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Abstract

Previous research has shown that method two-way with error for multiple imputation in test and questionnaire data produces
small bias in statistical analyses. This method is based on a two-way ANOVA model of persons by items but it is improper from
a Bayesian point of view. Proper two-way imputations are generated using data augmentation. Simulation results show that the
resulting method two-way with data augmentation produces unbiased results in Cronbach’s alpha, the mean of squares in ANOVA,
the item means, and small bias in the mean test score and the factor loadings from principal components analysis. The data with
imputed scores result in statistics having a slightly larger standard deviation than the original complete data. Method two-way with
error produces results that are only slightly more biased, especially for low percentages of missingness. Thus, it may serve as an
accurate approximation to the more involved method two-way with data augmentation.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Effect of imputation on psychometrically important statistics; Missing item scores; Multiple imputation of item scores; Two-way
imputation with data augmentation; Two-way imputation with error

1. Introduction

Tests and questionnaires are used as measurement instruments in psychological, sociological, marketing, and medical
research. Data collected by means of tests and questionnaires consist of the scores of N subjects (N is relatively large,
e.g., N = 200) on J items (J is relatively small, e.g., J = 20). Together the items may measure one attribute, such
as introversion (psychology), religiosity (sociology), service quality (marketing), and health-related quality of life
(medicine). Occasionally, subsets of items measure different attributes, such as different aspects of introversion (e.g.,
fear, depression, and shame). Typically, an attribute is measured by multiple items. Often, several respondents do not
answer all the questions, which results in item nonresponse. Reasons may be sloppiness, tiredness, lack of motivation,
or the personal nature of the questions causing people to experience feelings of irritation or uneasiness, threat, or
invasion of privacy. The result is an incomplete data matrix.

Multiple imputation (Rubin, 1987) may be used for handling missing item scores by estimating the missing scores
M times according to a statistical model. The resulting M different complete data sets are analyzed by means of
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standard statistical procedures. Results are combined into overall estimates of the statistics. Multiple imputation cor-
rects estimates and their standard errors for the uncertainty caused by the missing data, using rules proposed by
Rubin (1987).

Some statistical techniques that rely on, for example, full information maximum likelihood or procedures using
multilevel modeling as described by Maas and Snijders (2003) do not require the use of multiple imputation. The
advantage of multiple imputation, however, is that it produces complete data sets that may be used for just any further
statistical analysis. In this study, we investigate two multiple-imputation methods that both yield complete data sets.

Multiple imputation for tests and questionnaires may be done by means of statistically involved and often superior
methods, or simpler methods that require little statistical knowledge of the substantive researcher. Involved methods
often use data augmentation (Tanner and Wong, 1987) for estimation of the imputation model. Examples are multiple
imputation under the multivariate normal model, the saturated multinomial or loglinear models, or the general location
model (Schafer, 1997). Examples of simple methods are two-way imputation with normally distributed errors (TW-E;
Bernaards and Sijtsma, 2000), corrected item-mean substitution (Huisman, 1998), and response-function imputation
(Sijtsma and Van der Ark, 2003). Several studies (Bernaards and Sijtsma, 2000; Huisman, 1998; Sijtsma and Van der
Ark, 2003; Smits et al., 2002; Van der Ark and Sijtsma, 2005; Van Ginkel et al., in press(a)) have produced evidence
that these simple methods perform rather well in recovering results of factor analysis, classical test theory, and item
response theory.

This study combines features of a statistically sound approach to multiple imputation with the simplicity often
appreciated by substantive researchers. Method TW-E (Bernaards and Sijtsma, 2000), which is the most promising
among the simple methods, produces little bias and relatively accurate standard errors in several statistical computations
(e.g., Van Ginkel et al., in press (a, b)) but the method is statistically improper (Schafer, 1997, p. 105), and also has
some other statistical flaws. These problems still may produce some bias in results of statistical analysis. We propose
a multiple-imputation version of method TW-E that generates proper multiple imputations under a two-way ANOVA
model.

This study has three goals. First, we propose a proper multiple-imputation method (TW-DA; DA stands for data
augmentation). Second, we investigate how much bias of method TW-E can be attributed to its improperness and its
statistical problems. Also, we study whether method TW-DA can eliminate this bias. Third, we study how much bias
the methods produce in practically useful statistics. The first two goals are pursued by studying the bias produced by
the methods in several two-way ANOVA-based statistics. The third goal is pursued by studying the bias in the mean
test score, Cronbach’s (1951) alpha, and in factor loadings.

First, method TW-E is discussed. Second, the novel proper method TW-DA is explained. Third, the results of two
simulation studies on the performance of methods TW-DA and TW-E are discussed. Finally, recommendations on the
practical use of both methods are given.

2. Two-way imputation

Notation. Let X be an N (persons) ×J (items) data matrix with an observed part, Xobs , and a missing part, Xmis , so
that X = (Xobs, Xmis). The set of observed scores is denoted by obs, and the set of missing scores is denoted by mis.
The total number of observed scores in the set obs is denoted by #obs; likewise, #mis is defined. The set of observed
scores on item j is denoted by obs(j), and the set of missing scores on item j is denoted by mis(j); counts in these
sets are denoted by #obs(j) and #mis(j), respectively. The set of observed scores of person i is obs(i), and the set of
his/her missing scores is mis(i); counts in these sets are denoted by #obs(i) and #mis(i), respectively.

Definition of properness. Schafer (1997, p. 105) defined a multiple-imputation method to be Bayesianly proper
if the imputed values are independent realizations of P(Xmis |Xobs), given some complete-data model and a prior
distribution of a set of model parameters, denoted by �. If this condition is met, the distribution of P(Xmis |Xobs)

equals

P(Xmis |Xobs) =
∫

P(Xmis |Xobs, �)P (�|Xobs) d�, (1)

and the imputed values reflect both uncertainty about Xmis , given �, and the unknown model parameters �.
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2.1. Two-way with normally distributed errors (TW-E)

Method TW-E is based on a two-way ANOVA model of persons by items (Bernaards and Sijtsma, 2000, p. 333).
Define �i• as the population mean of person i, �•j as the mean score on item j in the population of persons, and � as
the overall mean across both �i• and �•j . The error term is denoted by εij with ε ∼ N(0, �2). The two-way ANOVA
model is defined as

Xij = �i• + �•j − � + εij with ε ∼ N(0, �2). (2)

Parameter �i• is estimated by the mean of all observed scores for person i, denoted by PMi , �•j is estimated by the
mean of all observed scores on item j, denoted by IMj , and � is estimated by the overall mean of all observed item
scores, denoted by OM. The estimators are defined as

PMi =
∑

j∈obs(i)

Xij /#obs(i), IMj =
∑

i∈obs(j)

Xij /#obs(j), OM =
∑ ∑
i,j∈obs

Xij /#obs.

For a missing score in cell (i, j), we define a preliminary estimate of the item score as

X̂ij = PMi + IMj − OM. (3)

The error variance �2 is estimated by means of

S2 =
∑ ∑
i,j∈obs

(Xij − X̂ij )
2/(#obs − 1). (4)

Following the two-way ANOVA model, error score εij is drawn from N(0, S2) and added to X̂ij to obtain the final
estimated item score,

X̃ij = X̂ij + εij , (5)

and this item score X̃ij is imputed in cell (i, j). Before imputing, scores may (Van Ginkel et al., in press (a, b)) or may
not (Bernaards and Sijtsma, 2000) be rounded to the nearest feasible integer. Both options were studied.

Besides being improper, this method has two potential problems. One pertains to the preliminary estimate of the
missing score (Eq. (3)), and the other to the magnitude of the error variance (Eq. (4)). For complete data matrix X, in a
balanced design variations in the item scores due to overall main effects are additive (Winer, 1971, pp. 402–404). Then,
the two-way ANOVA model may be formalized as in Eq. (3). The parameter in cell (i, j) equals �ij = �i• + �•j − �.

Given normality of errors, the sample means X̄i•, X̄•j , and X̄ are maximum likelihood estimates (MLEs) of their
corresponding population means. The mean of squares (MS) of the error, MS(E) = SS(E)/[(N − 1)(J − 1)], is an
unbiased estimate of the error variance (Brennan, 2001, p. 27). Then, given that the design is balanced, the estimate
X̂∗

ij = X̄i• + X̄•j − X̄ is an MLE of �ij . However, due to missing item scores the design is unbalanced and additivity
of main effects is lost; thus, Eq. (3) does not provide an MLE of �ij .

Due to this problem, the numerator in Eq. (4) is biased in an unknown direction. Also, because method TW-E uses
(#obs − 1) instead of (#obs − N − J + 1) the number of degrees of freedom is too large and the error variance in
Eq. (4) may be biased. This bias may produce biased standard errors and confidence intervals in the results from
statistical analysis. A Bayesianly proper method TW-E version could resolve such problems.

2.2. Two-way imputation with data augmentation (TW-DA)

Because it uses data augmentation, method TW-DA yields Bayesianly proper multiple imputations (Schafer, 1997,
p. 106). First, we reparameterize the two-way ANOVA model (Eq. (2)) such that �i = �i• and �j = �•j − �; this is a
necessary step for the data augmentation sampling scheme, which is explained later on. Next, we assume that �i is a
random person effect with normal distribution N(�, �2), and that �j a fixed item effect, which is restricted such that∑J

j=1�j = 0. The two-way ANOVA model can now be considered to be a random intercept model:

Xij = �i + �j + εij with � ∼ N(�, �2) and ε ∼ N(0, �2). (6)
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The parameters are �j , �, �2, and �2. Data augmentation (Tanner and Wong, 1987) is used to obtain values of �i , and
to generate proper multiple imputations according to the two-way ANOVA model.

Following a sampling scheme proposed by Hoijtink (2000) and using noninformative priors for each parameter, the
following steps are taken:

1. Starting values are assigned to �, �j , �i , �2, and �2 which are denoted by �(0), �(0)
j , �(0)

i , �2(0), and �2(0), respectively.
Starting values are obtained using the TW-E estimates (Eq. (5)); that is,

�(0) =
∑ ∑

i,j∈obs Xij + ∑ ∑
i,j∈mis X̃ij

NJ
,

�(0)
j =

∑
i∈obs(j) Xij + ∑

i∈mis(j) X̃ij

N
− �(0),

�(0)
i =

∑
j∈obs(i)Xij + ∑

j∈mis(i)X̃ij

J
,

�2(0) =
∑ ∑

i,j∈obs (Xij − �(0)
i − �(0)

j )2 + ∑ ∑
i,j∈mis [X̃ij − �(0)

i − �(0)
j ]2

(N − 1)(J − 1)
,

�2(0) =
N∑

i=1

[�(0)
i − �(0)]2/(N − 1).

Note that the random error component of X̃ij (Eq. (5)) produces different starting values for each chain.
2. At iteration t , person effect �i is sampled from a normal posterior distribution, conditional on the other current

parameter estimates. Specifically, �(t)
i |�(t−1)

j , �(t−1), �2(t−1), �2(t−1), Xobs is sampled with mean

�(t−1)/�2(t−1) + ∑
j∈obs(i) [Xij − �(t−1)

j ]/�2(t−1)

1/�2(t−1) + #obs(i)/�2(t−1)

and variance

1

1/�2(t−1) + #obs(i)/�2(t−1)
.

3. At iteration t , item effect �j is sampled from a normal posterior distribution, given the other current parameter

draws. Specifically, �(t)
j |�(t)

1 , . . . , �(t)
N , �2(t−1), Xobs is sampled with mean

∑
i∈obs(j)[Xij −�t

i]/#obs(j) and variance

�2(t−1)/#obs(j).
4. At iteration t , the error variance is sampled from a posterior distribution, conditional on the current parameter

draws. That is, �2(t)|�(t)
1 , . . . , �(t)

N , �(t)
1 , . . . , �(t)

J , Xobs is sampled from a scaled-inverse chi-square distribution with

degrees of freedom (�) equal to #obs and scale (S2) equal to
∑ ∑

i,j∈obs [Xij −�(t)
i −�(t)

j ]2/#obs. This is achieved

by drawing a random variable from a chi-square distribution with � degrees of freedom, and letting �2 = �S2/	2
�

(Gelman et al., 2003, p. 580).
5. The overall mean � is sampled from a normal posterior distribution, conditional on the other current parameter

estimates. Specifically, �(t)|�(t)
1 , . . . , �(t)

N , �2(t−1), Xobs is drawn with mean
∑N

i=1�
(t)
i /N and variance �2(t−1)/N .

6. The variance of the person effect is sampled from a posterior distribution, conditional on the current parameter draws.
Specifically, �2(t)|�(t)

1 , . . . , �(t)
N , �(t), Xobs is sampled from its posterior distribution, which is a scaled-inverse chi-

square distribution with N degrees of freedom and scale
∑N

i=1[�(t)
i − �(t)]2/N .

7. Steps 2–6 are repeated 2T times. The first T iterations of this chain are used as burn in, and the last T for assessment
of the convergence of the algorithm.

8. Steps 2–7 are repeated M times, creating M chains used for generating M multiple imputations and checking
convergence. For checking convergence a measure for multiple chains is used (Gelman et al., 2003, p. 461). Let 
(t)

m
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be a parameter within chain m at iteration t , 
̄m the mean parameter of chain m, and 
̄ the mean parameter across all
chains and iterations. Further, let S2

m be the variance of parameter 
(t)
m within chain m. The within-chains variance

is computed as W = ∑M
m=1S

2
m/M , the between-chains variance as B = T

∑M
m=1(
̄m − 
̄)2/(M − 1), and the total

variance as V = (1 − T −1)W + T −1B. The convergence criterion is defined as
√

R = √
V/W . As the variances

between chains decreases,
√

R approaches 1, and convergence is more plausible. After doing some preliminary
simulations, we found that

√
R�1.001 produced good results for all parameters.

9. For each chain, a completed data set is created by simulating draws of the missing data according to the two-way
model, using the parameter draws from the last iteration. Thus, Xij,mis |�(2T )

i , �(2T )
j , �2(2T ), �2(2T ), Xobs is drawn

from a normal distribution with mean �(2T )
i + �(2T )

j and variance �2(2T ). The resulting imputed values are proper

because each chain has different random values of �(2T )
i ,�(2T )

j , and �2(2T ), which is equivalent to integrating out the
parameters, as in Eq. (1).

In data augmentation it is common to let the imputation of the missing data be part of the sampling steps at each
iteration t (e.g., Schafer, 1997, p. 72). This is useful when the sampling of the unknown model parameters is simpler
for complete than for incomplete data, such as in a multivariate normal model with an unrestricted covariance matrix.
However, this does not apply to the two-way ANOVA model; thus, we do not impute missing values in Xmis during
the estimation of the ANOVA model but only the values of the random effects �i . Imputation of the missing values in
Xmis was done after the last iteration of the sampling scheme.

3. Two simulation studies

Simulation Study 1 was done to find out how much bias of method TW-E could be attributed to its improperness
and its statistical problems, and to study whether method TW-DA could eliminate this bias. Data were generated under
the two-way ANOVA model and the multidimensional polytomous latent trait (MPLT) model (Kelderman and Rijkes,
1994). The two-way ANOVA model is the basis of both methods but does not describe test and questionnaire data well.
The MPLT model gives a more accurate description of such data (e.g., Van der Linden and Hambleton, 1997) but is
the wrong model for both methods. For data generated under the ANOVA model, bias produced by method TW-E in
parameter estimates of the ANOVA model must be due to its improperness and its statistical problems whereas the
proper method TW-DA is expected to produce unbiased estimates. For data generated using the MPLT model, ANOVA
parameter estimates may be biased for both the original data and the completed data. Due to its improperness and its
statistical problems, method TW-E is expected to produce bias that deviates from the bias of the original data, whereas
method TW-DA is expected to produce bias of similar magnitude as the bias of the original data.

Simulation Study 2 studied the influence of methods TW-E and TW-DA on practically useful statistics in real-
istic data sets. Only the MPLT model was used because this is a realistic model for test and questionnaire data
(e.g., Van der Linden and Hambleton, 1997). Next, the simulation models and dependent variables are discussed in
more detail.

The two-way ANOVA used was a random intercept model of random persons and fixed items (Eq. (6)). The MPLT
model version used is a constrained version of the original MPLT model and expresses the probability of giving a
response Xij = x to item j, given person i’s values on two latent variables (this choice was based on Bernaards and
Sijtsma, 2000; Van Ginkel et al., in press (a)). The latent variables are denoted by �g(g = 1, 2), �jx is the separation
parameter of item j for answer category x, and Bjg (Bjg �0) is the discrimination parameter of item j with respect to
latent variable g. The constrained MPLT model is defined as

P(Xij = x|�i1, �i2) = exp[∑2
g=1(�ig − �jx)Bjg]∑x

y=0{exp[∑2
g=1(�ig − �jy)Bjg]}

. (7)

The item parameters with respect to x = 0 are set to 0 to ensure uniqueness of the parameters.
The study was programmed in Borland Delphi 6.0 (2001). The MPLT model was used to generate an artificial

population of 1,000,000 simulees based on the following choices. The latent traits were drawn from a bivariate standard
normal distribution with correlation  = 0.24 (based on Van Ginkel et al., in press (a)). The tests contained 20 items
with five ordered answer categories. Items 1–10 were driven by �1, and items 11–20 by �2. The item parameters are in
Table 1 (based on Van Ginkel et al., in press (a)).
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Table 1
Location parameters �jx of item j and answer category x, discrimination parameters Bjg of item j and latent variable �g , and item mean �•j of item
j in the artificial population

Items �j1 �j2 �j3 �j4 Bj1 Bj2 �•j

1 −2.75 −2.25 −1.75 −1.25 0.5 0 2.72
2 −2.75 −2.25 −1.75 −1.25 2 0 3.05
3 −1.75 −1.25 −0.75 −0.25 0.5 0 2.15
4 −1.75 −1.25 −0.75 −0.25 2 0 2.22
5 −0.75 −0.25 0.25 0.75 0.5 0 1.55
6 −0.75 −0.25 0.25 0.75 2 0 1.34
7 0.25 0.75 1.25 1.75 0.5 0 1.03
8 0.25 0.75 1.25 1.75 2 0 0.63
9 1.25 1.75 2.25 2.75 0.5 0 0.64

10 1.25 1.75 2.25 2.75 2 0 0.22
11 1.25 1.75 2.25 2.75 0 0.5 0.05
12 1.25 1.75 2.25 2.75 0 2 0.39
13 0.25 0.75 1.25 1.75 0 0.5 0.22
14 0.25 0.75 1.25 1.75 0 2 0.64
15 −0.75 −0.25 0.25 0.75 0 0.5 0.63
16 −0.75 −0.25 0.25 0.75 0 2 1.03
17 −1.75 −1.25 −0.75 −0.25 0 0.5 1.34
18 −1.75 −1.25 −0.75 −0.25 0 2 1.55
19 −2.75 −2.25 −1.75 −1.25 0 0.5 2.22
20 −2.75 −2.25 −1.75 −1.25 0 2 2.15

Items have a discrimination parameter for one latent trait; thus, the MPLT model can be conceptualized as two
separate generalized partial credit models (Muraki, 1992) with correlated latent variables.

We computed the item means �•j (Table 1, last column), the variance of the person means (�2 = 0.21), the error
variance (�2=0.75), and Cronbach’s alpha (�=0.81). The values for �•j , �2, and �2 were also used to define a population
for simulating data sets under a two-way ANOVA model. Under this model, Cronbach’s alpha was computed by means
of �= �2/[(�2 +�2)/J ] (e.g., McGraw and Wong, 1996, p. 36); this resulted in �=0.85. Notice that under the ANOVA
model items are parallel; thus, Cronbach’s alpha equals the test-score reliability.

3.1. Simulation Study 1: studying the effect of the problems of method TW-E

3.1.1. Fixed factors
Within each design cell, 10,000 (D = 10, 000) samples (N = 200) were drawn, with replacement after each com-

putation round. Twenty items were used (J = 20), each with ordered scores 0, 1, 2, 3, 4.

3.1.2. Independent variables
Simulation model: The two-way ANOVA model and the MPLT model.
Percentage of missingness: In each of the samples, 5%, 10%, or 20% of the item scores were randomly removed.

The number of completed data matrices in multiple imputation depends to a great extent on the fraction of missing
information (Schafer, 1997, pp. 106–107). Thus, for higher percentages of missingness, a larger number of completed
data matrices may be needed. The number of completed data sets used here was proportional to the percentage of
missingness, yielding M = 5, 10, and 20 completed data matrices.

Missingness mechanism: Missingness was ignorable (Little and Rubin, 2002, pp. 199–120): missing completely at
random (MCAR) or missing at random (MAR). For MCAR, scores were drawn at random with equal probability from
the data and removed. For MAR, missingness depended on one completely observed item: for subjects with Xij > 2,
the probability of scores on the other items being missing was twice as high as for subjects with Xij �2 (item 4 was
chosen because P(Xi4 > 2) ≈ P(Xi4 �2)). These probabilities were used to remove a random sample of cells from
the data.
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Imputation methods: Methods TW-E and TW-DA were used. Imputed scores were not rounded because this study
was based on a theoretical two-way ANOVA framework, which assumes continuous data.

3.1.3. Dependent variables
For several ANOVA-related statistics, the bias, the standard deviation (denoted by SD), and the coverage percentage

were studied. Let Q̂or , d estimate parameter Q in original data set d (d = 1, . . . , D), and let Q̂imp,dm estimate Q in
the mth completed (denoted by imp) data set (m = 1, . . . , M) based on sample d. For the original data, the bias in Q̂or

is computed as

b(Q̂or ) =
∑D

d=1(Q̂or , d − Q)

D
,

and for the completed data, bias is computed as

b(Q̂imp) =
∑D

d=1[
∑M

m=1(Q̂imp,dm)/M − Q]
D

.

As a measure of efficiency, the SD of Q̂or and Q̂impwas used. The coverage percentage of estimate Q̂or is the percentage
of coverage intervals based on the original data that include the trueQ.The coverage percentage of Q̂imp is the percentage
of coverage intervals based on the completed data that include the true Q. The standard error (SE) of Q̂imp,dm is adjusted
for extra uncertainty caused by the missing data (Rubin, 1987).

Bias, SD, and coverage percentage were computed for (1) the mean of item 1, denoted by X̄•1. Results were expected to
be the same for the other item means. For the coverage percentage of X̄•1,imp,dm, the SE was adjusted using a correction
of the degrees of freedom (Barnard and Rubin, 1999); and for (2) Cronbach’s alpha, because it is used in almost every
study that uses test and questionnaire data. Moreover, Kristof (1963) derived the sampling distribution of Cronbach’s
alpha under the assumptions of the two-way ANOVA model. The 95% confidence intervals of Cronbach’s alpha were
obtained by transformation of the alpha value of each data set to a Fisher z score; for more details see McGraw and
Wong (1996, p. 46) Only bias and SD were studied for (1) the mean of squares of the person effect, denoted by MS(A)

and (2) the mean of squares of the error, denoted by MS(E).
Because of the large number of replications, the bias, the standard deviation, and the coverage percentage of the

original data and the completed data were compared by means of inspection of the differences without statistical testing.

3.2. Simulation Study 2: influence of imputation methods on practical statistics

3.2.1. Fixed factors
Data were generated using the MPLT model (Eq. (7). Sample size was N = 200. The number of items was J = 20.

Each item had ordered scores 0, 1, 2, 3, 4.

3.2.2. Independent variables
Percentage of missingness: The percentages of missingness were 5%, 10%, and 20%, and the corresponding numbers

of completed data sets were M = 5, 10, and 20.
Missingness mechanism: Missingness mechanisms were MCAR and MAR.
Imputation methods: Methods TW-E and TW-DA were used. Because researchers prefer to have complete data sets

with imputed integer scores that can be used for any statistical analysis and because of the practical context of this
study, imputed scores were rounded to the nearest integer in the 0–4 interval.

3.2.3. Dependent variables
Test-score distribution: The test score of person i is defined as Xi+=∑J

j=1Xij . The test score estimates a psycholog-
ical property of interest, such as posttraumatic stress disorder.A test score may be computed across both unidimensional
and multidimensional item sets. The latter possibility applies to this study. A practical example is a questionnaire that
consists of different subscales, each of which measures a different symptom of posttraumatic stress disorder (e.g.,
Simms et al., 2005). Then, the test score is a summary of different posttraumatic stress symptoms. Let J� be the
population mean of the test score; for our constructed population, J� = 25.79. Bias, SD, and coverage percentage of
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Table 2
Population factor loadings of the artificial population

Item Factor 1 Factor 2 Item Factor 1 Factor 2

1 0.51 0.04 11 0.03 0.47
2 0.74 0.09 12 0.03 0.38
3 0.55 0.05 13 0.06 0.67
4 0.80 0.09 14 0.04 0.46
5 0.55 0.04 15 0.08 0.77
6 0.81 0.09 16 0.04 0.51
7 0.51 0.04 17 0.10 0.80
8 0.75 0.08 18 0.05 0.54
9 0.44 0.03 19 0.11 0.77

10 0.62 0.06 20 0.06 0.53

the mean test score were studied. To study the coverage percentage of mean test score X̄+ based on the completed data,
the SE was corrected using an adjusted number of degrees of freedom (Barnard and Rubin, 1999).

Cronbach’s alpha: Bias, SD, and coverage percentage of Cronbach’s alpha were studied. Unlike Simulation Study
1, this study computed Cronbach’s alpha for completed data sets with rounded imputed scores.

Factor loadings from PCA and Varimax rotation: The bias in the factor loadings of the completed data was computed
as follows. First, the correlation matrices of M completed data sets were added and then each element was divided by
M so as to obtain one overall correlation matrix. A principal components analysis (PCA) followed by Varimax rotation
was done on this correlation matrix. Suppose âjk,imp,d is the estimated factor loading of item j on factor k, based on
data set d. The bias in the factor loadings of the completed data was computed as

b(âjk,imp) =
∑D

d=1(âjk,imp,d − ajk)

D
.

The computation of the SD was straightforward. Coverage percentages were not determined. The population factor
loadings are given in Table 2.

4. Results: Simulation study 1

4.1. Results for the item mean

Bias: Table 3 shows the bias in X̄•1 for the original data, and for all combinations of simulation model, imputation
method, missingness mechanism, and percentage of missingness (first column). The largest bias in X̄•1 (equal to
−0.022) was found for data simulated under the MPLT model, for method TW-E, 20% missingness, and missingness
mechanism MAR. Thus, in this worst case a population item mean of �•1 = 2.720 on average was underestimated as
2.698.

For method TW-E, negative bias in X̄•1 increased as percentage of missingness increased. For MAR, this bias increase
was larger for the MPLT model than for the two-way ANOVA model. Method TW-DA produced unbiased results for
X̄•1 in almost all situations. For the MPLT model and missingness mechanism MAR, method TW-DA produced a small
negative bias in X̄•1 which increased as the percentage of missingness increased. This increase was smaller than that
for method TW-E under the same circumstances.

Standard deviations: Table 3 (second column) shows that the SD of X̄•1 increased for methods TW-E and TW-DA
as percentage of missingness increased. This increase of SD is due to the increased uncertainty caused by the missing
data. In general, the increase was small. For example, for the two-way ANOVA model X̄•1 of the original data had
SD=0.070 but for MAR and 20% missingness method TW-DA produced X̄•1’s with SD=0.077. This means that when
�•1 =2.720, for the original data the 95% coverage interval ranged from 2.580 to 2.860, whereas for 20% missingness,
MAR, and method TW-DA, the interval ranged from 2.566 to 2.874.
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Table 3
Bias in X̄•1, standard deviation of X̄•1, and coverage percentage of X̄•1, for methods TW-E and TW-DA, compared to the results of the original data

Simulation Data Missingness Percentage Bias SD Coverage
model sets mechanism missingness percentage

Two-way Original 0 70 94.7
ANOVA model TW-E MCAR 5 −3 72 94.7

10 −7 73 94.8
20 −15 77 94.5

MAR 5 −3 72 94.8
10 −6 73 95.3
20 −12 76 94.8

TW-DA MCAR 5 0 72 94.8
10 0 73 94.8
20 0 77 94.9

MAR 5 0 72 94.9
10 0 73 95.0
20 0 77 95.1

MPLT Original 1 81 95.0
model TW-E MCAR 5 −3 84 94.5

10 −7 86 94.2
20 −15 90 93.5

MAR 5 −5 84 94.8
10 −11 86 94.2
20 −22 91 93.3

TW-DA MCAR 5 0 84 94.4
10 0 86 94.2
20 0 91 93.7

MAR 5 −2 84 94.7
10 −5 86 94.0
20 −11 91 93.4

Entries for bias and SD must be multiplied by 10−3.

Coverage percentage: For the two-way ANOVA model, the percentage of �•1’s covered by the coverage intervals
was close to 95% for both imputation methods (Table 3, last column, upper half). For both methods, the coverage
percentage was nearly constant for different missingness mechanisms and percentages of missingness. For the MPLT
model, the coverage percentage showed a different pattern (Table 3, lower half). For 5% missingness, the coverage
percentage was close to 95%, but the coverage percentage was smaller for both imputation methods as percentage of
missingness increased.

4.2. Results for Cronbach’s alpha

Bias: For the two-way ANOVA model (Table 4, first column, upper half), bias in Cronbach’s alpha was zero or nearly
zero. For example, for the two-way ANOVA model, 20% missingness, and MAR, method TW-E produced a positive
bias of 0.008. Thus, a population alpha of 0.85 is on average overestimated as 0.858. For the MPLT model, in general
bias in Cronbach’s alpha was somewhat larger. For example, for 20% missingness and MAR, method TW-E produced
a bias of 0.018. Thus, a population Cronbach’s alpha of 0.850 is on average estimated as 0.868.

Method TW-E produced small positive bias in Cronbach’s alpha, which increased as percentage of missingness
increased. Compared to the two-way ANOVA model, for the MPLT model, bias was larger and a little increased faster.
Method TW-DA produced almost unbiased results in almost all situations.

Standard deviation: Table 4 (second column) shows that for method TW-E the SD of Cronbach’s alpha decreased
a little as percentage of missingness increased. This decrease is unexpected because more missingness causes more
uncertainty in an estimate. This result was only found for Cronbach’s alpha. For method TW-DA, the SD increased as
expected as percentage of missingness increased.
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Table 4
Bias in Cronbach’s alpha, standard deviation of Cronbach’s alpha, and coverage percentage of Cronbach’s alpha, for methods TW-E and TW-DA,
compared to the results of the original data

Simulation Data Missingness Percentage Bias SD Coverage
model sets mechanism missingness percentage

Two-way Original −2 16 95.5
ANOVA model TW-E MCAR 5 1 15 96.0

10 3 15 95.6
20 8 14 93.3

MAR 5 1 15 96.0
10 3 15 95.5
20 8 14 93.2

TW-DA MCAR 5 −2 16 95.5
10 −2 16 95.4
20 −2 17 95.5

MAR 5 −2 16 95.6
10 −2 16 95.5
20 −2 17 95.4

MPLT model Original −2 20 95.2
TW-E MCAR 5 2 19 95.6

10 5 19 95.1
20 13 18 91.1

MAR 5 3 19 95.4
10 7 19 93.9
20 18 17 85.2

TW-DA MCAR 5 −2 20 95.1
10 −2 21 95.1
20 −3 21 95.0

MAR 5 −2 20 95.3
10 −1 20 95.3
20 1 21 95.0

Entries for bias and SD must be multiplied by 10−3.

Coverage percentage: For method TW-E, for 5% and 10% missingness the percentage of intervals that included the
true Cronbach’s alpha was close to 95%. This percentage was smaller as the percentage of missingness increased to 20
(Table 4, last column). The worst decrease was for 20% missingness and MAR, when the true alpha was covered by
only 85.2% of the intervals. For method TW-DA, the percentage of intervals that covered the true alpha was close to
95%, and was constant as percentage of missingness increased.

4.3. Results for the mean of squares of the person effect

Bias: Table 5 (first column) shows that for the two-way ANOVA model method TW-DA produced almost unbiased
results in MS(A) for all missingness mechanisms and all percentages of missingness. Also, the small bias in MS(A)

was always equal to the bias in MS(A) in the original data. Method TW-E produced relatively large positive bias in
MS(A) for data under the two-way ANOVA model. This bias increased as percentage of missingness increased. Part of
the bias may be attributed to the random sampling of persons in the two-way ANOVA model, whereas method TW-E
treats the persons as fixed.

For the MPLT model, both methods TW-E and TW-DA produced large negative bias in MS(A). For MCAR, bias
produced by method TW-DA was almost equal to the bias in the original data; bias remained constant as percentage
of missingness increased. Method TW-E produced bias in MS(A) that differed from bias in the original data. Bias was
smaller as percentage of missingness increased.

Standard deviation: Table 5 shows that the SD of MS(A) increased a little both for method TW-E and method TW-DA
as percentage of missingness increased.
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Table 5
Bias in MS(A) and standard deviation of MS(A) for methods TW-E and TW-DA, compared to the results of the original data

Simulation Data Missingness Percentage Bias SD
model sets mechanism missingness

Two-way Original −3 481
ANOVA model TW-E MCAR 5 90 488

10 165 492
20 370 503

MAR 5 89 489
10 166 494
20 378 506

TW-DA MCAR 5 −3 487
10 −2 492
20 −3 502

MAR 5 −3 488
10 −3 494
20 −5 503

MPLT model Original −759 410
TW-E MCAR 5 −676 415

10 −585 420
20 −369 433

MAR 5 −656 417
10 −540 424
20 −253 443

TW-DA MCAR 5 −761 415
10 −761 421
20 −761 433

MAR 5 −747 418
10 −735 423
20 −705 438

Entries for bias and SD must be multiplied by 10−3.

4.4. Results for the mean of squares of the error

The results for the MS(E) (Table 6) were comparable to the results for the MS(A) (Table 5) but the absolute
numbers are much different. Most important is that under the ANOVA model method TW-DA produced unbiased
MS(E) and method TW-E nearly unbiased MS(E) (Table 6). Under the MPLT model, both methods produced the
similar bias.

5. Results: Simulation study 2

5.1. Results for the mean test score

Bias: Table 7 (first column, upper half) shows for both methods TW-E and TW-DA that the positive bias in
X̄+ increased as percentage of missingness increased. Method TW-E produced more bias in X̄+ than method TW-
DA. However, bias in X̄+ was small. The largest bias in X̄+ (method TW-E, 20% missingness, MAR)
was 0.431.

Standard deviation: Table 7 (second column, upper half) shows that the SD of X̄+ increased for both methods TW-E
and TW-DA as percentage of missingness increased. Methods TW-E and TW-DA showed similar results with respect
to SD.

Coverage percentage: For both methods TW-E and TW-DA, Table 7 (last column, upper half) shows that the
coverage percentage of X̄+ was smaller as percentage of missingness increased. This effect was equal for both
methods.
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Table 6
Bias in MS(E) and standard deviation of MS(E) for methods TW-E and TW-DA, compared to the results of the original data

Simulation Data sets Missingness Percentage Bias SD
model mechanism missingness

Two-way Original 0 17
ANOVA TW-E MCAR 5 1 18
model 10 2 19

20 7 20
MAR 5 1 18

10 2 18
20 7 20

TW-DA MCAR 5 0 18
10 0 18
20 0 20

MAR 5 0 18
10 0 18
20 0 19

MPLT model Original 40 22
TW-E MCAR 5 40 22

10 41 23
20 47 24

MAR 5 40 22
10 40 23
20 44 24

TW-DA MCAR 5 40 22
10 40 23
20 40 24

MAR 5 40 22
10 38 23
20 37 24

Entries for bias and SD must be multiplied by 10−3.

5.2. Results for Cronbach’s alpha

Bias: Table 7 (first column, lower half) shows that for method TW-E the positive bias in Cronbach’s alpha increased as
percentage of missingness increased. For method TW-DA, the negative bias in Cronbach’s alpha increased as percentage
of missingness increased. Rounding the imputed scores has the effect of inducing almost no extra bias in Cronbach’s
alpha (compare Table 4, lower half, with the results in Table 7, lower half).

Standard deviation: Table 7 (second column, lower half) shows that under all conditions both methods TW-E and
TW-DA produce an SD in Cronbach’s alpha of approximately 0.02.

Coverage percentage: The results with respect to coverage percentage of Cronbach’s alpha (Table 7, last column,
lower half) are difficult to interpret. Under MCAR, method TW-E had coverage percentages that are larger than 95%
but remained nearly stable as percentage of missingness increased. Under MAR, method TW-E had a smaller coverage
percentage as percentage of missingness increased. For method TW-DA, an opposite result was found: under MAR,
method TW-DA had a coverage percentage that was stable as percentage of missingness increased; and under MCAR,
the coverage percentage was smaller as percentage of missingness increased. In general, both methods produced
coverage percentages that were rather closer to the theoretical 95% coverage interval.

5.3. Results for factor loadings

Bias: For both factors 1 and 2, similar results were found for bias in loadings; thus, only bias results for the first
factor are discussed. Methods TW-E and TW-DA produced relatively large bias in the factor loadings (Table 8). The
high loadings of items 1–10 are biased downwards and the low loadings of items 11–20 are biased upwards. This result
is probably due to the use of a unidimensional model for imputing scores in two-dimensional test data, which biases the
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Table 7
Bias in X̄+ and Cronbach’s alpha, and standard deviation and coverage percentage of X̄+ and Cronbach’s alpha, for methods TW-E and TW-DA,
compared to the results of the original data

Statistic Data sets Missingness Percentage Bias SD Coverage
mechanism missingness percentage

X̄+ Original 4 646 94.9
TW-E MCAR 5 94 647 94.9

10 186 650 94.1
20 375 653 91.8

MAR 5 101 647 95.0
10 204 646 94.6
20 431 649 91.2

TW-DA MCAR 5 91 647 94.6
10 179 650 93.8
20 355 653 90.9

MAR 5 79 647 95.0
10 155 646 94.4
20 307 650 92.2

Cronbach’s Original −2 20 95.2
Alpha TW-E MCAR 5 1 20 95.6

10 1 19 95.9
20 5 19 95.5

MAR 5 1 19 95.6
10 4 19 95.1
20 13 18 91.4

TW-DA MCAR 5 −4 20 94.9
10 −6 21 94.5
20 −10 22 93.5

MAR 5 −3 20 95.2
10 −3 20 95.2
20 −4 21 95.1

Entries for bias and SD must be multiplied by 10−3.

data towards unidimensionality. Method TW-E produced the smallest bias in the loadings of items 1–10, and method
TW-DA produced the smallest bias in the loadings of items 11–20. Thus, the performance of these methods seems to
be similar.

Even though bias is large, conclusions based on imputed data may not differ dramatically from those based on the
original data. The largest bias found was 0.16 (item 11, method TW-E, 20% missingness, MAR); thus, the population
loading (a11,1 = 0.03) on average is overestimated to be 0.19. Rules of thumb claim that loadings below 0.32 should
not be interpreted (Comrey and Lee, 1992). Thus, this bias seems to have little consequence.

Standard deviations: The SD of the loadings is nearly stable across imputation methods, missingness mechanisms,
and percentages of missingness (Table 8).

6. Discussion

Two multiple-imputation methods were compared that both use a two-way ANOVA model: the Bayesianly proper
method TW-DA, and the simpler, statistically suboptimal but practically attractive method TW-E. Simulation Study
1 studied the degree to which bias produced by method TW-E could be attributed to this method’s improperness and
statistical problems, and whether method TW-DA could eliminate this bias. The influence of both methods on ANOVA
statistics was studied. Method TW-DA produced unbiased results under the two-way ANOVA model. Moreover, for
data simulated under the two-way ANOVA model it was insensitive to different missingness mechanisms and increased
percentages of missingness, and for data simulated under the MPLT model it was almost insensitive to these factors.
Method TW-E always produced biased results. Bias was not stable as percentage of missingness increased: for the
two-way ANOVA model, bias often increased as percentage of missingness increased, and for the MPLT model, as
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Table 8
Mean bias in factor loadings from PCA, SDs in parentheses, for methods TW-DA and TW-E, compared to the results of the original data

Bias in: Or. data Method

TW-E TW-DA

Missingness mechanism

MCAR MAR MCAR MAR

Percentage missingness

5 10 20 5 10 20 5 10 20 5 10 20

a1,1 −2 (61) −5 (61) −7 (60) −11 (60) −6 (61) −9 (61) −15 (61) −7 (61) −12 (61) −21 (61) −8 (61) −13 (61) −24 (61)
a2,1 −2 (29) −18 (31) −35 (32) −67 (34) −20 (33) −37 (35) −71 (35) −19 (31) −37 (32) −72 (34) −20 (31) −38 (33) −73 (35)
a3,1 −3 (58) −7 (59) −10 (58) −16 (57) −8 (58) −12 (58) −21 (58) −9 (59) −14 (59) −25 (58) −10 (59) −17 (58) −30 (59)
a4,1 −2 (25) −21 (27) −40 (28) −77 (30) −5 (25) −8 (26) −15 (26) −22 (27) −42 (28) −81 (31) −5 (25) −8 (25) −15 (25)
a5,1 −3 (60) −7 (60) −11 (59) −17 (59) −8 (59) −13 (59) −21 (59) −9 (60) −15 (60) −26 (60) −10 (60) −18 (60) −32 (60)
a6,1 −2 (25) −22 (27) −41 (28) −80 (31) −23 (29) −44 (31) −84 (31) −23 (27) −43 (28) −84 (32) −24 (27) −46 (29) −90 (32)
a7,1 −4 (66) −6 (66) −9 (66) −13 (64) −7 (65) −10 (64) −15 (64) −9 (67) −14 (66) −23 (65) −10 (66) −16 (66) −28 (65)
a8,1 −2 (33) −22 (35) −42 (36) −80 (38) −24 (35) −44 (37) −84 (37) −23 (35) −44 (36) −84 (39) −25 (35) −47 (36) −90 (38)
a9,1 −4 (76) −4 (75) −5 (74) −6 (72) −3 (73) −2 (70) 0 (70) −7 (76) −10 (75) −16 (73) −6 (75) −9 (74) −15 (72)
a10,1 −3 (51) −27 (54) −48 (55) −85 (56) −26 (52) −47 (51) −79 (51) −27 (54) −49 (55) −89 (57) −27 (53) −49 (53) −87 (53)
a11,1 0 (84) 28 (81) 51 (77) 91 (74) 51 (78) 92 (74) 160 (74) 21 (81) 38 (76) 66 (71) 41 (81) 74 (77) 126 (72)
a12,1 2 (87) 19 (87) 35 (86) 67 (84) 25 (86) 48 (84) 95 (84) 15 (87) 27 (86) 51 (85) 19 (87) 37 (86) 71 (84)
a13,1 1 (71) 13 (71) 26 (70) 50 (69) 23 (71) 45 (70) 89 (70) 9 (71) 18 (70) 34 (68) 18 (72) 33 (71) 64 (69)
a14,1 1 (83) 14 (83) 26 (83) 53 (81) 16 (82) 33 (81) 68 (81) 11 (83) 20 (82) 40 (81) 12 (83) 24 (82) 49 (81)
a15,1 0 (62) 8 (62) 15 (62) 32 (62) 8 (63) 17 (62) 39 (62) 5 (62) 10 (62) 20 (62) 5 (62) 10 (63) 24 (63)
a16,1 0 (80) 11 (80) 22 (79) 46 (79) 11 (79) 22 (79) 49 (79) 9 (80) 17 (80) 35 (79) 8 (80) 16 (79) 35 (78)
a17,1 0 (59) 5 (60) 11 (60) 26 (60) 2 (59) 6 (59) 19 (59) 4 (60) 7 (60) 16 (60) 0 (60) 2 (60) 8 (60)
a18,1 1 (77) 10 (77) 19 (77) 41 (77) 8 (76) 16 (75) 37 (75) 8 (77) 15 (77) 31 (77) 6 (77) 12 (76) 26 (75)
a19,1 0 (61) 5 (62) 11 (62) 25 (62) 0 (61) 2 (60) 12 (60) 3 (62) 7 (62) 15 (62) −1 (61) 0 (62) 5 (61)
a20,1 0 (78) 9 (78) 18 (78) 40 (78) 5 (77) 12 (76) 30 (76) 7 (78) 14 (78) 30 (78) 4 (78) 9 (77) 22 (76)

Entries must be multiplied by 10−3.

percentage of missingness increased bias deviated more from bias found in results from the original data. To summarize,
we found that the problems of method TW-E produced only small bias and that method TW-DA successfully eliminated
the bias resulting from the statistical problems of method TW-E.

Simulation Study 2 investigated the influence of methods TW-E and TW-DA on practically useful statistics in
realistic data sets. Differences between method TW-E and TW-DA were small and sometimes unclear. Method TW-
DA performed better with respect to X̄+ than method TW-E, but equally well with respect to Cronbach’s alpha. The
differences between these methods were less obvious than in Simulation Study 1. Also, both methods showed similar
performance in recovering the factor loadings.

Other noteworthy results are the following. Cronbach’s alpha was estimated with little bias both when the imputed
scores were not rounded (Simulation Study 1) and when they were rounded (Simulation Study 2). This limited result
suggests that rounding only has little effect on bias results.

Despite large bias in estimated factor loadings, this bias did not have consequences for the final item clustering based
on rules of thumb (Comrey and Lee, 1992). Similar results have been used (Van Ginkel et al., in press (b)) to adapt
method TW-E to be applicable to multidimensional data, and similar adaptations may be pursued for method TW-DA.
From Study 2 it can be concluded that for practical purposes both methods perform equally well.

Researchers may obtain proper multiple imputations by means of method TW-DA (programming code for method
TW-DA is available on request). Researchers in substantive areas such as psychology, sociology, marketing, and quality-
of-life research, who are unfamiliar with advanced Bayesian statistics, may safely use method TW-E, especially for
percentages of missingness no larger than 5%. Moreover, this method is available as an SPSS macro (Van Ginkel and
Van der Ark, 2005). Method TW-E offers a simple and often accurate approximation to method TW-DA, and produces
only slightly more biased results.
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