19.0 17.0

4: Max-cut
n = m = 50

15.4 17.7 16.1 16.0 18.4 15.7

5: ETP
n = 100,m = 50

29.5 34.0 31.2 30.7 32.1 30.4

6: Lovász θ function
n = 30,m = 220

20.2 23.1 21.5 20.8 22.7 21.8

7: Log. Cheby. prob.
n = 300,m = 51

21.5 22.7 22.6 21.1 23.8 21.2

8: Cheby. approx. on C 16.1 16.6 16.3 16.1 19.0 16.1

Remark 5.1. The relation between the SGN direction and the H..K..M directions
implies that the SGN direction shares the same scale-invariance properties as the
H..K..M directions; see, e.g., [11] for the definition of scale-invariance.

In the appendix to this paper we show how the SGN direction can be computed
via the solution of the primal and dual H..K..M directions. In particular, we show
there that the computational complexity of the SGN direction is upper bounded by

2mn3 + m2n2 +
2

3
m3 + O

(
n3 + mn2 + m2n

)
flops.2 In comparison, one has the bound

2

3
mn3 +

1

2
m2n2 +

1

3
m3 + O

(
n3 + mn2 + m2n

)
flops for the NT direction, and

3
2

3
mn3 + m2n2 +

2

3
m3 + O

(
n3 + mn2 + m2n

)
flops for the AHO direction [8].

6. Numerical results. We have implemented two algorithms based on the SGN
direction and the dual H..K..M direction by changing the main subroutine of SDPT3
(SDP.m in version 1.3) slightly to admit these two additional search directions. The
algorithm we tested is the infeasible path following algorithm without second-order
corrector (Algorithm IPF in [13]). Tables 2, 3, and 4 show the performance of this
algorithm for various search directions. The test problems are taken from [13], and
each test set consists of ten random instances generated by the subroutines in SDPT3.
The convergence criterion was to reduce the initial duality gap by a factor of 1010.

The tables show that the algorithm based on the SGN and the dual H..K..M
directions are comparable to other search directions with respect to the number of
iterations. As for the required CPU time, the SGN direction requires slightly less

2We follow the convention in, e.g., [8] that one flop is any floating point operation, i.e., addition
and multiplication of two floating point numbers both constitute one flop.
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Table 3
Average running time of the algorithms.

Test set AHO PH..K..M NT GT SGN DH..K..M
1 32.4 19.4 19.6 23.4 26.8 21.6
2 78.3 42.0 46.3 58.4 72.2 60.6
3 65.0 37.1 38.1 47.3 61.1 50.2
4 20.3 10.7 9.3 13.2 19.7 13.3
5 49.0 26.8 23.5 32.3 38.2 28.3
6 111.0 48.6 40.1 59.1 107.6 68.9
7 45.5 22.7 26.9 34.2 39.5 28.1
8 28.3 14.6 18.1 22.5 29.4 20.7

Table 4
Average absolute value of the logarithm of the duality gap at termination, i.e., | log10 Tr(XS)|

where (X,S) are the final iterates.

Test set AHO PH..K..M NT GT SGN DH..K..M
1 9.4 7.8 7.0 9.1 7.1 6.8
2 12.4 9.5 8.5 12.1 9.1 8.8
3 13.4 10.8 9.4 13.2 9.8 9.6
4 10.9 8.8 7.8 10.6 8.2 7.8
5 7.8 7.0 6.6 8.6 6.4 6.8
6 11.7 9.9 9.3 10.7 9.5 9.2
7 10.8 10.9 10.9 10.9 10.8 10.7
8 13.1 10.4 10.5 13.1 10.9 10.4

than the AHO direction and the dual H..K..M direction less than GT direction. As
for the accuracy, both methods are comparable to the primal H..K..M and NT direc-
tions. Overall, the performance of the SGN method is somewhat disappointing. In
particular, the method does not require fewer iterations than the related primal or
dual H..K..M directions in general, even though it is more expensive to compute.

Note, however, that we used the default setting for all parameters in the SDPT3
algorithm IPF; it is reasonable to expect that the iteration count of the algorithms
based on the SGN and dual H..K..M directions can be improved by implementing a
different line search strategy. Also, the test problems used here are of moderate size.
These computational results are therefore of a preliminary nature.

7. Conclusions. We have presented a primal-dual SGN direction for semidef-
inite optimization which allows polynomial worst-case iteration complexity analysis.
This analysis was inspired by the Gauss–Newton direction of Kruk et al. [6], but the
new direction seems much more amenable to complexity analysis, due to the use of
scaling and a local norm in the definition of the least squares problem. In particu-
lar, the usual O(

√
n) iteration complexity was derived in this paper for the standard

small update (short step) primal-dual path following algorithm. The complexity for
methods using larger updates remains a topic for future research.

The new direction is closely related to the primal and dual H..K..M directions—
it uses the ∆X part of the dual H..K..M direction and the ∆S part of the primal
H..K..M direction. As a by-product, we have shown how the dual H..K..M direction
can be computed at a cost of at most

2mn3 +
1

2
m2n2 +

1

3
m3 + O

(
n3 + mn2 + m2n

)
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flops, and the SGN direction can subsequently be computed at a total cost of at most

2mn3 + m2n2 +
2

3
m3 + O

(
n3 + mn2 + m2n

)
flops.

A preliminary numerical evaluation of the performance of the SGN search direc-
tion is somewhat disappointing. The implementation was done using the infeasible
path following algorithm in the Matlab code SDPT3. Since we used the default pa-
rameter settings for the step lengths and barrier parameter updates in SDTP3, we
hope that these results can be improved by finding more suitable (dynamic) parameter
settings for the new direction. This is a subject for future research.

Appendix. Computation of the SGN direction. In this appendix, we con-
sider how to compute the SGN direction by first computing the dual H..K..M direction.
To this end, we rewrite the linear system (34) (which yields the dual H..K..M direc-
tion) by using the Cholesky decompositions X = LT

XLX and S = LT
SLS as follows:

LXLT
S + LX(∆S + W )L−1

S + L−T
X ∆XLT

S = µL−T
X L−1

S ,

Tr(Ai∆X) = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0,

∆X = ∆XT , W + WT = 0.

We wish to solve problem SGN1 which is equivalent to solving

min
∆X

∥∥LXLT
S + L−T

X ∆XLT
S − µL−T

X L−1
S

∥∥2
(35)

subject to

Tr(Ai∆X) = 0, i = 1, . . . ,m, ∆X = ∆XT .

We now perform a singular value decomposition of LXLT
S or an eigenvalue decompo-

sition of LXSLT
X to obtain

QTLXSLT
XQ = Λ,

where Λ is a positive definite diagonal matrix and Q an orthonormal matrix. By
defining

∆X̄ = QTL−T
X ∆XL−1

X Q, Āi = QTLXAiL
T
XQ, i = 1, . . . ,m,

we can rewrite problem (35) as{
min∆X̄

∥∥Λ1/2 + ∆X̄Λ1/2 − µΛ−1/2
∥∥2

,
Tr
(
Āi∆X̄

)
= 0, i = 1, . . . ,m, ∆X̄ = ∆X̄T ,

(36)

which is the same as{
min∆X̄

1
2

∥∥Λ1/2 + ∆X̄Λ1/2 − µΛ−1/2
∥∥2

+ 1
2

∥∥Λ1/2 + Λ1/2∆X̄ − µΛ−1/2
∥∥2

,

Tr
(
Āi∆X̄

)
= 0, i = 1, . . . ,m, ∆X̄ = ∆X̄T .

(37)

since ‖A‖ =
∥∥AT

∥∥.
In what follows, we will use this notation:
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• svec (X) :=
(
X11,

√
2X12, . . .

√
2X1n, X22,

√
2X23, . . . , Xnn

)T ∀ X =
XT ;

• The symmetric Kronecker productG⊗sK of G,K ∈ R
n×n is implicitly defined

by

(G⊗s K) svec (H) :=
1

2
svec

(
KHGT + GHKT

) ∀ H = HT .

Now let

GT = (svec
(
Ā1

)
, . . . , svec

(
Ām

)
), dx = svec

(
∆X̄

)
.

(38)

The KKT system of (37) takes the form{ Edx + GT v = −svec (Λ − µIn) ,
Gdx = 0,

(39)

where E = Λ ⊗s In and v is a variable vector in the suitable space. Premultiplying
the first equation in (39) by GE−1, we obtain a linear system in R

m such that

GE−1GT v = −GE−1svec (Λ − µIn) .(40)

Note that E = Λ ⊗s In is a diagonal matrix (see, e.g., the appendix in [12]).
To compute the dual H..K..M direction, we therefore need only solve the system

(40) first and then compute ∆X,∆S subsequently. In particular, ∆y of the dual
H..K..M direction is immediately available from the solution of (40).

Proposition 7.1. Suppose that ∆X,∆S are solutions of the dual H..K..M.
direction and that

∆S = −
m∑
i=1

∆yiAi.

Then ∆y = −v where v is the solution of the problem (40).
The proof of this proposition is straightforward and therefore omitted.
We can summarize the sequence of steps for the computation of the dual H..K..M

direction as follows:
1. Compute G by computing Āi for i = 1, . . . ,m. Since all Āi are symmetric,

the computation of all Āi requires at most 2mn3 + O
(
n3
)

flops (see Lemma
A.10 in [8]);

2. compute E−1GT at a cost of O(mn2) flops;
3. form the Schur matrix GE−1GT ( 1

2m
2n2 flops);

4. solve the linear system (40) ( 1
3m

3 flops).
Hence the total computation complexity for the dual H..K..M direction is upper
bounded by 2mn3 + 1

2m
2n2 + 1

3m
3 + O

(
n3 + n2m + nm2

)
flops.

Now recall that the SGN direction uses the ∆S part of the primal H..K..M
direction. It is easy to show that the Schur matrix for the primal H..K..M di-
rection has entries Tr

(
ĀiΛ

−1Āj

)
(i, j = 1, . . . ,m). We can therefore utilize the

fact that G had already been computed when we formed the primal H..K..M Schur
matrix. In other words, we only have to perform the analogous steps to steps 3
and 4 above. Hence, the total computational complexity for the SGN direction is
2mn3 + m2n2 + 2

3m
3 + O

(
n3 + n2m + nm2

)
flops.
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