
  

 

 

Tilburg University

Anaphora and the logic of change

Muskens, R.A.

Published in:
Logics in AI

Publication date:
1991

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Muskens, R. A. (1991). Anaphora and the logic of change. In J. van Eijck (Ed.), Logics in AI: European workshop
JELIA '90, Amsterdam, the Netherlands, September 10-14, 1990 (Vol. 478, pp. 412-427). (Lecture notes in
computer science; Vol. 478). Springer.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. Nov. 2022

https://research.tilburguniversity.edu/en/publications/c9aceccf-83e9-42ed-b23b-475e9b5795e8


Anaphora and the Logic of Change∗

Reinhard Muskens

1 Introduction

There are three major currents in semantic theory these days. First there is
what Chierchia [1990] aptly calls “what is alive of classical Montague seman-
tics”. Secondly, there is Discourse Representation Theory. Thirdly, there is
Situation Semantics. Each of these three branches of formal semantics has its
own specialities and its particular focuses of interest. Each can boast of its
own successes. Thus Montague semantics models the Fregean building block
theory of meaning in a particularly elegant way, gives a unified account of the
semantics of noun phrases as generalized quantifiers and a natural but so-
phisticated treatment of coordination phenomena. Discourse Representation
Theory (DRT), on the other hand, treats different kinds of anaphora succes-
fully, extends the field of operation of semantic theory to the level of texts,
handles Geach’s so-called ‘donkey’ sentences in a convincing way and gener-
ally deepens our understanding of semantics by its insistence on the dynamic
rather than static nature of meaning. Situation Semantics, lastly, emphasizes
the partial character of meaning and information and is very much focussed
on the contextual dependance of language. The theory gives a nice treatment
of the semantics of perception verbs (see Barwise [1981]) and an interesting
new approach to the Liar paradox (Barwise & Etchemendy [1987]).

∗From: J. van Eijck (ed.), Logics in AI, Lecture Notes in Artificial Intelligence 478,
Springer, Berlin, 1991, 412-428. I would like to thank René Ahn, Nicolas Asher, Johan
van Benthem, Martin van den Berg, Gennaro Chierchia, Jaap van der Does, Peter van
Emde Boas, Paul Dekker, Jan van Eijck, Jeroen Groenendijk, Theo Janssen, Jan Jaspars,
Hans Kamp, Fernando Pereira, Barbara Partee, Frank Veltman and Henk Zeevat for their
comments, criticisms and discussion. An earlier version of this paper has circulated under
the title ‘Meaning, Context and the Logic of Change’.

1



Unfortunately there is no single semantic framework in which all these
niceties can be combined and although the three semantic theories are histor-
ically connected (all three derive from Richard Montague’s pioneering work)
and each claims to be a formal, mathematical theory of meaning, it is diffi-
cult to compare the three theories due to the diverging technical setups. It
is hard to find a position from which all three can be viewed simultaneously
and it should be noted that each is lacking in the sense that it cannot explain
or copy all successes of the others.

What is needed, clearly, is a synthesis, and indeed some work has been
done that goes in the direction of a unified theory of semantics. So, for exam-
ple, Barwise [1987] compares Montague’s [1973] generalized quantifier model
of natural language quantification, further developed in Barwise & Cooper
[1981], with the approach taken in Barwise & Perry [1983]. Rooth [1987] takes
Barwise’s paper as a starting point and gives a Montague style fragment of
English that embodies a version of the Heim / Kamp theory. Groenendijk
and Stokhof [1990] develop a Montagovian version of Discourse Representa-
tion Theory as well, calling it ‘Dynamic Montague Grammar’ (DMG), while
Muskens [1989a, 1989b], to give a fourth example, shows that an important
feature of Situation Semantics—partiality—is compatible with Montague’s
type theoretic approach to semantics and that the Situation Semantic analy-
ses of perception verbs and propositional attitudes can be recast in a ‘Partial
Montague Grammar’.1

In this paper I want to make a further contribution towards a synthesis
of the existing frameworks of formal semantics. I want to try my hand at
another version of the theory of reference developed by Kamp and Heim.
This version will be compatible with Montague’s framework and compatible
to a large extent with my previous unification of that framework with the
partiality of Situation Semantics. I shall make extensive use of some of
the very interesting ideas that were developed in Groenendijk & Stokhof’s
DMG and its predecessor Dynamic Predicate Logic (DPL, see Groenendijk
& Stokhof [1989]). But while these systems are based on rather unorthodox

1The partial theory of types is a simple (four-valued, Extended Strong Kleene) gen-
eralization of the usual, total, theory of types that we shall employ below. The setup is
relational as in Orey [1959], not functional. The logic is weaker than the total logic but it
shares many of the latter’s model-theoretic properties. So, for example, it has the property
of generalized completeness (validity with respect to Henkin’s generalized models can be
axiomatized). For technical information see the works mentioned.

2



logics,2 I simply use the (many-sorted) theory of types to model the DRT
treatment of referentiality. Ordinary type theory is not only much simpler
to use than the ‘Dynamic Intensional Logic’ that Groenendijk & Stokhof
employ3 (or, for that matter, than Montague’s IL), it is also much better
understood at the metamathematical level. Logics ought not to be multiplied
except from necessity.

It turns out that the cumulative effect of this and other simplifications
makes the theory admit of generalizations more readily. In a sequel to this
paper (Muskens [to appear]) I’ll show that, apart from the formalization of
Kamp’s and Heim’s treatment of nominal anaphora given here, the essentially
Reichenbachian theory of tenses that has been developed within the DRT
framework can be formalized in my theory. That Montague’s treatment of
intensionality can be incorporated without any complications will be shown
as well.

Our theory will be based on two assumptions and one technical insight.
The first assumption is that meaning is compositional. The meanings of
words (roughly) are the smallest building blocks of meaning, and meanings
may combine into larger and larger structures by the rule that the meaning
of a complex expression is given by the meanings of its parts.

The second assumption is that meaning is computational. Texts effect
change, in particular, texts effect changes in context. The meaning of a
sentence or text can be viewed as a relation between context states, much in
the way that the meaning of a computer program can be viewed as a relation
between program states.

What is a context state? Evaluation of a text may change the values
of many contextual parameters: the temporal point of reference may move,
the universe of discourse may grow larger or smaller, possible situations may
become relevant or irrelevant to a particular modality, presuppositions may
spring into existence, and so on. If we want to keep track of all this, we
must set up a ‘conversational scoreboard’ in the sense of Lewis [1979], a list
of all current values of contextual parameters. We may then try to study

2For example, in DPL an existential quantifier can bind variables that are outside of
its syntactic scope. This directly reflects the fact that in natural language indefinite noun
phrases create discourse referents that can be picked up later by anaphoric pronouns not
in their scope. While it may be nice to have such a close connection between logic and
language, I consider the price that is to be paid in the form of technical complications
much too high.

3Dynamic Intensional Logic (DIL) is due to Theo Janssen (see Janssen [1983]).

3



the kinematics of score, the rules that govern score change. On top of this,
if we want to be able to interpret a text, we must have a list of all discourse
referents active at a particular point in discourse. Texts dynamically create
referents that can be referred to at a later instance (see Karttunen [1976],
Heim [1982]). For example, if we read the short text in (1) then after reading
its first sentence a discourse referent is set up that is picked up by the pronoun
she1 in the second sentence.

(1) A1 girl walked by. She1 was pretty

So we must keep track of two lists. One list tells us what values Lewis’s
components of conversational score have and one tells us what value each
discourse referent has at each point in discourse.4 We may combine these
two lists into one and call it a (context) state.

If we were to design a computer program to keep track of the state of
discourse (as in Karttunen [1976]) it would be a natural choice to associate
each component of conversational score and each discourse referent with a
variable in that program. In fact, we may entertain the metaphor that a
natural language text is a program, continually effecting the values of a long
list of variables. Interpretation of a text continually changes the context
state and the context state at each point in discourse in its turn effects
interpretation. In much the same way a computer program changes the
values of its variables while the values of these variables effect the course the
computation takes.

The technical insight I referred to above is that virtually all programming
concepts to be found in the usual imperative computer languages are available
in classical type theory. We can do any amount of programming in type
theory. This suggests that type theory is an adequate tool for studying how
languages can program context change. Since there is also some evidence that
type theory is a good vehicle for modelling how the meaning of a complex
expression depends on the meaning of its parts, we may hope that it is
adequate for a combined theory: a compositional theory of the computational
aspects of natural language meaning.

The logic of programming is usually studied in a theory called dynamic
logic and I’ll show how to generalize this logic to the full theory of types in

4It may seem that we need more than one value for the referent that was set up by a1

girl in (1), but see the discussion on nondeterminism below.

4



the next section. When this is done I’ll show how to apply the resulting gen-
eralization to some phenomena that are central to Discourse Representation
Theory in section 2.

2 Type Theory and Dynamic Logic

Dynamic Logic (Pratt [1976], for an excellent survey see Harel [1984], for
a transparent introduction Goldblatt [1987]) is a logic of computation. In
dynamic logic the meaning of a computer program is conceived of as a re-
lation between machine states, execution of a program changes the state a
machine is in. In an actual computer a machine state could be thought of as
consisting of the contents of all registers and memory locations in the device
at a particular moment. But in theory we make an abstraction and consider
the abstract machines that are associated with programs. We can identify
the states of such program machines with functions that assign values to all
program variables.

Thus, for example, suppose we have seven variables in our program, of
which u, v and w range over natural numbers, X and Y range over sets of
natural numbers and card and bool range over playing cards and the values
yes and no respectively. Then the columns in the following figure can be
identified with machine states.

i1 i2 i3 i4 i5 . . .
u : 0 22 7 22 22 . . .
v : 0 2 44 2 2 . . .
w : 5 2 7 22 22 . . .
X : {n | n ≥ 9} {3, 0} {5} {3, 0} {3, 0} . . .
Y : {3, 14, 8} {n | n ≥ 2} ∅ {3, 0} {n | n ≥ 2} . . .
card: 3♥ 10♦ 8♣ 10♦ 10♦ . . .
bool: yes yes no yes yes . . .

fig. 1

The meaning of a given program is identified with the set of all pairs of states
〈i,j〉 such that starting in state i we may end in state j after execution of
that program. For example, suppose that our abstract machine is in state i2
and that the statement to be executed is the assignment w := u. Then after
execution the machine will be in state i5. The value that was assigned to
u in i2 is now assigned to the program variable w as well. This means that

5



the pair 〈i, j〉 is considered to be an element of the meaning of the atomic
program w := u. More generally, the meaning of w := u is the set of all pairs
〈i, j〉 such that the value of w at j equals the value of u at i, while the values
of all other program variables remain unaltered.

Apart from programs we may also consider formulae like the identity
expression u = w. Formulae express no relation between machine states, but
are just true or false at any given state. For example u = w is false at states
i1 and i2, but true at states i3, i4 and i5. Consequently, the meaning of a
formula is identified with a set of machine states.5

Let us consider programs and formulae that are more complex than those
that consist of just one assignment statement or just one identity expression.
The syntax of dynamic logic offers the following constructions: Suppose that
γ and δ are programs and that A and B are formulae, then ⊥, A → B and
[γ]A are formulae and γ; δ, γ ∪ δ, A? and γ∗ are programs. The formula ⊥ is
defined to be false at every state, A → B is false at a state if and only if A
is true and B is false at that state. In Goldblatt’s book we find the following
other intended meanings:

γ; δ do γ and then δ
γ ∪ δ do either γ or δ non-deterministically
A? test A : continue if A is true, otherwise “fail”
γ∗ repeat γ some finite number (≥ 0) of times
[γ]A after every terminating execution of γ, A is true

I’ll discuss these constructions one by one now. The first is the sequencing of
statements γ; δ, This sequencing has a lot in common with the consecution of
sentences in a text and with the behaviour of the word “and” in English. If we
start in state i2 of fig. 1 and execute the sequential statement w := u;Y := X
then execution of the first part will take us to state i5 as before, after which
an execution of the second part will bring us to i4. Thus the pair 〈i2, i4〉 is
an element of the meaning of the program w := u;Y := X. In general, if the
meaning of program γ is the relation Rγ and the meaning of δ is the relation
Rδ then the meaning of γ ; δ is the set of all pairs 〈i, j〉 such that 〈i,k〉 ∈ Rγ

and 〈k,j〉 ∈ Rδ for some state k. The resulting relation is sometimes called
the product of Rγ and Rδ. If both relations happen to be functions, that is

5Readers familiar with Discourse Representation Theory will note that the distinction
between formulae and programs in dynamic logic mirrors the distinction between condi-
tions and DRSs in DRT.

6



if we are considering deterministic programs, this product is nothing but the
composition of these functions.

But we do not restrict ourselves to the consideration of deterministic pro-
grams (programs expressing functions), as the second construct, the choice,
makes clear. Suppose we are in state i5, then execution of w := v will bring
us to i2, but execution of Y := X will bring us to i4. Thus execution of
w := v∪Y := X may either land us in i2 or in i4. It follows that both 〈i5, i2〉
and 〈i5, i4〉 are elements of the meaning of w := v ∪ Y := X In general, the
meaning of γ ∪ δ is the union of the relations that are the meanings of γ and
δ respectively.

From a programming point of view it might at first blush not seem very
realistic to include a nondeterministic construction in the syntax: the com-
puters that you and I have at our desks certainly operate in a deterministic
way. But the allowance of nondeterminism greatly facilitates the study of
the semantics of programming languages and computer language semanti-
cists view deterministic programs as an interesting special case to which the
results of their more general studies can be applied. In natural language
nondeterminism seems to be the rule rather than the exception. Consider
the following short text.

(2) A1 man entered. He1 ordered a beer.

Suppose we have a program that is designed to read and interpret texts like
these (a program like the one in Karttunen [1976]). The program does not
operate on (symbolic representations of) natural numbers, sets of natural
numbers and cards, but on (symbolic representations of) things in the world,
relations among these things, and so on. After reading the first sentence,
the program must have stored some man who entered in some internal store,
say in v1 ; this man can then be picked up later as the referent of he1 in the
second sentence. Now, which man should be stored in v1? This appears to
be a great problem if we think of the program as embodying a deterministic
automaton. Suppose that in fact both Bill and John entered, but that only
John ordered a beer (while Bill ordered a martini). Then if the program
stores Bill in v1 the text will be interpreted as being false, while if John is
stored, it will (correctly) come out true. But the program cannot know this
in advance, that is, after processing the first sentence it has no information
that allows it to discriminate between the two men. So, which man should
be stored, the ‘indeterminate’ man? This solution would seem to land us

7



right into the middle of Mediaeval philosophy and into the knot of problems
from which modern post-Fregean logic has freed us.

But if we allow our program to operate nondeterministically, the problem
vanishes. We can then let the meaning of the first sentence consist of those
pairs of machine states 〈i, j〉 such that i is like j except that the value of v1 in
j is some man who entered. In j1 this may be Bill, in j2 it may be John and
it may be some other man who entered in some other state (in fact, speaking
loosely, we might say now that we have stored an ‘indeterminate’ man in v1).
Some of the men stored may not have ordered a beer, but states in which
the value of v1 did not order a beer will be ruled out by (2)’s next sentence.

How does (2)’s second sentence manage to rule out such states? This
question brings us to the third syntactic construct of dynamic logic in the
list above, the test. The meaning of a program A? (where A is a formula)
is the set of all pairs 〈i, i〉 such that i is an element of the meaning of A.
To see how this can be used to rule out certain possible continuations of the
computation, consider the program (w := v ∪ Y := X);u = w? and start its
execution in state i5. After executing the choice w := v ∪ Y := X we land in
states i2 and i4 as before, but now execution of the test u = w? ensures that
i2 is ruled out. The pair 〈i5, i4〉 is an element of the meaning of the construct
as a whole, but the pair 〈i5, i2〉 is not, and all possible continuations starting
in i2 have now become irrelevant. In a similar way we may think of the second
sentence in (2) as performing a test, ruling out certain possible continuations
of the interpretation process.

Thus the first three syntactic constructs in our list have a close correspon-
dence to phenomena in natural language. Sequencing of programs is strongly
reminiscent of the sequencing of sentences in a text and of natural language
conjunction generally. The nondeterminism that is introduced by choice is
closely connected to the indefinite character of indefinites. And tests rule out
certain possibilities in much the same way as natural language expressions
may do.

But for the last two constructs in the list I see no direct application to
natural language semantics. I have merely included them for the sake of
completeness and I should like to confine myself to stating their semantics
without discussion: The meaning of an iteration γ∗ is the reflexive transitive
closure of the meaning of γ and the meaning of a formula [γ]A is the set of
states i such that for all j such that 〈i, j〉 is in the meaning of γ, j is in the
meaning of A.

Now suppose we want to consider natural language phenomena in the

8



light of the dynamic logic sketched above and that we want to do this in
the general (Montagovian) setting of Logical Semantics. A first problem to
solve then is of a logical character. On the one hand Montague semantics is
based on the theory of types, on the other we want to have the main concepts
of dynamic logic at our disposal. How can we work in type theory and use
dynamic logic too? The solution is simple and takes the form of a translation
of dynamic logic into type theory.

We’ll work with the two-sorted type theory TY2 of Gallin [1975]. Es-
sentially this is just Church’s [1940] type theory, be it that there are three
basic types, where Church uses only two. The basic types are e, s and t,
standing for entities, states and truth values respectively. As I stated above
the syntactic constructs of dynamic logic can be divided into two categories:
formulae and programs. Formulae are true or false at a given state and thus
should translate as terms of type st (sets of states), while programs are state
changers and get type s(st) (relations between states). Define the transla-
tion function † from the constructs of dynamic logic to those of type theory
inductively by the following clauses (i, j, k and l are variables of type s, X
is a variable of type st):

(⊥)† = λi ⊥

(A→ B)† = λi(A†i→ B†i)

(γ; δ)† = λij∃k(γ†ik ∧ δ†kj)

(γ ∪ δ)† = λij(γ†ij ∨ δ†ij)

(A?)† = λij(A†i ∧ j = i)

(γ∗)† = λij∀X((Xi ∧ ∀kl((Xk ∧ γ†kl)→ Xl))→ Xj)

([γ]A)† = λi∀j(γ†ij → A†j)

The clauses here closely follow the discussion of dynamic logic given above.
We see that the translation of ⊥ is the empty set of states, that A → B
translates as the set of states at which either the translation of A is false or
the translation of B is true, that the meaning of γ; δ is given as the product
of the meanings of γ and δ, that the meaning of γ ∪ δ is the union of the
meanings of its components and that the meaning of a test A? is given as
the set of all pairs 〈i, i〉 such that A is true at i. The translations of γ∗ and
of [γ]A are again listed for the sake of completeness only. The first gives the
reflexive transitive closure of the meaning of γ by means of a second order

9



quantification;6 the second treats [γ] essentially as a modal operator with an
accessibility relation given by γ.

This translation embeds the propositional part of dynamic logic into type
theory, the part that contains no variables (or quantification) and hence no
assignment statements. But we do want to study how assignments are being
made, for it seems that language has a capacity to update the components
of conversational score in a way reminiscent of the updating of variables
in a program. So let us return to our discussion of states, variables and
assignment statements now.

The reader may have noted a contradiction between our treatment of
states as primitive objects and our earlier declaration that states are functions
from program variables to the possible values of these variables. We could try
to remove this contradiction by taking states to be objects of some complex
type αβ, where α is the type of variables and β is the type of their values. But
this plan fails, for in general there is no single type of variables and no single
type of the values of variables. Programming languages can handle variables
ranging over many different data types and human languages seem to be
capable of storing many different sorts of things as items of conversational
score. It seems that we have a problem here. Was it caused by an all too
strict adherence to a typed system?

There is an ingenious little trick due to Theo Janssen [1983] that helps us
out: Janssen simply observed that we may go on treating states as primitive
if we treat program variables as functions from states to values. That is, we
may shift our attention from the columns in figure 1 to the rows, and instead
of viewing (say) i2 as the function that assigns the number 22 to u, the
number 2 to v, the set {n | n ≥ 2 } to Y, the card 10♦ to card and so on, we
may view (say) w as the function assigning the number 5 to i1, the number
2 to i2, the number 7 to i3 etcetera. This procedure is clearly equivalent to
the older one and it saves us from the type clash we encountered above.

This means that we can regard states as inhabitants of our typed domains
and the same holds for the things that are denoted by program variables.
States all live in the same basic domain Ds, while the denotations of program
variables may live in different domains. For example, if n is the type of
natural numbers then the denotation of u in figure 1 lives in Dsn, but the

6The treatment of iteration improves upon the results in Janssen [1983]. A treatment
of recursion in the typed models of classical higher order logic is given in Muskens [in
preparation].

10



denotation of X lives in Ds(nt). A program variable that has values of type
α is a function of type sα itself.

Treating states as primitive and treating program variables as functions
from states to values thus allows us to have many different types of things
that can be stored as the value of a variable at a certain state. But now
that we have assured ourselves of this possibility we shall refrain from using
it. For reasons of exposition we shall allow only type e objects to be values
of program variables and program variables consequently will have type se.
In a sequel to this paper (Muskens [to appear]), however, we’ll make a more
extensive use of our possibilities and there the theory will be generalized so
that we can have any finite number of types of program variables.

We should, by the way, remove a possible source of confusion. We are
treating the denotations of program variables as objects in our ontology.
Objects can be referred to in two ways, by means of constants or by means
of variables, and there is no reason to make an exception for objects of type
se. In view of this, the term program variable is perhaps less than felicitous
and I want to change terminology now. Referring to the object I shall from
now on use the term store, a constant denoting a store is a store name and
a (logical) variable ranging over stores a store variable.7 I take it that the
syntactic objects that are usually called program variables are in fact store
names, not store variables. Stores are functions, and of course the values of
a function may vary in the sense that a function may assign different values
to different arguments.

What effect does the execution of an assignment statement v := u have on
a state? It changes the value of the store named by v to the value of the store
named by u, but it leaves all other stores as they are. Consequently, if we
write i[v]j for “states i and j agree in all stores, except possibly in the store
(named by) v”, the following should be our translation of the assignment
statement into type logic.

(v := u)† = λij(i[v]j ∧ vj = ui)

The intuitive meaning of the formula i[v]j ∧ vj = u is that i and j agree
in all stores, except possibly in store v and that the value of store v in j is
identical to the value of store u in i.

In order to make this really work two conditions must be fulfilled. The
first of these is that the expression i[v]j really means what we want it to mean.

7This is the official position. Once the basic confusion is removed there seems to be no
harm in some happy sinning against strict usage.

11



This we can ensure by letting i[v]j be an abbreviation of ∀use((STu ∧ u 6=
v) → uj = ui), where ST is a non-logical constant of type (se)t with the
intuitive interpretation “is a store”. The second condition that is to be
fulfilled if we want our treatment of assignments to be correct, is that for
each i there really is a j in the model such that i[v]j ∧ vj = ui. Until now
there is nothing that guarantees this. For example, some of our typed models
may have only one state in their domain Ds . In models that do not have
enough states an attempt to update a store may fail; we want to rule out
such models. In fact, we want to make sure that we can always update a
store selectively with each appropriate value we may like to. This we can do
by means of the following axiom.

AX1 ∀i∀vse∀xe(STv → ∃j(i[v]j ∧ vj = x))

This makes sure that an assignment is always possible by postulating that
the required state always exists. The axiom scheme is closely connected with
Goldblatt’s [1987, pp. 102] requirement of ‘Having Enough States’ and with
Janssen’s ‘Update Postulate’. We’ll refer to it as the Update Axiom. It
follows from the axiom that not all type se functions are stores (except in
the marginal case that De contains only one element), since, for example, a
constant function that assigns the same value to all states cannot be updated
to another value. The Update Axiom imposes the condition that contents of
stores may be varied at will.

Of course store names should refer to stores and that is just what the
following axiom scheme requires.

AX2 STv for each store name v

The combined effect of these axioms and the definition of i[v]j now guarantees
that assignment statements always get the interpretation that is desired.

There is one more axiom scheme that we shall need, an axiom scheme
that is completely reasonable from a programming point of view: although
different stores may have the same value at a given state, we don’t want two
different store names to refer to the same store. An assignment v := u should
not result in an update of w simply because v and w happen to be names for
the same store and from i[v]j we want to be able to conclude that ui = uj if
u and v are different store names. This we enforce simply by demanding

AX3 u 6= v for each two syntactically different store names u and v

12



This ends our discussion of the assignment statement and it ends our dis-
cussion of the more general part of the theory. All programming concepts
that are needed in the rest of the paper have been introduced now. Essen-
tially we have shown how to treat the class of so-called while programs in
Montague Grammar.8 Since every computable function can be implemented
with the help of a while program this means that we can do any amount of
programming in classical type theory.

3 Nominal Anaphora

In this section I’ll define a little Montague fragment of English, treating
anaphora in the way of Kamp [1981] and Heim [1982]. The result can
be viewed as a direct generalization of Groenendijk & Stokhof’s system of
‘Dynamic Predicate Logic’ (Groenendijk & Stokhof [1989]) to the theory of
types.9 The fragment will be based on a system of categories that is defined
in the following manner.

i. S and E are categories;

ii. If A and B are categories, then A/nB is a category (n ≥ 1).

Here S is the category of sentences (and texts). The category E does not
itself correspond to any class of English expressions, but it is used to build
up complex categories that do correspond to such classes. The notation /n

stands for a sequence of n slashes. I’ll employ some familiar abbreviations
for category notations, writing

V P (verb phrase) for S/E,
N (common noun phrase) for S//E
NP (noun phrase) for S/V P ,
TV (transitive verb phrase) for V P/NP , and
DET (determiner) for NP/N .

The analogy that we have noted between programs and texts motivates us
to treat sentences, and indeed texts, as relations between states, objects of

8The statement while A do α can be defined as (A?;α)∗;¬A?.
9In fact the present system is closer to DPL than Groenendijk & Stokhof’s own gener-

alization, DMG, is. Roughly, what Groenendijk & Stokhof do on the metalevel of DPL I
do on the object level of type theory.

13



type s(st ), just like programs. The category E we associate with type e.
More generally, we define a correspondence between types and Montague’s
categories as follows.

i. TYP(S) = s(st); TYP(E ) = e;

ii. TYP(A/nB) = (TYP(B),TYP(A)).

The idea is that an expression of category A is associated with an object of
type TYP(A) and that an expression that seeks an expression of category
B in order to combine with it into an expression of category A is associated
with a function from TYP(B) objects to TY P (A) objects, or, equivalently,
with a (TYP(B),TYP(A)) object.

To improve readability let’s abbreviate our notation for types somewhat
and let’s write [α1 . . . αn] instead of (α1(α2(. . . αn(s(st)) . . .). Under this con-
vention, the rule above assigns the types listed in the second column of the
table below to the categories listed in its first column.

Category Type Some basic expressions
V P [e] walk, talk
N [e] farmer, donkey, man, woman, bastard
NP [[e]] Pedron, Johnn, itn, hen, shen (n ≥ 1)
TV [[[e]]e] own, beat, love
DET [[e][e]] an, everyn, then, non (n ≥ 1)
(N / N ) /
VP

[[e][e]e] who

(S / S ) / S [[][]] and, or,. (the stop)
(S / S ) //
S

[[][]] if

Some basic expressions belonging to these categories I have listed in the third
column. From these the complex expressions of our fragment are built. An
expression of category A/nB will combine with an expression of category B
and the result will be an expression of category A. For example, the word
an of category DET (defined as NP/N) combines with the word farmer of
category N to the phrase an farmer, which belongs to the category NP.
The exact nature of the way expressions are combined need hardly concern
us here. Mostly, combination is just concatenation, but some syntactic fine-
tuning is needed in order to take care of things like word order and agreement.

14



Determiners, proper names and pronouns are indexed, as the reader will
have noticed. As usual, coindexing is meant to indicate the relation between
a dependent (for example an anaphoric pronoun) and its antecedent. So in
the short text

(3) A1 farmer owns a2 donkey. The1 bastard beats it2

the coindexing indicates that the bastard depends on a farmer and that it
depends on a donkey. In this paper we study only the semantic aspects of
the dependent / antecedent relation, but our considerations should be sup-
plemented with a syntactic theory of the same relation, such as the Binding
Theory (see e.g. Reinhart [1979], Bach & Partee [1981]). The Binding Theory
rules out certain coindexings that are logically possible but syntactically im-
possible. Our version of Dynamic Montague Grammar is designed to answer
the question how in a syntactically acceptable text a dependent manages to
pick up a referent that was introduced by its antecedent; so we may restrict
ourselves to the study of texts that are coindexed in a syntactically correct
way.

In order to provide our little fragment of English with an interpretation
we shall translate it into type theory. Expressions of a category A will be
translated into terms of type TYP(A). The translation of an expression, or,
to be precise, the set of terms that are equivalent (given the axioms) with the
translation of an expression, we identify with its meaning. Thus we can make
predictions about the semantic behaviour of expressions on the basis of the
logical behaviour of their translations. The function that assigns translations
to expressions is defined as usual, rule-to-rule, inductively, by specifying (a)
the translations of basic expressions and (b) how the translation of a complex
expression depends on the translations of its parts.

To start with (b), our rule for combining the translation of a category
A/nB expression with the translation of an expression of category B is always
functional application. That is, if σ is a translation of the expression Σ of
category A/nB and if ξ translates the expression Ξ of category B, then the
translation of the result of combining Σ and Ξ is the term σξ.

Translations of basic expressions, to continue with (a), can be specified
by simply listing them and this I’ll do now. A detailed explanation will be
given shortly.10

10Not all basic expressions given in the table above can be found in this list but for each
item in the table an example is listed. So, e.g., the translation of own will be analogous

15



an ; λP1P2λij∃kh(i[vn]k ∧ P1(vnk)kh ∧ P2(vnk)hj)
non ; λP1P2λij(i = j ∧ ¬∃khl(i[vn]k ∧ P1(vnk)kh ∧ P2(vnk)hl))
everyn ; λP1P2λij(i = j ∧ ∀kl((i[vn]k ∧ P1(vnk)kl)→ ∃hP2(vnk)lh))
then ; λP1P2λij∃k(P1(vnk)ik ∧ P2(vnk)kj)
Pedron ; λPλij(vni = pedro ∧ P (vni)ij)
hen ; λPλij(P (vni)ij)
if ; λpqλij(i = j ∧ ∀h(pih→ ∃k qhk))
and ; λpqλij∃h(pih ∧ qhj)
. ; λpqλij∃h(pih ∧ qhj)
or ; λpqλij(i = j ∧ ∃h(pih ∨ qih))
who ; λP1P2λxλij∃h(P2xih ∧ P1xhj)
farmer ; λxλij(farmer x ∧ i = j)
walk ; λxλij(walk x ∧ i = j)
love ; λQλy(Qλxλij(love xy ∧ i = j))

In these translations we let h, i, j, k and l be type s variables; x and y are type
e variables; (subscripted) P is a variable of type TYP(V P ); Q a variable of
type TYP(NP ); p and q are variables of type s(st); pedro is a constant of
type e ; farmer and walk are type et constants; love is a constant of type
e(et) and each vn is a store name.

To grasp how things work one is advised to make a few translations and
by way of example I’ll work out some translations in detail, making comments
as I go along. I’ll start with text (3).

(3) A1 farmer owns a2 donkey. The1 bastard beats it2

The combination a1 farmer is translated by the translation of a1 applied to
the translation of farmer. Some lambda-conversions reduce this to

(4) λPλij∃kh(i[v1]k ∧ farmer(v1k) ∧ k = h ∧ P (v1k)hj)

and by predicate logic this is equivalent to

(5) λPλij∃k(i[v1]k ∧ farmer(v1k) ∧ P (v1k)kj).

In a completely analogous way we find that a2 donkey translates as

(6) λPλij∃k(i[v2]k ∧ donkey(v2k) ∧ P (v2k)kj).

to that of love, the translation of itn will be analogous (and in fact identical) to that of
hen .

16



And from this we derive that own a2 donkey has a translation equivalent to

(7) λyλij(i[v2]j ∧ donkey(v2j) ∧ own(v2j)y),

so that for a1 farmer owns a2 donkey we find

(8) λij∃k(i[v1]k ∧ farmer(v1k) ∧ k[v2]j ∧ donkey(v2j) ∧ own(v2j)(v1k)).

Thus far everything was lambda-conversion and ordinary logic; but now we
come to a reduction that is specific to our system. First, using the definition
of k[v2]j (and AX3), note that the term above is equivalent to

(9) λij∃k(i[v1]k ∧ farmer(v1j) ∧ k[v2]j ∧ donkey(v2j) ∧ own(v2j)(v1j)).

Now let us write i[v1, v2]j for ∃k(i[v1]k ∧ k[v2]j). Then our term reduces to

(10) λij(i[v1, v2]j ∧ farmer(v1j ∧ donkey(v2j) ∧ own(v2j)(v1j)).

A moment’s reflection and an application of the Update Axiom learns us
that i[v1, v2]j means ‘states i and j agree in all stores except possibly in v1

and v2’. Since this new notation will prove useful on many occasions we
may generalize it somewhat. Let u1, . . . un be store names, then by induction
i[u1, . . . un]j is defined to abbreviate ∃k(i[u1]k∧k[u2, . . . un]j). Again, by the
Update Axiom the formula i[u1, . . . un]j means: ‘states i and j agree in all
stores except possibly in u1, . . . un’.

The upshot of the translation process thus far is that we have associated
a certain relation between context states with the sentence a1 farmer owns
a2 donkey. The relation in question holds between states i and j if these
states differ in maximally two of their stores, v1 and v2, and if the values of
these stores in j are a farmer and a donkey that he owns respectively. In
fact the sentence a1 farmer owns a2 donkey now has aspects that we find in
assignment statements in a programming language: it assigns a farmer to v1

and a donkey to v2 and imposes the further constraint that the farmer owns
the donkey. Of course the assignment is nondeterministic: there may be more
than one farmer and one donkey in the model that satisfy the description,
or there may be none.

Let’s continue our translation. By a procedure that is now entirely famil-
iar we find that the1 bastard beats it2 translates as

(11) λij(bastard(v1i) ∧ beat(v2i)(v1i) ∧ i = j).

17



This means that the sentence functions as a test: it denotes the set of all
pairs 〈i, i〉 such that the value of store v1 at i is a bastard that beats the
value of store v2.

We can now combine the two sentences. Sentence concatenation is sym-
bolized with the full stop, which is assigned category (S/S)/S; its meaning
is λpqλij∃h(pih ∧ qhj): sequencing. Applying this first to (10) and then
applying the result to (11) gives the translation of (3).

(12) λij(i[v1, v2]j∧farmer(v1j)∧donkey(v2j)∧own(v2j)(v1j)∧bastard(v1j)∧
beat(v2j)(v1j)).

We see that the relation expressed by (10) is now restricted properly by the
test in (11). Moreover, we see that the discourse referents that were created
by the antecedents a1 farmer and a2 donkey in the first sentence of (3) are
now picked up by the dependents the1 bastard and it2 .

The relation in (12) gives the meaning of text (3), but to get at the truth
conditions one further step is needed. We say that a text is true in a context
state i (in some model) if there is some context state j such that 〈i, j〉 is
in the denotation of the meaning of the text. If R is the meaning of some
text then we call its domain λi∃jRij the set of all states in which the text
is true, its content. The step from meaning to truth parallels a similar step
taken in DRT: a discourse representation structure is true if it has a verifying
embedding.

Clearly the content of (3) is

(13) λi∃j([v1, v2]j∧farmer(v1j)∧donkey(v2j)∧own(v2j)(v1j))∧bastard(v1j)∧
beat(v2j)(v1j)).

But this can be simplified considerably, for it is equivalent to (14). Quanti-
fying over a state has the effect of binding unselectively the contents of all
stores in that state.

(14) λi∃xy(farmer x ∧ donkey y ∧ own yx ∧ bastard x ∧ beat yx).

To show the equivalence, we may abbreviate the conjunction farmer x ∧
donkey y ∧ own yx ∧ bastard x ∧ beat yx as ϕ for the moment. Suppose (13)
holds for some i. Then there are objects, namely the values of v1j and v2j,
that satisfy ϕ. It follows that (14) is true in i. Conversely, suppose that (14)
is true for some i. Then there are d1 and d2 that satisfy ϕ. By the Update

18



Axiom there is a j, differing from i at most in stores v1 and v2, such that
v1j = d1 and v2j = d2 . Hence ∃j(i[v1, v2]j ∧ [v1j/x, v2j/y]ϕ) holds, so that
(13) is true in i.

The principle underlying the equivalence of (13) and (14) is important
enough to state it in full generality. I call it the Unselective Binding Lemma.

Unselective Binding Lemma. Let u1, . . . , un be store names, let x1, . . . , xn

be distinct variables, let ϕ be a formula that does not contain j and let

[u1j/x1, . . . , unj/xn]ϕ

stand for the simultaneous substitution of u1j for x1 and . . . and unj for xn

in ϕ, then:

(i) ∃j(i[u1 . . . un]j ∧ [u1j/x1, . . . , unj/xn]ϕ) is equivalent with ∃x1 . . . xnϕ

(ii) ∀j(i[u1 . . . un]j → [u1j/x1, . . . , unj/xn]ϕ) is equivalent with ∀x1 . . . xnϕ

I omit the proof of this lemma since it is an obvious generalization of the
proof of the equivalence of (13) and (14) given above ((ii) follows from (i) of
course).

We see that (3) is true in a context state if and only if it is true in all
other context states, the content of (3) either denotes the empty set or the
set of all states, depending on whether there is a farmer who owns a donkey
in the model and whether the bastard beats it. But this does not hold for
all texts; let’s consider sentence (15) for instance.

(15) He1 beats a2 donkey

The pronoun he1 cannot be interpreted as dependent on some antecedent
provided by the text in this case. And so it must be interpreted deictically,
its referent must be provided by the context. Now let us look at the meaning
and the content of (15), given in (16) and (17) respectively.

(16) λi(i[v2]j ∧ donkey(v2j) ∧ beat(v2j)(v1i))

(17) λi∃x(donkey x ∧ beat x(v1i))

19



We see that (15) is true only in contexts that provide a referent for the deictic
pronoun he1 . The reader may wish to verify that texts containing a proper
name or a definite noun phrase that lacks an antecedent are treated likewise.

If a text contains an indefinite right at the start, the discourse referent
created by that indefinite will live through the entire text and can be picked
up by a dependent at any point. But some discourse referents have only a
limited life span. In order to see how our system can account for this, let’s
work out the translation of the following celebrated example.

(18) Every1 farmer who owns a2 donkey beats it2

First we apply the translation of who, λP1P2λxλij∃h(P2xih∧P1xhj), which
gives a generalized form of conjunction, to the V P own a2 donkey. The
result, after conversions, is

(19) λPλxλij∃h(Pxih ∧ h[v2]j ∧ donkey(v2j) ∧ own(v2j)x).

Applying this to the translation of farmer results in

(20) λxλij(farmer x ∧ i[v2]j ∧ donkey(v2j) ∧ own(v2j)x),

the translation of farmer who owns a2 donkey. Next we combine this result
with the translation of the determiner every1 . This gives the following term:

(21) λPλij(i = j∧∀l((i[v1, v2]l∧farmer(v1l)∧donkey(v2l)∧own(v2l)(v1l))→
∃hP (v1l)lh)).

Finally a combination with the V P beat it 2 yields:

(22) λij(i = j ∧∀l((i[v1, v2]l∧ farmer(v1l)∧ donkey(v2l)∧ own(v2l)(v1l))→
beat(v2l)(v1l)),

which by the Unselective Binding Lemma is equivalent to

(23) λij(i = j ∧ ∀xy((farmer x ∧ donkey y ∧ own yx)→ beat yx)).

The translation of a universal sentence thus acts as a test ; it cannot change
the value of any store but can only serve to rule out certain continuations
of the interpretation process. The discourse referents that were introduced
by the determiners every1 and a2 had a limited life span. Their role was
essential in obtaining the correct translation of the sentence, but once this
translation was obtained they died and could no longer be accessed. There
are more operators that behave in the way of everyn in this respect: in the
fragment under consideration the determiner non , and the words if and or
have a very similar behaviour.

20



References

[1] Bach, E. and Partee, B.H.: 1981, Anaphora and Semantic Structure,
CLS 16, 1-28.

[2] Barwise, J.: 1981, Scenes and Other Situations, The Journal of Philos-
ophy, 78, 369-397.

[3] Barwise, J.: 1987, Noun Phrases, Generalized Quantifiers and
Anaphora, in P. Gärdenfors (ed.), Generalized Quantifiers, Reidel, Dor-
drecht, 1-29.

[4] Barwise, J. and Cooper, R.: 1981, Generalized Quantifiers and Natural
Language, Linguistics and Philosophy 4, 159-219.

[5] Barwise, J. and Perry J.: 1983, Situations and Attitudes , MIT Press,
Cambridge, Massachusetts.

[6] Barwise, J and Etchemendy, 1987, The Liar: An Essay on Truth and
Circularity, Oxford University Press.

[7] Bäuerle, R., Egli, U., and Von Stechow, A. (eds.): 1979, Semantics from
Different Points of View, Springer, Berlin.

[8] Chierchia, G.: 1990, Intensionality and Context Change, Towards a
Dynamic Theory of Propositions and Properties, manuscript, Cornell
University.

[9] Church, A.: 1940, A Formulation of the Simple Theory of Types, The
Journal of Symbolic Logic 5, 56-68.

[10] Gabbay, D. and Günthner, F. (eds.): 1983, Handbook of Philosophical
Logic, Reidel, Dordrecht.

[11] Gallin, D.: 1975, Intensional and Higher-Order Modal Logic, North-
Holland, Amsterdam.

[12] Goldblatt, R.: 1987, Logics of Time and Computation, CSLI Lecture
Notes, Stanford.

[13] Groenendijk, J. and Stokhof, M.: 1989, Dynamic Predicate Logic, ITLI,
Amsterdam. To appear in Linguistics and Philosophy.

21



[14] Groenendijk, J. and Stokhof, M.: 1990, Dynamic Montague Grammar,
in L. Kalman and L. Polos (eds.), Papers from the Second Symposium
on Logic and Language, Akadmiai Kiado, Budapest, 3-48.

[15] Harel, D.: 1984, Dynamic Logic, in Gabbay & Günthner [1983], 497-604.

[16] Heim, I.: 1982, The Semantics of Definite and Indefinite Noun Phrases,
Dissertation, University of Massachusetts, Amherst. Published in 1989
by Garland, New York.

[17] Henkin, L.: 1963, A Theory of Propositional Types, Fundamenta Math-
ematicae 52, 323-344.

[18] Janssen, T.: 1983, Foundations and Applications of Montague Gram-
mar, Dissertation, University of Amsterdam. Published in 1986 by CWI,
Amsterdam.

[19] Kamp, H.: 1981, A Theory of Truth and Semantic Representation, in
J. Groenendijk, Th. Janssen, and M. Stokhof (eds.), Formal Methods
in the Study of Language, Part I, Mathematisch Centrum, Amsterdam,
277-322.

[20] Karttunen, L.: 1976, Discourse Referents, in J. McCawley (ed.), Notes
from the Linguistic Underground, Syntax and Semantics 7, Academic
Press, New York.

[21] Lewis, D.: 1979, Score Keeping in a Language Game, in Bäuerle, Egli
& Von Stechow [1979], 172-187.

[22] Montague, R.: 1973, The Proper Treatment of Quantification in Ordi-
nary English, reprinted in Montague [1974], 247-270.

[23] Montague, R.: 1974, Formal Philosophy, Yale University Press, New
Haven.

[24] Muskens, R.A.: 1989a, Going Partial in Montague Grammar, in R.
Bartsch, J.F.A.K. van Benthem and P. van Emde Boas (eds.), Semantics
and Contextual Expression, Foris, Dordrecht, 175-220.

[25] Muskens, R.A.: 1989b, Meaning and Partiality, Dissertation, University
of Amsterdam.

22



[26] Muskens, R.A.: to appear, Tense and the Logic of Change.

[27] Muskens, R.A.: in preparation, Logical Semantics for Programming
Languages.

[28] Orey, S.: 1959, Model Theory for the Higher Order Predicate Calculus,
Transactions of the American Mathematical Society 92, 72-84.

[29] Pratt, V.R.: 1976, Semantical Considerations on Floyd-Hoare Logic,
Proc. 17th IEEE Symp. on Foundations of Computer Science, 109-121.

[30] Reinhart, T.: 1979, Syntactic Domains for Semantic Rules, in F.
Günthner and S. Schmidt (eds.), Formal semantics and Pragmatics for
Natural Languages, Reidel, Dordrecht.

[31] Rooth, M.: 1987, Noun Phrase Interpretation in Montague Grammar,
File Change Semantics, and Situation Semantics, in P. Gärdenfors (ed.),
Generalized Quantifiers, Reidel, Dordrecht, 237-268.

23


