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Abstract In [E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Alge-
bra Appl. 373 (2003), 241-272] we gave a survey of answers to the question of which graphs are determined by
the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian
matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime some of
these questions have been (partially) answered. In the present paper we give a survey of these and other developments.
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1 Introduction

Since [11] was published, the study of spectral characterizations of graphs has developed significantly.
Therefore, we believe that a second survey has become worthwhile. In this survey we focus on new
developments. Most of the mentioned results have been published, whereas some other results are
new; obtained either by the authors themselves, or through personal communications.

We do not only consider the spectrum of the adjacency matrix, but also deal with the Laplacian
matrix, the (so-called) signless Laplacian, and the generalized adjacency matrices. As in [11], we
abbreviate ‘determined by the spectrum’ by DS.

An important development is the new method of Wang and Xu (see Section 5) for finding graphs
that are DS with respect to the generalized adjacency matrix. Their approach often works for
randomly generated graphs, and this strengthens our believe that the statement ‘almost all graphs
are not DS’ (which is true for trees) is false.

Another result deals with cospectrality of generalized adjacency matrices, in particular an answer
is given to the question (posed in [11]): ‘when can regularity of a graph be deduced from the spectrum
of a generalized adjacency matrix?’ (see Section 4).

Several families of graphs are shown to be DS with respect to the adjacency matrix (see Section 2),
the Laplacian matrix (see Section 3), or both (see Section 6.1). For the signless Laplacian we know
of one new result (see Section 3). However, the remark made in [11] that, with respect to the signless
Laplacian, graphs tend to be more often DS than with respect to the Laplacian, or (generalized)
adjacency matrix, motivated Cvetković, Rowlinson, and Simić [10] to (re)start investigations of this
rather unusual matrix.

For many other graphs cospectral mates have been found. This includes some special bipartite
graphs (see Section 2.3), and many distance-regular graphs (see Section 6.4). One such family of
graphs cospectral with distance-regular graphs turned out to be a new infinite family of distance-
regular graphs. Important methods for constructing cospectral graphs are Godsil-McKay switching
and the partial-linear-space technique, which have been explained in our previous survey [11]. We
assume the reader to be familiar with the methods and results from that paper.
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2 The adjacency matrix

2.1 Graphs with small spectral radius

The recent results on graphs that are determined by the adjacency spectrum are dominated by results
for graphs with small spectral radius. Using Smith’s [36] classification of graphs with spectral radius
less than 2, it was determined by Shen et al. [35] that all connected such graphs - the paths Pn of
size n, the graphs Dn of size n, and the graphs E6, E7, and E8 (see Figures 1 and 2) - are DS.
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Figure 1: The graph Dn
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Figure 2: The graphs E6, E7, E8

Shen et al. [35] also pointed out a mistake in [11] where we claimed that a disjoint union of paths
is DS. This is only so if all paths have size at least two, i.e., if there are no isolated vertices (paths
of size 1). Indeed, the disjoint union of P2n+1 and P1 is cospectral with the disjoint union of Dn+2

and Pn, cf. [35]. This fact is easily shown by using the partitioned tensor product method of Godsil
and McKay [22], who illustrate the case n = 2 in their Example 2.5. Other examples spoiling the
general claim are P11 + P2 + P1 which is cospectral with E6 + P5 + P3, and P17 + P2 + P1 which is
cospectral with E7 + P8 + P5, and P29 + P4 + P2 + P1 which is cospectral with E8 + P14 + P9 + P5.

Shen et al. [35] finally showed that a disjoint union of graphs of type Dn, n ≥ 4 is DS. Although
the classification of DS graphs with spectral radius less than 2 may not be complete, we think that
the most prominent questions here have been answered. One final remark that could be made is that
if a graph is cospectral with a graph with spectral radius less than 2, then it has the same number
of components (since the number of edges is the same), and also the same number of components
that are paths of size at least two. The latter follows from considering the sum of squares of degrees
in the graph, which is determined by the spectrum in the absence of 4-cycles.

Smith [36] also determined all connected graphs with spectral radius 2: the cycles Cn of size n,
the graphs D̃n of size n + 1 ≥ 5, and the graphs Ẽ6, Ẽ7, Ẽ8 (see Figures 3 and 4).

s s s s s s
s s

Figure 3: The graph D̃n

It is well-known that the cycles are DS. It is also known that the graphs D̃n are cospectral with
the disjoint union of a 4-cycle and a path Pn−3, cf. [9, p.77]. The graph Ẽ6 is cospectral with the
disjoint union of a 6-cycle and an isolated vertex, while the remaining two graphs, Ẽ7 and Ẽ8 are
DS (this follows among others from the results below). We may thus conclude the following.
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Figure 4: The graphs Ẽ6, Ẽ7, Ẽ8

Proposition 1 All connected graphs with spectral radius at most 2 are DS except for the graphs
D̃n, n ≥ 4 and Ẽ6.

Wang and Xu [40] determined the DS graphs among the so-called T-shape trees, that is, the trees
with one vertex of maximal degree 3. Such trees have spectral radius less than 3

2

√
2 ≈ 2.1312. In

their analysis, Wang and Xu among others use that in a graph without 4-cycles, the number of
2-matchings is a coefficient in the characteristic polynomial. Let T (a, b, c) denote the T-shape tree
such that removal of the vertex of degree 3 leaves paths of sizes a, b, and c. Then Wang and Xu [40]
showed the following.

Proposition 2 The T-shape tree T (a, b, c) is DS if and only if {a, b, c} 6= {d, d, 2d− 2} for any d.

The exceptional graph T (d, d, 2d− 2) is cospectral with the disjoint union of a path of size d− 1 and
the graph obtained by adding an edge between (one of the vertices of) a cycle of size 2d + 2 and one
of the end vertices of a path of size d− 2 (a so-called lollipop graph, see below).

Ghareghani et al. [20] used the characterization of graphs with spectral radius between 2 and√
2 +

√
5 ≈ 2.0582 by Brouwer and Neumaier [2] to determine that all such connected graphs are DS.

These comprise a collection of T-shape trees and a collection of trees with two vertices of maximal
degree 3.

Proposition 3 All connected graphs with spectral radius between 2 and
√

2 +
√

5 are DS.

In [23] it is proved that so-called lollipop graphs with an odd cycle are DS. A lollipop graph is a
graph obtained by adding an edge between (one of the vertices of) a cycle and one of the end vertices
of a path. Such graphs have spectral radius at most

√
5. Also the lollipop graphs with an even cycle

of length at least 6 can be shown to be DS (Tayfeh-Rezaie [private communication]). It is an open
question whether lollipop graphs with a cycle of length 4 are DS.

Finally we would like to mention that Woo and Neumaier [44] obtained some results on graphs
with spectral radius at most 3

2

√
2 (among them are for example all T-shape trees, and lollipop graphs

with sufficiently large cycle length and fixed path length). These results could be useful in the further
classification of DS graphs with small spectral radius. We do not consider this the most important
challenge though.

It would for example be more interesting to determine which starlike trees (trees with one vertex
of degree larger than 2) are determined by the spectrum. Partial results are obtained by Lepović
and Gutman [29] who showed that no starlike trees are cospectral, and by Omidi and Tajbakhsh
[34] who showed that if a tree is cospectral with, but not isomorphic to a given starlike tree, then
its maximum degree is less than the maximum degree of the starlike tree, and any two vertices of
degree at least five are adjacent (and hence there can be at most two).

2.2 Bipartite graphs with few eigenvalues

In [15], nonregular bipartite graphs with four distinct eigenvalues were studied. Among others all
such connected (connectivity follows from the spectrum in this case) graphs on at most 60 vertices
were determined. Thirteen of these graphs are DS, the smallest of which is the path on four vertices.
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In [16], bipartite biregular graphs with five eigenvalues were studied. All such connected graphs
on at most 33 vertices were determined. However, biregularity is not a property that is determined by
the spectrum. Regularity is determined by the spectrum though, and thus among the above graphs
we find five regular DS graphs (where graphs whose adjacency matrix has rank 6 are excluded, see
below). Three of these are distance-regular: the Pappus graph, Tutte’s 8-cage, and the incidence
graph of the affine plane of order 4 minus a parallel class (see also [11, Table 4]). It would be
interesting to find out whether the other unique biregular graphs are DS.

In the above, graphs of small rank are excluded. It also follows from the results in [16] that the
regular graphs C6 ⊗ Jt and C8 ⊗ Jt are DS. The problem to determine (all) other (DS) graphs with
small rank (among the bipartite graphs with five eigenvalues) also seems feasible.

In general it should be possible to determine the DS graphs among the graphs whose adjacency
matrix has very small rank. The disjoint union of a complete bipartite graph and some isolated
vertices is for example not DS (in general). However, it was observed by Stevanović and the authors
[private communication] that the complement of such a graph is always DS. If A is the adjacency
matrix of this complement, then A + I has rank 3. Indeed, it also seems feasible to determine the
DS graphs for which almost all eigenvalues are −1.

2.3 Cospectral bipartite graphs with different bipartitions

At the Aveiro Workshop on Graph Spectra in 2006, Zwierzyński [37, Problem AWGS.2.B] asked
if one can determine the size of a bipartition given the spectrum of a connected bipartite graph.
In general, the answer to this question is negative, and an infinite family of examples where the
bipartition sizes differ by one were given in [37, Problem AWGS.2.B]. Here we give an infinite family
of cospectral connected bipartite graphs for which the bipartition sizes differ by an arbitrary amount,
and for which also the complements are cospectral.

Consider the connected bipartite graph G with incidence matrix



J
J
J

J
O
O

O
J
O

O
O
J

O
J
J

J
O
J

J
J
O




n1

n2

n3

m m m m m1 m2 m3

where J and O denote all-ones matrices and all-zeros matrices, respectively, of sizes indicated by the
variables besides and below the matrix. The set of vertices corresponding to the first 4m columns
induce a subgraph that satisfies the conditions for Godsil-McKay switching, and switching gives a
cospectral bipartite graph H, which has incidence matrix




O
O
O

O
J
J

J
O
J

J
J
O

O
J
J

J
O
J

J
J
O




n1

n2

n3

m m m m m1 m2 m3

but which is not connected. Still, let ki, i = 1, 2, 3 be integers greater than m, let G1 be the graph
with mi = 0, i = 1, 2, 3 and ni = ki, i = 1, 2, 3, and let H1 be its switched graph. Also, let G2 be the
graph with mi = ki −m, i = 1, 2, 3 and ni = m, i = 1, 2, 3, and let H2 be its switched graph. Then
H1 and H2 are isomorphic graphs, and hence G1 and G2 are cospectral graphs whose complements
are also cospectral. Moreover, G1 has parts of sizes 4m and k1 + k2 + k3, while G2 has parts of sizes
m + k1 + k2 + k3 and 3m. This example is further illustrated in Figures 5 and 6.
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Figure 5: Quotients of switching equivalent graphs G1 and H1
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Figure 6: Quotients of switching equivalent graphs G2 and H2

3 The Laplacian matrix

It is known that the spectrum of the Laplacian matrix of a graph determines the number of vertices,
the number of edges, the number of components, and the number of spanning trees, cf. [11, Lemma
4]. Also the sum of squares of degrees of a graph follows from the Laplacian spectrum, as can be
seen from the proof of Proposition 2 of [11]. For bipartite graphs it can even be shown that the sum
of cubes of degrees is determined by the Laplacian spectrum. This follows from the following.

Lemma 1 Let G be a bipartite graph with n vertices and m edges, and with Laplacian eigenvalues
θi, i = 1, . . . , n and vertex degrees di, i = 1, . . . , n. Then

∑
i

(
di

3

)
= 1

6

∑
i(θi − 2)3 + 1

6 (m− n)(−2)3.

Proof. If N is the (0,±1) vertex-edge incidence matrix of G, with ones in one part of the bipartition,
and minus ones in the other part, then NN> is the Laplacian matrix of G, while N>N − 2I is the
adjacency matrix A of its line graph. By counting the number of triangles in the line graph, which
equals 1

6 trace(A3), the result follows. tu
The problem in using this lemma is that bipartiteness is a property that is not determined by the
Laplacian spectrum, at least not in general. However, trees are bipartite graphs, and it is determined
by the Laplacian spectrum whether a graph is a tree (and hence bipartite). Lemma 1 is essentially
what finishes the proof of Omidi and Tajbakhsh [34] that starlike trees are determined by the
Laplacian spectrum, a proof that builds on the result by Lepović [28] that no two starlike trees have
the same Laplacian spectrum.

Shen et al. [35] used the fact that if θ1 is the largest Laplacian eigenvalue of a non-empty graph,
then the degree d of a vertex is at most θ1 − 1 (this follows from interlacing, and the fact that K1,d

is a subgraph). This, and the above remarks determine the degree sequence for graphs cospectral
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with the tree D̃n (see Figure 3). They then also used counting arguments in the line graph (the sum
of squares of degrees, in the absence of 4-cycles) to show that D̃n is determined by the Laplacian
spectrum.

The same arguments are used in [23] to determine the degree sequence of a graph cospectral with
a lollipop graph (as defined in Section 2.1). By counting the number of spanning trees, it is then
shown that every lollipop graph is determined by the Laplacian spectrum.

The relation with the line graph can also be explored when the so-called signless Laplacian matrix
(cf. [11]) is considered. Omidi [private communication] used this to show that all the T-shape trees
except K1,3 are determined by the signless Laplacian spectrum.

A fan graph is a cone over a path, that is, the graph obtained from a path by adding a vertex
that is adjacent to all vertices of the path. Similarly a ballute graph is a cone over a cycle. Liu et al.
proved that fan graphs [30] and ballute graphs [31] are determined by the Laplacian spectrum. In
their proof, they use that the largest Laplacian eigenvalue is at most d1 + d2, the sum of the largest
two vertex degrees (which follows by considering the correspondence with the line graph, which has
vertex degrees at most d1 + d2− 2). By using this, and also the second largest Laplacian eigenvalue,
they manage to limit the number of possible degree sequences for graphs that are cospectral with a
fan graph or a ballute graph, which finally leads to the proof that these graphs are determined by
the Laplacian spectrum.

Hammer and Kelmans [26] proved that so-called threshold graphs are determined by the Laplacian
spectrum. Threshold graphs are defined in terms of stable sets, but they are the same as the 1-
decomposable graphs. A graph is called 1-decomposable if it is obtained from a single vertex by
alternatingly adding isolated vertices and taking complements. The key idea in their proof can be
generalized as follows.

Lemma 2 Let G be a graph on n vertices with largest Laplacian eigenvalue n. If G is determined
by the Laplacian spectrum, then the graph H obtained from G by adding m isolated vertices is also
determined by the Laplacian spectrum.

Proof. Consider a graph with the same spectrum as H. Then it has n+m vertices, the same number
of components as H, and largest Laplacian eigenvalue n. This implies that it has a component of
size at least n. Since there are at least m other components (of sizes at least one), and there is a
total of n + m vertices, it follows that it has one component of size n, and m isolated vertices. The
component of size n then has the same Laplacian spectrum as G, hence it must be isomorphic to G.
Thus H is determined by its Laplacian spectrum. tu
Another consequence of this lemma is the following.

Proposition 4 Let G be a disconnected graph that is determined by the Laplacian spectrum. Then
the cone over G, the graph H that is obtained from G by adding one vertex that is adjacent to all
vertices of G, is also determined by its Laplacian spectrum.

Proof. This follows because the complement of G has largest eigenvalue equal to the number of
vertices, the complement of H is the complement of G with an isolated vertex, and a graph is
determined by its Laplacian spectrum if and only if its complement is so. tu
Since the disjoint union of paths, and also the disjoint union of cycles is determined by the Laplacian
spectrum (cf. [11]), it follows that the cones over these graphs, the so-called multi-fan graphs and
multi-ballute graphs (cf. [30, 31]) are determined by the Laplacian spectrum.
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4 Cospectral generalized adjacency matrices

One of the open problems mentioned in [11] concerns the generalized adjacency matrix. If AG is the
adjacency matrix of a graph G, any matrix of the form M = αAG + βJ + γI with α, β, γ ∈ IR and
α 6= 0 is called a generalized adjacency matrix of G (as usual, J denotes the all-ones matrix and I the
identity matrix). Note that for graphs G and G′, αAG + βJ + γI and αAG′ + βJ + γI (with α 6= 0)
are cospectral if and only if AG − yJ and AG′ − yJ with y = −β/α are cospectral. So without loss
of generality we may restrict to generalized adjacency matrices of the form AG− yJ . Note also that
if G is the complement of G, then yJ − AG = AG − (1 − y)J + I. Thus if AG − yJ and AG′ − yJ
are cospectral, then so are AG − (1− y)J and AG′ − (1− y)J .

It is well known that with respect to the usual adjacency matrix AG, a regular graph cannot be
cospectral with a non-regular graph, cf. [9, p. 94]. For generalized adjacency matrices the following
result was proved in [11].

Proposition 5 Suppose G is a regular graph, and G′ is a non-regular graph. Then the generalized
adjacency matrices AG − yJ and AG′ − yJ cannot be cospectral, except possibly when 0 < y < 1.

For y = 1
2 , every regular graph G with at least three vertices is cospectral with a non-regular graph.

Indeed, multiplication of some rows and the corresponding columns of AG − 1
2J with −1 gives a

cospectral matrix which corresponds to another graph G′ (the operation is called Seidel switching).
And if G has at least three vertices, one can always choose rows (and columns) such that G′ is
non-regular graph. For example the triangle (which is regular) and the graph on three vertices with
one edge (which is non-regular) are cospectral for y = 1

2 . When [11] was written, it was an open
problem whether the above statement is true or false for 0 < y < 1, y 6= 1

2 . Now we know the answer
for all values of y.

Theorem 1 There exists a pair of graphs G and G′, one regular and one not, for which the matrices
AG − yJ and AG′ − yJ are cospectral if and only if y is a rational number satisfying 0 < y < 1.

The construction of such pairs of graphs for the given values of y is given in [6]. In [12] all such pairs
on at most eleven vertices are generated. The smallest such pair of graphs with y 6= 1

2 has y = 1
3

and is presented in Figure 7. The fact that such a pair cannot exist for irrational y follows from the
following theorem.

Theorem 2 For two graphs G and G′, the following are equivalent:

i. AG − yJ and AG′ − yJ are cospectral for all values of y,

ii. AG − yJ and AG′ − yJ are cospectral for two distinct values y,

iii. AG − yJ and AG′ − yJ are cospectral for an irrational value of y.

Indeed, by this theorem cospectrality for an irrational y implies cospectrality for the adjacency
matrix, and hence G is regular if and only if G′ is. Equivalence of i and ii is due to Johnson and
Newman [27]. The following short proof for the above theorem appeared in [12].
Proof (of Theorem 2). For a graph G we define the generalized characteristic polynomial: pG(x, y) =
det(xI + yJ − AG). Thus pG(x, y) can be interpreted as the characteristic polynomial of AG − yJ ,
and pG(x, 0) is the characteristic polynomial of AG. Moreover, pG(x, y) has integral coefficients. It
follows that the degree in y of PG(x, y) is 1. Indeed, for an arbitrary square matrix M it is known
that det(M +yJ) = det M +yΣadj M , where Σ adj M denotes the sum of the entries of the adjugate
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(adjoint) of M . It is also easily derived from the fact that by Gaussian elimination in xI + AG − yJ
one can eliminate all y’s, except for those in the first row. So we may write

pG(x, y) =
n∑

i=0

(ai + biy)xi.

It is clear that pG(x, y) ≡ pG′(x, y) if and only if AG − yJ and AG′ − yJ are cospectral for all
y ∈ IR, and that AG − yJ and AG′ − yJ are cospectral for some, but not all, values of y if and
only if pG(x, y) = pG′(x, y) for all x ∈ IR, whilst pG(x, y) 6≡ pG′(x, y). If this is the case, then
ai + ybi = a′i + yb′i with bi 6= b′i for some i. This implies y = −(ai − a′i)/(bi − b′i). Thus we proved
that y is rational, and that there is only one possible value of y. tu
If AG − yJ and AG − yJ are for all y ∈ IR, we say that G and G′ are cospectral for the generalized
spectrum. From the theorem above it follows that this happens if and only if G and G′ are cospectral
with cospectral complements. This implies that cospectral graphs that are constructed via Godsil-
McKay switching are cospectral for the generalized spectrum. The upper right pair of graphs in
Figure 7 is of this type. For the other ones, AG − yJ and AG′ − yJ are cospectral only for the given
value of y. In [12] it is proved that such a pair exists for every rational y. All such pairs on at most
nine vertices are also enumerated there.
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Figure 7: Examples of pairs of graphs with cospectral matrices AG − yJ

5 Graphs determined by their generalized spectrum

Though it seems that many graphs are DS, it is difficult to prove this property for a given graph. In
[11] two methods are used. One is complete enumeration of all graphs on n vertices (n ≤ 11). The
other approach uses structural properties that characterize the graph and that can be deduced from
the spectrum. Recently Wang and Xu [39, 41, 42] presented a new method, which we will briefly
explain in this section.

The method of Wang and Xu is based on the following idea. If G and G′ are cospectral, then the
matrices AG and AG′ are similar, so there exist an orthogonal matrix Q such that Q>AGQ = AG′ .
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If Q is a permutation matrix, G and G′ are isomorphic. So one could try to show that G is DS
by generating all orthogonal matrices Q such that Q>AGQ is a (0, 1)-matrix. If all these Q are
permutation matrices, G is clearly DS. At first glance this approach looks hopeless. Wang and Xu
made it feasible by making two major assumptions:

• The graph G is required to be determined by the spectrum together with the spectrum of the
complement. By Theorem 2 this is the case if and only if G is determined by the spectra
of its generalized adjacency matrices, and we say that G is determined by the generalized
spectrum and abbreviate it by G being DGS. Thus a graph G is DGS whenever every graph
that is cospectral with G for the generalized spectrum, is isomorphic to G. So DGS is a weaker
property than DS; for example K1,4 is DGS, but not DS (see Figure 7).

• Only a special class of graphs called Gn is considered. This is the set of graphs on n vertices
whose adjacency matrix has no eigenvector orthogonal to the all-ones vector 1. We will see
that graphs in this class are highly irregular, and in particular they have trivial automorphism
group. This makes the method especially suitable for graphs for which the structural approach
is not successful.

An important tool in the approach of Wang and Xu is the n× n walk matrix WG of a graph G on
n vertices, defined by

WG = [1, AG1, A2
G1, . . . , An−1

G 1].

Suppose that PG(x) =
∑n

i=0 cix
i is the characteristic polynomial of AG, and let CG be its companion

matrix, that is,

CG =
[

0> −c0

In−1 −c

]
, with c = [c1 c2 . . . cn−1]>.

Then An
G = −∑n−1

i=0 ciA
i
G (by the Cayley-Hamilton theorem), and therefore

AGWG = [AG1, A2
G1, . . . , An

G1] = WGCG. (1)

The matrix WG is called walk matrix because (WG)i,j gives the number of walks of length j−1 that
start in vertex i. In particular 1>Aj−1

G 1, which is the j-th entry of 1>WG, gives the total number
of walks in G of length j − 1.

Lemma 3 Suppose G and G′ are cospectral graphs with cospectral complements. Then

W>
G WG = W>

G′WG′ .

Proof. We use the fact (see for example [9]) that for every positive integer j, the total number of
walks of length j can be expressed in terms of the characteristic polynomial of the graph and the
characteristic polynomial of its complement. Therefore these numbers are the same for G and G′,
hence 1>Aj

G1 = 1>Aj
G′1 for every posive integer j. It follows that

(W>
G WG)i,j = 1>Ai+j−2

G 1 = 1>Ai+j−2
G′ 1 = (W>

G′WG′)i,j . tu
If G is regular of degree k, then WG has rank 1 and depends only on k. Roughly speaking, W (G)
has small rank if G has some regularity. On the other hand, for many graphs WG turns out to be
non-singular. This is precisely the case if G ∈ Gn, cf. [25].

Theorem 3 Suppose G and G′ are cospectral graphs with cospectral complements and let G ∈ Gn.
Then G′ ∈ Gn and Q = (WG′W

−1
G )> is the unique orthogonal matrix such that AG′ = Q>AGQ and

Q1 = 1.

9



Proof. The orthogonality of Q follows straightforwardly from Lemma 3. Therefore Q is invertible,
and so is WG′ , hence G′ ∈ Gn. Since G and G′ are cospectral, the companion matrices CG and CG′

are equal, hence (1) gives AG′ = Q>AGQ. To see uniqueness, observe that AG′ = Q>AGQ implies
Q>Ai

G = Ai
G′Q

> (i = 1, 2, . . .), and by use of Q>1 = Q1 = 1 this gives Q>WG = WG′ , hence
Q> = WG′W

−1
G . tu

In the special case that G = G′, we have AG = PAGP> for some unique permutation matrix
P . So P = I, hence G has no nontrivial automorphisms. Therefore all graphs in Gn have trivial
automorphism group.

The important conclusion from the above theorem is that Q is a rational matrix (because the
walk matrix is integral). For a rational matrix Q we define the level to be smallest positive integer
` such that `Q is an integral matrix. For a given graph G ∈ Gn, the class QG is defined to be the
class of orthogonal rational matrices Q that satisfy Q1 = 1, and Q>AGQ is a (0, 1)-matrix. Note
that Q>AGQ is symmetric with zero diagonal (because trace AG = trace Q>AGQ). It is clear that
an integral orthogonal matrix is a permutation matrix, so if every Q ∈ QG has level 1, then G is
DGS. From the theorem above it follows that Q> = WG′W

−1
G for every Q ∈ QG (G′ is the graph

with adjacency matrix Q>AGQ), therefore `|det WG. But we can be more precise by considering the
Smith normal form of WG. Recall that the Smith normal form of WG is the integral diagonal matrix
D = diag(d1, . . . , dn), such that d1|d2| . . . |dn, and D = UWGV for unimodular matrices U and V . It
follows that W−1

G = V D−1U , hence dnW−1
G is integral and therefore `|dn. The next lemma is used

to reduce the possible values of ` even further:

Lemma 4 Suppose Q ∈ QG with level `. If p is a prime factor of `, then the following congruences
have an integral solution z 6≡ 0 (mod p).

W>
G z ≡ 0 , z>z ≡ 0 (mod p) .

Proof. Let z 6≡ 0 (mod p) be a column of `Q. Such a column exits since otherwise `Q/p would be
an integral matrix which contradicts the minimality of `. Observe that W>

G z is a column of `W>
G Q.

By Theorem 3, Q>WG = WG′ , so W>
G Q is an integral matrix, and therefore W>

G z ≡ 0 (mod p).
Moreover, Q>Q = I implies that z>z = `2 ≡ 0 (mod p). tu
It turns out that this lemma cannot exclude 2 from being a prime factor of `, but odd prime factors
of dn very often can. For that reason we define the subclass Hn of Gn, consisting of those graphs in
Gn for which dn ≡ 2 (mod4), and for which all odd prime factors of dn are excluded by the conditions
of the above lemma. We have that ` ≤ 2 for all graphs in Hn. This makes it feasible to determine all
matrices in QG for graphs G ∈ Hn. Note that finding the set QG leads to all graphs cospectral with
G with respect to the generalized spectrum. In [41], Wang and Xu present an explicit algorithm
based on these ideas. They find (among others) an example of a randomly generated graph on 24
vertices which is DGS. In [39], the above results are used to obtain the following sufficient conditions
for a graph to be DGS.

Theorem 4 Suppose G ∈ Gn and let D = diag(d1, . . . , dn) be the Smith normal form of the walk
matrix WG. Let U and V be unimodular matrices such that D = UWGV , and let u> be the last row
of U . If dn ≡ 2 (mod 4), gcd(u>u, dn/2) = 1, and WGz ≡ 0 (mod 2) for every (0, 1)-vector z with
weight 4 (i.e. z contains exactly four 1’s), then G is DGS.

In [42], Wang and Xu used their approach to find conditions for which a DGS graph remains DGS
if an isolated vertex is added. They obtain the following theorem.

Theorem 5 Let G ∈ Gn. If gcd(det AG, detWG) = 1, then the graph obtained from G by adding an
isolated vertex is DGS if and only if G is.

10



There is some evidence (no proof yet; see [41]) that, with high probability, a random graph G on
n vertices is in Hn. If G ∈ Hn has a non-isomorphic cospectral mate, then the corresponding
orthogonal matrix Q has level ` = 2. But the orthogonal matrices with ` = 2 and row sum 1 are
known (see [41]), and if Q>AGQ is a (0, 1)-matrix for such an orthogonal matrx Q, then G must have
a special structure. Therefore it seems safe to conjecture that the statement ‘almost all graphs are
not DGS’ (which is true for trees, and strongly regular graphs; see next section) is false for graphs
in general.

In [24] (see also [11]) all DS graphs and DGS graphs on at most eleven vertices are enumerated
by computer. It turns out that the majority of pairs of graphs on at most eleven vertices that are
cospectral for the generalized spectrum come from Godsil-McKay switching. However, in almost all
cases, adjacency matrices related by Godsil-McKay switching are similar by an orthogonal matrix Q
for which Q1 = 1 and 2Q is integral. Therefore, the computer results from [24] support the believe
that most graphs on n vertices are in Hn.

6 Distance-regular graphs

In the study of distance-regular graphs, characterization is an important topic. Much effort goes to
characterization in terms of the parameters (intersection array), but characterization by the spectrum
is stronger: if a distance-regular graph is determined by its spectrum then it is determined by its
parameters, but the converse is not true in general. The converse is true, however, if the diameter
equals two, meaning that the graph is strongly regular.

We recall that for a regular graph DS with respect to the adjacency matrix, the Laplacian matrix,
the signless Laplacian, and the set of generalized adjacency matrices (DGS) are equivalent.

6.1 Strongly regular graphs determined by their spectrum

A connected strongly regular is the same as a distance-regular graph with diameter two. A discon-
nected strongly regular graph is a disjoint union of two or more complete graphs of the same size.
The complement of a strongly regular graph is again strongly regular. A connected regular graph
is strongly regular if and only if it has exactly three distinct eigenvalues. One of the eigenvalues
is the degree. The other eigenvalues of a strongly regular graph are also integral, or are equal to
(−1 ± √

n)/2, where n is the number of vertices. See [5] for these and more results on strongly
regular graphs. In [11] we surveyed the strongly regular graphs known to be determined by their
parameters, and therefore by their spectrum. Up to taking complements, there are three infinite
families: the disjoint unions of two or more complete graphs Km (m ≥ 2), and the line graphs of
Kn (n ≥ 4, n 6= 8) and Kk,k (k ≥ 2, k 6= 4). In addition there is a small list of exceptional strongly
regular graph that are DS. In the meantime Coolsaet and Degraer [8, 17, 18] showed for four more
strongly regular graphs that they are DS. Table 1 is the updated list of sporadic strongly regular
graphs that are DS (up to taking complements). The graphs marked with a ∗ are new in this list.

6.2 Graphs cospectral with strongly regular graphs

Most known strongly regular graphs have many cospectral mates. See [4, 19, 32] for constructions
of large sets of cospectral strongly regular graphs. In fact almost all strongly regular graphs are not
DS. More precisely:

Proposition 6 Let an be the number of non-isomorphic strongly regular graphs on at most n ver-
tices, and let bn be the number of strongly regular graphs on at most n vertices that are DS. Then
bn/an → 0 if n →∞.
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n spectrum name

5 [2]1 [(−1 +
√

5)/2]2 [(−1−√5)/2]2 Pentagon

13 [6]1 [(−1 +
√

13)/2]6 [(−1−√13)/2]6 Paley
16 [5]1 [1]10 [−3]5 Clebsch

17 [8]1 [(−1 +
√

17)/2]8 [(−1−√17)/2]8 Paley
27 [10]1 [1]20 [−5]6 Schläfli
50 [7]1 [2]28 [−3]21 Hoffman-Singleton
56 [10]1 [2]35 [−4]20 Gewirtz
77 [16]1 [2]55 [−6]21 Local Higman-Sims
81 [20]1 [2]60 [−7]20 Local GQ(3, 9)

100 [22]1 [2]77 [−8]22 Higman-Sims
* 105 [32]1 [2]84 [−10]20 Goethals-Seidel

112 [30]1 [2]90 [−10]21 GQ(3, 9)
* 120 [42]1 [2]99 [−12]20 Goethals-Seidel
* 126 [50]1 [2]105 [−13]20 Goethals

162 [56]1 [2]140 [−16]21 Local McLaughlin
* 176 [70]1 [2]154 [−18]21 Goethals-Seidel

275 [112]1 [2]252 [−28]22 McLaughlin

Table 1: The known sporadic strongly regular DS graphs (up to complements)

Proof. The spectrum of a strongly regular graph is determined by three integral parameters: the
number of vertices n, the degree k and the number λ of triangles through an edge. Obviously 0 ≤
λ < k < n, therefore n3 is an upper bound for the number of different spectra for a strongly regular
graph on at most n vertices, so bn ≤ n3. On the other hand, the number an grows exponentially in
n (see [4]). tu
We believe that, except for the three mentioned infinite families, only finitely many strongly regular
graphs are DS. The following observation supports this statement.

Proposition 7 For a fixed r ≥ 2, there exist only finitely many connected strongly regular graphs
with second largest eigenvalue r which are DS.

Proof (sketch). The result is trivial if r is not an integer, and otherwise it is a direct consequence of
some famous theorems. Neumaier [33] showed that all, but finitely many, connected strongly regular
graphs with integral eigenvalue r can be constructed from Steiner 2-designs with block size r + 1, or
from a set of r− 1 mutually orthogonal Latin squares. For 2-designs with block size at least 3 there
is a famous theorem of Wilson [43] stating that for big enough size several non-isomorphic 2-designs
with the required parameters exist. Existence of sets of r − 1 (r > 2) mutually orthogonal Latin
squares, provided the size is big enough was proved by Chowla, Erdös, and Straus [7]. Actually we
need that there exist at least two non-isotopic sets of given size, which is not mentioned explicitly
in the paper, but which is clear from their approach. Thus we can conclude that for the two infinite
families, non-isomorphic cospectral strongly regular graphs exist provided the number of vertices is
big enough. tu
Note that for all known strongly regular graphs that are DS, the graph or its complement has second
largest eigenvalue at most 2.

6.3 Cospectral graphs from strongly regular graphs

The following observation (by Godsil [private communication]) provides a method to construct pairs
of cospectral graphs.

Proposition 8 Suppose G and G′ are cospectral strongly regular graphs. Let H and H ′ be induced
subgraphs of G and G′, respectively. Suppose that H and H ′ are cospectral with cospectral comple-
ments (so H and H ′ are cospectral with respect to all generalized adjacency matrices). Then G\H
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(the subgraph of G induced by the vertices not in H) and G′\H ′ are cospectral with respect to all
generalized adjacency matrices.

Proof. Suppose G and G′ have n vertices and eigenvalues k (the degree), r, and s (r > s). Write

AG =
[

AH N>

N AG\H

]
, and ÃG = AG +

r − k

n
J =

[
AH + r−k

n J N> + r−k
n J

N + r−k
n J AG\H + r−k

n J

]
.

Then ÃG has only two distinct eigenvalues r and s. This implies (see for example [3], Lemma 2.1)
that the spectrum of AG\H + r−k

n J only depends on the spectra of ÃG and AH + r−k
n J . In a similar

way, the spectrum of AG′\H′+ r−k
n J only depends on the spectra of AG′+ r−k

n J and AH′+ r−k
n J . But

the pair {ÃG, AG′ + r−k
n J} is cospectral, and so is the pair {AH + r−k

n J, AH′ + r−k
n J} (since they

are generalized adjacency matrices of H and H ′ , respectively). Therefore AG\H + r−k
n J is cospectral

with AG′\H′ + r−k
n J . Analogously, it follows that AG\H + s−k

n J is cospectral with AG′\H′ + s−k
n J .

Hence G\H and G′\H ′ are cospectral with respect to two different generalized adjacency matrices.
So, by Theorem 2, G\H and G′\H ′ are cospectral for the generalized spectrum. tu
For example take G = G′ to be the Petersen graph, and take for H and H ′ the two different types
of cocliques of size 3 (the neighborhood of a vertex, and three vertices from a coclique of size 4),
then G\H and G\H ′ are cospectral for the generalized spectrum. In fact, it is the upper right pair of
cospectral graphs of Figure 7. At first glance one might think that Godsil’s observation gives rather
special cospectral graphs. However, the opposite is true:

Proposition 9 Any pair {K, K ′} of graphs that are cospectral with respect to the generalized spec-
trum can be constructed from a strongly regular graph, by the method described in Proposition 8
with G = G′.

Proof. It is known (cf. [38]), that any graph is an induced subgraph of a strongly regular graph.
Let G be a strongly regular graph that contains the disjoint union of K and K ′ as an induced
subgraph. Then H = G\K and H ′ = G\K ′ are cospectral with cospectral complements, and the
method applies. tu

6.4 Graphs cospectral with distance-regular graphs

Except for the new strongly regular DS graphs mentioned above, no new distance-regular DS graphs
have been discovered (but see the remark at the end of this section). In [13], several families of
distance-regular graphs have been dealt with, but in all cases they turned out to be not DS. These
families include the Johnson graphs, the Doubled Odd graphs, the Grassmann graphs, the Doubled
Grassmann graphs, the antipodal covers of complete bipartite graphs, and many of the Taylor graphs.
Typically, the proofs go in two steps. The first step uses Godsil-McKay switching or the partial-
linear-space technique (as described in [11], Sectons 3.2 and 3.3) to find a cospectral mate, and in the
second step it is shown that the graph is not distance-regular anymore and therefore non-isomorphic
to the original graph. One important exception to this approach is the discovery by Van Dam
and Koolen [14] of cospectral graphs for the Grassmann graphs Jq(2d + 1, d) (q > 1 prime power,
and d ≥ 2). For these graphs the second step didn’t work because the new graphs turned out to
be distance-regular again. Nevertheless, they are non-isomorphic to the original graphs, and thus
provide a new infinite family of distance-regular graphs (with unbounded diameter). The paper [13]
also contains a table for the number of cospectral graphs for distance-regular graphs on at most 70
vertices, and a proof that the Ivanov-Ivanov-Faradjev graph is DS (which was announced in [11]).

We remark that (by mistake) the antipodal 7-cover of K9 is not mentioned in the table in [11]
of distance-regular graphs that are DS. Degraer [17] found a new distance-regular antipodal 3-cover
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of K14 and three new distance-regular antipodal 3-covers of K17, thus showing that these and the
original ones are not DS. We think that finding cospectral graphs for distance-regular antipodal covers
of complete graphs that are not distance-regular themselves, is one of the interesting problems in
this area.

Another interesting and challenging problem is that of the Hamming graphs. Bang and Koolen
[1] made some progress in the search for cospectral graphs for the Hamming graphs H(3, q) for q > 3.
They showed that if in such a cospectral graph the induced graph on the set of neighbors of a vertex
is always a disjoint union of three complete graphs, then this graph is isomorphic to the Hamming
graph. Koolen [private communication] has announced that H(3, q) is always DS, provided q is large
enough.

Acknowledgements. The authors are grateful to Chris Godsil for many discussions on the subject,
and to Behruz Tayfey-Rezaie for giving several relevant remarks on a first draft of the paper.
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