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ON THE CONVERGENCE OF THE CENTRAL PATH IN
SEMIDEFINITE OPTIMIZATION∗

M. HALICKÁ† , E. DE KLERK‡ , AND C. ROOS§

SIAM J. OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 1090–1099

Abstract. The central path in linear optimization always converges to the analytic center of the
optimal set. This result was extended to semidefinite optimization in [D. Goldfarb and K. Scheinberg,
SIAM J. Optim., 8 (1998), pp. 871–886]. In this paper we show that this latter result is not correct
in the absence of strict complementarity. We provide a counterexample, where the central path
converges to a different optimal solution. This unexpected result raises many questions. We also
give a short proof that the central path always converges in semidefinite optimization by using ideas
from algebraic geometry.

Key words. semidefinite optimization, linear optimization, interior point method, central path,
analytic center
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1. Introduction. The central path is of fundamental importance in the study
of interior point algorithms. The geometric view of the central path is that of an
analytic curve which converges to an optimal solution. Most interior point methods
“follow” the central path approximately to reach the optimal set. In this paper we will
re-examine the convergence property of the central path for semidefinite optimization
(SDO). We will show that the characterization of the limit point of the central path
as found in [1] is not correct in the absence of strict complementarity. This negative
result raises the question of whether the central path always converges. Since there
does not seem to be any simple proof of the convergence property in the literature,
we include a complete proof as an appendix to this paper.

We first formulate SDO problems in standard form and recall the definition of
the central path and some of its properties.

1.1. The central path in SDO. By Sn we denote the space of all real sym-
metric n× n matrices, and for any M,N ∈ Sn we define

M •N = trace(MN) =
∑
i,j

mijnij .

The convex cones of symmetric positive semidefinite matrices and positive definite
matrices will be denoted by Sn

+ and Sn
++, respectively; X � 0 and X � 0 mean that

a symmetric matrix X is positive semidefinite and positive definite, respectively.
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We will consider the following primal-dual pair of semidefinite programs in the
standard form:

(P) min
X∈Sn

{C •X : Ai •X = bi (i = 1, . . . ,m) X � 0} ,

(D) max
y∈Rm,S∈Sn

{
bT y :

m∑
i=1

Aiyi + S = C, S � 0

}
,

where Ai ∈ Sn (i = 1, . . . ,m) and C ∈ Sn, b ∈ R
m. We assume that Ai (i = 1, . . . ,m)

are linearly independent. The solutions X and (y, S) will be referred to as feasible
solutions if they satisfy the primal and dual constraints, respectively.

We assume that both (P) and (D) satisfy the interior point condition; i.e., there
exists (X0, S0, y0) such that

Ai •X0 = bi (i = 1, . . . ,m), X0 � 0, and

m∑
i=1

Aiy
0
i + S

0 = C, S0 � 0.

The primal and dual feasible sets will be denoted by P and D, respectively, and
P∗ and D∗ will denote the respective optimal sets. It is well known that under our
assumptions both P∗ and D∗ are nonempty and bounded. The optimality conditions
for (P) and (D) are

Ai •X = bi, X � 0 (i = 1, . . . ,m),∑m
i=1Aiyi + S = C, S � 0,

XS = 0.

(1)

A strictly complementary solution can be defined as an optimal solution pair
(X,S) satisfying the rank condition: rank X + rank S = n. Contrary to linear
optimization (LO), for SDO the existence of the strictly complementary solution is
not generally ensured.

We now relax the optimality conditions (1) to

Ai •X = bi, X � 0 (i = 1, . . . ,m),∑m
i=1Aiyi + S = C, S � 0,

XS = µI,

(2)

where I is the identity matrix and µ ≥ 0. It is easy to see that for µ = 0 (2) gives
(1), and hence it may have more than one solution. On the other hand, it is well
known that for µ > 0 system (2) has a unique solution, denoted by (X(µ), S(µ), y(µ))
(see, e.g., [6]). As for LO, this solution is seen as the parametric representation of an
analytic curve (the central path) in terms of the parameter µ > 0.

It has been shown that the central path for SDO shares many properties with
the central path for LO. First, the basic property was established that the central
path restricted to 0 < µ ≤ µ̄ for some µ̄ > 0 is bounded, and thus it has limit points
as µ ↓ 0 in the optimal set [9], [5]. Then it was shown that the limit points are in
the relative interior of the optimal set [5], [1]. Finally, it was claimed by Goldfarb
and Scheinberg [1] that the central path converges for µ ↓ 0 to the so-called analytic
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center of the optimal solution set. Although this result has been widely cited in the
recent literature, we will show in this paper that it is not correct in the absence of
strict complementarity. Let us mention that the correct proofs of this fact—however,
only under the assumption of strict complementarity—were given in [9] and later in
[4].

Since the central path does not converge to the analytic center in general, it is
natural to ask whether it always converges. The convergence property seems to be
a “folkloric” result that is already mentioned on page 74 of the review paper [10]
(without supplying references or a proof). In [7] the convergence of the central path
for the linear complementarity problem (LCP) is proven with the help of some results
from algebraic geometry. In [6], Kojima, Shindoh, and Hara mention that this proof
for LCP can be extended to the monotone semidefinite complementarity problem
(which is equivalent to SDO) without giving a formal proof. A more general result
was shown in [2], where convergence is proven for a class of convex SDO problems
that includes SDO.

We include a complete convergence proof in an appendix to this paper, which also
uses some ideas from the theory of algebraic sets, but in a different manner from [7].
It is also much shorter, and requires fewer auxiliary results, than the proof in [2].

1.2. Analytic center of the optimal solution set. A pair of optimal solutions
(X,S) ∈ P∗ × D∗ is called a maximally complementary solution pair to the pair of
problems (P) and (D) if it maximizes rank (X)+rank (S) over all optimal solution
pairs. The set of maximally complementary solutions coincides with the relative
interior of (P∗ ×D∗). Another characterization is as follows: (X̄, S̄) ∈ P∗ × D∗ is
maximally complementary if and only if

R(X̂) ⊆ R(X̄) ∀X̂ ∈ P∗, R(Ŝ) ⊆ R(S̄) ∀Ŝ ∈ D∗,

where R denotes the range space. For proofs of these characterizations see [5] and [1]
and the references therein.

Let X̄ and S̄ be a pair of maximally complementary optimal solutions. Denote

|B| := rank X̄, and |N | := rank S̄.

Obviously, |B|+ |N | ≤ n. Without loss of generality (applying an orthonormal trans-
formation of problem data, if necessary) we can assume that

X̄ =



X̄B 0 0

0 0 0

0 0 0


 , S̄ =




0̄ 0 0

0 S̄N 0

0 0 0


 ,

where X̄B ∈ S|B|
++ and S̄N ∈ S|N |

++. Therefore, each optimal solution pair (X̂, Ŝ) is of
the form

X̂ =



X̂B 0 0

0 0 0

0 0 0


 , Ŝ =




0̂ 0 0

0 ŜN 0

0 0 0


 ,

where X̂B ∈ S|B|
+ and ŜN ∈ S|N |

+ , since R(X̂) ⊆ R(X̄) and R(Ŝ) ⊆ R(S̄).
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In what follows we consider the partition of any M ∈ Sn corresponding to the
above optimal partition so that

M =



MB MBN MBT

MNB MN MNT

MTB MTN MT


 .

We denote by I = {B,BN,BT,NB,N,NT, TB, TN, T} the index set corre-
sponding to the optimal partition. If we refer to all the blocks of M except MB , we
will write M i (i ∈ I −B).

Now, the optimal solutions sets can be characterized by using the block partition:

P∗ =
{
X : AB

i •XB = bi ( i = 1, . . . , n), XB ∈ S|B|
+ , Xk = 0 (k ∈ I −B)

}
,

D∗ =

{
(S, y) :

m∑
i=1

AN
i yi + S

N = CN , SN ∈ S|N |
+ ,

m∑
i=1

Ak
i yi = C

k, Sk = 0 (k ∈ I −N)

}
.

The analytic centers of these sets are defined as follows: Xa ∈ P∗ is the analytic
center of P∗ if

(Xa)
B
= arg max

XB∈S
|B|
++

{
ln detXB : AB

i •XB = bi, i = 1, . . . ,m
}
,

and (ya, Sa) ∈ D∗ is the analytic center of D∗ if

(
ya, (Sa)

N
)
= arg max

y∈Rm,SN∈S
|N|
++

{
ln detSN :

m∑
i=1

AN
i yi + S

N = CN ,

m∑
i=1

Ak
i yi = C

k, k ∈ I −N
}
.

We end this section with two known results about the central path.
Lemma 1.1 (see [5]). Any limit point (X∗, S∗) of the central path is a maximally

complementary optimal solution; i.e., it satisfies

X∗B � 0 and S∗N � 0.

Lemma 1.2 (see, e.g., [3, Lemma 2.3.2]). For any µ > 0 the central path
X(µ), S(µ), y(µ) is the analytic center of the level set of the duality gap{

(X,S, y) : Ai •X = bi (i = 1, . . . ,m),

m∑
i=1

Aiyi + S = C,

C •X − bT y = µn, X ∈ Sn
+, S ∈ Sn

+

}
.
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As a corollary we see that the primal µ-center X(µ) is the analytic center of the
set

{X : C •X = C •X(µ), Ai •X = bi (i = 1, . . . ,m), X � 0} .
We will use this observation in the next section.

The last two lemmas make it plausible that the central path converges to the
analytic center of the optimal set, but in the next section we show that this is not
true.

2. Counterexamples. Let n = 4, m = 4, b = [1 0 0 0]T , and

C =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 , A1 =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 ,

A2 =




0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


 , A3 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 , A4 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


 .

The primal problem (P) can be simplified to the following: Minimize x44 such that

X =




1− x22 x12 x13 x14

x12 x22 − 1
2x44 − 1

2x33

x13 − 1
2x44 x33 0

x14 − 1
2x33 0 x44


 � 0.

The optimal set of (P) is given by all the positive semidefinite matrices of the
form

X∗ =




1− x22 x12 0 0

x12 x22 0 0

0 0 0 0

0 0 0 0


 .(3)

Solutions of the form X∗ are clearly optimal, since C � 0 and therefore Tr (CX) ≥ 0
∀X ∈ P.

The dual problem is to maximize y1 such that

S =




−y1 0 0 0

0 −y1 −y3 −y2
0 −y3 −y2 −y4
0 −y2 −y4 1− y3


 � 0.
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Thus the dual problem has a unique optimal solution

y∗i = 0 (i = 1, 2, 3, 4), S∗ =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 .(4)

It is also easy to see from (3) and (4) that strict complementary does not hold. The
central path is well defined for this example, since the matrices A1, . . . , A4 are clearly
linearly independent and strictly feasible solutions exist for both the primal and the
dual problem. Indeed,

x22 =
1

2
, x33 = x44 =

1

4
, xij = 0 (i �= j)

defines a positive definite feasible solution for (P), and y1 = −1, y2 = − 1
2 , and

y3 = y4 = 0 defines a strictly feasible solution of (D).
The analytic center of P∗ is obviously given by



1
2 0 0 0

0 1
2 0 0

0 0 0 0

0 0 0 0


 .

However, we will show that the limit point of the primal central path satisfies

X(µ) →




0.4 0 0 0

0 0.6 0 0

0 0 0 0

0 0 0 0


 as µ ↓ 0.

Due to the structure of feasible S ∈ D and the fact that X(µ) = µS(µ)−1, the
primal central path has the following structure:

X(µ) =




1− x22(µ) 0 0 0

0 x22(µ) − 1
2x44(µ) − 1

2x33(µ)

0 − 1
2x44(µ) x33(µ) 0

0 − 1
2x33(µ) 0 x44(µ)


 .

By Lemma 1.2, the point on the central path X(µ) is, for any µ > 0, the analytic
center of a level set. The level set is given by the primal feasibility and a level
condition, which is x44 = x44(µ) > 0 in our case. This implies that X(µ) maximizes

det




1− x22 0 0 0

0 x22 − 1
2x44(µ) − 1

2x33

0 − 1
2x44(µ) x33 0

0 − 1
2x33 0 x44(µ)


(5)
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under the conditions

x22 ∈ (0, 1), x33 > 0, x22x33x44(µ)− x
3
33 + x

3
44(µ)

4
> 0.

Setting the gradient (with respect to x22 and x33) of the determinant in (5) to
zero, we obtain the two equations

x33(µ)x44(µ)− 2x22(µ)x33(µ)x44(µ) +
1

4
x44(µ)

3 +
1

4
x33(µ)

3 = 0,(6)

(1− x22(µ))

(
x22(µ)x44(µ)− 3

4
x33(µ)

2

)
= 0.(7)

Using x22(µ) ∈ (0, 1), we deduce from (7) that

x33(µ) =
2√
3

√
x22(µ)x44(µ).

Substituting this expression in (6) and simplifying, we obtain

2√
3

√
x22(µ)− 10

3
√
3
x22(µ)

3/2 +
1

4
x44(µ)

3/2 = 0.

In the limit where µ ↓ 0, we have x44(µ) → 0. Moreover, we can assume that
x22(µ) is positive in the limit, since the limit point of the central path is maximally
complementary (Lemma 1.1). Denoting limµ↓0 x22(µ) := x22(0) > 0, we have

2√
3

√
x22(0)− 10

3
√
3
x22(0)

3/2 = 0,

which implies x22(0) = 0.6.

An example for the second order cone. The following example shows that
the central path may already fail to converge to the analytic center of the optimal set
in the special case of second order cone optimization.

Consider the problem of minimizing x12 subject to


x11 x12 0 0 0

x12 x22 0 0 0

0 0 x33 x22 0

0 0 x22 x12 0

0 0 0 0 1− (x11 + x33)



� 0.

Note that this problem is equivalent to a second order cone optimization problem:
the semidefiniteness constraint is on a block-diagonal matrix with all blocks of size
1× 1 or 2× 2; it is also easy to check that the notions of analytic center and central
path coincide whether the example is viewed as an SDO or as a second order cone
problem.

The optimal set is given by all matrices of the above form where x12 = x22 = 0,
and the analytic center of the optimal set is given by the optimal solution where
x11 = x33 =

1
3 .

Using exactly the same technique as in the previous example, one can show that
the limit point for the central path is x11 = 2/7, x33 = 3/7. However, the proof is
more technical for this example due to the larger number of variables, and is therefore
omitted.
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3. Conclusions and future work. The purpose of this paper was twofold:
• to show that the central path in SDO may converge to an optimal solution
which is not the analytic center of the optimal set (in the absence of strict
complementarity);

• to give a simplified yet rigorous proof that the central path always converges
for SDO.

The first result raises some questions:
• Can we give a “geometrical” characterization of the limit point of the central
path?

• For which subclasses of SDO problems can one guarantee convergence of the
central path to the analytic center of the optimal set?

We therefore hope that the observations in this paper will lead to a renewed interest
in the limiting behavior of the central path in SDO.

Appendix. Convergence proof for the central path. In this appendix we
give a proof of the convergence of the central path for SDO by using a result from
algebraic geometry.

Definition A.1 (algebraic set). A subset V ∈ Rk is called an algebraic set if V
is the locus of common zeros of some collection of polynomial functions on R

k.
Lemma A.2 (curve selection lemma). Let V ⊂ R

k be a real algebraic set, and let
U ⊂ R

k be an open set defined by finitely many polynomial inequalities:

U =
{
x ∈ R

k : g1(x) > 0, . . . , gl(x) > 0
}
.

If U ∩ V contains points arbitrarily close to the origin, then there exists an ε > 0 and
a real analytic curve

p : [0, ε) �→ R
k

with p(0) = 0 and with p(t) ∈ U ∩ V for t > 0.
A proof of the curve selection lemma is given in [8, Lemma 3.1, p. 25].
Theorem A.3. The central path in semidefinite optimization always converges.
Proof. Let (X∗, y∗, S∗) be any limit point of the central path of (P) and (D).
With reference to Lemma A.2, let the real algebraic set V be defined via

V =


(X̄, S̄, ȳ, µ)

∣∣∣∣∣∣∣∣
Ai • X̄ = 0 (i = 1, . . . ,m),∑

i(ȳi)Ai + S̄ = 0,

(X̄ +X∗)(S̄ + S∗)− µI = 0,




and let the open set U be defined as the set of all (X̄, S̄, ȳ, µ) such that all principal
minors of (X̄ +X∗) and (S̄ + S∗) are positive and µ > 0.

Now V ∩U corresponds to the central path excluding its limit points, in the sense
that if (X̄, S̄, ȳ, µ) ∈ U ∩V then X(µ) = (X̄ +X∗) and S(µ) = (S̄+S∗), where X(µ)
(respectively, S(µ)) denotes the µ-center of (P ) (respectively, (D)) as before.

Moreover, the zero element is in the closure of V ∩ U , by construction.
The required result now follows from the curve selection lemma. To see this,

note that Lemma A.2 implies the existence of an ε > 0 and an analytic function
p : [0, ε) �→ Sn × Sn × R

m × R such that

p(t) =
(
X̄(t), S̄(t), ȳ(t), µ(t)

) → (0n×n, 0n×n, 0m, 0) as t ↓ 0,(8)
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and if t > 0,
(
X̄(t), S̄(t), ȳ(t), µ(t)

) ∈ U ∩ V , i.e.,

Ai • X̄(t) = 0 (i = 1, . . . ,m),∑
i ȳi(t)Ai + S̄(t) = 0,

(X̄(t) +X∗)(S̄(t) + S∗)− µ(t)I = 0,

(9)

and X̄(t) � 0, S̄(t) � 0, µ(t) > 0.
Since the centrality system (2) has a unique solution, the system (9) also has a

unique solution given by

X̄(t) +X∗ = X(µ(t)), S̄(t) + S∗ = S(µ(t))

if t > 0. By (8), we therefore have

lim
t↓0
X(µ(t)) = X∗, lim

t↓0
S(µ(t)) = S∗, lim

t↓0
µ(t) = 0.

Since µ(t) > 0 on (0, ε), µ(0) = 0, and µ is analytic on [0, ε), there exists an interval,

say (0, ε′), where dµ(t)
dt > 0. Therefore the inverse function µ−1 : µ(t) �→ t exists on

the interval (0, µ(ε′)). Moreover, µ−1(t) > 0 ∀ t ∈ (0, µ(ε′)) and limt↓0 µ−1(t) = 0.
This implies that

lim
t↓0
X(t) = lim

t↓0
X(µ(µ−1(t))) = lim

t↓0
X̄(µ−1(t)) +X∗ = X∗.

Similarly, limt↓0 S(t) = S∗, which completes the proof.
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