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Abstract

We consider semidefinite programming relaxations of the quadratic assign-
ment problem, and show how to exploit group symmetry in the problem data.
Thus we are able to compute the best known lower bounds for several instances
of quadratic assignment problems from the problem library: [R.E. Burkard, S.E.
Karisch, F. Rendl. QAPLIB — a quadratic assignment problem library. Journal

on Global Optimization, 10: 291–403, 1997].

Keywords: quadratic assignment problem, semidefinite programming, group sym-
metry

AMS classification: 90C22, 20Cxx, 70-08
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1 Introduction

We study the quadratic assignment problem (QAP) in the following form:

min
X∈Πn

trace(AXBXT )

where A and B are given symmetric n × n matrices, and Πn is the set of n × n
permutation matrices.

It is well-known that the QAP contains the traveling salesman problem as a special
case and is therefore NP-hard in the strong sense. Moreover, experience has shown
that instances with n = 30 are already very hard to solve in practice. Thus it is
typically necessary to use massive parallel computing to solve even moderately sized
QAP instances; see [2].

∗Department of Econometrics and OR, Tilburg University, The Netherlands. e.deklerk@uvt.nl
†Department of Econometrics and OR, Tilburg University, The Netherlands. r.sotirov@uvt.nl
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For a detailed survey on recent developments surrounding the QAP problem, see
Anstreicher [1], and the references therein.

The successful computational work in [2] employed convex relaxation of the QAP
in a branch and bound setting. One class of convex relaxations that has been sug-
gested for the QAP is via semidefinite programming (SDP); see [26, 18]. These SDP
relaxations turn out to be quite strong in practice, but involve matrix variables of
size n4, and are therefore hard to solve by interior point algorithms.

This has led to the application of bundle methods [18] and augmented Lagrangian
methods [4] to certain SDP relaxations of the QAP. Concerning one SDP relaxation
(that we will consider in this paper), the authors of [18] write that ‘... the relaxation
... cannot be solved straightforward[ly] by interior point methods for interesting
instances (n ≥ 15).’

This statement is undoubtedly true in general, but we will show that if the QAP
data matrices have sufficiently large automorphism groups, one may solve such SDP
relaxations by interior point methods, sometimes for values as large as n = 64. We
will also show that several instances in the QAP library [6] involve matrices with large
automorphism groups. (This fact has already been exploited in a branch and bound
framework to reduce the size of the branching tree; see [1], §4, but not in the context
of solving SDP relaxations.)

As a result we are able to compute the best known lower bounds on the opti-
mal values of real-world instances by Eschermann and Wunderlich [5] from the QAP
library; these instances stem from an application in computer science, namely the
testing of self-testable sequential circuits, where the amount of additional hardware
for the testing should be minimized.

Our work is in the spirit of work by Schrijver [19], Gatermann and Parrilo [10], De
Klerk et al. [7], De Klerk, Pasechnik and Schrijver [8], and others, who have shown
how ‘group symmetric’ SDP problems may be reduced in size using representation
theory.

Notation

The space of p × q real matrices is denoted by R
p×q, the space of k × k symmetric

matrices is denoted by Sk, and the space of k × k symmetric positive semidefinite
matrices by S+

k . We will sometimes also use the notation X � 0 instead of X ∈ S+
k ,

if the order of the matrix is clear from the context.
We use In to denote the identity matrix of order n. Similarly, Jn and en denote

the n × n all-ones matrix and all ones n-vector respectively, and 0n×n is the zero
matrix of order n. We will omit the subscript if the order is clear from the context.

The vec operator stacks the columns of a matrix, while the diag operator maps
an n × n matrix to the n-vector given by its diagonal. The ith column if a matrix is
denoted by coli(·).

The Kronecker product A ⊗ B of matrices A ∈ R
p×q and B ∈ R

r×s is defined as
the pr × qs matrix composed of pq blocks of size r × s, with block ij given by AijB
(i = 1, . . . , p), (j = 1, . . . , q).

The following properties of the Kronecker product will be used in the paper, see
e.g. [12] (we assume that the dimensions of the matrices appearing in these identities

2



are such that all expressions are well-defined):

(A ⊗ B)T = AT ⊗ BT , (1)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (2)

A ⊗ Bvec(X) = vec
(

BXAT
)

, (3)

trace(A ⊗ B) = trace(A) trace(B). (4)

2 SDP relaxation of the QAP problem

We associate with a matrix X ∈ Πn a matrix YX ∈ S+
n2+1 given by

YX :=

(

1
vec(X)

)(

1
vec(X)

)T

. (5)

Note that YX is a block matrix of the form

YX =











1
(

y(1)
)T

· · ·
(

y(n)
)T

y(1) Y (11) · · · Y (1n)

...
...

. . .
...

y(n) Y (n1) · · · Y (nn)











(6)

where
Y (ij) := coli(X)colj(X)T (i, j = 1, . . . , n), (7)

and y(i) = coli(X) (i = 1, . . . , n).
We will denote

y :=

(

(

y(1)
)T

· · ·
(

y(n)
)T

)T

,

and

Y :=







Y (11) · · · Y (1n)

...
. . .

...
Y (n1) · · · Y (nn)






,

so that the block form (6) may be written as

YX =

(

1 yT

y Y

)

.

Letting

T :=

(

−e In ⊗ eT

−e eT ⊗ In

)

,

the condition
Xe = XT e = e

3



is equivalent to

T

(

1
vec(X)

)

= 0, (8)

since

T

(

1
vec(X)

)

≡

(

−e + XT e
−e + Xe

)

where the equality follows from (3). Note that condition (8) may be rewritten as

trace
(

TT TYX

)

= 0. (9)

More over, one has

TT T =

(

2n −2eT

−2e I ⊗ J + J ⊗ I

)

. (10)

The matrix YX has the following sparsity pattern:

• The off-diagonal entries of the blocks Y (ii) (i = 1, . . . , n) are zero;

• The diagonal entries of the blocks Y (ij) (i 6= j) are zero.

An arbitrary nonnegative matrix Y ≥ 0 has the same sparsity pattern if and only
if

trace((I ⊗ (J − I))Y + ((J − I) ⊗ I)Y ) = 0. (11)

(This is sometimes called the gangster constraint.)
If Y ≥ 0 satisfies (11) then, in view of (10), one has

trace

(

TT T

(

1 yT

y Y

))

≡ trace

((

2n −2eT

−2e I ⊗ J + J ⊗ I

)(

1 yT

y Y

))

= 2n − 4eT y + 2 trace(Y ).

Thus the condition

trace

(

TT T

(

1 yT

y Y

))

= 0 (12)

becomes
trace(Y ) − 2eT y = −n.

SDP relaxation of QAP

We obtain an SDP relxation of (QAP) by relaxing the condition YX = vec(X)vec(X)T

(see (5)) to YX ∈ S+
n2+1:

min trace(B ⊗ A)Y
subject to

trace((I ⊗ (J − I))Y + ((J − I) ⊗ I)Y ) = 0
trace(Y ) − 2eT y = −n
(

1 yT

y Y

)

� 0, Y ≥ 0.































(13)
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This SDP relaxation is equivalent to the one solved by Rendl and Sotirov [18]
using bundle methods (called (QAPR3

) in that paper). It is also the same as the so-
called N+(K)-relaxation of Lovász and Schrijver [16] applied to the QAP, as studied
by Burer and Vandenbussche [4]. The equivalence between the two relaxations was
recently shown by Povh and Rendl [17].

3 Valid inequalities for the SDP relaxation

The following theorem from [26] shows that several valid (in)equalities are implied by
the constraints of the SDP problem (13).

Theorem 3.1 (cf. [26], Lemma 3.1). Assume y ∈ R
n2

and Y ∈ Sn2 are such that
(

1 yT

y Y

)

� 0,

and that the matrix in the last expression has the block form (6) and satisfies (12).
Then one has:

1.
(

y(j)
)T

= eT Y (ij) (i, j = 1, . . . , n);

2.
∑n

i=1 Y (ij) = e
(

y(j)
)T

(j = 1, . . . , n);

3.
∑n

i=1 diag
(

Y (ij)
)

= y(j) (j = 1, . . . , n).

The fact that these are valid equalities easily follows from (5) and (7).
The third condition in the theorem for i = j, together with the gangster constraint,

implies that
diag(Y ) = y.

By the Schur complement theorem, this in turn implies the following.

Corollary 3.1. Assume that y and Y meet the conditions of Theorem 3.1, and that
Y ≥ 0. Then Y � diag(Y ) diag(Y )T .

Triangle inequalities

The fact that YX is generated by {0, 1}-vectors gives rise to the so-called triangle
inequalities:

0 ≤ Yrs ≤ Yrr, (14)

Yrr + Yss − Yrs ≤ 1, (15)

−Ytt − Yrs + Yrt + Yst ≤ 0, (16)

Ytt + Yrr + Yss − Yrs − Yrt − Yst ≤ 1, (17)

which hold for all distinct triples (r, s, t). Note that there are O(n6) triangle inequal-
ities.

A useful observation is the following.
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Lemma 3.1. If an optimal solution Y, y of (13) has a constant diagonal, then all the
triangle inequalities (14) — (17) are satisfied.

Proof. Since the pair (y, Y ) satisfies trace(Y ) − 2eT y = −n, and diag(Y ) = y is a
multiple of the all-ones vector, one has diag(Y ) = y = 1

n
en2 . Thus (15) and (17) are

implied, since Y ≥ 0.

The condition
(

y(j)
)T

= eT Y (ij) (i, j = 1, . . . , n) implies that the row sum of

any block Y (ij) equals 1
n
eT
n . In particular, all entries in Y (ij) are at most 1/n, since

Y (ij) ≥ 0. Thus (14) is implied.
Finally, we verify that (16) holds. This may be done by showing that:

1

n
= max Yst + Yrt − Yrs

subject to




1
n

Yrs Yrt

Yrs
1
n

Yst

Yrt Yst
1
n



 � 0, Yrs ≥ 0, Yrt ≥ 0, Yst ≥ 0.

Indeed, it is straightforward to verify, using duality theory, that an optimal solution
is given by Yrs = Yrt = Yst = 1/n, which concludes the proof.

As noted in [18], it is not possible to solve the SDP problem (13) in general using
interior point methods if n ≥ 15 — let alone when the triangle inequalities have been
added to the formulation.

We will therefore focus on a subclass of QAP instances where the data matrices
have suitable algebraic symmetry. In the next section we first review the general
theory of group symmetric SDP problems.

4 Group symmetric SDP problems

Assume that the following semidefinite programming problem is given

p∗ := min
X�0

{ trace(A0X) : trace(AkX) = bk, k = 1, . . . ,m} , (18)

where Ai ∈ Sn (i = 0, . . . ,m) are given. The associated dual problem is

p∗ = max
y∈Rm

{bT y : A0 −

m
∑

i=1

yiAi � 0}. (19)

We assume that both problems satisfy the Slater condition so that both problems
have optimal solutions with identical optimal values.

Assumption 1 (Group symmetry). We assume that there is a nontrivial multiplica-
tive group of orthogonal matrices G such that

AiP = PAi ∀ P ∈ G, i = 0, . . . ,m.
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The commutant (or centralizer ring) of G is defined as

AG := {X ∈ R
n×n : XP = PX ∀ P ∈ G}.

In other words, in Assumption 1 we assume that the data matrices Ai (i = 0, . . . ,m)
lie in the commutant of G.

The commutant is a C∗-algebra, i.e. a subspace of R
n×n that is closed under

matrix multiplication and conjugation.
An alternative, equivalent, definition of the commutant is

AG = {X ∈ R
n×n : RG(X) = X},

where

RG(X) :=
1

|G|

∑

P∈G

PXPT , X ∈ R
n×n

is called the Reynolds operator (or group average) of G. Thus RG is the orthogonal
projection onto the commutant. Orthonormal eigenvectors of RG corresponding to
the eigenvalue 1 form a orthonormal basis of AG (seen as a vector space).

This basis, say B1, . . . , Bd, has the following properties:

• Bi ∈ {0, 1}n×n (i = 1, . . . , d);

•
∑d

i=1 Bi = J .

• For any i ∈ {1, . . . , d}, one has BT
i = Bj for some j ∈ {1, . . . , d} (possibly

i = j).

One may also obtain the basis by examining the image of the standard basis of R
n×n

under RG . In particular, if e1, . . . , en denotes the standard basis of R
n then the {0, 1}

matrix with the same support as RG(eie
T
j ) is a basis matrix of the commutant, for

any i, j ∈ {1, . . . , n}.
Another way of viewing this is to consider the orbit of the pair of indices (i, j)

(also called 2-orbit) under the action of G. This 2-orbit of (i, j) is defined as

{(Pei, P ej) : P ∈ G}.

The corresponding basis matrix has an entry 1 at position (k, l) if (ek, el) belongs to
the 2-orbit, and is zero otherwise.

A well-known, and immediate consequence of Assumption 1 is that we may restrict
the feasible set of the optimization problem to its intersection with the commutant
of G.

Theorem 4.1. Under Assumption 1, both problem (18) and its dual have optimal
points in the commutant of G.

Proof. If X is an optimal solution of problem (18), then so is RG(X), by Assumption
1. The proof for the dual problem is similar.
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Assume we have a basis B1, . . . , Bd of the commutant AG . One may write X =
∑d

i=1 xiBi so that the SDP problem (18) reduces to

minP
d

i=1
xiBi�0

{

d
∑

i=1

xi trace(A0Bi) :

d
∑

i=1

xi trace(AkBi) = bk, k = 1, . . . ,m

}

. (20)

Note that the values trace(AkBi) (i = 1, . . . , d), (k = 0, . . . ,m) may be computed
beforehand.

The next step in reducing the SDP (20) is to block diagonalize the commutant
AG , i.e. block diagonalize its basis B1, . . . , Bd. To this end, we review some general
theory on block diagonalization of matrix algebras in the next section.

5 Matrix algebras and their block factorizations

In this section we review the general theory of block diagonalization of matrix C∗-
algebras, and introduce a heuristic to compute such a decomposition.

5.1 The completely reduced representation of a matrix C
∗-

algebra

The center of an algebra is a specific commutative sub-algebra of it, defined as follows.

Definition 5.1 (Center of an algebra). Let A be an algebra. The center of A is
defined as

center(A) = {X ∈ A : XY = Y X ∀Y ∈ A} .

Note that the center is a commutative sub-algebra of A. Moreover, if A is a
C∗-algebra, then so is its center.

The center of a C∗-algebra that contains the identity possess a special basis (as
a vector space), namely a basis of self-adjoint, minimal, central idempotents (see e.g.
[11]), defined as follows.

Definition 5.2 (Minimal idempotent). Let X = X2 be an idempotent in an alge-
bra A. We call X a minimal idempotent if it cannot be written as a sum of other
idempotents.

We will also use the notation

AX := {Y X : Y ∈ A}.

Note that AX is a sub-algebra of A.
We are now in a position to state the basic result on decomposition of matrix

C∗-algebras.

Theorem 5.1 (Wedderburn [23]). Let A be a finite dimensional C∗ matrix algebra
that contains the identity matrix. Denote the basis of minimal, nonzero, self-adjoint,
central idempotents of the center of A by

minA :=
{

X ∈ center(A) : X = X2 6= 0 is minimal, X∗ = X
}

.

8



Then
A =

⊕

X∈minA

AX.

Moreover, each of the C∗-algebras AX (X ∈ minA) is isomorphic to C
rX×rX for

some integer value rX .

The theorem may be used to find a block diagonalization of a real matrix C∗-
algebra as follows:

1. Find a minimal idempotent in the center of A;

2. Let Q be a orthogonal matrix with columns given by a set of orthogonal eigen-
vectors of this idempotent.

3. Perform the block diagonalization QTAQ.

Indeed, note that if X is a central idempotent of A, then

AX = AX2 = XAX.

Letting X = QΛQT with Q orthogonal and Λ a zero-one diagonal matrix, one has:

QTAXQ = QT XAXQ = QT QΛQTAQΛQT Q = ΛQTAQΛ.

Note that the final expression is (isomorphic to) the algebra obtained by taking the
principal sub-matrices, defined by the nonzero entries of Λ, of all elements of the
algebra QTAQ. Thus

QTAQ =
⊕

X∈minA

QTAXQ

is an algebra of block diagonal matrices, with each block isomorphic to the full algebra
of the same size. This decomposition is sometimes called the completely reduced
representation of A, since the blocks cannot be further reduced.

We end with an example that is also relevant for some of the QAP instances to
be considered later.

Example 5.1. Consider the matrix A with 2n rows indexed by all elements of {0, 1}n,
and Aij given by the Hamming distance between i ∈ {0, 1}n and j ∈ {0, 1}n.

The automorphism group of A arises as follows. Any permutation π of the index
set {1, . . . , n} induces an isomorphism of A that maps row (resp. column) i of A to row
(resp. column) π(i) for all i. There are n! such permutations. Moreover, there are an
additional 2n permutations that act on {0, 1}n by either ‘flipping’ a given component
from zero to one (and vice versa), or not.

Thus aut(A) has order n!2n. The centralizer ring of aut(A) is a commutative C∗-
algebra (also called an association scheme) and is known as the Bose-Mesner algebra
of the Hamming scheme.

A basis for the centralizer ring may be derived from the 2-orbits of aut(A) and are
given by

B
(k)
ij =

{

1 if Hamming(i, j) = k;
0 else

(k = 0, . . . , n),

9



where Hamming(i, j) is the Hamming distance between i and j. The basis matrices
B(k) are simultaneously diagonalized by the matrix Q defined by

Qij = (−1)|i∩j| i, j ∈ {0, 1}n,

where |i ∩ j| is the number of positions where both i and j have an entry 1.

5.2 A heuristic for computing the block diagonalization

Let G be a multiplicative group of orthogonal matrices with commutant AG . Assume
that B1, . . . , Bd span AG .

In order to compute the completely reduced representation of the commutant of
A, one requires a minimal, nonzero, central idempotent of the commutant, as seen in
the previous subsection. Such an idempotent may be difficult to obtain in practice.

We will therefore use a heuristic approach to block diagonalize AG , where we
select a random matrix from the commutant of the commutant, as opposed to the
center of the commutant. Notice that the commutant of the commutant is the algebra
span{P : P ∈ G}, and that the center of AG is a sub-algebra thereof.

Block diagonalization heuristic

1. Choose a random symmetric element, say Z, from span{P : P ∈ G};

2. Compute the spectral decomposition of Z, and let Q be an orthogonal matrix
with columns given by a set of orthonormal eigenvectors of Z.

3. Block diagonalize the basis B1, . . . , Bd by computing QT B1Q,. . ., QT BdQ.

The heuristic is motivated by the following (well-known) observation.

Theorem 5.2. Let q be an eigenvector of some Z ∈ span{P : P ∈ G} and let λ ∈ R

be the associated eigenvalue. Then Xq is an eigenvector of Z with eigenvalue λ for
each X ∈ AG.

Proof. Note that
Z(Xq) = XZq = λXq,

by the definition of the commutant.
Thus if we form a matrix Q = [q1 · · · qn] where the qi’s form an orthogonal set

of eigenvectors of Z, then QT BiQ is a block diagonal matrix for all i. Note that the
sizes of the blocks are given by the multiplicities of the eigenvalues of Z.

Finally, note that the heuristic will not in general produce the completely reduced
representation of the commutant, but may lead to a coarser block factorization. This
coarser factorization is usually sufficient for our (computational) purposes.
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6 Tensor products of groups and their commutants

The following theorem shows that, if one has two multiplicative groups of orthogonal
matrices, then one may obtain a third group using Kronecker products. In represen-
tation theory this construction is known as the tensor product of the groups.

Theorem 6.1. Let Gp and Gs be two multiplicative groups of orthogonal matrices
given by pi (i = 1, . . . , |Gp|) and sj (j = 1, . . . , |Gs|) respectively.

Then the matrices

Pij := pi ⊗ sj i = 1, . . . , |Gp|, j = 1, . . . , |Gs|

form a multiplicative group of orthogonal matrices. This group is denoted by Gp ⊗Gs.

Proof: Let indices i, i′, î, j, j′, ĵ ∈ {1, . . . , |G|} be given such that pipi′ = pî and
sjsj′ = sĵ). Note that

PijPi′j′ = (pi ⊗ sj)(pi′ ⊗ sj′)

= (pipi′) ⊗ (sjsj′)

= pî ⊗ sĵ ≡ Pîĵ .

Moreover, note that the matrices Pij are orthogonal, since the pi and sj ’s are.
In the next theorem we show how to construct a basis for the commutant of the

tensor product of groups.

Theorem 6.2. Let G1 and G2 be two multiplicative groups of orthogonal matrices
with respective commutants A1 and A2. Let B1

i (i = 1, . . . , n1) be a basis for A1 and
B2

j (j = 1, . . . , n2) a basis for A2. Then a basis for the commutant of G1⊗G2 is given
by

{

B1
i ⊗ B2

j : i = 1, . . . , n1, j = 1, . . . , n2

}

.

Proof. Letting ei (i = 1, . . . , n) denote the standard unit vectors in R
n, a basis for

R
n2×n2

is given by
eie

T
j ⊗ ekeT

l (i, j, k, l = 1, . . . , n).

A basis for the commutant of G := G1 ⊗ G2 is obtained by taking the image of this
basis under the Reynolds operator RG of G. Note that

RG(eie
T
j ⊗ ekeT

l ) :=
1

|G|

∑

P1∈G1,P2∈G2

P1 ⊗ P2(eie
T
j ⊗ ekeT

l )PT
1 ⊗ PT

2

=
1

|G1||G2|

∑

P1∈G1,P2∈G2

P1eie
T
j PT

1 ⊗ P2ekeT
l PT

2

=
1

|G1|

∑

P1∈G1

P1eie
T
j PT

1 ⊗
1

|G2|

∑

P2∈G2

P2ekeT
l PT

2

≡ RG1
(eie

T
j ) ⊗ RG2

(ekeT
l ),

where we have used the properties (1) and (2) of the Kronecker product. The required
result follows.
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7 The symmetry of the SDP relaxation of the QAP

We now apply the theory described in the last sections to the SDP relaxation (13) of
the QAP.

7.1 Symmetry reduction of (13)

Let A and B be the data matrices that define an instance of the QAP. We define the
automorphism group of a matrix Z ∈ R

n×n as

aut(Z) = {P ∈ Πn : PZPT = Z}.

Theorem 7.1. Define the group

GA :=

{(

1 0T

0 P

)

: P ∈ aut(A)

}

and define GB analogously.
Then the SDP problem (13) satisfies Assumption 1 with respect to the group GA ⊗

GB.

Proof. Direct verification.
We may construct a basis for the commutant of GA ⊗ GB from the bases of the

commutants of aut(A) and aut(B) respectively, as is shown in the following theorem.

Theorem 7.2. The commutant of of GA ⊗GB is spanned by all matrices of the form

(

1 0T

0 0n2×n2

)

,

(

0 0T

0 BA
i ⊗ BB

j

)

,

(

0 diag(BA
i ⊗ BB

j )T

0 0n2×n2

)

,

(

0 0T

diag(BA
i ⊗ BB

j ) 0n2×n2

)

where BA
i (resp. BB

j ) is an element of the basis of the commutant of aut(A) (resp.
aut(B)).

Proof. Let
(

a bT

c Z

)

denote a matrix from the commutant of GA ⊗ GB , where a ∈ R, b, c ∈ R
n2

and
Z ∈ R

n2×n2

. For any PA ∈ aut(A) and PB ∈ aut(B) one therefore has

(

a bT

c Z

)(

1 0T

0 PA ⊗ PB

)

=

(

1 0T

0 PA ⊗ PB

)(

a bT

c Z

)

by the definition of the commutant. This implies that

Z(PA ⊗ PB) = (PA ⊗ PB)Z, (PA ⊗ PB)b = b, (PA ⊗ PB)c = c, (21)
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for all PA ∈ aut(A) and PB ∈ aut(B).
This implies that Z lies in the commutant of aut(A)⊗aut(B). Thus we may write

Z ∈ spani,j{B
A
i ⊗ BB

j }

if the BA
i ’s and BB

j ’s form bases for the commutants of aut(A) and aut(B) respectively,
by Theorem 6.2.

Moreover, (21) implies that b and c are linear combinations of incidence vectors
of orbits of aut(A) ⊗ aut(B). These incidence vectors are obtained by taking the
Kronecker products of incidence vectors of orbits of aut(A) and aut(B). We may also
obtain these incidence vectors as the diagonal vectors of the basis of the commutant of
aut(A)⊗ aut(B), i.e. from the vectors diag(BA

i ⊗BB
j ). This completes the proof.

We may now simplify the SDP relaxation (13) using the basis of the commutant
of GA ⊗ GB . In particular, we may assume that

Y =
∑

i,j

yijB
A
i ⊗ BB

j ,

where yij ≥ 0.
This implies, with reference to the SDP (13), that

trace(I ⊗ (J − I)Y ) =
∑

i,j

yij trace(I ⊗ (J − I)BA
i ⊗ BB

j )

=
∑

i,j

yij trace(BA
i ⊗ (J − I)BB

j )

=
∑

i,j

yij trace BA
i trace(J − I)BB

j ,

where we have use the identities (2) and (4) of the Kronecker product. Notice that
trace BA

i is simply the length of an orbit of aut(A) (indexed by i). Similarly, trace(J−
I)BB

j equals the length of a 2-orbit of aut(B).

Thus it is convenient to introduce notation for sets of orbits and 2-orbits: O1
A will

denote the set of orbits of aut(A), O2
A the set of 2-orbits, etc., where we view 2-orbits

of orbits of pairs of nonidentical indices, i.e. we view the orbit of (1, 1) as a (one) orbit
and not as a 2-orbit.

Using this notation we may rewrite the constraint:

trace((I ⊗ (J − I))Y + ((J − I) ⊗ I)Y ) = 0

as
∑

i∈O1

A
,j∈O2

B

yij |i||j| +
∑

i∈O2

A
,j∈O1

B

yij |i||j| = 0.

Together with yij ≥ 0, this implies that we may set all variables yij (i ∈ O1
A, j ∈ O2

B)
and yij (i ∈ O2

A, j ∈ O1
B) to zero.

Moreover, we can use the fact that the first row and column (without the upper
left corner) equals the diagonal, to reduce the constraint

trace(Y ) − 2eT y = −n

13



to trace(Y ) = n by using diag(Y ) = y, which in turn becomes

∑

i∈O1

A
, j∈O1

B

yij |i||j| = n.

Proceeding in this vein, we obtain the SDP reformulation:

min
∑

i∈O2

A
, j∈O2

B

yij trace(ABA
i ) trace(BBB

j )

+
∑

i∈O1

A
, j∈O1

B

yij trace(ABA
i ) trace(BBB

j )

subject to

∑

i∈O1

A
, j∈O1

B

yij |i||j| = n

(

1 0T

0 0n2×n2

)

+

+
∑

i∈O1

A
, j∈O1

B

yij

(

0 diag(BA
i ⊗ BB

j )T

diag(BA
i ⊗ BB

j ) BA
i ⊗ BB

j

)

+

+
∑

i∈O2

A
j∈O2

B

yij

(

0 0T

0 BA
i ⊗ BB

j

)

� 0 (22)

yij ≥ 0 ∀i, j.

As mentioned before, the numbers trace(ABA
i ) and trace(BBB

j ) in the objective func-
tion may be computed beforehand. Note that the number of scalar variables yij is

|O1
A||O

1
B | + |O2

A||O
2
B |,

that may be much smaller than the
(

n2+1
2

)

independent entries in a symmetric n2×n2

matrix, depending on the symmetry groups. This number may be further reduced,
since the matrices appearing in the linear matrix inequality (22) should be symmetric.
Recall that for every i (resp. j) there is an i∗ (resp. j∗) such that (BA

i )T = BA
i∗ (resp.

(BB
j )T = BB

j∗).

Thus one has yij = yi∗j∗ ∀ i, j. Letting O2,sym
A (resp. O2,sym

B ) denote the number
of symmetric 2-orbits of aut(A) (resp. aut(B)), the final number of scalar variables
becomes

|O1
A||O

1
B | +

1

2

(

|O2
A||O

2
B | + |O2,sym

A ||O2,sym
B |

)

.

7.2 Block diagonalization

The size of the SDP can be further reduced by block diagonalizing the data matrices
in (22) via block diagonalization of the matrices BA

i and BB
j .
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Assume, to this end, that we know orthogonal matrices QA and QB that block-
diagonalize the commutants of aut(A) and aut(B) respectively. Defining the orthog-
onal matrix

Q :=

(

1 0T

0 QA ⊗ QB

)

,

one has

QT

(

0 0T

0 BA
i ⊗ BB

j

)

Q =

(

0 0T

0 QT
ABA

i QA ⊗ QT
BBB

j QB

)

,

which is block-diagonal, since the Kronecker product of block-diagonal matrices is
again block-diagonal. Also note that the size of the largest block is the product of
the largest sizes of blocks appearing in the factorization of the commutants of aut(A)
and aut(B).

On the other hand,

QT

(

0 diag(BA
i ⊗ BB

j )T

diag(BA
i ⊗ BB

j ) BA
i ⊗ BB

j

)

Q =

(

0 (QT
A diag(BA

i ) ⊗ QT
B diag(BB

j ))T

QT
A diag(BA

i ) ⊗ QT
B diag(BB

j ) QT
ABA

i QA ⊗ QT
BBB

j QB

)

,

that is not block-diagonal, but has a so-called chordal sparsity structure, that may
be exploited as described in the following lemma.

Lemma 7.1 (see e.g. [13]). Let xi ∈ Rk and Xi ∈ Sk (i = 1, . . . , n) be given. One
has











1 xT
1 · · · xT

n

x1 X1 0k×k

...
. . .

...
xn 0k×k · · · Xn











� 0,

if and only if
[

1 xT
i

xi Xii

]

� 0 (i = 1, . . . , n).

We may therefore apply the lemma in an obvious way to the linear matrix in-
equality (22), after performing the orthogonal transformation QT (·)Q. Thus we still
obtain a ‘block diagonalization’ of (22), where the blocks are obtained by adding one
more row and column to the blocks of QT

ABA
i QA ⊗ QT

BBB
j QB .

7.3 Triangle inequalities

The number of triangle inequalities (14) – (17) may also be reduced in number in
an obvious way by exploiting the algebraic symmetry. We omit the details, and only
state one result, by way of example.

Theorem 7.3. If both aut(A) and aut(B) are transitive, then all triangle inequalities
(14) – (17) are implied in the final SDP relaxation.
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Proof. If both aut(A) and aut(B) are transitive, then every matrix in the commutant
of GA ⊗ GB has a constant diagonal, since GA ⊗ GB only has one orbit. The required
result now follows from Lemma 3.

8 Numerical results

In Table 1 we give the numbers of orbits and 2-orbits of aut(A) and aut(B) for several
instances from the QAPLIB library [6]. (The value of n for each instance is clear from
the name of the instance, e.g. for esc16a, n = 16.)

We also give the number of scalar variables in our final SDP relaxation.
The automorphism groups of the matrices A and B were computed using the

computational algebra software GAP [9]. The same package was used to compute the
2-orbits of these groups.

Note that the ‘esc’ instances [5] are particularly suited to our approach.1 Here the
automorphism group of B is the automorphism group of the Hamming graph described
in Example 5.1. Consequently the commutant of aut(B) may be diagonalized, and
its dimension is small.

On the other hand, all the other instances in the table are still to large to solve
by interior point methods. The reason is that a linear system of the same size as
the number of scalar variables has to be solved at each iteration of the interior point
method. Thus the practical limit for the number of scalar variables is of the order
of a few thousand. Note however, that a significant reduction in size is obtained for
many instances.

With one exception, the final SDP problems were solved by the interior point
software SeDuMi [22] using the Yalmip interface [25] and Matlab 6.5, running on a
PC with Pentium IV 3.4 GHz dual-core processor and 3GB of memory.

The exception was the (large) instance esc64a that was solved in parallel on a
distributed memory cluster with 32 processors, using the parallel implementation
of the solver CSDP (see [3]) described in [14]. Each node of the cluster has two
64bit AMD Opteron 2.4 GHz CPU’s, running ClusterVisionOS Linux, and has 4 GB
memory.

As already mentioned, we diagonalized the commutant of aut(B) for the esc in-
stances as described in Example 5.1. The commutant of aut(A) was block diagonal-
ized using the heuristic described in Section 5.2. The sizes of the blocks that we thus
obtained for the esc32 and esc64a instances are shown in Table 2.

In Tables 3 and 4 we give computational results for the esc16 and esc32 (and
esc64a) instances respectively.

The optimal solutions are known for the ecs16 instances but most of the esc32
instances and esc64a remain unsolved.

In [4] the optimal value of the SDP relaxation (13) was approximately computed
using an augmented Lagragian method. These values, rounded up, are given in the

1We do not present results for the QAPLIB instances esc32e and esc32f in this paper, since these

instances have identical data on the QAPLIB website, and moreover the bounds we obtain are not

consistent with the reported optimal values for these instances. We have contacted the QAPLIB

moderator concerning this, but it remains unclear what the correct data is.
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instance |O1

A|, |O
1

B | |O2

A|, |O
2

B | |O2,sym
A |, |O2,sym

B | # yij ’s

esc16a 6, 1 42, 4 6, 4 102

esc16b 7, 1 45, 4 3, 4 103

esc16c 12, 1 135, 4 3, 4 288

esc16d 12, 1 135, 4 3, 4 288

esc16e 6, 1 37, 4 5, 4 90

esc16f 1, 1 1, 4 1, 4 5

esc16g 9, 1 73, 4 1, 4 157

esc16h 5, 1 23, 4 3, 4 57

esc16i 10, 1 91, 4 1, 4 194

esc16j 7, 1 44, 4 2, 4 99

esc32a 26, 1 651, 5 1, 5 1656

esc32b 2, 1 18, 5 10, 5 72

esc32c 10, 1 96, 5 6, 5 265

esc32d 9, 1 86, 5 10, 5 249

esc32g 7, 1 44, 5 2, 5 122

esc32h 14, 1 188, 5 6, 5 499

esc64a 13, 1 163, 6 5, 6 517

nug20 6, 20 98, 380 15, 0 18,740

nug21 8, 21 117, 420 13, 0 24,738

nug22 6, 22 116, 462 16, 0 26,928

nug24 6, 24 138, 552 18, 0 38,232

nug25 6, 25 85, 600 13, 0 25,650

nug30 9, 30 225, 870 21, 0 98,145

scr20 20, 6 380, 98 0, 14 18,740

sko42 12, 42 438, 1722 30, 0 377,622

sko49 10, 49 315, 2352 27, 0 370,930

ste36a 35, 10 1191, 318 1, 26 189,732

ste36b 10, 35 318, 1191 26, 1 189,732

ste36c 10, 35 318, 1191 26, 1 189,732

tho30 10, 30 240, 870 20, 0 104,700

tho40 12, 40 404, 1560 28, 0 315,600

wil50 15, 50 635, 2450 35, 0 778,625

wil100 15, 100 1260, 9900 60, 0 6,238,500

Table 1: Symmetry information on selected QAPLIB instances.
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instance block sizes

esc32a 1, 3, 28
esc32b 5, 7, 8, 12
esc32c 1, 2, 29
esc32d 1, 2, 4, 25
esc32g 1, 31
esc32h 1, 31
esc64a 1, 63

Table 2: Block sizes after block diagonalization of aut(A) for the esc32 and esc64
instances.

instance SDP l.b. (13) opt. time(s)

esc16a 63.2756 68 47.4
esc16b 289.8817 292 41.2
esc16c 153.8242 160 51.6
esc16d 13.0000 16 22.1
esc16e 26.3368 28 26.9
esc16f 0 0 8.8
esc16g 24.7403 26 29.9
esc16h 976.2244 996 43.5
esc16i 11.3749 14 33.1
esc16j 7.7942 8 26.9

Table 3: Optimal values and solution times for the esc16 instances.

instance previous l.b. SDP l.b. (13) best known u.b. time(s)

esc32a 103 ([4]) 103.3194 130 (best known) 4,084
esc32b 132 ([4]) 131.8718 168 (best known) 3,872
esc32c 616 ([4]) 615.1400 642 (best known) 2,807
esc32d 191 ([4]) 190.2266 200 (best known) 2,304
esc32g 6 (opt.) 5.8330 6 (opt.) 2,950
esc32h 424 ([4]) 424.3382 438 (best known) 3,621
esc64a 47 97.7499 116 23,828

Table 4: Optimal values and solution times for the esc32 and esc64 instances.

column ”previous l.b.” in Table 4. Note that values from [4] do not always give the
same bound as we obtained, and we can improve the lower bound by 1 for esc32a
and esc32h. The reason for the difference is that the augmented Lagrangian method
does not always solve the SDP relaxation (13) to optimality. Moreover, as one would
expect, the interior point method is about two orders of magnitude faster than the
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the augmented Lagrangian method, as is clear from comparison with computational
times reported in [4]. In particular, in [4], Table 6 the authors report solution times
of order 103 seconds for the esc16 instances, and order 105 seconds for the esc32
instances; this computation was done on a 2.4GHz Pentium IV processor, which is
less than a factor two slower than the processor that we used.

The SDP relaxation (13) of the instance esc64a was too large even for the aug-
mented Lagrangian method, and here we obtain a significant improvement over the
best known lower bound, namely from 47 to 98 (upper bound 116).

We observed that, for all the esc instances, the optimal solution of the SDP re-
laxation had a constant diagonal. By Lemma 3, this means that none of the triangle
inequalities was violated by the optimal solution, i.e. we could not improve the lower
bounds in Tables 3 and 4 by adding triangle inequalities.

Acknowledgements

The authors are very grateful to Dima Pasechnik for suggesting the heuristic in §5.2,
and to Ivan Ivanov for running some of the SDP instances on the DAS3 parallel cluster
at the Delft University of Technology.

References

[1] K.M. Anstreicher. Recent advances in the solution of quadratic assignment problems.
Mathematical Programming, Ser. B, 97: 27–42, 2003.

[2] K.M. Anstreicher, N. Brixius, J. Linderoth, and J.-P. Goux. Solving Large Quadratic
Assignment Problems on Computational Grids. Mathematical Programming, Series B,
91: 563–588, 2002.

[3] B. Borchers. CSDP, a C library for semidefinite programming. Optim. Methods Softw.,
11/12(1-4):613–623, 1999.

[4] S. Burer and D. Vandenbussche. Solving Lift-and-Project Relaxations of Binary Integer
Programs. SIAM Journal on Optimization, 16, 726–750, 2006.

[5] B. Eschermann and H.J. Wunderlich. Optimized synthesis of self-testable finite state
machines. In 20th International Symposium on Fault-Tolerant Computing (FFTCS 20),
Newcastle upon Tyne, 26-28th June, 1990.

[6] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB — a quadratic assignment problem
library. Journal on Global Optimization, 10: 291–403, 1997; see also http://www.seas.

upenn.edu/qaplib/.

[7] E. de Klerk, J. Maharry, D.V. Pasechnik, B. Richter, and G. Salazar. Improved bounds
for the crossing numbers of Km,n and Kn. SIAM J. Discr. Math. 20:189–202, 2006.

[8] E. de Klerk, D.V. Pasechnik and A. Schrijver. Reduction of symmetric semidefinite pro-
grams using the regular *-representation. Mathematical Programming B, 109(2-3):613-
624, 2007.

[9] GAP – Groups, Algorithms, and Programming, Version 4.4.9, The GAP Group, 2006,
http://www.gap-system.org

[10] K. Gatermann and P.A. Parrilo. Symmetry groups, semidefinite programs, and sum of
squares. Journal of Pure and Applies Algebra, 192:95–128, 2004.

19



[11] C. Godsil. Association Schemes. Lecture notes, 2005.
http://quoll.uwaterloo.ca/pstuff/assoc.pdf

[12] A. Graham. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood
Limited, Chichester, 1981.

[13] R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz. Positive definite completions of
partial Hermitian matrices. Linear Algebra and its Applications, 58:109–124, 1984.

[14] I.D. Ivanov and E. de Klerk. Parallel implementation of a semidefinite pro-
gramming solver based on CSDP on a distributed memory cluster. CentER
Discussion paper 2007-20, Tilburg University, The Netherlands, February 2007.
http://greywww.uvt.nl:2080/greyfiles/center/2007/20.html

[15] Y. Kanno, M. Ohsaki, K. Murota and N. Katoh, Group symmetry in interior-point
methods for semidefinite program, Optimization and Engineering, 2(3): 293–320, 2001.

[16] L. Lovász and A. Schrijver. Cones of matrices and set–functions and 0–1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991.

[17] J. Povh and F. Rendl. Copositive and Semidefinite Relax-
ations of the Quadratic Assignment Problem. Manuscript, 2006.
http://www.optimization-online.org/DB_HTML/2006/10/1502.html

[18] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem using the bundle
method. Mathematical Programming, Series B, 109(2-3), 505–524, 2007.

[19] A. Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE Trans. In-

form. Theory, 25:425–429, 1979.

[20] A. Schrijver. New code upper bounds from the Terwilliger algebra. IEEE Transactions

on Information Theory, 51:2859–2866, 2005.

[21] J.-P. Serre. Linear representations of finite groups. Graduate Texts in Mathematics,
Vol. 42, Springer-Verlag, New York, 1977.

[22] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optim. Methods Softw., 11-12:625–653, 1999.

[23] J.H.M. Wedderburn. On hypercomplex numbers. Proc. London Math. Soc. 6(2): 77–118,
1907.

[24] J.H.M. Wedderburn. Lectures on Matrices. AMS Colloquium Publications, Volume 17,
AMS publishers, 1934.
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