

Tilburg University

Access control and service-oriented architectures

Leune, C.J.

Publication date:
2007

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Leune, C. J. (2007). Access control and service-oriented architectures. CentER, Center for Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/5488322f-5809-4823-b86c-d49aeb3e675c

ACCESS CONTROL
AND

SERVICE-ORIENTED ARCHITECTURES

Kees Leune

ACCESS CONTROL
AND

SERVICE-ORIENTED ARCHITECTURES

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit van Tilburg,
op gezag van de rector magnificus, prof.dr. F.A. van der Duyn Schouten,

in het openbaar te verdedigen
ten overstaan van een door het college voor promoties aangewezen commissie

in de aula van de Universiteit op woensdag 28 februari 2007 om 14:15 uur

door

Cornelis Jan Leune

geboren op 29 augustus 1973 te Breda

Promotores: prof.dr.ir. M.P. Papazoglou
prof.dr. H.A. Proper

Copromotor: dr. W.J.A.M. van den Heuvel

SIKS Dissertation Series No. 2007-01 CentER Dissertation Series No. 188

The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems, and CentER,
the Graduate School of the Faculty of Economics and Business Administration of
Tilburg University.

This research has been partially funded by the Netherlands Organisation for Scien-
tific Research (NWO) via project PRONIR.

Copyright c Kees Leune, 2004–2007

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission from the
author.

ISBN 978-90-5668-188-5

For my wife, and for my parents.

Contents

Contents vii

1 Introduction 1
1.1 EFSOC . 2
1.2 Research Motivation . 3
1.3 Research goal and scope of the research 4
1.4 Research questions . 6
1.5 Research methodology . 6
1.6 Contributions . 9
1.7 Structure of this thesis . 10

I Background and Theory 13

2 Background in SOA, Security and Event-Driven Processing 15
2.1 Introduction . 15
2.2 Service Security . 15

2.2.1 Authentication . 16
2.2.2 Integrity and Confidentiality 17
2.2.3 Public Key Infrastructures 18
2.2.4 Web of Trust . 19
2.2.5 Access Control . 21
2.2.6 Discretionary Access Control 22
2.2.7 Mandatory Access Control 23
2.2.8 Role-Based Access Control 24
2.2.9 Auditing . 26
2.2.10 Security and Grid Services 27
2.2.11 Discussion . 27

2.3 Service-Oriented Computing . 28
2.3.1 Service-Oriented Architecture 28
2.3.2 Loosely Coupled Message-Oriented Systems 30
2.3.3 Service Composition . 30
2.3.4 Web Services . 31
2.3.5 The IBM and Microsoft Road-map for Web Services Security 32
2.3.6 SAML: Security Assertion Markup Language 35

vii

2.3.7 XACML . 36
2.3.8 Discussion . 37

2.4 Event-driven processing . 38
2.4.1 Properties of event-driven processing 39
2.4.2 Enterprise Service Bus . 41
2.4.3 Event-driven interaction patterns 42
2.4.4 Event message filtering . 43

2.5 Discussion . 45
2.5.1 Trust . 45
2.5.2 Delegation . 46

2.6 Conclusions . 48
2.6.1 Objectives for a secure SOA 48
2.6.2 Requirements for Access Control and Service-Oriented Ar-

chitectures . 50
2.6.3 State of the Art in Research 51
2.6.4 Summary . 52

3 The EFSOC Service-Oriented Architecture 55
3.1 Introduction . 55
3.2 Case study . 56

3.2.1 Elicitation Process . 56
3.2.2 The HIPAA Privacy Rule 57
3.2.3 Northside Hospital . 57
3.2.4 Hospital Policies . 58
3.2.5 Running example . 62

3.3 Concepts . 64
3.4 Event operations . 65

3.4.1 Publishing events and subscribing to events 66
3.4.2 Sending and receiving events 67
3.4.3 Events in context . 67

3.5 EFSOC and the Enterprise Service Bus 69
3.6 Role operations . 69

3.6.1 Subjects and roles . 69
3.6.2 Role assignments and role sessions 71

3.7 Access control . 72
3.7.1 Taking access control decisions 73
3.7.2 Evaluating access control policies 77
3.7.3 Evaluating access control rules 78

3.8 Architecture . 78
3.9 Example: Applying Access Control Policies 82
3.10 Discussion . 85

3.10.1 EFSOC and Web Services 85
3.10.2 EFSOC and its design objectives 86
3.10.3 Delegation and role hierarchies 88

3.11 Summary . 89

viii

4 EFSOC Definition and Execution Language 91
4.1 Extensible Markup Language . 91
4.2 The EDL language . 91
4.3 EDL in relation to WSDL . 92
4.4 Notational conventions . 93
4.5 Definition Language . 93

4.5.1 Representing events . 93
4.6 Vocabulary Definitions . 93

4.6.1 Subject . 93
4.6.2 Role . 95
4.6.3 Role Attribute Type . 95
4.6.4 Role Attribute Value . 95
4.6.5 Event . 95
4.6.6 Event Header . 96
4.6.7 Event Body . 96
4.6.8 Event Body Type . 97
4.6.9 Access Control Policies 97

4.7 Execution language definitions . 97
4.7.1 Publish . 97
4.7.2 Unpublish . 98
4.7.3 Send . 98
4.7.4 Subscribe . 99
4.7.5 Unsubscribe . 99
4.7.6 Assign . 100
4.7.7 Unassign . 100
4.7.8 Activate . 101
4.7.9 Deactivate . 101
4.7.10 Set . 101

4.8 Access Control Rules . 101
4.8.1 Principal . 102
4.8.2 Permission . 102
4.8.3 Operation . 102
4.8.4 Condition . 102
4.8.5 Transport level expressions 103
4.8.6 Message level expressions 103
4.8.7 Message-context level expressions 104
4.8.8 Misc expressions . 105
4.8.9 Combining conditions . 105

4.9 Summary . 105

5 EFSOC Query Language 107
5.1 Querying XML . 107

5.1.1 XPath . 107
5.1.2 XQuery . 109
5.1.3 XSL . 111

ix

5.2 EFSOC Query Language Overview 112
5.2.1 Basic queries . 113
5.2.2 Second-order queries . 115

5.3 Summary . 115

II Validation 117

6 Formal Foundations 119
6.1 Reasons for formalizing . 119
6.2 Approach . 120

6.2.1 Predicate Logic . 121
6.2.2 Datalog . 122
6.2.3 Telos . 122

6.3 Definition and Constraint Language 124
6.4 Query Language . 126
6.5 Expressing Security Policies and Security Rules 128

6.5.1 Security Rules: Queries or Constraints 129
6.6 Implementing Separation of Duty 129
6.7 Relationship with EDL . 130
6.8 Discussion . 131

7 Prototype Implementation 133
7.1 Introduction . 133
7.2 Laboratory Experiment . 133
7.3 Architecture and Technology . 134

7.3.1 Main prototype . 134
7.3.2 Proofs-of-concept . 135

7.4 Element definitions . 140
7.5 Defining access control rules . 142
7.6 Observations and Conclusions . 144

8 Conclusions, Discussion and Future Research 145
8.1 Summary . 145
8.2 Research Results . 146
8.3 Case study results . 148
8.4 Contributions . 148
8.5 Benefits and Limitations . 149
8.6 Future Research . 150

III Appendices 155

EFSOC XML Definitions 157

EFSOC Conceptbase definitions 169

x

Samenvatting 179

IV Reference 181

SIKS Dissertation Series 183

List of Figures 191

Bibliography 193

Author Index 199

Index 205

xi

xii

Preface

When I was still a student in high school, I read a book titledThe Cuckoo’s Egg,
written by Clifford Stoll (1990). In it, Stoll describes the (often extremely low-tech)
chase of a computer hacker who had gained access to a plethora of computers, all
of which were connected to an Internet. In that time, I was happy when I could
occasionally use a dial-up modem to connect to bulletin-board systems. The world
of computer systems–and the connections that could exist between them–has been
on my mind since then.

It was not until 1992 that I enrolled as a full-time student of Information Systems
and Technology at Tilburg University. At university, I was lucky enough to be
selected to become one of about one hundred students to participate in the pilot
Student Email. My interest in computer networks, which had been mostly dormant
until that point, got a new impulse. At that time, Tilburg University claimed to
have the most advancedelectronic libraryof Europe, containing several hundred
personal computers with Internet access for students.

Unfortunately, while these machines did indeed possess an Internet connection,
no client software was made available to us, and we were limited to navigating
the Internet through text-based menus which ran predefined telnet-commands to
connect to on-line public access catalogs of remote libraries. Most of the public
Internet-enabled applications were Gopher, WAIS, Veronica, Archie, etc.

Every now and then—much less frequently nowadays—we would find outdated
connections, and we would be given the privilege of falling back to a telnet-prompt.
It was in that time that my fellow students and I also discovered Internet games
(MUDs, BBSes, MOOs, IRC, etc.), and my real education began.

Over the years, I managed to convince faculty that I really needed to have access
to central machines (at first VAX/VMS, then DEC Ultrix, followed by SunOS and
Solaris, HP/UX and finally on to just about all different Linuxes). After I joined
the board of the study association of the Department of Information Systems, I
co-founded a student-run server-infrastructure, which later evolved into a service
which (still) provides web space toall student associations of Tilburg University.

Over the course of those years, my interest in computer networks, and more
specifically, in security of information technology, became more and more pro-
nounced. After my graduation, and after my first job at a research center at Univer-
sity, I eventually switched back to a position in academia, and began the work that
is reported in this thesis.

Tilburg University’s Infolab provided a open environment that highly encour-
aged experimentation. While such an environment provides a researcher with all the

xiii

freedom that he needs to explore his interests, it also requires him to stay focused
on his goal. There are simply too many interesting questions to find an answer to,
or technologies to learn. However, despite the many distractions that are part of life
in a university research lab, my research started showing results from 2003 onwards
with academic publications in workshops, conference, and journals.

In addition to the open research environment, the Infolab also prides itself on be-
ing a research lab that addresses real-world problems. As a result of this viewpoint,
I have been involved in many applied-research projects, which are often contract
based. The most important projects that stand out to me are the MeMo project, in
which I designed and built the search facilities for an e-commerce broker for verti-
cal markets; the AIRT project, in which I was the lead architect and developer of a
support system for computer-security incident-response teams, and the UvT-CERT
project, in which I participated in the daily IT security operations of the University.

Several of these projects were instrumental to where I am now in my profes-
sional career. In 2004, Tilburg University established its own computer-security
incident response team (UvT-CERT) and a task force was created to improve the
overall security of the University’s computer systems and networks. My involve-
ment with UvT-CERT and with the security task force was a major influence on
my level of knowledge and expertise, and provided the opportunity for me to get
to know the security world. I was introduced to the global Forum for Incident Re-
sponse and Security Teams (FIRST), and I started getting invited to speak in forums
organized by SURFnet (the Dutch National Research and Education Network), the
operational incident response team meeting cycle, organized by GOVCERT, and I
spoke at the 2006 FIRST conference. All of these appearances and contacts even-
tually convinced me that in the short-term, my future was not in academia, but that
I wanted to tackle practical problems in real-world environments. For this insight, I
would like to thank Teun Nijssen for having enough confidence in my abilities and
for giving me these chances.

None of the work that I have done at CentER Applied Research and at Tilburg
University would have been of the same level of quality if I did not feel the support
of my colleagues. I wish to express gratitude to prof.dr.ir. Mike Papazoglou for
strategically keeping my research on focus, for providing me the opportunity to
enrich my own knowledge by teaching several classes, and for showing me how
to write good scientific articles. I would also like to thank dr. Willem-Jan van den
Heuvel for helping me in my day-to-day research and providing a sounding board
for several of my ideas.

Many thanks also to the Infolab crew, dr.ir. Jeroen Hoppenbrouwers (hoppie)
for his critical voice and technical expertise, ir. Frans Laurijssen for his view of life
and for his in-depth programming knowledge, and to drs. Benedikt Kratz and to
drs. Bart Orrïens as academic sparring partners. I would also like to mention the
many students that graduated at the Infolab. Each of you have has had an impact on
my research. Special mention goes to Herman Suijs, Martin Schapendonk, and to
Karin van den Berg.

Finally, I would like to express gratitude to my Ph.D. committee:
Prof.dr.ir. Mike Papazoglou (promotor), Prof.dr. Erik Proper (promotor),

xiv

Dr. Willem-Jan van den Heuvel (co-promotor), Dr. Manfred Jeusfeld, Dr. Hans
Weigand, Prof.dr. Nikolaou and Dr. Weiss. The members of the committee tested
the scientific value of my research and provided valuable feedback to clarify certain
ideas that I had.

Writing a Ph.D.-thesis is hard work. However, in addition to work, it also has
a profound influence on the personal life of the candidate. Especially during the
writing phase, minds are never really off and attention spans can be short, which
can be hard on family life. I would like very much to thank my wife, Lou-Anne,
for her patience and understanding, and for willingly giving up many things that we
would have been able to do together. She is also an excellent mother to our daughter,
Paulette, who is probably too young to realize what was going on, but experienced
the consequences of having parents with families on different sides of the ocean.
Last, but not least, a special thank-you goes to Kristin Sheerin for providing me
with many editorial hints, comments and corrections!

Finally, I would like to acknowledge the NWO and thank them for funding the
PRONIR project. Without that project, this thesis would not have been written.

A web site to accompany this PhD thesis has been set up, and will be available
athttp://www.leune.org/thesis . The site will contain errata, downloads
and an online version of the thesis.

Last, but not least, a note to the reader: while much care has been given to
maintaining a high level of consistency between the body of the thesis and its ap-
pendices, it is possible that inconsistencies do occur. Mostly, these inconsistencies
are the result of repeated revisions of the text. If such inconsistencies are detected,
the appendices are always authorative. The models in the appendices have all been
implemented in software and as such, should be—at least logically—correct.

Tilburg, The Netherlands
August, 2006.

xv

http://www.leune.org/thesis

Chapter 1

Introduction

The main skill is to keep from getting lost. Since the roads are
used only by local people who know them by sight nobody complains
if the junctions aren’t posted. And often they aren’t. When they are it’s
usually a small sign hiding unobtrusively in the weeds and that’s all.
County-road-sign makers seldom tell you twice. If you miss that sign
in the weeds that’s your problem, not theirs. Moreover, you discover
that the highway maps are often inaccurate about county roads. And
from time to time you find your ”county road” takes you onto a two-
rutter and then a single rutter and then into a pasture and stops, or else
it takes you into some farmer’s backyard.

So we navigate mostly by dead reckoning, and deduction from what
clues we find. I keep a compass in one pocket for overcast days when
the sun doesn’t show directions and have the map mounted in a special
carrier on top of the gas tank where I can keep track of miles from the
last junction and know what to look for. With those tools and a lack of
pressure to ”get somewhere” it works out fine[...]

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

The topic of this thesis is access control in service-oriented architectures.
Access control is about making sure that only those who are entitled to some-

thing can get to it. The lock on your door is an example of access control; if it
functions correctly, it makes sure that only people who have the correct key can en-
ter your house. However, if you accidentally leave a window open, or if you forget
to lock your house, you may still have undesired guests. A similar concept exists for
computers; not everyone should have access to the data that you store on your com-
puter, have access to your Internet connection, or use your computer’s processing
power for things that you do not approve of.

Securing a computer from unauthorized access is much more difficult than se-
curing a house. The outer perimeter of a house is fairly easy to understand. Once
you have secured your doors and your windows, you are reasonably safe from an
intruder. Of course, there is always the possibility that someone takes a large shovel
and tears a hole in your wall, but that is highly unlikely, and if it does happen, easy
to detect.

2 Chapter 1. Introduction

In the case of a computer, there are many layers of protection, and they all need
to work flawlessly. The working domain for computer security specialists ranges
from the network level, the computer’s operating system(s), to system services,
applications, and messages that are exchanged by applications.

The focus of this research is access control for service-oriented architectures.
Service-oriented computing is a field in computing that viewsdistributed informa-
tion systemsas (autonomous) services that provide operations to other computer
systems.

While service-oriented computing is in the spotlight of both industry and
academia, surprisingly little progress is made in describing a conceptual frame-
work on which services are implemented. This is surprising, since large scale web
service deployments across multiple applications and services requires appropriate
security, and particularly access control mechanisms are necessary to ensure that
while a complex business process flows from one activity to the next, only autho-
rized actors can invoke the supporting web services (Leune et al., 2004b).

We propose an framework that ingrains access control in service-oriented archi-
tectures (SOAs). The benefits of having a conceptual framework for SOA are:

1. A conceptual framework provides a set of named concepts, and describes the
relationship between them, for further service-oriented developments.

2. A conceptual framework will provide a means to correlate many of the tech-
nical specifications that are currently under development, and it will provide
a solid base for further technical developments.

3. A conceptual framework will allow for the development of a holistic approach
to transcend from a technical approach to service-oriented computing to a
more business-oriented approach.

The availability of a common framework will benefit service security in par-
ticular. While some efforts are made to present a coherent road-map for security
in service-oriented computing, those efforts lack a common conceptual foundation
and progress only slowly.

We address these problems by developing an access control framework for
service-oriented architectures called EFSOC.

The majority of the research that is presented in this thesis takes place in a
combination of fields. We explore the fields of service-oriented computing, event-
driven architectures and security. Especially service-oriented computing (SOC) and
security are fields which are currently very much in the spotlight of the industry and
attract a lot of interest from all layers of our diverse community.

1.1 EFSOC

To address the under-developed nature of access control in service-oriented archi-
tectures, we designed an event-driven framework in which access control is a pri-

1.2 Research Motivation 3

Figure 1.1: EFSOC overview

mary design objective. The framework—called EFSOC, or Event-Driven Frame-
work for Service-Oriented Computing—combines the strengths of role-based ac-
cess control and event-driven systems and applies them to service-oriented comput-
ing. The basic framework is shown in Figure 1.1.

Subjects may play certain roles and communicate by sending messages, which
are generated as a result of some kind of event. Subjects can be real people, agents,
information systems, services, etc. However, in the EFSOC framework, we con-
sider only one type of subject: the service. Each service consists of one or more
operations, or of other services.

1.2 Research Motivation

Web services technology started gaining attention in the early 2000’s and was her-
alded as a new paradigm to design and develop distributed software components.
Fairly quickly after the initial introduction of web services, visionaries started to
see a brighter future for the same technology, and they adopted the concept ofser-
vicesthat consists ofoperationsas a way to view organizations as dynamic entities
that are constantly creating, invoking, and discontinuing services.

When this research project started, it was not clearly understood what web ser-
vices were, and indeed, if they really had a future. What was understood is that to
become successful, web services—more precisely, service-oriented architectures—
should fulfill a large number of business requirements.

In the research presented in this thesis, services are studied with the objec-
tive to investigate in which way access control considerations can be addressed
by organizations that adopt service-orientation as a way forward. When the project

4 Chapter 1. Introduction

started, security—and especially access control—was something that people had
heard about, but it compared in no way to the massive attention that it is getting
now. The field of security is a broad one; it ranges from very specific mathemat-
ical applications in the field of cryptography, to management approaches for large
corporations.

Engineering secure systems relies on a large number of enabling technologies
(e.g., cryptography, auditing, messaging, etc), which in themselves are mostly well-
understood. However, the application of these technologies, especially in emerging
areas, such as service-oriented computing, requires additional research to increase
the level of understanding and knowledge that is required.

Security for service-oriented computing must ensure the availability of services,
the correctness of messages that are exchanged between services and the confiden-
tiality of those messages. In part, this is achieved by specifying and enforcing
appropriate access control systems.

While the entire spectrum of security in service-oriented computing needs atten-
tion, this research focuses onaccess control in SOA. While this is the focus of my
research, authorization and access control have close relations with other aspects of
service-oriented computing.

The current state-of-the-art in service-oriented computing is mostly technology-
driven and narrowly focussed. Many of the initiatives lack firm grounding on a
commonly accepted conceptual model, yet address only very narrow aspects of the
overall domain. This results in a plethora of standards and products that need to be
tuned finely to interoperate effectively.

In addition, much of the technological developments have not matured, or even
reached the stage of adolescence. Many of the current standards are developed by
large consortia of commercial organizations. This is reflected in many of the WS-
* standards, which often appear as compromises that provide no clear direction in
which the technology should develop.

Finally, access control considerations are currently only minimally presented
in service-oriented computing. IBM and Microsoft developed a security road-map
for SOC, however the protocol that addresses access control has yet to be addressed
(Web Services Security Roadmap, 2002). While the Globus alliance1 has developed
initiatives towards access control, no explicit conceptual model underlays its access
control model. Rather, it is based on the use of access control lists, augmented by
the ability to implemented custom authorization modules.

1.3 Research goal and scope of the research

This research aims to further understand the problems outlined in the previous sec-
tion, their causes, and ways to mitigate them. More specifically, this research can
be positioned on the intersection of the fieldsSecurity & Access Control, Service-
Oriented Architectures, andEvent-Driven Processing.

The goal of this research is formulated as follows:

1http://www.globus.org

http://www.globus.org

1.3 Research goal and scope of the research 5

Figure 1.2: Positioning of research

Design, develop and validate a framework for inter-organizational
and intra-organizational access control in service-oriented architec-
tures.

Security is a broad research field, ranging from highly mathematical theories
describing cryptographic algorithms, to business theories about risk management
and business continuity planning. This research will take place somewhere in the
middle of that playing field.

The research presented in this thesis will take place at two levels:

1. Conceptual level
At the conceptual level, we introduce a number of concepts that unify theory
from event-driven systems, security (especially access control) and service-
oriented computing into the EFSOC Service-Oriented Architecture. The EF-
SOC Architecture is described in-depth in Chapters 3, 4, and 6. Throughout
those chapters, we illustrate our proposal with a running example that is de-
rived from the medical domain.

2. Operational level
The framework that is created at the conceptual level is partially implemented
by a configurable prototype. The prototype implementation utilitizes state-of-
the-art programming techniques and builds on current technologies.

At the conceptual level, we use Unified Modeling Language (UML 2.0, 2005)
class diagrams to represent the (static) vocabulary elements of our model, as well
as the dynamic behavior of the model.

The validation of this research will take place in three stages. First, we will
conduct a case study in the medical domain. Based on interviews conducted with

6 Chapter 1. Introduction

domain specialists at several hospitals, we will draw a realistic patient-care sce-
nario. The scenario will subsequently be expressed in the EFSOC vocabulary and
grammar.

Second, we will implement the configurable software prototype. This opera-
tional implementation will illustrate the feasibility of taking the theory and turning
it into practice.

Third, we will configure the prototype with the data from the case study to create
a laboratory experiment.

1.4 Research questions

To achieve our research goal, we formulate the following questions:

1. What is the state-of-the-art in access control? Here we perform an in-depth
study of access control models and analyze them to find their strengths and
weaknesses.

2. Is the current state-of-the-art of access control adequate for use in service-
oriented computing? This question can be further subdivided in the following
questions:

(a) What are the security requirements for SOC?

(b) How are requirements of security in general, and access control in par-
ticular, addressed in service-oriented computing?

We will design a framework to capture access control requirements for service-
oriented architectures. The creation of the framework induces the following ques-
tions:

3. In what way should a definition language that supports the framework be
formed?

4. In what way should a query language that supports the framework be formed?

5. What does an architecture for implementing the framework, the definition
language and the query language, look like?

1.5 Research methodology

This section outlines the methodology that was taken to conduct this research. A
methodology is defined as a set of techniques to meet a predefined goal (Welke,
1981). The set of techniques is also referred to as a method, which can be supported
by a tool. A methodology should prescribe the sequence in which the techniques
need to be performed across (part of) a software development cycle, and offer some
rules for checking their consistency (van den Heuvel, 2002).

Figure 1.3 graphically represents the phases of the methodology that has been
adopted for this research.

1.5 Research methodology 7

Figure 1.3: Research methodology

1. Problem Definition
The first step in any research project is to understand the problem that is being
investigated to an extent that a start can be made with formulating preliminary
hypothesis.

When the research progresses, and the understanding of the material deepens,
the problem definition phase usually goes through several iterations in which
the formulation of the problem and the research goals becomes more concrete
and the scope of the research is delineated more clearly.

2. Literature Research
While listed as a separate step, literature research is an ongoing process. Lit-
erature research serves a twofold purpose. First, literature research provides
a good tool to get familiar with the subject matter at hand, and—provided it
is executed correctly—will quickly bring the reader up-to-date on the current
state-of-the-art. Second, literature research can provide a starting point to the
relevance of the research; in addition to gaining insight in what is perceived
as achievements, it also offers a way to ground the research in other efforts.

The literature research will consist of a study of previously published mate-
rial, accompanied by a projection of the published material on the research
domain.

3. Solution Design
Based on the results obtained in the problem definition phase and the literature
research phase, the solution design phase attempts to formulate a theory that
addresses the limitations or shortcomings that were identified. The resulting
design must serve as a proposal to further the state-of-the-art.

8 Chapter 1. Introduction

In the solution design phase, we will adopt a top-down approach. We will
begin by identifying a number of general principles to which the service-
oriented architecture that will be designed must adhere. Next, the conceptual
framework will be specified in a number of iterations. The conceptual frame-
work design is followed by the proposal for a language that can be used to
express the vocabulary and grammar that are part of the conceptual design.
Finally, a formal representation of the language is proposed to allow compar-
ison to other approaches, and to prove formal soundness of the language.

4. Validation

The validation phase takes the results of the solution design phase, and at-
tempts to make it plausible that the chosen design is adequate and correct.

The validity of our approach is captured by establishing the accuracy, mean-
ingfulness and the credibility of our proposal. The process of establishing the
validity of an approach can be divided in establishing the internal validity and
establishing the external validity.

The external validity of the approach is established when the proposed solu-
tion can be successfully applied to other contexts. The external validity of
EFSOC was shown by conducting a case study, which is presented in Sec-
tion 3.2.

An approach is internally valid if the conclusions that are drawn are valid
from the problem solution that is suggested.

We will validate this research empirically by executing the following activi-
ties:

(a) Case Study
We will describe a case study in a domain that has enough complexity
that there will be many organization-spanning message exchanges. The
case study will yield a description in natural language of one or more
processes. It will then be attempted to express the case study in terms of
the proposed solution.

Using a real-world scenario, rather than limiting ourselves to a con-
trolled laboratory experiment, exposed our approach to a wider range
of problems. Performing the case study, and projecting the case study’s
results on our approach will establish the credibility and the meaning-
fulness of our approach.

(b) Formal Foundations

In this research, we establish the internal validity of our approach in
Chapter 6, which presents a formalized definition of EFSOC. The for-
malization will present a model that is internally consistent, and ax-
iomatically complete.

1.6 Contributions 9

(c) Prototype
In parallel with the case study, we will develop a software prototype
that will show that our solution is achievable. The solution will take
the form of proof-of-concept using software that is freely available. The
development of the prototype and the proofs-of-concept does not play a
role in establishing the validity of our approach. Rather, it is a necessary
input for the laboratory experiment that is discussed in the next bullet.

(d) Laboratory Experiment
The final phase of the validation process is to take the results from the
case study and input them into the prototype. This will enable us to
run a laboratory experiment in which the practical applicability of our
solution can be tested.

We will prepare two sets of interpretations of the model that we propose.
The first set reflects desired states of the model, and should fully be ac-
cepted by the prototype. The second set reflects a set of undesired states
of the model, and as such, it should be fully rejected by the prototype.

Executing the laboratory experiment will establish the accuracy of our
approach.

5. Assessment of the Results
The final stage of the research project is to look back on the theory that was
developed and the results of the validation phases. In this phase, we will
identify in which respects our solution will provide added benefits, as well
as the conditions under which these benefits can be leveraged the best. In
addition, we will identify opportunities for further research.

1.6 Contributions

This section briefly summarizes the contributions of this research. A more detailed
description is available in Section 8.4. Current approaches to access control in dis-
tributed environments tend to focus on centrally administered access control poli-
cies, which are deployed to decentralized points of enforcement. In service-oriented
architectures, this is not valid.

Contribution 1 We introduced an access control model for service-oriented archi-
tectures that is decentrally administered, yet centrally enforced.

Of all the access control models, Role-Based Access Control is often heralded
as the most modern approach, and as an approach that closely aligns with the way
that enterprises organize their processes. EFSOC adopts a role-based approach, but
acknowledges the fact that some permissions must not be assigned to roles, but
should be assigned to individuals within a role.

Contribution 2 EFSOC adopts a discretionary role-based access control model.

10 Chapter 1. Introduction

Service-oriented architectures are often not based on a shared conceptual model
and do not use consistent vocabularies to express access control requirements.

Contribution 3 EFSOC provides a common methodological framework and pro-
vides a reference architecture for decentrally managed, yet centrally enforced, dis-
cretionary role-based access control.

1.7 Structure of this thesis

The remainder of this chapter is structured as follows. Since this research takes
place on the intersection of several research fields, Chapter 2 covers background in-
formation on event-driven systems (Section 2.4), security and access control (Sec-
tion 2.2) and service-oriented computing (Section 2.3). Chapter 3 introduces the
EFSOC Service-Oriented Architecture, which we believe provides a value-added
layer on top of web services technology. A language to specify elements of EF-
SOC, and execute it in a dynamic environment is discussed in Chapter 4. EFSOC
Query Language (EQL) is described in detail in Chapter 5. Chapter 6 provides a
formal grounding for that language.

The structure of the thesis is graphically represented in Figure 1.4. Throughout
the thesis, we will refer to a case study that was performed in the medical domain, in
which a surgery patient is followed from its initial point of contact to his discharge
from hospital care. The case study is discussed in Section 3.2.

1.7 Structure of this thesis 11

Figure 1.4: Thesis outline

12 Chapter 1. Introduction

Part I

Background and Theory

Chapter 2

Background in SOA, Security and
Event-Driven Processing

“What terrifies you most in purity,” I asked?
“Haste,” William answered.

Umberto Eco, The Name of the Rose, Fifth Day, Nones

2.1 Introduction

The research that is presented in this thesis is positioned on the intersection of a
multitude of research fields. This chapter provides the reader with background in-
formation on each of these fields, and includes a discussion on observations that
were made in each of them.

Section 2.2 explores the (very wide) research area of information security, com-
puter security and network security. The focal point of Section 2.2 is a discussion
of popular access control models.

Section 2.3 introduces service-oriented computing, with a focus on loose cou-
plings, service composition and web services technology.

Next, we will explore event-driven messaging in Section 2.4.
The chapter will be concluded in Section 2.5, with a discussion of the previous

sections and an outlook to security requirements for a service-oriented architecture
in Section 2.6.4.

2.2 Service Security

Information security addresses the need to protect resources from unauthorized use,
manipulation, or inspection so that the availability of services can be guaranteed so
that business processes can continue to operate. The security field is traditionally
divided in a number of sub-fields:

16 Chapter 2. Background in SOA, Security and Event-Driven Processing

1. Authenticationis the process of determining the identity of a person or an
object. To be able to rely on a proper authentication scheme is a fundamental
requirement for any security infrastructure.

2. Authorizationis the process of determining what permissions a person has.
Typically, access control results in some subjects receiving a set of authoriza-
tions to perform certain actions on certain objects.

3. Confidentialityis the process of ensuring that message contents are only avail-
able to duly authorized subjects.

4. Integrity is the process of ensuring that messages are not manipulated while
they are in transit. That is, integrity ensures that messages are received in
exactly the same way as they were sent.

5. Auditing is the process of keeping a trail of things that happened for later ref-
erence. Audit trails can be used to establishnon-repudiation, i.e. the process
unambiguously establishes the fact that something happened, or for conflict
resolution. Auditing is also used to detect security breaches and to get an
impression of the consequences of such actions.

In the following sections, each of the above aspects will be discussed in more
detail.

2.2.1 Authentication

In computer security, authentication is often defined as the process by which some-
one or something attempts to confirm its identity to someone else (Sandhu and
Samarati, 1996).

The goal of an authentication scheme is to unambiguously determine the identity
of a subject, and to make it impossible to assume an false identity.

After authentication, two principals (people, computers, services) should be en-
titled to believe that they are communicating with each other and not with intruders
(Burrows et al., 1990).

Authentication is an important process, since it provides the basis for determin-
ing what rights a person will be granted in a later stage.

Authentication approaches are typically based onshared credentials. What is
meant by this is that the subject who desires to become authenticated has the ability
to produce something that can be validated by the authenticator. A typical example
of using shared credentials is using a password to log in to a computer, or using
a PIN code on an ATM card to withdraw funds from a bank machine. In both
situations, the credentials must be known by the subject and can be validated by the
authenticator.

Authentication methods are generally divided in three categories:

2.2 Service Security 17

1. Authentication, by knowledge
The most common authentication category that is currently in use in com-
puter security is password based authentication. Password based authentica-
tion assumes that a subject knows a password, which is also known to the
authenticator. Only when the user provides the correct password, he will be
authenticated. Any authentication that revolves around a subject having some
kind of knowledge that can be tested by the authenticator belongs to this cat-
egory.

2. Authentication, by possession
Anyone who regularly travels internationally is familiar with passport authen-
tication. The subject (i.e. the traveler) is issued a document which entitles him
to cross borders and receive protection while residing in a foreign country.
The agency that issued the document may have added certain features which
ensure the validity of the document. In additional to showing the authentica-
tion document, no additional actions to establish an identity are required.

3. Authentication, by being
Biometrics is the science and technology of determining the identity of a sub-
ject physiological features. The most common forms of biometrics are based
on a subject’s fingerprints, retinal patterns, or facial features. Less common,
but still in use, are voice recognition and handwriting analysis. All of these
approaches assume that a subject can be identified, with a degree of statistical
certainty, based on one or more of such features.

A good authentication method typically shares at least two of the three cate-
gories. For example, simple password authentication is generally not considered to
be strong enough, as it only belongs to the second category. However, when pass-
word authentication is combined with, for example, a certificate on a chip card, or
with some form of biometric analysis, the authentication scheme becomes stronger
and therefore it becomes harder to deceive an authenticator.

2.2.2 Integrity and Confidentiality

Integrity and confidentiality are message-level protections to prevent a message
from being altered by anyone else than its original sender, resp. to prevent any-
body else but the intended recipients of the message to learn its contents.

Integrity and confidentiality are closely related concepts, since they are often
achieved using very similar technology.

Message integrity is commonly achieved by digitally signing messages. Not
only allows digital signing the sender of a message to be established unambiguously,
it also provides a means to detect if any changes were made after the message was
signed. When a message’s content is altered after a signature has been placed, that
signature will no longer be correct and a breach in the message’s integrity can be
detected.

18 Chapter 2. Background in SOA, Security and Event-Driven Processing

Notice that digitally signing messages does not prevent messages from getting
altered. It does, however, provide the final recipient with a way todetectthat the
message that he received is not the same message that was signed.

Message encryption is the process of changing the contents of a message in such
a way that its contents do not make sense to anyone, including the intended recipi-
ent. However, that recipient will have the means to undo the changes that were made
in order to re-create the original message. Most often, messages are encrypted using
cipher algorithms that replace characters, or sequences of characters, according to
certain mathematical rules.

2.2.3 Public Key Infrastructures

A public key infrastructure is a system designed to authenticate users using digitally
signed certificates that are issued by trusted third parties. A public key infrastruc-
ture usually consists of one or morecertificate authorities(CA’s), which may issue
certificatesto end-entities(users) or to other CA’s of who they have verified the
identity.

A typical application of public key infrastructures is found in SSL-enabled web
servers. A service operator will obtain a digital certificate from a CA, which is
expected to establish the service’s identity. When the CA decides that the service
is who it claims to be, a certificate will be issued which carries the CA’s digital
signatures.

When other services wish to bind to the service, they will be able to check its
certificate and establish the fact that it was signed by the CA. When this CA is
trusted by both parties, a level of trust between them can be assumed.

It is important to realize that a PKI can only be used to establishidentities, and
to provide a trusted way to exchange public keys. Even with a valid certificate, a
service may still not be a reliable trading parter.

Using a PKI approach offers a number of benefits:

1. Hierarchies of CA’s
To prevent the need for having a large number of root certificate authorities,
CA’s may be organized in a hierarchy, as shown in Figure 2.1. The added
benefit of this is that CA’s can certify each other to issue valid certificates.
Clients will only have to possess the root CA’s certificate to validate a server’s
certificate to establish its identity.

2. Centralized administration of certificates and revocations
Because CA’s are organized in a hierarchy, it is always possible to establish a
certificate paththat can be used to find out if the certificate has been issued
by a trusted authority. Even more interestingly is the ability for any CA in the
hierarchy torevokea certificate.

Certificate revocation can be used when a CA that is located lower in the
hierarchy has not functioned adequately and can no longer be trusted, or when
an end-entity does not live up to the requirements that were agreed on when
the certificate was issued.

2.2 Service Security 19

Figure 2.1: Public Key Infrastructure CA Hierarchy

The central administration of certificate chains makes a PKI infrastructure a
powerful tool for use in centrally administered trust systems.

3. Trusted third-parties
Even if end-entities do not know each other well enough to be sure that they
are indeed talking to the service who it claims to be, using trusted third par-
ties allows them to establish a basic level of trust. Assume that a hospital and
an ambulance company need to exchange confidential information, but have
not yet formally verified their identities. Yet, the hospital and the ambulance
service’s identity have both been verified by the same CA, and the CA’s iden-
tity has been established by both organizations. When the hospital and the
ambulance service obtain certificates that are signed by the CA that they have
in common, it becomes possible for them to exchange information by relying
on the certificates that were issued.

2.2.4 Web of Trust

Unlike public key infrastructures, the web of trust does not adopt any central ad-
ministration of certificates and/or keys. Instead, each user in the web of trust is
expected to generate his own key pair (consisting of a public key and a private key).

Asymmetric encryption requires that each user possesses two mathematically
linked keys. One of the keys must be made publicly available and one must be kept
secret. Using the key pair, messages can be encrypted, digitally signed or both.

Assume that John wants to send a message to Mary that needs to be kept confi-

20 Chapter 2. Background in SOA, Security and Event-Driven Processing

dential. In other words, nobody except Mary must be able to understand the contents
of the message. To achieve this objective, John needs to obtain Mary’s public key.
Since that key is not secret, Mary can send it to John any way she wants, or even
publish it on a web site. John will use that key to encrypt the message, and send the
result to Mary.

In order for Mary to be able to decrypt the message, she needs to use her private
key.

Next, Mary wants to send a message that is not confidential back to John. How-
ever, Mary wants to ensure that John can establish with a high degree of likeliness
that Mary is indeed the sender of the message. Mary can achieve this by digitally
signing her message using her private key.

When John receives the message, he can use Mary’s public key to verify that
she indeed sent the message.

In the web of trust approach, trust is established by allowing people to place a
digital signature (using their own private key) on somebody else’s public key, and
than share it with the community.

The underlying assumption is that somebody with many signatures on his key is
somebody who’s identity has been established by many different people.

While signatures on a public key may provide a certain level of confidence in
the identity of the owner of the key, the web of trust decouples identity from trust.
In the web of trust, trust is considered something that is local to a user.

Assume a situation in which a userJackhas a public key that has the signature
of Johnon it, as outlined in Figure 2.2.Mary, needs to send Jack an encrypted
message, but she does not know him. Yet, Mary wants to ensure Jack’s identity
before sending the message because she wants to prevent disclosure of information
to the wrong person. Fortunately, Mary does know (and trust) John. In turn, John
does know Jack and has signed his public key to attest to this. When Mary retrieves
Jack’s public key, and sees that it carries John’s signature, she is confident enough
to use it to send Jack an encrypted message.

The Web of Trust gains it strength from the fact that it has a large number of
users. Since credibility of keys depends on obtaining signatures from other users, a
large user-base is required for the web of trust to function well.

The most common software on which the web of trust relies consists of the GNU
Privacy Guard1, and software published by the PGP company2. Both of these appli-
cations have the disadvantage that they are fairly technical in nature. However, with
the advent of user-friendly GUI front-ends, the web of trust is gaining popularity
fairly quickly.

The most common application domain of the web of trust is in digital signing
and/or encryption of email. While that is the reason for the majority of users to
participate in the web of trust, there is no reason why it cannot not be used for the
protection of other messages.

A disadvantage of the web of trust approach in a corporate setting is that nobody
is able to control who issues digital signatures, and under which conditions. In the

1see http://www.gnupg.org
2see http://www.pgp.com

2.2 Service Security 21

Figure 2.2: Web of Trust

web of trust approach, nobody can present a user from signing everybody’s public
key, regardless of whether he has verified the owner’s identity. It is assumed that
such situations self-regulate themselves. First, when it becomes known that the user
adopts these practices, it will become virtually impossible for him to accumulate
digital signatures which will give him credibility. Second, the web of trust assumes
that a user with multiple signatures is more likely to be who he claims to be than
someone with just one or two signatures.

2.2.5 Access Control

To develop secure systems, security should be considered at all stages of design, so
that the design not only satisfies its functional specifications but also satisfies secu-
rity requirements. To do this we need to start with high-level models that represent
the security policies of the organization(Schumacher et al., 2006).

Access control refers to the process of ensuring that no resources are used in an
unauthorized way. Two basic principles underlay access control:

1. The Least Privilege Principle
The least privilege principle states that a user should only have the absolute
minimum of privileges to perform his job at that point in time (Saltzer and
Schroeder, 1975). Any additional privileges may be abused and can lead to
circumvention of security mechanisms that are in place. In the context of
SOA, the least privilege principle thus postulates that the only interaction
with services may take place in the context of an executing business process.

22 Chapter 2. Background in SOA, Security and Event-Driven Processing

2. Separation of Duty
This principle aims at preventing potential fraud by disseminating responsi-
bilities for the execution of fragments of a business process among several
participants. The classic example in administrative theory is that the manager
of the inventory should never be the same person as the one who is respon-
sible for purchase requisition. Separation of duty can be enforced statically
and dynamically. Static separation of duties is a very restrictive technique
that aims at avoiding conflicting roles, conflicting permissions, conflicting
users and conflicting tasks. Dynamic separation of roles on the other hand,
enforces the activation of roles according to a policy specification of the re-
quired separation of duty in the context of a business process. Similar to its
static counterpart, four dimensions of conflicts need to be circumvented, viz.
dynamically conflicting roles, dynamically conflicting duties, dynamically
conflicting users and dynamically conflicting tasks. The interested reader is
referred to (Botha and Eloff, 2001) for an in-depth examination of structural
and dynamic separation of duties in the context of workflow systems.

Over the past few years, a number of access control models were developed
including discretionary access control, mandatory access control, and role-based
access control. We will review these techniques briefly and discuss their relevance
in the domain of SOAs in the following.

2.2.6 Discretionary Access Control

The prevalent model for access control is the discretionary access control model
(DAC). Discretionary access control is a means of restricting access to objects based
on the identity of subjects and/or groups to which they belong (Neon Orange Book,
1987).

In DAC, access control requirements are specified in the form of anaccess ma-
trix. The access matrix is conceptually simple and the majority of access control
models are based on it (Hayton et al., 1998).

An access control matrix is a data structure with a row for every subject and a
column for every object (Harrison et al., 1976). Each cell of the table contains the
access rights of the subject on the object. As a side-effect, the rows of the table will
provide a capability list per subject, while the columns describe in detail what kind
of access is allowed for each object.

Despite the fact that DAC is widely adopted, it is a well known fact that there
are several fundamental shortcomings which make it less suitable for large-scale use
in dynamic, heterogeneous environments (M. Krause, 1999). Firstly, discretionary
access control adopts the assumption that the owner of an object controls access to
it. When translated to the context of service-oriented architecture, this means that
the owner of a service, hence the service provider, controls the access to the services
it advertises in its interface. A restriction of DAC that makes it less suitable for
SOA’s is that it cannot deal with additional security requirements of clients.

Secondly, the DAC approach regulates access by using access control ma-
trix. The access control matrix denotes a matrix in which all subjects are cross-

2.2 Service Security 23

referenced and permissions are defined for each possible combination (object-
operation)-subject pairs. While this may be a viable solution for small scale busi-
ness processes that need a limited number of web-services, it will quickly become
obsolete and too costly for more complex and distributed business processes that
may involve many more services.

2.2.7 Mandatory Access Control

Mandatory Access Control (MAC), also referred to as Multilevel Access Control,
originates from military applications and was designed to regulate the flow of in-
formation. In (Orange Book, 1985), it is defined as a means of restricting access
to objects based on a mapping between the sensitivity of the information that is
contained in the objects and the formal authorization of subjects to access this in-
formation. This security model forbids creators of information to manage access to
them; instead, access is controlled by a central security administrator who designs
a hierarchy of security levels and administers the assignment of security levels be-
tween objects and subjects. If a subject is operating at a security clearance which is
at least as high as the security classification of the object, access is granted.

The most well-known mandatory access control models are the Bell-LaPadula
Model of 1973, the Biba Access Control Model of 1977 and the Clark-Wilson Ac-
cess Control Model of 1987.

The Bell-LaPadula Model

The Bell-LaPadula model (BLP) (Bell and LaPadula, 1973), was the first success-
ful attempt at mathematically describing an access control paradigm based on two
simple rules:no read upandno write down. These rules are known as thesimple
security property, resp. the*-property. In BLP, all objects and all subject have a
fixed security class. The simple security rule states that subjects can only read an
object when its security class is equal to, or lower than the security class of the sub-
ject. The star property states that a subject may only write to an object if it has a
security class which is equal to, or higher than the security class of the subject.

The Biba Model

Whereas the Bell-LaPadula model is a model to enforceconfidentiality, the Biba
model (Biba, 1977) was designed to ensureintegrity. The Biba model is very similar
to BLP. It contains two rules:no write upand no read down. These rules are
known as thesimple integrity property, resp. theintegrity *-property. The simple
integrity property requires that subjects can only modify objects which are below
the integrity class of the subject. The integrity star property requires that subjects
can read objects with a security class that is higher than the subject’s security class.

24 Chapter 2. Background in SOA, Security and Event-Driven Processing

The Clark-Wilson Model

The Bell-LaPadula Model and the Biba model both originate from the military do-
main. In 1987, Clark and Wilson publishedA Comparison of Military Computer
Security Policies(Clark and Wilson, 1987). In that article, they proposed a pol-
icy for well-formed transactions. The Clark-Wilson model assumes that some data
items and constrained so that they can be acted on only by certaintransformation
procedures. These procedures takes anunconstrained data itemand turn it into a
constrained data item. Clark Wilson suggest that there is a set ofintegrity veri-
fication proceduresthat check the validity of constrained data items, and a set of
transformation procedures, which ensure the integrity of constrained data items.

Access control is specified by triples(subject, transformation procedure, con-
strained data item), which specify exactly for each subject, which transformation
procedures may be performed on constrained data items.

MAC and SOA

Mandatory access control systems that are variations of Bell-LaPadula or Biba, are
not particularly suited for usage in SOAs due to the application of rather static and
restrictive hierarchical security levels.

A more flexible approach is required that allows for dynamic (re-)definition,
and definition of security policies at the level of service operations in a networked
manner. The Clark-Wilson model offers more potential, however the management
overhead of maintaining the access control tuples will be too high.

Moreover, the assumption that access is administered by a central administra-
tion, is conflicting with the peer-to-peer nature of SOAs.

2.2.8 Role-Based Access Control

Role-based access control models (Sandhu et al., 2000), (Ferraiolo et al., 1999),
(Hamada, 1998) are a contemporary control technique, that introduces an indirec-
tion layer between users and permissions which logically separates the role that
users play in an organization or process from the subjects. Hence, in a role-based
approach permissions are assigned toroles and roles are assigned tosubjects, as
graphically illustrated in Figure 2.3.Permissionsare used to specify the capability
of subjects to perform a particular operation, e.g., specifying an incident report or
assessing incidents. Typical in an RBAC approach, roles can be organized in role
hierarchies and constraints can be defined between roles.

RBAC and SOA

An implicit assumption of the role-based approach is that the combination between
roles and permissions is relatively stable in time (Botha and Eloff, 2001). The
volatile environment in which web-services collaborate for implementing business
processes however, requires an environment in which roles and permissionsare de-
coupledto cater changes in the allocations of permissions to roles (Leune et al.,

2.2 Service Security 25

Figure 2.3: Role-Based Access Control (Sandhu et al., 1996)

26 Chapter 2. Background in SOA, Security and Event-Driven Processing

2004a). This demands dynamic generation of permission-to-role assignments, us-
ing knowledge about the roles that subjects play and about other contextual factors.
Applying dynamic evaluation of authorization rules to deduce access control per-
missions not only allows for a better enforcement of the principle of least privilege,
but also enables a near real-time active security implementation.

Another obstacle for applying RBAC in SOAs is that, similar to MAC, RBAC
prescribes that the security administration takes place in a single, centralized, lo-
cation. At the same time, this security model assumes that access control rules are
typically evaluated by a central security agency, which introduces additional limita-
tions on the flexibility and distributed nature that are implied in the service-oriented
environment.

In conclusion, existing access control models suffer from shortcomings may
severely hinder their applicability to the SOA domain. The EFSOC framework that
is introduced in the next section tries to overcome these observed difficulties and al-
lows for dynamic (re-)definition of authorizations. Before outlining this framework,
we wish to introduce a running example, to demonstrate the workings of EFSOC.

2.2.9 Auditing

Business critical information systems should keep track of all events that take place,
and store a description of such events in anaudit trail. While establishing an audit
trail will not prevent security breaches from taking place, audit trail data can be
used to investigate the trail of events after they happened, and provide a means to
assess the impact of security breaches.

In addition to monitorwhat happened, audit data can also be used to establish
whoperformed certain actions, and hold them accountable for their actions.

Of course, auditing data is very valuable to attackers, since it will allow them
to quickly find out many things about an organization, such as network topology,
information systems that are used, key players, etc. It is therefore recommended
that audit data is keptat leastas secure as any other business-critical data, and that
well-defined policies are in place about notifying users about the fact that an audit
trail is collected, for which purposes it will be used, and how long it is stored.

Recent developments in legislation, such as the Sarbanes-Oxley Act of 2002
(SOX), establish a set of requirements for corporations that are designed to deter
fraud and increase corporate accountability.

For example, Section 103 of the Act requires the retention ofall audit-related
records(including electronic) for a period of seven years. Section 802 of the Act
proceeds by laying down criminal penalties for altering documents. It requires
mechanisms to ensure that data, once recorded, remains unaltered.

Compliance with the Act requires not only the establishment of an audit trail
(i.e., the fact that a document was modified by a certain user), it also requires that
the document (including its changes) are kept for a period of seven years.

The impact of SOX on the way that businesses are organized and governed is
gigantic. Applied to the service-oriented architectures, the SOX legislation might

2.2 Service Security 27

mean that all messages that are exchanged by services may have to be kept for a
similar period of time.

2.2.10 Security and Grid Services

A field that has adopted service-oriented computing isgrid computing. Grid com-
puting applies the resources of many computers that are connected by a network to
work on solving a single problem at a time. The Grid computing model assumes that
resources should be allocated or re-allocated on demand, using remote distributed
computing facilities, and regardless of the location of the physical hardware.

The Grid computing community acknowledges the need for security and ad-
dresses it explicitly. In Grid computing, security is based on the use of X.509 cer-
tificates, entity certificates and proxy certificates, which are all used for identifying
subjects. Security in Grid Services is divided in message-level security, i.e., protec-
tion of SOAP messages, Transport-level security and an Authorization Framework.
The Authorization framework provides the ability to outsource authorization de-
cisions using SAML messages authorization based on access control lists, and a
mechanism to implement custom authorization modules.

2.2.11 Discussion

Security is a broad field that can be roughly characterized in authentication, autho-
rization, integrity, confidentiality and auditing. By authentication, we mean the pro-
cess of establishing a subject’s identity. Confidentiality and integrity are message-
level protections that are concerned with ensuring that a message’s contents are not
disclosed to anybody than its intended recipient and about ensuring that it is possi-
ble to show that the contents of a message have not changed since it was digitally
signed.

The most common approach to achieve authentication, integrity and confiden-
tiality can be found in cryptography using asymmetric key-pairs. Asymmetric cryp-
tography works by keeping a secret key that must only be accessible by its owner,
and a public key that can be freely exchanged.

We discussed two key management approaches: public key infrastructures using
hierarchical certificate authorities that function as trusted third parties, and the web
of trust, which relies fully on peer-to-peer signing of public keys.

Next, we introduced access control as a means to prevent unauthorized access
to resources. Three common access control models were discussed: discretionary
access control using access control matrices, mandatory access control using access
control lettuces and role-based access control.

Finally, we discussed the need for establishing audit trails and for protecting and
retaining audit trail data.

Since the research focus of this thesis is on access control in service-oriented
architectures we will now assume that authentication, message-level integrity and
message-level confidentiality are readily available.

28 Chapter 2. Background in SOA, Security and Event-Driven Processing

2.3 Service-Oriented Computing

Service-Oriented Computing (SOC) is the computing paradigm that utilizes ser-
vices as fundamental elements for developing applications (Papazoglou and Geor-
gakapoulos, 2003). The paradigm of service-orientation is a relatively recent enrich-
ment to the discipline of designing distributed applications. Its vision encompasses
a future in which application development is not constrained by organizational or
technological boundaries.

Instead, applications will be developed from the viewpoint of services which
offer some kind of value to their consumers. New services may be designed and
built from scratch, or they can be assembled by combining existing services with a
value-added content.

In other words, services may be perceived as self-describing, open components
that support rapid, low-cost composition of distributed applications.

Service providers publish platform-independent descriptions of the services that
they offer using a machine-readable format, such as the WSDL (Christensen et al.,
2001) specification. The WSDL specification is discussed in more detail in Sec-
tion 2.3.4. In addition to technical specifications detailing how to invoke each ser-
vice, such descriptions may contain additional information outlining constraints or
requirements for invoking the services.

Service descriptions are published in central repositories where they may be dis-
covered by service consumers. Based on the information in the service description,
a consumer can now decide whether the service is suitable for the requirements.
If this is the case, the consumer may contact his providers directly to invoke the
specified services.

2.3.1 Service-Oriented Architecture

The concept of service-oriented computing (SOC) manifests itself in the form of a
service-oriented architecture (SOA). The main difference between the two is that
SOAs provide areference architecturefor implementing service-oriented comput-
ing. The basic SOA is discussed in the previous section and is illustrated by Fig-
ure 2.4.

While the basic SOA provides enough reference material for the basic publish-
discover-bind process, aspects like service composition, service management, trans-
actions and security are not covered.

Such concerns are addressed by the extended SOA (ESOA) (Papazoglou and
Georgakapoulos, 2003) that is depicted in Figure 2.5. The ESOA consists of three
layers in which the most basic one encompasses the basic SOA. The middle layer
is known as thecomposition layerand provides the roles and functions that make
it possible to compose new services out of existing ones. Service composition is
discussed in more detail in Section 2.3.3.

The service composition layers includes functions for the following aspects:

1. Coordination: control the execution of the services that form a composition
by specifying and enforcing workflows.

2.3 Service-Oriented Computing 29

Figure 2.4: Publishing, Discovering and Invoking Services

Figure 2.5: The Extended SOA (Papazoglou and Georgakapoulos, 2003)

30 Chapter 2. Background in SOA, Security and Event-Driven Processing

2. Monitoring: allows services to monitor each other in order allow dynamic
system which respond to each other.

3. Conformance: to ensure that compositions function the way that they are
intended.

4. QoS composition: leverages, aggregates and bundles the component’s QoS.

Considerations such as security are often positioned on the service composition
layer.

The top of the ESOA pyramid is formed by theESOA, service management
layer. In particular, the service management layer provides functionality for service
operations and for managing services in markets.

2.3.2 Loosely Coupled Message-Oriented Systems

Service-oriented computing is driven by the need for loosely coupled distributed
systems, and the need to interact with those systems via platform independent inter-
faces. As such, Service-Oriented Computing is the logical next step in the evolution
from tightly coupled EDI systems, via client-server architectures and object request
brokers to loosely coupled message-oriented systems.

While web services are often considered to be loosely coupled, this is only par-
tially true. It is important to realize that web services provide a service-oriented
architecture. In other words, web services technology is ‘just’ an incarnation of the
SOC concept.

Service-Oriented Computing, service are considered to be loosely coupled be-
cause their interfaces are described in an implementation-independent XML speci-
fication (called WSDL).

However, SOC also requires that services are location transparent (Papazoglou
and Georgakapoulos, 2003). Web services require that interface descriptions are
mapped onto implementations using bindings, and web services call each other on
an implementation level, and not on an abstract level. By doing so, web services
cannot be considered location transparent.

Furthermore, since web services must be bound to an underlying technology
before they can be invoked, web services can be considered to adoptlate binding.
However, once a service is bound to an implementation, the services are still tightly
bound.

We perceive this problem to be caused by the fact that web services are not truly
message-oriented. While the WSDL documents describe the service’s interfaces
in a technology neutral fashion, the implementation of web services require a final
binding.

2.3.3 Service Composition

One of the strengths of service-oriented computing lays in the fact that the paradigm
allows services to be nested in other services. Service composition will allow ser-

2.3 Service-Oriented Computing 31

vice providers to quickly deploy new services that are based on existing ones, al-
lowing them to quickly react to changes in the environment.

The ability to use services to create new services is dubiously labeled ‘service
composition’, though we would have preferred the term ‘service aggregation’.

While deploying composite services provides service providers with a very con-
venient mechanism to quickly respond to changing circumstances, care has to be
taken that a service does not become critically dependent on another one.

This can be illustrated by the following example. Assume that a medical hospi-
tal decides to outsource certain tasks, such as transcribing physician’s dictations, or
digitally recording MRI scan results to an external service provider. These highly
specialized tasks can only be performed by a handful of companies. When another
service in the hospital is composed of operations provided by these external ser-
vices, it becomes critically dependent on them. If, for some reason, one or more of
those critical externally provided services would become unavailable, the hospital
would suffer immediate consequences and patient’s lives may be endangered.

In addition to such considerations as outlined in the previous paragraph, service
composition may also lead to security questions. For example, assume a situation in
which an insurance company requests medical information from a patient’s records
to assess the validity of a claim that he submitted. Such a request would be received
by the hospital’s billing department. However, the billing department has no access
to patient’s medical information. To be able to answer the insurance company, the
billing department will forward the request to the medical records service, who will
in turn send the requested information directly to the insurance company. Security
procedures must be put in place to prevent the medical records service to send out
information without there being a previous (valid) request by the billing department
to do so.

Having outlined the potential problems that may arise as a consequence of
adopting service composition, we do feel that it offers strong added value to the
concept of service-oriented computing.

2.3.4 Web Services

Web services are the most common incarnation of the service-oriented computing
concept. Many different notions of what a web service is are in existence. For
example, in (Haas and Brown, 2004), the concept of a web service is defined by the
World Wide Web Consortium (W3C) as

”. . . a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other systems in-
teract with the Web service in a manner prescribed by its description
using SOAP-messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.”

This definition adopts a very technology-centered approach and restricts web
services to those services that are described by a WSDL document. This

32 Chapter 2. Background in SOA, Security and Event-Driven Processing

technology-centered approach is in contrast with (Papazoglou and Georgakapou-
los, 2003), who define web services as “a specific kind of service that is identified
by a URI, whose service description and transport utilize open Internet standards”.
This approach concentrates more on the interoperability aspect and on the standard-
ization aspect of web services.

Vendor specific definitions, such as IBM’s definition of an architecture for web
services:

”. . . A service-oriented architecture (SOA) is a component model that
inter-relates the different functional units of an application, called ser-
vices, through well-defined interfaces and contracts between these ser-
vices.”3

This definition concentrates on a more generic definition of the service-oriented
approach. However, without defining explicitly what a service is, the above defini-
tion is too broad. In contrast, Microsoft adopts a definition which states:

”XML Web services are the fundamental building blocks in the move
to distributed computing on the Internet. Open standards and the focus
on communication and collaboration among people and applications
have created an environment where XML Web services are becoming
the platform for application integration. Applications are constructed
using multiple XML Web services from various sources that work to-
gether regardless of where they reside or how they were implemented.”
(Wolter, 2001)

This definition not so much states what web services are, but focuses on the
potential use of the services. For the remainder of this document, we will use the
definition by Papazoglou et al.

2.3.5 The IBM and Microsoft Road-map for Web Services Secu-
rity

The need for addressing security in web services has been acknowledged in an early
stage by the IBM Corporation and the Microsoft Corporation. In April, 2002, the
two software giants published a joint white-paper titledSecurity in a Web Services
World: A Proposed Architecture and Roadmap(Web Services Security Roadmap,
2002).

The architecture that is presented in the article proposes a solution which places
the entire security stack in the realm of SOAP headers. Theweb services security
specificationis graphically represented in Figure 2.6.

The specifications of which the road-map consists are:

1. WS-Security
The WS-Security standard addresses the issue of attaching signature and en-
cryption information to SOAP messages. For this, WS-Security relies on the

3http://www-128.ibm.com/developerworks/webservices/newto/

http://www-128.ibm.com/developerworks/webservices/newto/

2.3 Service-Oriented Computing 33

Figure 2.6: The IBM and Microsoft Security Specification for Web Services

34 Chapter 2. Background in SOA, Security and Event-Driven Processing

XML Encryption (Reagle, 2002) and on the XML Signatures (Bartel et al.,
2002) standard. WS-Security also includes a way to include security tokens,
such as for example suggested by SAML (Farell et al., 2003).

2. WS-Policy
WS-Policy (Bajaj and et al, 2004) is a generic standard to express things that
a service should do (or should not do), and things that a service must do (or
must not do). For example a WS-Policy statement could be used to specify
that the SOAP message used that call the service is encrypted with a valid
x509 certificate.

3. WS-Trust
WS-Trust (Gudgin and et al, 2005) “uses the secure messaging mechanisms
of WS-Security to define additional primitives and extensions for security
token exchange to enable the issuance and dissemination of credentials within
different trust domains.”

In other words, WS-Trust provides a mechanism by which security informa-
tion, such as identities, to be exchanged between different trust domains.

4. WS-Privacy
The security road-map describes the WS-Privacy specification as follows:
“This specification will describe a model for how a privacy language may be
embedded into WS-Policy descriptions and how WS-Security may be used
to associate privacy claims with a message. Finally, this specification will
describe how WS-Trust mechanisms can be used to evaluate these privacy
claims for both user preferences and organizational practice claims.”

While security requirements often regulateaccess controlto constrain which
individuals have access to specific resources, the privacy domain assumes
that information is available, but that its use and dissemination must be con-
strained.

The WS-Privacy standard will allow web services to convey statements such
as ‘by receiving his information, you agree not to disseminate it any further’.
At the time of writing this document, WS-Privacydoes not enforce adherence
to privacy policies.

5. WS-SecureConversation
The WS-SecureConversation standard (Della-Libera and et al, 2002) extends
WS-Security and WS-Trust with the notion of a security context, and provides
mechanisms for establishing and sharing them.

According to the specification, “a security context is an abstract concept that
refers to an established authentication state and negotiated key(s) that may
have additional security-related properties”.

6. WS-Federation
The WS-Federation standard (Bajaj et al., 2003) defines mechanisms that are

2.3 Service-Oriented Computing 35

used to enable identity, account, attribute, authentication, and authorization
federation across different trust realms.

In other words, WS-Trust provides a mechanism to exchange security tokens
across trust domains. WS-Federation relies on WS-Trust to provide tokens
that are used to exchange information about identities, security attributes, etc.
within the federation.

7. WS-Authorization
The WS-Authorization standard specifies how to manage and specify access
control policies. WS-Authorization relies heavily on SAML.

At the most basic level of the architecture, the SOAP message can be found.
This is also the weakest point of the architecture.

1. In theory, web services technology can be bound to any underlying technol-
ogy. However, the road-map as presented by the two companies is strongly
tied to using SOAP message for information exchange. This is illustrated by
the fact that the security road-map is fully based on SOAP messages, and does
not take any other message types into account.

2. The road-map completely bypasses the fact that security transcends message-
level security. For example, access control requirements often include re-
quirements which span that of a single message.

3. While the road-map identifies areas of interest, there is significant overlap
between the different standards of which it is composed. For example, WS-
Authorization and WS-Federation both make statements regarding security
tokens, and the way that they should be managed.

4. Finally, the underlying conceptual framework on which the road-map is based
appears to lack a common vocabulary and does not adopt a common process-
ing model.

Furthermore, the architecture consists of eight components, of which at most
three or four deserve the label ‘mature’.

2.3.6 SAML: Security Assertion Markup Language

SAML is a specification that defines a standard way to represent authentication, at-
tribute and authorization information that may be used in a distributed environment
by disparate applications (Hartman et al., 2003). The SAML specification defines
the syntax and processing semantics of assertions made about a subject by a system
entity (Farell et al., 2003). The specification defines both the structure of SAML as-
sertions, and an associated set of protocols, in addition to processing rules involved
in managing a SAML system.

36 Chapter 2. Background in SOA, Security and Event-Driven Processing

When distributed systems, such as services, need to exchange security informa-
tion they need to agree on a common representation of the information. The infor-
mation must be adequately safeguarded so that its validity can be assured. SAML
proposes to exchange security information in the form on security assertions. An
assertion provides zero or more statements that are made by aSAML authority.

Assertions usually apply to a subject, such as the sender of a message. The
SAML specification identifies three different types of assertions:

1. Authentication assertions, which state that the subject of the assertion was
authenticated in a particular way at a particular time.

2. Attribute assertions, which provide additional information about the subject
of the assertion. For example, the roles that a subject plays can be expressed
in an attribute assertion.

3. Authorization assertions, which contain a request to allow subject of the as-
sertion to perform a certain operation.

As mentioned, SAML also prescribes protocols for each assertion to follow. For
example, access control decisions are implemented using a request/response proto-
col. A requester may send an authorization decision query which states “Should
this operation be permitted for this subject, given this evidence?”. A response will
come back in the form of a SAML assertion or a SAML encrypted response.

The SAML specification is a well-developed specification which is rapidly get-
ting adopted by industry. Unfortunately, Microsoft Corporation has already an-
nounced that it will not support version 2.0 of the standard because it believes that
WS-Federation is better suitable for its purposes.

2.3.7 XACML

XACML is an XML-based language for expressing access control policies. There
is a strong relationship between SAML and XACML, as XACML started as a spin-
off of the work in SAML. Furthermore, starting with SAML 2.0, an explicit note is
made in the specification that SAML authorization assertions will not be developed
further, and that the use of XACML is suggested.

XACML is designed to address the issue of security policy exchange in dis-
tributed environments, where there are multiple points of access control enforce-
ment, yet limited points of access control decision making and administration.

XACML suggests an architecture as shown in Figure 2.7. The architecture ex-
ists of PEP’s (Policy Enforcement Points), PDP’s (Policy Decision Points), PAP’s
(Policy Administration Points) and PIP’s (Policy Information Points).

Access control rules are maintained in administration points, where they may
be grouped into policies and/or policy sets. When a request comes in, a PEP will
collect information to be able to enforce an access control decision. To achieve
this, a decision needs to be made at a PDP. A context handler may collect additional
information from a PIP and send the information back to the PEP, which will enforce
the decision.

2.3 Service-Oriented Computing 37

Figure 2.7: XACML Dataflow Diagram (XACML, 2005)

XACML is best at place in an environment with many points of access control
enforcement and/or decision making. In the context of web services invoking each
other directly, XACML might be appropriate in a situation where one organization
deploys many services that must adhere to the same policies.

2.3.8 Discussion

The basic service-oriented architecture that was introduced in Section 2.3 provides
a minimal implementation of the service-oriented computing aspects. Most of the
limitations, such as service composition and service management are addressed in
the extended service-oriented architecture that was presented in Section 2.3.1.

While the ESOA provides a significant improvement over the basic SOA, it is
still unclear how to position non-functional aspects such as security in that archi-
tecture. While there are security aspects in all layers (basic operations, composition
and management), there is no explicit mention of it.

IBM and Microsoft developed a joint road-map for security in the web services
SOA. The joint road-map is outlined in Section 2.3.5. However, despite many years
of work, the security road-map is currently in an early stage of development; only
the WS-Security and the WS-Policy standards have reached a stage of adolescence.

In addition, the security road-map is strongly tied to the web services SOA in
that all security operations are implemented in basic SOAP headers. Finally, there
is no common vocabulary or shared processing model for the components that make
up the joint road-map.

We also discussed two initiatives that are related—to some extent—to the web
service security road-map. SAML is a security markup language that can be used

38 Chapter 2. Background in SOA, Security and Event-Driven Processing

to exchange security assertions. SAML is used by the WS-Security standard to
exchange security tokens. XACML is a generic language for XML-based exchange
of access control policies, including a processing architecture, for environments in
which there are many points of access control enforcement and only limited points
of decision making and administration.

2.4 Event-driven processing

As technology continues to evolve at an accelerating rate, non-trivial computing
systems will remain diverse and heterogeneous (Vinoski, 2002).

Message-Oriented Middleware (MOM) is a middleware concept that has been
developed to address the need to integrate distributed and heterogeneous applica-
tions by the messages that they exchange.

MOM-based systems generally adopt an messaging paradigm which is asyn-
chronous in nature (Tai et al., 2002; Maheshwari et al., 2004; Chappell, 2004).
MOM provides an infrastructure that transmits messages and events to the widely
spread components of a service, glueing them together in a logical coupling (Ba-
navar et al., 1999).

Applications that are not designed to communicate with each other directly can
still do so by sending and receiving their messages via a common layer of mid-
dleware. This allows application programmers to integrate their systems on the
message level, rather than on the interface level.

Asynchronous message-based interactions are typical in an environment, like
the SOA, where multiple highly distributed applications and services need to inter-
act with each other, and which requires loosely coupled interfaces (van den Heuvel
et al., 2005).

Asynchronous communication is often referred to as event-driven communica-
tion. A communications infrastructure based on the asynchronous model has the
advantage of being loosely coupled and provides many-to-many communication.
Furthermore, such a model is usually considered more scalable than the traditional
synchronous model (Hsiao et al., 2003).

The event driven paradigm is ubiquitous in modern software (Hansen and Fos-
sum, 2004). Event-driven systems can be found in a wide range of applications,
such as sensor arrays, systems monitoring, trading systems on stock exchanges,
etc. Event-driven programming is the dominant paradigm for designing and imple-
menting applications that are driven by a graphical user interface. More recently,
event-driven approaches are deployed more and more in Internet-enabled systems.
For example, popular messaging software, such as Jabber, Yahoo!Messenger, AOL
Instant Messenger and MSN Messenger all operate by exchanging events between
members of the networks.

Event-driven interactions are characterized by a continuous flow of messages
representing ‘things that happen’. Events are commonly represented by structured
messages which are exchanged between the event generator and any number of
event receivers, and carry contextual information in which the event is described,

2.4 Event-driven processing 39

plus the circumstances in which it occurred. Such contextual information may be
an explicit part of the event representation, or can be implicitly deduced from its
circumstances.

The focus on message exchange is precisely that what characterizes event-driven
systems. In an event-driven approach, participants in a conversation interact by
exchanging events which flow dynamically between sender and receiver. Each event
causes a receiver to respond to it and generate events in turn, resulting in aglobal
event cloud(Luckham, 2002).

Most event-driven approaches provide stateless and asynchronous message
passing. This requires an application programmer to decouple the act of generating
an event from the act of reacting to one, even if the event generation should cause
a near-direct reply. Adopting an asynchronous approach facilitates loose couplings,
and is often seen as a solution to achieve reliability and performance (Brambilla
et al., 2004).

In (Ceri et al., 1997) events are defined as primitive operations [monitored by
active rules]. At the heart of this definition is the notion that events are elementary,
non-dividable operations which may be observed. (Morgan, 2002) views an event
as a ‘happening’ that causes, or is caused by, an ‘impact’ on a business process
(Morgan, 2002). The notion that events are atomic is disputed by (Luckham, 2002),
who considers an event as an object that is a record of an activity in a system.

(Luckham, 2002) distinguishes three aspects of an event. The first aspect is its
form. An event is typically associated with data structure which describes informa-
tion about the context in which it occurred. The second aspect is thesignificanceof
an event. An event signifies an activity in the real world. The third aspect of an event
is its relativity, which represents the relationship in time, causality, or aggregation
of one event to the other.

2.4.1 Properties of event-driven processing

Hansen and Fossum identify a number of characteristics of the relationship between
the sender and the receivers of an event.

1. Runtime registration
The decision who will receive an event is not taken until the event is gener-
ated. This is different from traditional programming, in which each operation
(often in the form of a method on an object, or an procedure in a library) is
called directly and by name.

2. Multicasting
An single event may have multiple recipients.

3. Multiplexing
A single event recipient may receive events originating from a large number
of senders.

4. Inverted semantics
In procedure-oriented design, programs are often implemented in units that

40 Chapter 2. Background in SOA, Security and Event-Driven Processing

have a client/server relationship. Client procedures achieve their higher-level
goals in part by calling a collection of procedures that provide lower-level
services. In many event-driven programs, a low-level event source triggers a
higher-level action.

The run-time binding characteristic is a crucial technique to implement loose
couplings between distributed systems.

The multicasting characteristic is typical for event-driven systems. In traditional
programming, a message that is exchanged between systems often takes the form
of some form of data that is sent via a network socket, or via a remote procedure
call. In all cases, each message will have only one recipient. When a message
must reach more than one destination, it must be sent multiple times. Event-driven
programming provides the ability to multicast messages.

The inverted semantics characteristic is, in my opinion, the weakest of the three.
Whether a program is ‘lower-level’ or ‘higher-level’ is often irrelevant, or in the eye
of the beholder.

Based on the characteristics outlined above, we propose the following set of
characterized of event-driven interactions:

1. The synchronicity property
Message exchange can be either synchronous or asynchronous in nature. In
a synchronous message exchange pattern, the sender of a message must wait
until a response is received from the message receiver. In an asynchronous
message exchange pattern, the sender continues processing after a message
has been sent. The response of a message, if any, will come back as another
asynchronous message. Valid values for this property aresynchronousand
asynchronous.

2. The receiver cardinality property
The receiver cardinality property captures the ability of a single message to
be sent to any number of receivers. For example, assume a message exchange
pattern with a receiver multiplicity of one. If a sender attempts to notify
three receivers of the same event, three separate messages must be sent. Valid
values for this property are any discrete number, starting zero and counting
upwards. The special value “0” signifies that there is no upper limit to the
number of simultaneous receivers of a single message.

3. The relativity property
The relativity property is a multi-valued property which represents the way in
which single messages can be related to each other. Note that at a first glance
this property is only applicable to synchronous message patterns. However,
this is not the case, as there can still be a logical relationship between mes-
sages that are sent asynchronously. Valid values of this property can be no
value at all, representing that it is not possible to relate individual messages
to each other, or any combination ofcausalandchronological. A causal re-
lationship is one in which it can be determined which event caused another

2.4 Event-driven processing 41

message to happen, and a chronological relationship between two events sig-
nifies that it can be determined in which chronological order two events have
been sent. Note that all causal relationships are by definition also chronolog-
ical.

4. The temporal property
The temporal property of messages applies to the time-to-live of a message.
It is often desirable to discard a message after a certain time has passed. Valid
values of this property no value at all, to signify that messages never expire,
or time-to-live, which specifies how long a message is valid for after it has
been sent, orexpirationwhich specifies a hard date/time combination after
which a message is no longer valid.

5. The cardinality property
The cardinality property constraints the number of times a message can be re-
sent. For example, in a situation where a message may pass a number of hops
this property can be used to restrict the logical distance it can travel. Valid
values for this property are -1, which represents that there is no boundary,
0 which means that the message may never be sent, or any positive discrete
number which represents the number of hops the message may travel at the
most.

2.4.2 Enterprise Service Bus

The Enterprise Service Bus (ESB) concept is a new approach to integration that
can provide the underpinnings for a loosely coupled, highly distributed integration
network that can scale beyond the limits of a hub-and-spoke enterprise application
integration broker (Chappell, 2004).

The enterprise service bus concepts advocates the use of standards for integra-
tion wherever it can. Especially whenopenstandards are adopted, critical depen-
dencies on individual vendors are reduced. As a result of adopting open standards,
a more homogeneous integration environment is realized.

In an event-driven enterprise, business events that affect the normal course of a
business process can occur in any order and at any time (Chappell, 2004).

An Enterprise Service Bus can provide an implementation backbone for an
SOA. It establishes proper control of messaging as well as applies the needs of
security, policy, reliability and accounting in an SOA architecture (Papazoglou and
van den Heuvel, 2006).

Unfortunately, while the ESB concept provided an good opportunity to include
security in its architecture, this has not happened to an adequate extent. For exam-
ple, Chappell writes about security:

The connections between nodes on the ESB are firewall-capable.
The security between the ESB, and even between the ESB nodes them-
selves, is capable of establishing and maintaining the most stringent
authentication, credential management, and access control.

42 Chapter 2. Background in SOA, Security and Event-Driven Processing

However, how this is achieved, or even where in the architecture this security
measures manifest themselves is not expressed. The lack of security in the archi-
tecture is also acknowledged by Papazoglou and Van den Heuvel, who write

The ESB needs to both provide a security model to service con-
sumers and integrate with the (potentially varied) security models of
service providers. Both point-to-point (e.g., SSL encryption) and end-
to-end security capabilities will be required.

For the ESB concept to gain widespread popularity, the issue of security must
be addressed at the architectural level, and not left to the various vendor’s imple-
mentations of ESB’s. Doing so would result in a large variety of ESB’s which are
so heterogeneous in nature that the benefits that were gained by using it would be
mostly mitigated.

2.4.3 Event-driven interaction patterns

Event-driven interactions are often characterized by asynchronous and stateless in-
teractions. However, to have a meaningful conversation, it is necessary to be able
to relate events to each other. This is illustrated by a simple example in which some
actor generates an event which represents the need for some action to be taken. It is
very useful if somebody else is able to respond to that event to indicate their inten-
tion to do so. To accomplish this, it must be possible to relate both events to each
other. The way in which parties interact can be caught in interaction patterns, such
as described the following sections.

Publish-subscribe

The most common event-driven interaction pattern is the publish-subscribe pattern.
In the publish-subscribe pattern, one party publishes a certain type of event to an-
nounce that he is going to generate them at a later time. Another party may be
interested in being notified whenever such an event is generated, and decided to
subscribe to this. Whether or not event publications and subscriptions are facili-
tated by one or more event brokers, or take place in a peer-to-peer environment is
not directly relevant for this discussion.

In other terms, producers publish information on a software bus (an event man-
ager) and consumers subscribe to the information they want to receive from that bus.
This information is typically denoted by the termeventand the act of delivering it
by the termnotification(Eugster et al., 2003).

In an unbrokered publish-subscribe interaction pattern, full control of publishing
events, generating them and sending them to the final recipients resides with the
subject that generates the event. In case of brokered publish-subscribe interactions,
that control resides with the event broker.

Figure 2.8 illustrates brokered publish-subscribe. On the left-hand side, event
publishers announce their presence by publishing events, and generating them at a
later time. The event broker manages the subscriptions of those events and notifies

2.4 Event-driven processing 43

Figure 2.8: Brokered publish-subscribe interaction

the appropriate subscribers when they are generated. Illustrated by this figure is also
the fact that publishers and subscribers are only indirectly coupled to each other, and
at any time can modify their subscriptions. This provides a high level of flexibility
and scalability which is critical for large-scale enterprise solutions.

Polling

In the polling interaction pattern, the sender of an event continually asks the event
receivers for results. Polling is generally non-blocking, which means that the event
sender may continue to process other tasks while waiting for an answer.

Polling assumes that a sender is aware of who the events are routed to. In a
polling interaction pattern, control of the conversation resides with the receiver of
the event, since he is able to withhold an answer at his discretion.

Fire and Forget

The most simple interaction pattern is the fire-and-forget pattern. Event senders who
adopts this pattern do not expect any results and are content with simply sending off
an event.

This pattern is characterized by the total lack of interaction between sender and
receiver of the event.

2.4.4 Event message filtering

In the case of request-response interactions, subscribers will be notified of all events
to which they are subscribed. Often, this is undesirable, which introduces the need
for an additional mechanism that can be used to further restrict the events that a
subscribers must process. Common approaches to achieve notification filtering are
topic-based filtering, content-based filtering and subject-based filtering. Each of
these approaches will be discussed in more detail in the following sections.

44 Chapter 2. Background in SOA, Security and Event-Driven Processing

Subject-based filtering

Subject-based filteringis the most basic notification filtering mechanism. In addi-
tion to subscribing to events, an event consumer also explicitly specifies a set of
event generators from which the event must originate. All events that do not origi-
nate from those subjects will not be delivered to him.

Subject-based notification has as a disadvantage that event generators and event
consumers must be aware of each others existence, which increases the tightness by
which they are coupled. In some situations, such as high-security approaches, this
may be desirable.

A variation on subject-based notification filtering is role-based notification filter-
ing. Rather than accepting events that are generated by a predefined set of subjects,
events are filtered based on the roles that subjects play. By adopting this approach,
subjects do not have to be aware of each other’s identity, rather they need to know
which roles subjects can play. Role-based access control, which is discussed in Sec-
tion 2.2.8 is based on the same indirection between permissions, roles and users.

Subject-based notification filtering is most commonly deployed by event con-
sumers and serves the purpose of reducing the amount of events that must be
processed. However, subject-based filtering can also be deployed by the event
producers. The same consideration as mentioned before—sacrificing the loose
couplings—applies to producer-side subject-based filtering, however controlling
who will receive an event after it is generated may be a requirement in high-security
scenarios.

Topic-based filtering

Topic-based notification filteringis a mechanism in which event producers explic-
itly associate one or more topics with each event. Event subscribers subsequently
subscribe to these topics, rather than to the events themselves. Using topic-based
notification filtering, event consumers do not need to posses a priori knowledge
about the exact events that they will receive, but can suffice with knowing which
topics are available.

Topics are commonly organized in trees, in which each subtopic is more spe-
cific than the next. This allows event subscribers to either very accurately indicate
in what kind of topics they are interested in receiving, or it will allow them greater
flexibility in subscribing to a wider range of topics. Subscriptions can span mul-
tiple topic trees, allowing for even greater flexibility and accuracy in specifying
subscriptions.

The principal problem in deploying topic trees for notification filtering is that
all parties who produce and consume events must assign similar semantics to the
topics. This is a highly complicated field, which is currently explored by ontol-
ogy researchers all over the world. A second problem with using topic trees is the
ownership of each tree. Questions, such as “Who owns the topics?” and “Under
which circumstances can topics be added, removed or modified?” must be clearly
answered before topic-based notification filtering can be successfully adopted.

2.5 Discussion 45

Topic-based notification filtering provides a level of indirection between the
event producer or event consumer and the event itself, in the sense that subscrip-
tions to events are associated with one or more topics, and that each topic has one
or more subscribers. As such, topic-based notification filtering provides a mecha-
nism for loose coupling of distributed event processors.

Content-based filtering

Content-based notification filteringallows subscriptions to evaluate the whole con-
tent of notifications, and so it provides a more powerful and flexible notification
mechanism than topic-based or subject-based mechanisms (based on (Mühl, 2002)).

Content-based filtering and routing implies that event consumers somehow
specify a set of criteria to which they require events to adhere. Event producers
are free to generate any kind of event, since the routing mechanism will determine
where to deliver the messages.

In his thesis, M̈uhl describes a number of algorithms which can be used for
content-based routing and evaluates them to find an optimal configuration.

Content-based notification filtering provides a thorough indirection between
event producers and event consumers, which makes it usable in large scale loosely-
coupled distributed systems.

2.5 Discussion

In the remainder of this chapter, we will take a closer look at the security implica-
tions of service compositions, followed by a discussion on trust and a discussion
on delegation. We end the chapter with some observations on the security require-
ments for service-oriented computing, and design objectives for an event-driven
secure SOA.

2.5.1 Trust

A principal problem in identity-based system is that of trust. Consider that the ad-
mission service sends a ‘patient admitted’ event as a result of previously receiving
an admission event. The only way to detect that there is a causal relationship be-
tween those two events, is that the admission service explicitly makes known that
this relationship exists. When it would omit that fact, there is no way of identifying
the causal nature of the relationship. Rather, one would be limited to the observation
that the admission event was sent earlier than the patient admitted event.

In another example, suppose that the travel service sendse2, and includes the
claim that it was sent as a result of a previously received evente0. Furthermore,
assume that the travel service never actually receivede0.

In both situations, it can be detected where or not an evente0 has been relayed
to the travel service before evente2 is sent out, but the conclusion that those two
events must have a causal relationship cannot be drawn.

46 Chapter 2. Background in SOA, Security and Event-Driven Processing

This is illustrated furthermore when multiplee0 events are sent (say,e0:1 and
e0:2 beforee2’s are generated. For reasons of its own, the travel service may decide
that the second request that it received (e0:2) will be processed before the first. If the
causal relationship would be automatically deduced, chances are that the firste2 is
associated with the firste0, whereas it should be associated with the second one.

The only true solution is not technical in nature. The trust relationship that
must exist between EFSOC and the participating services must be established and
maintained out-of-band. Only if services can be trusted when they claim that an
event is sent as a result of a previously received event, than access control rules that
surpass IP based network filtering rules can exist.

Because EFSOC and the participating services are involved in a trust relation-
ship, trust relationships between services can be deduced. For example, when the
Travel Service has established a trust relationship with EFSOC, and the Car Rental
Service also has a trust relationship with EFSOC, some degree of trust may be de-
duced between the Travel Service and the Car Rental Service.

2.5.2 Delegation

One of the most fundamental requirements of EFSOC is that each subject is in full
control of the way it is accessed. In other words, if a subject wishes to limit access
to its resources, it should be able to (partially) communicate that desire, so it can be
enforced. As governed by the principle of least privilege, subjects should only have
the access that they require to fulfill their tasks and nothing more. Consequently,
from a security management point of view, the amount of authorizations handed out
to subjects should be limited as much as possible.

However, autonomy and least privilege may be at odds with each other. If sub-
jects are able to delegate privileges to other subjects without restriction or coordi-
nation, managing those delegations becomes an additional problem that may have
security implications. While in a centrally governed access control system, there is
only one point of control, in a decentrally governed access control system, there are
many.

Role-based access control is an access control model which may provide a so-
lution for this problem. Compared to discretionary access control, which leads to
a massive administrative overhead and an opaque collection of authorizations and
authorization requirements, role-based access control introduces the role as an in-
direction between subjects and privileges. Role-based access control is successful
because the relationship between roles and permissions turns out to be relatively sta-
ble over time, while the relationship between roles and users may remain volatile.

While introducing an subject-enacted delegation mechanism to service-oriented
computing will provide a convenient level of flexibility, it introduces the same man-
agement problems that make discretionary access control unsuitable for large-scale
operations.

This observation would suggest that delegation is a bad idea in the context of
service-oriented computing, and, as a matter of fact, I believe that unlimited dele-
gation should be avoided at all times. However, the additional level of flexibility

2.5 Discussion 47

that is gained by allowing delegations is tempting and possibly even necessary to
be available in SOC scenarios. Consequently, I propose that delegations will be
allowed, provided

1. delegations are temporary;

2. delegations are non-transferable;

The requirement for delegations to be temporary is fueled by the need to keep
the amount of delegations manageable. Temporary delegations will keep the total
amount of delegations relatively low which makes them transparent. As a result
temporary delegations will lead to a more manageable situation. In addition to this
practical consideration, there is also a more fundamental one: if delegations are not
temporal (i.e., permanent), then why is that not reflected in a corresponding access
control rule? The answer to that question is that most of the time, updating access
control rules takes longer and involves more effort than delegating a privilege.

Secondly, delegations must be non-transferable. In other words, if a service
delegates certain privileges to subject, that subject should not be able to re-delegate
those permissions. This requirement originates from the autonomy principle, which
states that a subject must be infull control of the way it is accessed. If delegations
can be re-delegated, the level of control that a service has is removed by one degree,
and can no longer be considered to be full.

Barka’s Framework for Role-Based Delegation Models

Barka proposes a comprehensive framework for role delegations in (Barka, 2002).
The author distinguishes a number of characteristics which he postulates are capable
of fully describing a role delegation framework. The properties are:

1. Permanence (temporal/permanent). The permanence characteristic deter-
mines if a delegation remains valid indefinitely, or that it has a life time asso-
ciated with it.

2. Monotonicity (monotonic/non-monotonic). The monotonicity characteristic
determines if by delegating the permission, the delegator maintains the del-
egated privileges (monotonic), or that by delegating it, the delegator forfeits
his privileges (non-monotonic).

3. Totality (total/partial). Barka’s framework refers to role delegations. The
totality characteristic determines if it is possible to delegate the entire role,
including all of its privileges (total), or that it is possible to delegate some of
the privileges that come with a role (partial).

4. Administration (self-enacted/agent-enacted). The administration characteris-
tic determines who initiates and executes a delegation. If a subject is able
to actively delegate privileges himself, the model is considered to be self-
enacted. If subjects are able to nominate a third party to execute the delega-
tion, the model is considered to be agent-enacted.

48 Chapter 2. Background in SOA, Security and Event-Driven Processing

5. Levels of delegation (single step/multi-step). This characteristic determines
whether a delegation can be re-delegated and if so, how often.

6. Multiple delegation. Using this characteristic, subjects can limit the amount
of times a delegation can be given.

7. Agreement (bilateral/unilateral). This characteristic describes whether a del-
egator and a delegatee must agree on the act of delegation (bilateral), or that
the delegator can force a delegation onto another subject (unilateral).

8. Revocation. Barka describes a number of delegation revocation properties.

The subject autonomy property required that a subject is in full control of the
way it is accessed. Therefore, the only one who can regulate to a subjects is the
subjects itself. As a result,s is the only one who maydelegateprivileges. Adopting
this line of reasoning, delegations in EFSOC have to be non-monotonic, single step,
partial and self-enacted. Furthermore, delegations are the only way that subjects
are able to grant specific rights to other subjects. For example, take an example
in which a subject wishes to restrict access to one of its operations. It is able to
communicate this desire to EFSOC by giving out adelegation entitlement.

2.6 Conclusions

To develop a SOA which includes access control requirements from the beginning,
rather than as an afterthought, we identified a number of design objectives. To
realize these objectives, a number of requirements is elicited and discussed in Sec-
tion 2.6.2.

2.6.1 Objectives for a secure SOA

We identify the following design objectives:

1. Service Autonomy
Services are autonomous and must remain so. The power of service-oriented
computing lies in their loosely coupled nature. Such loose couplings will be
lost when services have to give up their autonomy. As a result, by remain-
ing autonomous and by keeping the couplings between services as loosely as
possible, services may react to changes while minimizing programmer’s di-
rect interventions (Paolucci and Sycara, 2003). Therefore, services must be
in full control of their own security policies.

2. Containment
Containment is a property that is barely mentioned in literature. Yet, we feel
it is of the utmost importance. Containment addresses limiting the extent to
which an intruder can affect services after one or more security mechanisms
have failed. Containment can be easily compared to fire doors in the physical

2.6 Conclusions 49

world. Fire doors serve the purpose of slowing down a fire in one part of
a building, hopefully preventing it from spreading further. In the world of
service-oriented computing, containment means that when one service gets
compromised, the damage must stay limited to that one service and not spread
to others. As such, containment is very closely related to the availability
objective.

3. Separation of Duty
While traditional access control generally focuses on technical measures
to prevent unauthorized access to resources, separation of duty attempts to
achieve the same objective by deploying organizational measures. While sep-
aration of duty can be (partially) enforced by access control technology, the
measure itself is firmly grounded in the business domain. Separation of duties
means that certain services can only be provided when a number of subjects
(each playing separate roles) collaborate. The underlying assumption is that
by separating the roles that subjects may play, separation of duty may be
achieved relatively easily.

The literate on role-based access control often distinguishes two types of sep-
aration of duty. Static separation of duty prevents two roles from every being
assignedto the same subject, while dynamic separation of duty allows two
separate roles to be assigned to the same subject, but that subject cannot have
the roles active at the same time. This objective closely ties in to the well-
known concepts ofleast privilegeandactive security(Bacon et al., 2002).

4. Availability, Integrity and Confidentiality
All literature that addresses information systems security in any form must
include a discussion on the so-called A-I-C triad (Hansche et al., 2004). The
A-I-C triad encompasses Availability, Integrity and Confidentiality. When
the A-I-C triad is positioned in the context of service-oriented computing, the
following meaning can be given to each of its components.Availability mea-
sures provide the assurance that services are available for its clients whenever
they need to be.Integrityof services affects the extent to which the messages
that are exchanged as part of a service’s input and output are altered after they
are sent; either intentionally or unintentionally. The goal that is pursued by
integrity is that once a message is written, it cannot be changed after the fact
without noticing that it did.

Confidentialityis closely related to Integrity, as it attempts to hide the con-
tents of messages from everybody except the intended recipient. Integrity and
confidentiality are often achieved by deploying cryptographic techniques.

5. Auditability
A first-order business requirement is auditability. Any business operation
must be traceable in history to its originator, and all parties involved in the
operation. Auditability can be used to ensurenon-repudiation.

50 Chapter 2. Background in SOA, Security and Event-Driven Processing

6. Message-context level access control
EFSOC should transcend traditional access control approaches, such as DAC,
MAC and RBAC, and provide access control on the level of message context.

7. Authentication
Authentication is the process by which the identity of service providers and
service invokers is established. In role-based approaches, authentication is
also used to establish the roles that can be played by a given subject. Authen-
tication is a necessary input for access control, as it is implied in its definition.

While the design objectives listed in this section are ambitious, we feel that they
are realistic and necessary.

2.6.2 Requirements for Access Control and Service-Oriented
Architectures

In the preceding sections, we discussed service-oriented computing and access con-
trol as two separate, yet related research fields. The previous section showed a
listing of basic requirements for a secure SOA. In this section, we take a closer look
at the access control aspects of these design objectives.

1. Decentralized administration of access control policies
The service autonomy principle requires that each service is in full control of
all messages it sends out, or receives. To require that decentralized adminis-
tration of its access control policies is supported a logical consequence from
that principle.

As a result, each service should be able to specify access control policies that
are able to constrain what happens to the messages that it sends out, as well as
specifying what kind of messages it is willing to receive (and the conditions
under which this is allowed to happen).

Current approaches to distributed access control are often based on the
premise of a centrally administered access control policy, which is subse-
quently distributed to decentrally located nodes. Each of the nodes is respon-
sible for interpreting the access control policy and enforcing it.

2. Active security
Service-oriented computing is expected to thrive in highly dynamical envi-
ronments in which services may be created, modified, composed or remove
on an ad-hoc basis. Active security will ensure that, even if circumstances
change rapidly and often, the access control system is able to keep up with
the pace.

3. Reliable audit trail
For everything that takes place, a reliable audit trail must be established. It
must be possible to find out which service sent which message, at which time,
and to which recipients.

2.6 Conclusions 51

Most approaches to information security are fragmented; separate attention is
paid to access control, authentication, accounting, etc. EFSOC provides an
approach that unifies access control and accounting.

4. Secure transport layer
With the current state of technology, there is no reason why services (esp. web
services) should not use a secure transport layer. For example, web services
typically run in an engine that is part of a web server, which is capable of us-
ing SSL certificates. Not only provides using an SSL certificate a way for ser-
vices to authenticate themselves to each other, it also provides a mechanism
to securely exchange (public) key information so that the transport layers can
be encrypted and digitally signed.

5. Secure message layer
The same reasoning as for the secure transport layer applies to the message
layer. With wide spread availability of cryptographic software, there is no
reason why messages that are transport are not also digitally encrypted and
or signed. Examples of enabling technologies for achieving message layer
security are WS-Signatures, XML Encryption and XML Signatures, or PGP.

2.6.3 State of the Art in Research

Security and access control has been in the spotlight of academic research for a
significant portion of time. While service-oriented architectures is a relatively new
field, several authors have expressed their opinions about security and access control
in academic fora.

Altunay (2005) states that workflow engines should have decentralized access
control models that leave the final access decision to each workflow participating
entity. Moreover, she states that the workflow engine should not assume any knowl-
edge about the internal security policies of each workflow participating entity. This
corrobates the service autonomy property. In the EFSOC framework, services will
able to specify their own access control policies.

Steele and Tao (2005) observe that RBAC is not sufficient for deployment in
highly dynamic service-oriented architectures. The authors attribute that obser-
vation to the fact that “most RBAC implementations rely on the manual setup of
pre-defined user-ID and password combinations to identify the particular user”.
The solution presented assumes a unification of authentication and authorization.
However, we do not feel that their solution provides many benefits over existing
approaches. Furthermore, the solution provided by the authors lacks a common ref-
erence model. Finally, we feel that several commonly accepted separations of duty
are violated. For that reason, we do not adopt the unification of authentication and
access control. Instead, we provide an additional level of indirection, in which per-
missions will be mapped to roles using access control rules, rather than using static
assignments.

Deubler, Gr̈unbauer, J̈urjens and Wimmel (2004) describe an approach for
sound development of secure service-based systems. The approach concentrates

52 Chapter 2. Background in SOA, Security and Event-Driven Processing

on security requirements in the service modeling phase, in particular on enforcing
access control resp. authorization. The approach assumes that service-interactions
can be modeled before they are used, and that access control requirements are fully
known in advance. As EFSOC provides a dynamic platform for changing service
interactions, we believe that modeling the whole interaction ahead of time will be
too time consuming. Rather, we provide an access control mechanism that is based
on rules that are evaluated.

Interestingly, Bertino, Damiani and Momini (2004) describe an access control
model that is specific for a set of services used to manage spatial data on the web.
Rather than choosing a role-based model, the authors chose a discretionary ap-
proach. However, the extension of the authorization model to also encompass ef-
forts gained by role-based access control are left as an open question. The approach
followed in EFSOC combines a role-based approach with a discretionary approach.

Geihs, Kalckl̈osch and Grode (2003) present a single sign-on in service-oriented
computing. In their paper, they introduce three different kinds of single sign-on
(SSO): SSO based on a not commonly known secret, SSO based on a token and
SSO based on biometrics. SSO based on biometrics is principally a special case of
the more generic SSO based on a token.

SSO in SOA assumes that identities are known (and shared between services).
While we acknowledge the need for a good authentication mechanism, we assume
it to be available.

2.6.4 Summary

In the previous sections, we have provided the reader with background information
on the fields of service-oriented computing, services security and event-driven in-
teractions. In Section 2.3, we introduced the SOC concept. In it, we paid special
attention to the IBM and Microsoft joint road-map for web service security, and
concluded that it lacks in coherence and maturity. We also discussed SAML and
XACML, and concluded that both initiatives have useful elements. In particular, the
ability of SAML to express security attributes and XACML architecture in which
enforcement, decision making and administration of access control is decoupled.

Section 2.2 addressed service security. We decomposed the security domain into
authentication, authorization/access control, confidentiality, integrity and auditing.
Each of the sub domains was discussed briefly. More attention was paid to access
control, since that is where the focus of this research is. We discussed several access
control models (discretionary access control, mandatory access control and role-
based access control) and outlined their disadvantages and their benefits in service-
oriented computing.

Event-driven interactions were discussed in Section 2.4. Specific care was given
to introduce a number of interaction patterns, and in introducing a set of properties
of event-driven interactions.

The aspects discussed in the previous culminate in Section 2.6, which outlines
a number of generic objectives for a secure SOA, and in Section 2.6.2 which lists
a number of specific security requirements. These requirements are: decentralized

2.6 Conclusions 53

administration of access control policies, active security, establishment of a reliable
audit trail, use of a secure transport layer and of a secure message layer.

The following chapter introduces EFSOC, the Event-Drive Framework for
Service-Oriented Computing. The EFSOC framework is a SOA that realizes all
requirements outlined that were listed in this chapter.

54 Chapter 2. Background in SOA, Security and Event-Driven Processing

Chapter 3

The EFSOC Service-Oriented
Architecture

“Qui si convenien lasciare ogni sospetto;
ogi viltà convenien che qui sia morta.
Noi siam venuti al loco ov’io t’ho detto
che tu vedrai le genti dolorose
c’hanno perduto il Ben dell’ intelletto.”

Dante Alighieri, The Divine Comedy, Vol. 1 (Inferno III, The Gate
and Vestibule of Hell). (1321)1

3.1 Introduction

In this section, we present the EFSOC Service-Oriented Architecture. The frame-
work is based on the observations that were discussed in the previous chapters and
aims to provide access control for an event-based service-oriented architecture.

This research drops the premise that services are required to invoke each other
directly. Instead, we assume that services publish their interfaces to aservice broker,
similar to web services publishing their WSDL document to a UDDI repository.
Other services may discover these interfaces via that same service broker, but rather
than invoking the newly discovered services directly, service consumers notify the
broker of their requests. It will then handle the actual invocation of the appropriate
service, and relay the results (if any) back to the originator of the request.

Adopting this approach facilitates the service broker (or the service brokers,
in case of a distributed solution) to establish an certifiableaudit trail in a single
location, which can be used to settle differences of opinion which may arise in the
future.

Furthermore, by routing the service interactions through a broker, it becomes
possible to specify and enforce access control policies unambiguously and at a sin-

1“All fearfulness must here be left behind; all forms of cowardice must here be dead. We’ve
reached the place where, as I said to thee, thou ’lt see that the sad folk who have lost the Good which
is the object of the intellect.”

56 Chapter 3. The EFSOC Service-Oriented Architecture

Figure 3.1: Case study elicitation process

gle point. An event-driven approach with distributed service brokers provides a
flexible mechanism for ensuring increased availability of services, the ability to
implement competing services and provides a reliable infrastructure for service in-
teractions.

In the last part of this chapter, we show how the EFSOC Service-Oriented Archi-
tecture can be implemented as a value-added layer on top of existing web services
solutions.

3.2 Case study

Throughout this chapter, we will be using the case study that was performed at
Northside Hospital as running example.

In a number of interviews with domain specialists, we identified the information
flows and the actions that are taken when a medical doctor concludes that a patient
needs to have surgery.

3.2.1 Elicitation Process

A case study is a form of qualitative research. In a case study, a particular individual,
program, or event is studied in depth for a defined period of time. In the case-
study that is presented in this section, we studied the information flows regarding a
hospital patient.

The information elicitation process used for this case study consisted of a num-
ber of iterations of phone interview, transcript, modeling in UML, as shown in Fig-
ure 3.1. The resulting models are verified by a next interview.

The telephone interviews typically took between one and two hours, and in-
volved a number of information technology specialists that work for the hospital.
Using a free discussion format, guided by several predetermined questions that
needed to be answered, each discussion was recorded to a computer hard drive.
After the interviews, the interviews were summarized in a running text.

3.2 Case study 57

The objective of the case study was to elicit a description of the activities that
take place from the point that a patient visit a physician, continuing through med-
ical testing, and finally resulting in surgery, including a description of the actors
involved, and the information that was exchanged.

We were not interested in the exact form and content of the data that was ex-
changed. Instead, we looked at the function that the data played in progressing the
overall process.

3.2.2 The HIPAA Privacy Rule

The way that medical information that can be linked to individuals is handled is
subject to strict regulations in the United States of America. The ‘Standards for
Privacy of Individually Identifiable Health Information’ is a set of standards for
the protection of certain health information. This so-called ‘Privacy Rule’ imple-
ments requirements of the U.S. department of Health and Human Services Insur-
ance Portability and Accountability Act of 1996. A major goal of the Privacy Rule
is that individuals’ health information is properly protected while allowing the flow
of health information needed to provide and promote high quality health care and
to protect the public’s health and well being (HIPAA Privacy Rule, 2003).

The basic principle of the rule is that protected information (i.e., health informa-
tion) may not be used or disclosed, except when the Privacy Rule explicitly requires
or permits it, or when the individual to which this information applies formally
authorizes in writing.

The privacy rulerequiresdisclosure in only two situations: (a) to individuals
when they require access to of the information that applies to them, or (b) the the
department of Human and Health Services when it is undertaking a compliance
investigation or review or enforcement action.

Furthermore, disclosure ispermittedwithout prior authorization for treatment,
payment and health care operations, public interest or when the data is filtered and
anonymized for the purpose of research.

The HIPAA privacy rule affects operations of a medical institution at its ad-
ministrative core. Especially the access control requirements that limit the kind of
information that is permitted to flow between departments, and even persons, work-
ing for an institution impact all layers of operations.

3.2.3 Northside Hospital

Northside Hospital is a full-service community hospital that was opened in July
1970. Northside is a not-for-profit organization that has 455 beds (with growth over
the next year to 539 beds) and over 1,800 physicians on staff. In addition, Northside
has a staff of over 6,000 employees, which facilitate delivery of quality patient care
to the more than 450,000 patients annually.

58 Chapter 3. The EFSOC Service-Oriented Architecture

3.2.4 Hospital Policies

Before the process is described, a number of hospital policies is discussed.

1. Physicians, physician assistants and nurse practitioners at physician’s offices
at Northside Hospital are not employees of the hospital, but are private, in-
dependent practitioners qualified to hold privileges to practice at Northside
Hospital.

Northside Hospital does employ its own registered nurses and nurse practi-
tioners.

2. Only clinical staff will have access to medical records.

3. Physicians will have access to their own patient records, as well as the records
of their partners.

4. Physicianscanaccess patient records of patients that are not treated by them,
or their partners. However, HIPAA regulations prohibit using or disclosing
health information if it not required for treatment.

Consequently, the Medical Records Department audits all such accesses and
determines if there was a medical need to do so. If there was no medical need,
disciplinary actions will be taken against the physician in question.

5. Nursing staff does not have the ability to look up any medical information,
other than information about patients that are currently in the hospital, on the
floor and in the section that they work in.

6. Physicians are able to access most medical information from outside the hos-
pital.

7. Physician staff is able to access limited medical information.

In this case study, we captured the information processes surrounding surgery
patients. It starts when a physician determines that a patients needs to undergo
surgery. The case study is illustrated with an activity diagram in Figure 3.2.

1. Processing patient information
If, during the course of a treatment, a physician decides that surgery is in
order, the physician’s office will determine a date by requesting a reservation
for an operating room from the surgery scheduling department.

After the surgery is scheduled, scheduling information is provided to ‘patient
access’. Patient access contacts patients to collect pre-admission information,
which involves capturingdemographic information, which includes insurance
information, billing information, etc. If the patient is already known to the
hospital, the information may be available already, and this action is limited
to validating the information that is already there, and extending it where
necessary.

3.2 Case study 59

Figure 3.2: Northside Hospital Activity diagram

60 Chapter 3. The EFSOC Service-Oriented Architecture

2. Medical Testing
When the basic patient demographics have been collected, the process con-
tinues to a pre-surgery assessment (PSA). PSA is staffed by registered nurses
(RN’s), who are responsible for capturing the patient’smedical information.
The medical information is collected during a telephone assessment and in-
cludes elements like prior surgeries, family history, allergies, prior diagnosis,
reason for surgery, etc.

During the PSA the RN will determine whether the patient will need to come
in for further testing, or whether he can come in the day of surgery, perform
additional tests then and move on to surgery.

If further testing is required, the RN will schedule an appointment for testing
for the patient so he can come in prior to surgery, or they will come in the
morning on the day of surgery and fast-track the tests.

3. Pre-surgery
A physician is required to dictate history and physical (H&P) prior to surgery.
If the dictation is done in-house, chart management can retrieve those dicta-
tions from the system. If the dictation is done in the physician’s office, H&P
is brought in on hard-copy only. Finally, if no H&P is available, the physician
is required to fill out a summary form before surgery.

Once the patient is pre-assessed, ‘chart management’ collects all required
chart documentation prior to the day of surgery. This includes lab results,
radiology results, history and physical (H&P), and any other paperwork.

On the day of surgery, the patient will come in at the appointed time.

When the patient comes in, he will meet with a nurse to go over all the infor-
mation that was provided earlier and make sure it is all correct. Additional
paperwork is also filled out at this time.

If there are any tests that need to be done prior to surgery, patients will go in
to the pre-testing area and their test will be performed. If the results are not
available quickly enough, pretesting will call the lab for them.

After pre-testing, the patient will move on to the pre-op area, where they get
prepared for surgery. This includes additional paper work, a visit by anesthe-
sia for consent, etc. The patient is accompanied by a nurse the entire time in
pre-op.

4. Surgery
From pre-op, the patient goes to surgery. During/after surgery, operative notes
are dictated that become part of the patient’s medical records. In the operation
room, a circulating nurse keeps track of everything that is in the operating
room. At the moment this is done paper-based, but it is expected to change to
electronics-based in a few months.

All supplies and actions involving those supplies is captured on a case card
by the circulating nurse. After the surgery is done, the case card is sent to

3.2 Case study 61

the surgery billing office. Other roles that are part of the OR crew are techs,
scrub techs, circulators, nurses, physician’s assistants (PA’s), nurse techni-
cian’s (NT’s), physician, anesthesiologist.

5. Post-surgery
Patients are moved to recovery when surgery is completed. In recovery,
the anesthesiologist will check on the patient and document his findings and
nurses will monitor the patient’s various vital signs and recovery information.

After recovery, patients are discharged to home (80% of cases), or if they stay
in the hospital go to the appropriate floor (ICU or regular bed).

If the patient stays in the hospital (in-patient), the responsibility for the patient
is transferred back to the nurse on the floor and the admitting physician. In an
out-patient scenario, a physician will give a prescription to the patient ahead
of time so he can have it filled before he goes in. That way, the medication is
available immediately after discharge.

6. In-patients
When in-patients need prescription drugs, such as pain killers or anti-rejection
medication, there is an automated procedure that receives the prescription and
checks it for conflicts with other medications, medical conditions or allergies.
If there are no objections, a fully robotic system will collect the appropriate
medications from storage, and send it to the floor where the patient resides.

The pharmacy has access to the medical information that was captured during
the pre-assessment activity.

A nurse will then collect the medication using a special key, and visually in-
spect the medicin’s label to make sure it matches to the information contained
in the patient’s records. Before the medication is administered, a doctor will
perform a final check.

If necessary, nurses have access to results of lab tests, dictation results, etc.
Lab reports and radiology results are immediately available online.

The primary nurse for a patient can also place orders using an online system.

7. Discharge
After a patient is deemed well enough to leave the hospital, he is discharged.
During the whole process that started when the patient arrived at the hospital
for his surgery appointment, up to the point where he is discharged, all records
are currently kept on hardcopy. These medical records are only scanned into
the system when the patient leaves the hospital. Test results (lab works, radi-
ological testing, etc) is available electronically.

8. Billing
Billing information is inaccessible to physicians or to nurses, however it will
be provided to physician’s offices for their own billing.

62 Chapter 3. The EFSOC Service-Oriented Architecture

All activities that take place while the patient is in the hospital are coded onto
medical charts. That medical information is entered into an information sys-
tem by ‘coders’, who can only access documents that are relevant for coding
for reimbursement.

Coders have access to H&P, discharge summaries, radiology reports, dicta-
tions. They will not have access to patient guidelines, etc.

There are also individuals who analyze records for missing documentation,
who will only have access to the documents that they are analyzing for.

Once the information is coded completely, it is sent to the billing department.
The billing department does not have access to medical information at all.
If they need additional medical information (for example, for an insurance
claim), they need forward that request to go through the medical records de-
partment who will send the response to the original requestor.

In addition to the medical information and the business-related information
there is also in information flow for materials management. This is done fully
automatically. Materials management does not have access to the chart at all.

9. Remotely accessing patient information
Physicians and physicians staff are able to obtain access to patient information
from remote locations. They do this by logging in to the hospital’s Physician’s
Web Portal. The portal provides a front-end to many other systems, such as
radiological systems (for X-rays), laboratory systems (for blood and urine
testing), and to the hospital’s core systems.

Staff members have a more limited access to the portal, since they do not
require access to a patient’s full medical records.

At the time, there are no automated connections to outside organizations, with
the exception of the transcripts of doctor’s patient records.

3.2.5 Running example

Throughout the remainder of this thesis, we will adopt a running example, which is
based on a simplification of the case study. The running example will consider only
four subjects, who play only a few roles. There will be two physicians, one nurse
and one patient. One of the physicians is treating the patient, the other one is not.
The nurse works at the hospital floor on which the patient resides. In the scope of
the case study, we identify two services: a charting service, which is used to track
patient’s medical information, and the pharmacy service, which physicians can use
to prescribe medication to patients, and which dispenses medication to the nurses
so that they may administer it to their patients.

In the running example (see Figure 3.3), we distinguish a number of subjects:
John, Mark, Mary and Sue are people in the hospital. John and Mark are physicians,
Mary is a nurse on the oncology ward and Sue is a patient who is treated for cancer
by John. In addition to these human subjects, we also distinguish two services: the
charting service and the pharmacy service.

3.2 Case study 63

Figure 3.3: Running example

64 Chapter 3. The EFSOC Service-Oriented Architecture

The running example assumes that Mary, in her role of nurse on the oncology
ward, and John, in his role of treating physician, both need to inspect and update
Sue’s chart. John also needs to be able to prescribe medication for Sue, which will
be administered by Mary.

3.3 Concepts

The EFSOC conceptual model combines aspects originating in role-based access
control and messaging using event brokers and applies them to a service-oriented
architecture. The EFSOC model is graphically represented in Figure 3.4. At its
most basic level, it is comprised of the following concepts:

1. Subject; A subject is any entity that interacts with a service. In other words,
anyone or anything that has the ability to publish, discover, invoke or compose
new services and/or operations is considered to be a subject. As an example,
consider the person called ‘john’.

2. Role; A role represents a business function that is simultaneously or succes-
sively assumed by different subjects. In the example, we identified a role
called ‘physician’.

3. Principal; A principal is an entity that is subject to access control. This entity
can be a subject or a role.

4. Event; An ‘occurrence’ that has the potential to prompt a subject or a role
to exhibit certain behavior. In the case study that we performed, an event is
generated when a physician schedules a surgery on behalf of a patient.

5. Operation; An operation is an atomic unit of work which interacts via a well-
defined message-based interface. There are two types of operations: event
operations and role operations. Event operations are operations that apply to
events, such as ‘send’ or ‘subscribe’, while role operations are operations that
apply to roles. For example, an example of a role operation is ‘assign’, which
in case of the example is represented by the fact that ‘john’ is assigned to the
role of ‘physician’.

6. Service; In economic terms, a service is seen as work done by a person or
group that benefits another. In the context of service-oriented computing,
services consist of atomic operations which provide some kind of (compu-
tational) benefit, or are aggregations of other services, or a combination of
both.

The access control system must be able to restrict the creation, modification or
removal of subjects, roles and events, and it must be able to restrict the execution
of event operations and role operations. The grounds to base these restrictions on
must be able to be freely specified for each service cluster.

3.4 Event operations 65

Figure 3.4: The EFSOC Conceptual Model

EFSOC can be seen as a state-machine, with each state representing a set of
roles, subjects, role assignments, etc., at any given point in time. Since the values
of the EFSOC constructs can only change via a predefined number of operations,
state transitions will only take place in a controlled fashion. As such, to realize a
secure system, we need to ensure that the initial state of the model is secure, and
that all subsequent state transitions are secure. We do this by describing all possible
state transitions (i.e., role operations and event operations) in the following sections.

3.4 Event operations

In SOC, services interact by exchanging messages. Messages may result in the
invocation of a service’s operation, or may be sent by a service as the result of the
execution of an operation.

Events, which represent such service interactions, may be manipulated viaevent
operations. Event operations represent the possible ways in which such interactions
can take place. For example, to represent that an event may be sent by a subject, an
event operation type ‘send’ is defined.

The EFSOC event model is depicted in Figure 3.5.
The following event operations are supported by EFSOC:

1. sendis used to send events;

2. receiveis the counterpart of the send operation and is executed just before
events are delivered to their recipients;

3. publishis used to announce a new event body type;

4. subscribeinforms EFSOC that a subject wishes to be notified when events of
a given type are generated;

66 Chapter 3. The EFSOC Service-Oriented Architecture

Figure 3.5: EFSOC Event Model

5. unsubscribeinforms EFSOC that a subject no longer wishes to be notified
when events of a given type are generated;

6. unpublishinforms that events of a given type will no longer be generated.

Each of these event operations will be discussed in more detail in the following
sections. Events consist of a number of event headers, and one single, typed, event
body. The event headers contain information about the event (so-called meta-data),
and will only be written by the EFSOC service.

Since subjects should be able to deploy message-level security, i.e. encrypt the
bodies of the events that they send, the event body is not accessible to EFSOC (with
some exceptions, which are described in Section 4.8.4).

3.4.1 Publishing events and subscribing to events

Subjects publish events to indicate that they would like other subjects to provide
certain services, or to indicate the willingness to provide services themselves. The
distinction between these two perspectives (which are not necessarily disjunct), is
made by subscribing to events. Anyone is able to publish events. However, a subject
who has subscribed to an event indicates that he is a candidate to observe events as
they happen and that he is willing to react to them.

EFSOC provides two way of publishing events. First, subjects can publish
events directly. Secondly, it is possible to publish an entire service description,
for example in the form of a WSDL-document. The EFSOC service will analyze
the document description and extract the event descriptions from the message types.
Because it is possible to subscribe to events while publishing them, the second type
of event publication will usually take place when a subject publishes a service that
it is willing to provide.

3.4 Event operations 67

Figure 3.6: Subscribe to event activity diagram

When a subject subscribes to a particular event type, the EFSOC system will
determine if it already knows the event type. If this is not of the case, the event
subscription will fail. If the event did exist, a permission check will be made to
evaluate whether or not the subject is allowed to subscribe. If the subject is allowed
to subscribe, the list of available subscribers will be updated.

Another approach that could be followed when a subject attempts to subscribe
to a non-existing event type is to implicitly publish it at that time. We choose not to
do it in EFSOC, as we believe that any action that is implicitly taken may result in
an opaque state of the system, which is not beneficial to its overall security.

The event subscription business logic is depicted in the UML Activity diagram
in Figure 3.6.

3.4.2 Sending and receiving events

Sending and receiving is a straightforward process. When a subject generates an
event, a security check will be performed to determine whether the subject has the
proper permissions to send the event in the first place. If the subject does have
adequate permissions, the event service will determine which subjects are going to
handle the event for the subject. It does so by first determining who are subscribed
to the particular event type. With the selection of subjects that follows from that
check, additional checks, which are driven by business rules, may be performed.
As a result, a possibly empty set of subjects remains. For each of these subjects
an additional security check is performed to determine if they have enough rights
to receive the event. Of those who are entitled to receive the event, the appropriate
event handler will be called. Each of the steps that are taken will be recorded into
the audit trail.

The process of sending an event is graphically illustrated in Figure 3.7.

3.4.3 Events in context

EFSOC maintains an accounting trail of all operations that are executed. As a result,
if the need arises to establish an audit trail, all events that are sent were recorded

68 Chapter 3. The EFSOC Service-Oriented Architecture

Figure 3.7: Sending events

and are available for inspection.
As a consequence, events can be viewed in their relationships to other events.

Such relationships may be used to specify certain constraints. EFSOC distinguishes
a number of relationship types and/or constraints:

1. Chronological relationships

Events are chronologically related because event operations are executed at
a particular point in time. A chronological constraint can be that an event
cannot be sent between 5pm and 7am on working days.

2. Sequential relationship

Events are sequentially related if they occur after each other, in time. Exam-
ples of sequential relationships are ’eventa is sent after eventb’, or ’eventa
and eventb are sent simultaneously’.

3. Causal relationship

A causal relationship if a special kind of sequential relationship. Two events
are causally related if one event is the result of another. A prerequisite for this
is that the causing event must take placebeforethe caused event.

Causal relationships are relationships that cannot be automatically deduced.
Rather, if a subject sends an event that is caused by another, he is required to
explicitly mention that fact. A discussion of the trust-implications of support-
ing the causality header can be found in Section 2.5.1.

3.5 EFSOC and the Enterprise Service Bus 69

3.5 EFSOC and the Enterprise Service Bus

The ESB enables an SOA by providing the connectivity layer between services.
The definition of a service is wide; it is not restricted by a protocol, nor does it
require that a service is described by WSDL (Schmidt et al., 2005). Instead, the ESB
concept—much like EFSOC—requires that a meta-data description of a service is
published to a central repository.

The ESB must be viewed as an infrastructure to connect services. EFSOC’s
event operations provide a similar functions. The ESB-concept is sufficiently
generic that EFSOC’s event processing capabilities can be viewed as an ESB as
well.

Most ESB-implementations provide support for subscription-based notification.
However, since the ESB is considered as a pure connectivity layer, security require-
ments are often pushed out of scope, and must be added on at a later point.

EFSOC provides a platform that embeds security requirements, and especially
access control facilities, from the start, rather than as something that must be added
at a later point.

3.6 Role operations

Roles may be manipulated viarole operations. For example, to assign a role to a
subject, the role operations ‘assign role’ is defined.

The following role operations are provided by EFSOC:

1. assign roleis used to map subjects to roles;

2. activate roleis used to activate a subject-role mapping;

3. assign attributeis used to assign a value to a role attribute;

4. revoke roleis used to unmap subjects from roles;

5. deactivate roleis used to deactivate a subject-role mapping

Each of these role operations will be discussed in more detail in the following
sections.

3.6.1 Subjects and roles

Role-based thinking has attracted a large amount of attention in the access control
community, and more specifically in the role-based access control field. (Sandhu
et al., 2000) (Ferraiolo et al., 1999) (Hamada, 1998) describe several variations of
models for role-based access control. The principal reasons for adopting a role-
based approach are often cited to be a reduction of cost of administering access
control policies (Gavrilla and Barkley, 1998), which leads to a higher quality of
work, and better alignment with the way that organizations operate.

70 Chapter 3. The EFSOC Service-Oriented Architecture

While much work has been done in the area of role-based access control, the
concept of a role has mostly been intangible and implicitly assumed to be known.
In the context of the service oriented architecture, the concept of a role is commonly
interpreted as a reflection of the type of a participant (i.e., service provider or service
requester). However, this view is too coarse in granularity, and does not provide any
relationship with the business domain.

In this thesis, we will consider arole as a function that is simultaneously or
successively assumed by different subjects. Consequently, at any one point in time,
a role can be viewed as a set of subjects. The semantics of a role depends on the
service cluster in which it is deployed and is assumed to be commonly accepted by
the participants in the cluster.

Several authors have pointed out that considering a role as merely an atomic
label, as is often done in role-based access control, is not adequate (Li et al., 2004;
Lupu and Sloman, 1997; Giuri and Iglio, 1997). While RBAC allows direct inher-
itance of roles, such inheritances are all-inclusive. In other words, when a role is
defined in an inheritance, it will inheritall permissions that the other role has.

Lupu states that an organization may contain large numbers of roles with few
differences between them, and advocates the use of role classes from which in-
stances can be created. Giuri advocates the use of role templates, which extend the
concept of role to encapsulate and compose parameterized privileges. Li introduces
a role-based trust management framework in which a role name is constructed by
applying a role identifier to a tuple of data terms.

We suspect that roles consisting of atomic labels are sufficient when the roles
are significantly semantically different, and when assignments of subjects to roles
are fairly static. When the role assignments change often, or when there are only
small semantic differences between the roles, parameterized roles provide a better
solution. However, insufficient research has taken place to state this as a conclusive
fact.

The EFSOC framework supports parameterized roles by providing the ability to
associate attributes with each role, as shown in Figure 3.8. The diagram shows the
two role operations that were mentioned earlier (assign and activate) and introduces
a further refinement of the assign operator by distinguishing between assigning roles
to subjects and values to role attributes.

The following example will show the usefulness of role attributes. Assume
the situation in which Sue is treated by John. Without using role attributes, this
piece of knowledge would have to be represented by either introducing a special
role ‘sue’s physicians’ or ‘john’s patients’. Consequently, specialized roles would
have to be introduced for each patient, or for each physician. By doing so, one of the
paramount benefits of a role-based approach—the reduced management overhead—
would be eliminated almost completely.

Instead, we introduce an attribute ‘patient’ to the ‘physician’ role. Now, John
can be assigned the role physician, and the role attribute ‘patient’ will be assigned
the value ‘sue’.

To capture the fact that one physician is able to treat multiple patients, EFSOC
provides the ability to implement multi-valued role attributes.

3.6 Role operations 71

Figure 3.8: EFSOC Role Model

3.6.2 Role assignments and role sessions

Roles must be explicitly assigned to or revoked from subjects. Such role assign-
ments can be updated at run-time. When a subject is assigned to a role, that subject
is considered to be amemberof that role.

Role memberships can be assigned semi-permanently, in which case they repre-
sent a subject’s function in a business process, or assigned ad-hoc and temporarily,
in which case they apply to a specific interaction. Arole assignmentrepresents
the fact that a subject may play a certain role and is represented by a subject-role
mapping.

Role assignments give a subject theability to assume a certain role. Before such
a role assignment can be used, a role session needs to be created. Arole session
represents the run-time usage of role assignments. More than one role assignment
may be active at any time, and therefore each role session may be associated with
multiple role assignments.

As a consequence, the relationship between role assignment and role sessions is
constrained. A subject can only have roles active which are indeed assigned to him.

A recurring term in existing access control literature is that of a principal. The
principal is anyone who can receive authorizations to execute privileged operations
(Saltzer and Schroeder, 1975; Gasser et al., 1989).

EFSOC ties access control closely to operations on messages and roles, and as
such bases its access control structure around those on who’s behalf operations are
executed. Since all subjects must play one or more roles, and all roles and subjects
may be principals, all permissions are eventually granted to subjects.

However, in line with the findings of the research groups who pursued role-
based access control (Sandhu et al., 1996), EFSOC also provide facilities for grant-
ing permissions toroles, which function as dynamically changing groupings of sub-
jects.

72 Chapter 3. The EFSOC Service-Oriented Architecture

Figure 3.9: Access Control Model

3.7 Access control

The EFSOC service provides access control on a number of different levels:
transport-level access controls which regulate ‘technical’ aspects of the event re-
lay, such as network addressing, SSL/TLS protection, encryption schemes, etc. and
message-level access controls, which apply to the events themselves. Our solution
groups access control requirements in access control policies, which are adminis-
tered and evaluatedper subject.

This section addresses the different elements that make up access control re-
quirements, and the format in which they are crafted.

Access control lists are usually managed by a single security administrator.
However, since each service is able to specify access control rules for its own in-
coming and outgoing events, that assumption is invalid in our approach.

Details regarding the processing of access control rules are further provided in
Section 3.7.1.

EFSOC access control rules consist of four parts, as graphically represented in
Figure 3.9.

1. An operation
The operation to which the access control rule applies. For example, if the
access control rule attempt to allow certain subjects to send a particular event,
the operation section would contain the valuesend. Valid values for this pa-
rameter include the list of event operations and role operations.

2. A permission
Whether or not the permission will be granted. Valid values arepermit and
deny.

3.7 Access control 73

Figure 3.10: Taking access control decisions

3. Principals
A list of zero or more principals to which the rule applies. If no principals
are listed, the rule will always apply. If one or more principals are listed, the
rule will only apply to those principals. Principals can be specified by listing
subjects or roles.

4. Conditions
The conditions under which the rule applies. There can be many different
conditions, which may apply to the message itself, to the transport level, or to
message context elements, such as temporality or causality. The conditions
that are supported by EFSOC are further elaborated in Section 4.8.4.

3.7.1 Taking access control decisions

For any access control mechanism you have to know precisely in which order dif-
ferent access criteria are checked (Gollmann, 2006).

As a basic principle in EFSOC, access control decisions are made by evaluating
access control policies (see Figure 3.10).

The access control deciding process begins by determining which access con-
trol policies are applicable. Since access control decisions are taken based on the
operations being performed, the selection criteria depend on that operation.

Once it has been determined which access control policies apply, they are eval-
uated. EFSOC does not require that only one access control policy may apply at
any point in time, which introduces the possibility that evaluation of the appropri-
ate policies may lead to a potentially conflicting situation. If that is not the case, a
decision is made.

Since we need to ensure that all state transitions are done securely, conflicts must
be resolved. In case of conflicting results of policy evaluations, negative decisions
will take precedence over positive ones. In other words, if just one of the policies
denies permission, the entire evaluation will evaluate to a denial of access.

Access control policy selection depends on the operation that is being executed.
For each of the operation that EFSOC provides, we discuss the appropriate access
control policy selection criteria below.

74 Chapter 3. The EFSOC Service-Oriented Architecture

1. publish event body type
The publish event body type operation is executed when a subject attempts
to introduce a new event body type. The policies that are relevant are listed
below.

(a) The EFSOC global policy

(b) The subject attempting to publish the event body type.

The subject of both policies will be the subject attempting to publish the event
body type. When a new event body type is published successfully, the subject
who published it will be considered the event body type’s owner. Each event
body type may only be published once at a time.

2. unpublish event body type
The unpublish event body type operation is executed when a subject attempts
to remove an existing event body type. The policies that are relevant are:

(a) The event body type’s owner

(b) The subject attempting to unpublish the event body type

The subject of the policy will be the subject attempting to unpublish the event
body type. If an event body type to which subjects are still subscribed is
unpublished, they will be unsubscribed automatically. All subjects that are
unsubscribed implicitly will be notified of the unsubscription.

3. send event
The send event operation is executed when a subject sends out a new event.
The policies that are relevant are:

(a) The sender’s own policy.

(b) The event body type owner’s policy.

The subject of both policies will be the subject who sent the event. Only event
body types that are published when the event is sent will proceed.

4. receive event
The receive event operation is executed when a subject is about to receive an
event. The policies that are relevant are:

(a) The receiver’s own policy.

(b) The sender’s policy.

(c) The event body type owner’s policy.

The subject of all three policies will be intended recipient of the event mes-
sage. In order to receive an event, the recipient must be subscribed to it.
Additionally, the event body type must be published are the time of recep-
tion.

3.7 Access control 75

5. subscribe event body type
The subscribe operation is executed when a subject intends to receive mes-
sages of a specific event body type. The policies that are relevant are:

(a) The subscriber’s own policy.

(b) The event body type’s owner’s policy.

The subject of both policies will be the subscriber. The event body type may
only be subscribe to if it is published at the time of subscription.

6. unsubscribe event body type
The unsubscribe event body type operation is executed when a subject wishes
to unsubscribe from a specific event body type. The policies that are relevant
are:

(a) The unsubscriber’s own policy.

A subject may only unsubscribe from event body types to which he previously
subscribed.

7. discover event body type
The discover event body type operation is executed when a subject attempts
to discover an event body type. The policies that are relevant are:

(a) The subject’s own policy.

(b) The policy defined by the owner of the event body type.

In both cases, the subject attempting to execute the discover operation will be
the subject of the rule. Event body types may only be discovered if they are
currently published.

8. publish role
The publish role operation is executed when a subject attempts to introduce a
new role. The policies that are relevant are:

(a) The EFSOC global policy

(b) The subject attempting to publish the role.

The subject of both policies will be the user attempting to publish the role.
When a new role is published successfully, the subject who published it will
be considered the role’s owner.

Each role may only be published once at a time.

9. unpublish role
The unpublish event body type operation is executed when a subject attempts
to remove an existing event body type. The policies that are relevant are:

(a) The event body type’s owner

76 Chapter 3. The EFSOC Service-Oriented Architecture

(b) The subject attempting to unpublish the event body type

The subject of the policy will be the user attempting to unpublish the event
body type. If a role to which subjects are still assigned is unpublished, they
will be unassigned automatically. All subjects that are unsubscribed implic-
itly will be notified of the unsubscription.

10. assign role
The assign role operation is executed when a subject attempts to be assigned
to a new role. The policies that are relevant are:

(a) The role owner’s policy

(b) The policy of the subject who will be assigned the role.

(c) The policy of the subject who attempts to assign the role.

The subject of all policies will be the user attempting to be assigned to the
role. Each role may only be assigned to the same subject once at a time.
Roles must be published when they are assigned.

11. revoke role
The revoke role operation is the opposite of the assign role operation. It will
take away a role assignment from a subject. The following policies are rele-
vant:

(a) The policy of the subject who will be revoked from the role.

(b) The policy of the subject who attempts to revoke the role assignment.

The subject of the policy will be the user attempting to be revoked from the
role. A role may only be revoked from a subject if that subject is assigned to
the role.

12. activate role/deactivate role
The (de)activate role operation is executed when a subject attempts to
(de)activate an assigned role. The policies that are relevant are:

(a) The role owner’s policy

(b) The policy of the subject who attempts to (de)activate the role.

(c) The policy of the subject who’s role is (de)activated.

The subject of all policies will be the user attempting to (de)activate to the
role. Roles may only be activated by subjects who are assigned to the role.
Once a role is activated, it may not be activated again, unless it is deactivated
first. Only active roles may be deactivated.

13. assign role attribute
The assign role attribute is executed when a role attribute is associated with a
role. The policies that are relevant are:

3.7 Access control 77

Figure 3.11: Evaluating access control policies

(a) The role owner’s policy.

(b) The policy of the subject attempting to set the role attribute value.

The subject of the policy is the user attempting to assign the role attribute.
Role attribute types may only be assigned to subjects to whom the corre-
sponding role is assigned.

14. assign role attribute value
The assign role attribute value operation is executed when a role attribute
value is set. The policies that are relevant are:

(a) The role owner’s policy.

(b) The policy of the participant in the corresponding role assignment.

(c) The policy of the subject attempting to assign the role attribute value.

3.7.2 Evaluating access control policies

Access control policies are evaluated in much the same way as the overall access
control decision is made. Figure 3.11 illustrates this graphically.

The process begins by selecting appropriate access control rules. The selection
is made by two criteria: the operation to be performed, and the subject performing
it. Each applicable access control rule is evaluated and the results are stored.

After all applicable rules have been evaluated, a determination is made whether
or not a conflict has arisen. If there is a conflict, it is resolved and an access con-
trol decision is taken. If there is no conflict, the access control decision is taken
immediately.

Rule evaluation conflicts are resolved by determining thepriority of each rule.
Rules with a higher priority will take precedence over rules with a lower priority.

Since using prioritized rules isoptionalin EFSOC, conflicts may still take place.
For this reason, each policyshouldhave specified a default behavior that will be
applied in case rules are conflicting. If no default behavior for conflicting rules is
specified, and a conflict arises, permission will berejected.

78 Chapter 3. The EFSOC Service-Oriented Architecture

Figure 3.12: Evaluating access control rules

3.7.3 Evaluating access control rules

Access control rules are easier to evaluate than entire policies. Each rule will only
result in one decision: permit or reject. As such, there is no need to address conflict
resolution in rule evaluation.

Figure 3.12 illustrates the rule evaluating algorithm. Evaluation begins by de-
termining whether or not the rule applies to the requested operation. This filtering
should already have been done by the rule selection activity in the policy evaluator,
but since the rule base may have changed since then, it is performed again.

Next, a decision is made regarding the principal of the rule. If the subject of
the event matches the principal of the rule, evaluation will proceed. If it does not
match, the rule will be deemed to be inapplicable, and processing will stop without
rendering a decision.

If the rule is deemed applicable (operation matches and principal matches the
subject of the event), the rule’s condition will be evaluated. If the condition evalu-
ates totrue permission will be granted, else it will be rejected.

3.8 Architecture

The concepts introduced in the previous section provide a basic vocabulary which
describes the EFSOC Service-Oriented Architecture. In this section, we use these
concepts to design a system which suggests how they can be used in application
scenarios.

Figure 3.13 graphically represents the different components of which an EFSOC
event service consists. The components are:

1. Transport-level access control module
The transport-based access control module enforces access control rules that

3.8 Architecture 79

Figure 3.13: EFSOC Service Architecture

80 Chapter 3. The EFSOC Service-Oriented Architecture

contain transport-level conditions, such as requirements on target IP address
or source IP address in case of a TCP/IP-based service, protection status of
the connection (for example, requirement to possess an SSL certificate issued
by a certain certificate authority), etc.

2. Message-level access control module
The message-level access control module enforces access control rules that
contain message-level conditions and message-context level conditions. For
example, requirements on this level may specify that the event body must be
digitally encrypted and signed using WS-Security, or include requirements
with respect to the causality of messages, or (in case of unencrypted event
bodies), requirements on the contents of the event body.

3. Event routing module
The message routing module provides the facilities for publication and sub-
scription to event body types. Using the event routing module, EFSOC is
able to determine which subjects are eligible to receive an event based on
their subscriptions.

4. Workflow monitor
While the workflow monitor is part of the EFSOC architecture, we do not
elaborate on it in this thesis. The goal of the workflow monitor is to further
refine the set of recipients that is determined by the event routing module
based on a set of previously defined workflow specifications.

EFSOC distinguishes between business rules and security rules. Since event
bodies may be encrypted in such a way that the EFSOC system cannot decrypt
the contents of the body, security rules can only address the principal of the
rule (role or subject), the rule’s event body type, the operation being carried
out, and any possible additional event headers. Rules that take any of these
variables in account are considered security rules.

When EFSOC does have access to the event body data, additional conditions
can be specified that apply to that event body data. Rules containing condi-
tions on such data are called business rules.

For example, assume an hypothetical situation in which a physician is al-
lowed to prescribe a particular kind of drug, but not another. The fact that the
physician may prescribe medication is a security rule, since it applies to the
principal rolephysician, the event body typePrescribeMedication, and the
operationsend. Any additional requirements, such as the requirement that a
surgeon may not prescribe pain killers, would require the event body contents
to be inspected. As a result, such rules are business rules.

If event bodies are not encrypted, EFSOC is able to enforce business rules.
If event bodies are encrypted, EFSOC will not be able to evaluate rules con-
taining business rules. It is therefore recommended that business rules are
implemented by services themselves, rather than by EFSOC’s access control
engine.

3.8 Architecture 81

Figure 3.14: EFSOC Event Processing Overview

5. Service mapper
The service mapper provides the binding of the EFSOC SOA to the underly-
ing implementation framework. In case of an implementation which relies on
web services, the service mapper will map an event to a service invocation.

Figure 3.14 illustrates the way that EFSOC would perform in the context of the
running examples.

First, a service will publish a certain event body type, which makes it possible
for others to discover it. Based on the discovery, subjects can subscribe to the event
body type and send and/or receive messages.

In the running example, we assume that a number of events is available for
inspecting and updating charts, and for prescribing and dispensing medication.

Assume that John attempts desires to inspect Sue’s chart. He does so by gener-
ating an ‘inspect chart’ event, which contains information about the patient who’s
chart he wishes to inspect. Based on previous event subscriptions, EFSOC routes
the ‘inspect chart’ event to the charting service.

On reception of an event, a first simple access control decision must be made to
decide whether the event originates from a source on the network that is authorized
to interact with the service. In case of an EFSOC service which is deployed on
a TCP/IP-based network, such checks generally involve validating the source IP

82 Chapter 3. The EFSOC Service-Oriented Architecture

address of the packet.
The next check that is performed is a content check, and the event message

will be inspected. This inspection step forms the core of the EFSOC access control
approach, since it may involve checking the message itself for certain criteria, but
also for checking the identity of the principal, or the roles that he plays, etc.

If the message passes this check as well, the event routing module is activated,
which checks which services have subscribed to the particular event.

Having decided that, an additional message-based check is performed. The pre-
vious message check applied to the originator of the message, whereas this check
will be executed for each of the intended recipients.

Finally, after checking the message itself, the service mapper will attempt to
retrieve which operation needs to be called as an event handler. This check needs to
be executed for each intended recipient.

The final check that is performed is a transport-level access control check. Un-
like the first transport level access control decision, which applied to the originator
of the message, this check will be executed for each of the potential recipients.

If the messages passes through all checks, the EFSOC service will then call the
appropriate operation.

All actions are logged into the audit database, where they will be available for
later inspection, if so necessary.

3.9 Example: Applying Access Control Policies

Consider again the running example. Before anything can happen, subjects need to
publish the appropriate events, and others must subscribe to them. By publishing
an event, the publisher takes ownership of it.

In case of the example, the following events are published:
Event body type nameOwner Body
prescribe medication pharmacy service patient

medication
dosage
number of doses

dispense medication pharmacy service patient
medication
dosage
number of doses

inspect chart charting service patient
update chart charting service patient

medical data
After publication, the pharmacy servicesubscribesto the prescribe medication

event body type, indicating that it wishes to handle medication prescriptions. Mary
(the nurse) subsequently subscribes to the dispense medication event body type to
indicate that she is capable to administer drugs to her patients.

The charting service will subscribe to both the inspect chart event body type as

3.9 Example: Applying Access Control Policies 83

no. priority description

1 1 Default permission: refuse
2 1 Permission by conflict: refuse
3 1 Owner: pharmacy service

1 1 operation: send
principal: role.physician
permission: permit
condition: event body type is prescribe medication
and sender must treat patient

2 1 operation: send
principal: role.nurse
permission: permit
condition: event body type is dispense medication
and receiver must be nurse on patient’s floor

Figure 3.15: Pharmacy’s access control policy

well as to the update chart event body type, since it is responsible for maintaining
all medical charts.

Having published the event body types, the respective owners will establish ac-
cess control policies. These policies include:

1. Pharmacy Service Policy
The pharmacy’s policy dictates that medication may only be prescribed by
physicians, and that medication may only be dispensed to nurses who are
working on the same floor that the patient to who the medication is prescribed
is being treated. The policy takes the form as shown in Figure 3.15

The rows under the first set the double line in the table above depict the pol-
icy’s preferences. The rows under the second set of double lines depict indi-
vidual access control rules.

2. Charting Service Policy
The charting service policy requires that all physicians may inspect any pa-
tient’s chart, but that inspection by nurses is limited to the charts of patients
on their floor. While physicians may inspect all charts, they may only update
the charts of their own patients. Likewise, nurses may update the charts of
patients on their floors.

The policy takes the form as shown in Figure 3.16.

An interesting observation regarding these policies is that both policies constrain
sending of events, rather than the reception of them. Since the pharmacy service
“owns” the prescribe medication event and the dispense medication event, they are
capable of doing so. The same is true for the charting service, which owns the
inspect chart event and the update chart event.

The fact that those services own the respective event body types is not surprising,
since they have the most interest in regulating the way that they are used.

84 Chapter 3. The EFSOC Service-Oriented Architecture

Charting service access control policy
no. priority description

1 1 Default permission: refuse
2 1 Permission by conflict: refuse
3 1 Owner: charting service

1 1 operation: send
principal: role.physician
permission: permit
condition: event body type is inspect chart

2 1 operation: send
principal: role.nurse
permission: permit
condition: (event body type is inspect chart
or event body type is update chart)
and sender must be patient’s floor

3 1 operation: send
principal: role.physician
permission: permit
condition: event body type is update chart
and sender must be treating patient

Figure 3.16: Charting Service Access Control Policy

Now that all events have been published and subscribed to, the services can start
to exchange information. For example, assume that John wishes to record the fact
that Sue’s hemoglobin count is too low on her chart. Doing so will result in sending
anupdate chartevent.

According to the algorithm explained in Section 3.7.1, the first step that EFSOC
will take is to determine the appropriate policies. In case of a ‘send’ operation, such
as is the case here, the sender’s own policies apply, as well as the event body type’s
owner’s policy. John has not specified a policy, but the update chart event’s owner
(the charting service) has.

It requires that the event may only be sent if Sue is currently under John’s treat-
ment. Since Sue is listed as a valid value of the role attribute ‘patient’, and since
John is a physician, the policy will evaluate to ‘permit’, and the event will be sent.

Next, the ‘receive’ operation is executed for all subjects that have subscribed to
the event’s body type. In this case, the only subscriber is the charting service itself.
The appropriate policies are selected by taking the receiver’s policy, the sender’s
policy and the event body type’s policy. The receiver’s policy and the event’s body
type owner’s policy are identical and do not constrain the event body type from
being received. Additionally, since the sender (John’s) policy does not specify any
constraints, the event will be delivered to the charting service. The charting service
will then proceed to update the chart on file.

3.10 Discussion 85

3.10 Discussion

A solution can be considered secure when the initial state of the populated model is
secure, and when all subsequent state transitions do not violate security constraints.
A state is considered secure when all of the model’s assumptions are unviolated,
and when the model is populated with a desired situation.

Since an instantiated EFSOC model can only change its population by execution
a limited number of operations, and each of those operations is subject to access
control rules, the approach is secure, providing the initial state is a desired state.

3.10.1 EFSOC and Web Services

EFSOC provides a conceptual service-oriented architecture which is very similar
to the more well known web services SOA. Unlike the web services SOA, EFSOC
does not provide an actual implementation. Rather, it is a framework which can be
implemented using existing technologies.

The principal difference between the approach followed by web services and
the approach followed by EFSOC, is that EFSOC decouples services when they
interact, whereas the web services paradigm advocates that services invoke each
other directly.

While the web services paradigm eliminates the potential overhead that a service
broker/mediator introduces into the architecture, I believe that the benefits of doing
so outweighs the drawbacks. The principal benefits that I perceive are:

1. In a web services environment, services are critically dependent on each other,
and on their implementation. If a service implementation changes locations,
or disappears altogether, all services that depends on it must take corrective
actions. In the EFSOC architecture, this is not the case, as EFSOC services
depend on events, rather than on service descriptions.

2. Using a service broker, like in the case of EFSOC, provides a logical ex-
tension point for added value actions, such as auditing and logging, secu-
rity, transaction monitoring, workflow enforcement, etc. Rather than burying
a service-enabled application in an enormous stack of layers, protocols and
specifications; each of which introduces additional complexity.

Having said this, the EFSOC SOA and the Web Services SOA are complemen-
tary. In designing the EFSOC service, we ensured that existing web services can
rely on their tools and programming libraries, yet still obtain the benefits of using
an EFSOC approach.

1. Services may publish their WSDL documents by treating the EFSOC service
as a UDDI service. The EFSOC service will analyze the WSDL document
and extract the appropriate events and call-back handlers from the WSDL
document.

2. In EFSOC, services request an operation to be performed by generating an
event. Sending that event can be done by EFSOC’s web service.

86 Chapter 3. The EFSOC Service-Oriented Architecture

Figure 3.17: EFSOC in relation to the WS Security Roadmap

EFSOC messages should be implemented as SOAP messages. As a result,
most (if not all) web services standards that are specific to protecting message
content can still be used. For example, standards such as WS-Security and WS-
SecureConversations are compatible with EFSOC.

The relationship between EFSOC and the different standards that comprise the
Security Roadmap for Web Services Security is shown in Figure 3.17. It illus-
trates that EFSOC mostly rests on three pillars: message-level protection via WS-
Security, the ability to specify access control policies via WS-Policy and the ability
to formulate access control requirements and issue authorizations to subjects via
WS-Authorization. While only three pillars are shown in the figure, the remaining
specifications still apply to EFSOC, albeit to a lesser extent.

As illustrated in the figure, EFSOC also borrows from XACML. In particular,
the separation between policy administration, policy information and policy en-
forcement is inspired by the XACML architectural model.

3.10.2 EFSOC and its design objectives

In Section 2.6.4, we listed a number of design objectives for the EFSOC service
broker. These design objectives are listed below, and their manifestation in the
overall EFSOC framework is discussed.

1. Service Autonomy; The service autonomy principle is safeguarded in the ar-
chitecture of EFSOC by allowing each subject to specify its own access con-
trol policies. Access control policies will be evaluated for all events received
by a subject, and all events that are sent by a subject. This allows each subject
to remain fully in control of the messages it sends and received.

3.10 Discussion 87

The drawback of the service autonomy principle is that it is possible to specify
conflicting access control policies, in which one policy explicitly allows an
event to be routed to a recipient, which another rule explicitly refused it to be
delivered.

EFSOC processed the policies as follows: sender’s send rules for himself,
sender’s receive rules for EFSOC, EFSOC’s send rules for itself, sender’s
receive rules for intended recipients, intended recipient’s receive rules for
sender. If at any point in time, a negative access control decision is reached,
processing will stop and the message will not be delivered.

2. Containment; Containment addresses limiting the extent to which an intruder
can affect services after one or more security mechanisms have failed. EF-
SOC proposes a solution in which each message transfer goes to a number
of stages. At each stage, access control decisions will be taken. Access con-
trol decisions may not be cached, or calculated ahead of time, resulting in a
continuous re-evaluation of a subject’s permissions.

Invalid messages can only be sent when the security controls at all phases of
a message relay fail, and when this happens multiple times in succession.

Through this mechanism, EFSOC implements active security.

3. Separation of Duty(SoD); Separation of duties means that services can only
be provided when a number of subjects (each playing separate roles) collab-
orate. EFSOC allows the implementation of separation of duty by specifying
per-subject access control rules, or global SoD constraints by implementing
them on the EFSOC access control level.

4. Availability, Integrity and Confidentiality; Availability, integrity and confi-
dentiality are beyond the scope of this research, but can be achieved by imple-
menting EFSOC as a value-added service on top of Web Services Technology,
and by deploying the appropriate WS-Security and WS-Policy technologies.

5. Auditability; Auditability is achieved by routing traffic through the EFSOC
broker. All operations that are executed lead to one or more entries in the
EFSOC audit log. Audit log entries are timestamped and fingerprinted to
ensure their integrity.

6. Message-context level access control; Message-level access control is avail-
able in EFSOC in the form of access control conditions with include temporal
and causal operators. The operators place events in sequence, or in a logically
causal relationship.

7. Authentication; Authentication is beyond the scope of this research. However,
in the chapter on future research (Section 8.6), we do share some thoughts on
identity management and identities spanning multiple EFSOC instances.

88 Chapter 3. The EFSOC Service-Oriented Architecture

3.10.3 Delegation and role hierarchies

EFSOC does not provide explicit facilities for role hierarchies. The Role-Based
Access Control model expects an access control model to support role hierarchies
to comply with the RBAC1 requirements. RBAC1 requires role hierarchies to pro-
vide automated permission inheritance, which we view as a mechanism to facilitate
implicit delegation.

In EFSOC, delegations are not needed for a number of reasons:

1. RBAC assumes that when a role is delegated from one subject to another, all
privileges that are associated with that role are delegated too. In effect, it is
not possible to delegate individual permissions to subjects, while there are
many cases in which that is desirable.

The least privilege principle requires that a subject only obtains the rights that
he needs to execute his task. Delegating multiple rights, when only a subset
of those rights is required, therefore constitutes a violation of that principle.

Unlike full delegation of roles, partial delegation of privileges may be accept-
able. However, whereas RBAC accepts the direct assignment of privileges to
roles, EFSOC does not. Instead, EFSOC computes privileges using access
control policies and access control rules. As a result, permissions can not be
delegated.

2. While permissions cannot be delegated, because they cannot be addressed
directly, it is possible to formulate a rule of which the principal is a subject.
For example, assume that a service (e.g., the Charting Service) wishes to
delegate the right to update charts to Mary, it could create a specific rule for
this purpose.

3. Because of the prescribed order in which security policies are evaluated, dele-
gating a permissions or a role would be pointless. The access control policies
which are evaluated are known ahead of time, and delegations are simply
represented by such rules.

This is illustrated in Figure 3.18. Assume that the owner of thePrescribe-
Medicationevent body type specifies physicians to send events of that type.

Furthermore, assume that the physician also specifies an access control rule
that allows nurses to send events of this type. Note that this is a violation of
the service autonomy concept, which prescribes that services must be in full
control of their events.

Whenever medication is prescribed, the prescribe medication event must be
generated. According to the algorithm presented in Section 3.7.1, first the
sender’s own policy is checked and then the event body type’s owner. If a
nurse now attempts to generate the prescribe medication event, the physi-
cian’s policy (which specified that she is allowed to do so) is never checked.

3.11 Summary 89

Figure 3.18: EFSOC Delegation

The event body type’s owner refuses access to anyone but physicians, which
means that the nurses attempt will be blocked.

Summarizing: the way that EFSOC uses access control policies and the rules
that belong to such policies supersedes the need to be able to delegate permissions
by other mechanisms, such as role hierarchies.

3.11 Summary

Summarizing, EFSOC provides a discretionary role-based event-driven framework
for access control in service-oriented architectures. The main components of the
EFSOC model aresubject, eventandrole. The relationships between subjects and
roles, and the relationships between subjects and events are known asoperations,
which can be constrained byaccess control policies.

A typical service-invocation in EFSOC terminology starts when a subject gen-
erates an event, as shown in Figure 3.7. When the subject generates an event, a
number of access control policies is evaluated to determine whether or not the event
will be accepted. If it is accepted, EFSOC will first identify the subjects that are
subscribedto events containing that event’s body type. Next, a possibility is cre-
ated to add additional business logic. How this is done, and of which elements the
business logic consists is left outside the scope of this research. One the proper
recipients have been determined, additional access control checks are performed to
ensure that each of the recipients is allowed to receive the event. If those checks
have been successfully completed, the events are delivered to each subject.

90 Chapter 3. The EFSOC Service-Oriented Architecture

Chapter 4

EFSOC Definition and Execution
Language

The truth knocks on the door and you say, ”Go away, I’m looking
for the truth,” and so it goes away. Puzzling.

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

Chapter 3 introduced EFSOC informally. We showed the different element of
the framework and illustrated them with natural text and graphical representations
in the form of UML diagrams. This chapter proposes a language that can be used
to define and modify EFSOC elements, using a declarative language which imple-
ments the semantics of the EFSOC model as discussed in the previous chapter.

4.1 Extensible Markup Language

The EFSOC Definition and Constraint language (EDL) will be implemented as an
XML application. XML (Yergeau et al., 2004) is a syntactic markup language that
provides basic constructs to define domain-specific markup languages. Examples of
such XML languages are XML Encryption (Reagle, 2002), XML Signatures (Bartel
et al., 2002), XML Schema (Thompson et al., 2001), XML Namespaces (Bray et al.,
1999), etc.

Because of its extensibility, the widespread availability of tools, and the fact that
XML is widely accepted as a data representation format, the EFSOC DCL will be
implemented in XML. To ensure interoperability with other XML languages, we
introduce a special EFSOC XML Namespace.

4.2 The EDL language

The EFSOC Definition and Constraint Language (EDL) provides the constructs to
define EFSOC vocabulary elements. EDL consists of two sub-languages: the EDL
definition language and the EDL execution language. Each of the elements of the
definition language can be encapsulated in execution language elements, which in

92 Chapter 4. EFSOC Definition and Execution Language

Figure 4.1: EFSOC Languages

turn form event body types. For example, to introduce a new subject to EFSOC,
one would use asubject definition, encapsulated in apublishoperation, which
is associated with thepublishSubject event body type. The EFSOC service
will subscribe to all event body types that encapsulate execution language elements.
This provide a natural way for services to interact with EFSOC.

4.3 EDL in relation to WSDL

EDL is complementary to WSDL. WSDL provides a description of service inter-
faces. EDL provides descriptions of meta information about those services. For
example, using WSDL, it is possible to specify that the charting service has an op-
erationrequestChart, which in turn takes as input a patient’s name, and returns the
requested chart as output. Using EDL, we can describe who the patients are, who
physicians are, and which patient is treated by which physician. Additionally, EDL
provides a way to express subscriptions to input events and output events, access
control rules, etc.

Using XML’s namespacing mechanism, EDL and WSDL can be easily embed-
ded in the same document.

4.4 Notational conventions 93

4.4 Notational conventions

This specification uses several XML namespaces. The following prefixes are chosen
arbitrarily and will be used:

Prefix Canonical name Namespace URL
xs XML Schema http://www.w3.org/2001/XMLSChema
efsoc EFSOC DCL http://infolab.uvt.nl/efsoc

4.5 Definition Language

4.5.1 Representing events

In Section 3.3, we defined an event as an atomic occurence in an organization. In
Section 2.4, we discussed the work of Luckham, who distinguishes three distinct
aspects of events: form, significance and relativity. We propose an event represen-
tation which captures and expresses these aspects. An event representation consists
of an event envelope and an event body. The event body may contain any structured
data type, which will represent the context in which the event occured. The event
envelope contains a number of headers which provide meta-information about the
event body, such as an event body type (which corresponds to the significance of the
event), a possible time stamp, event id, and a number of additional headers which
represent causal relatioships to other events.

Events are can be modeled as a composition of a single event body and a number
of event headers. This representation allows us to easily map events to existing
standards, such as SOAP.

Events can be represented in an XML-based representation as shown in Fig-
ure 4.2. The figure shows that an EFSOC event consists of the event headers and
the event body. By grouping these two separate entities into elements, we provide
easy support for adding privacy and integrity facilities later on. The figure also
shows the use of XML namespaces to keep EFSOC defintions (the overall structure
of an event message) separate from the body type and the data conveyed by the
event.

4.6 Vocabulary Definitions

The EFSOC definition language takes the form of an XML extension language
which uses XPath expressions. In the following sections, we propose a syntax for
specifying EFSOC elements.

4.6.1 Subject

All subjects must be able to be referenced by a URI.

<e f s o c : s u b j e c t
ID = xs : ID>

94 Chapter 4. EFSOC Definition and Execution Language

<?xml v e r s i o n =”1.0”>
<e f s o c : e v e n t i d =”some�i d ”

xmlns : e f s o c =” h t t p : / / i n f o l a b . uv t . n l / e f s o c ”
xmlns : l oanex =” h t t p : / / i n f o l a b . uv t . n l / e f s o c / loanexample . xsd”>
<e f s o c : headers>
<e f s o c : t imestamp>
<e f s o c : sen t>12345678</ e f s o c : sen t>
</ e f s o c : t imestamp>
</ e f s o c : h e a d e r s)
<e f s o c : body t ype =” p a t i e n t a d m i t t e d ”>
<h o s p i t a l e x : p a t i e n t>
<h o s p i t a l e x : las tname>Smith</ h o s p i t a l e x : las tname>
<h o s p i t a l e x : i n s u r a n c e>Medica i r</ h o s p i t a l e x : i n s u r a n c e>
</ h o s p i t a l e x : p a t i e n t>
<h o s p t i a l e x : admiss ion>
<h o s p i t a l e x : da te>2005�dec�04</ h o s p i t a l e x : da te>
</ h o s p i t a l e x : admisson>
</ e f s o c : body>
</ e f s o c : event>

Figure 4.2: An XML event representation

Conten t : (xs : any)
</ e f s o c : s u b j e c t>

The ID attribute is a required attribute. Each subject may have additional infor-
mation associated with it.

For example, the subject john is described as follows:

<e f s o c : s u b j e c t ID=”1234”>
<e f s o c : c o n t e n t>

<p e r s o n d a t a>
< f i r s t n a m e>john</ f i r s t n a m e>
<l as tname>smi th</ l as tname>
<born>1973�08�29</born>

</ p e r s o n d a t a>
< i n s u r a n c e d a t a>

<type>med ica i r</ type>
<number>123456789</ number>

</ i n s u r a n c e d a t a>
<med ica lda ta>

<med ica t ion>
<name>zan tac</name>
<form>p i l l </ form>
<amount>40mg</amount>
<usage>4x / day wi th meal</ usage>

</ med ica t i on>
<d iagnon i s>

4.6 Vocabulary Definitions 95

<name>a c i d r e f l u x</name>
<date>2005�08�21</ da te>

<d i a g n o s i s>
</ med i ca lda ta>

</ e f s o c : c o n t e n t>
</ e f s o c : s u b j e c t>

This description includes facts about john’s person (name, date of birth), health
insurance (medicair, policy number 123456789), and medical data on any medica-
tion that the patient is currently taking, and previously reached diagnoses.

4.6.2 Role

All roles must be able to be referenced by a URI.

<e f s o c : r o l e
ID = xs : ID>

</ e f s o c : r o l e>

The ID attribute is a required attribute. Each role may have additional informa-
tion associated with it in the form of role attributes.

4.6.3 Role Attribute Type

All role attribute types must contain one or more role references. All role attributes
must be able to be referenced by a URI

<e f s o c : r o l e a t t r i b u t e t y p e
ID = xs : ID ,
r o l e r e f = xs : URI/>

The ID attribute is a required attribute.

4.6.4 Role Attribute Value

All role attribute values must reference a role attribute type and an role assingment.
All role attribute values must be referencable by a URI.

<e f s o c : r o l e a t t r i b u t e v a l u e
ID = xs : ID
r o l e a t t r i b u t e t y p e r e f = xs : URI
r o l e a s s i n g m e n t r e f = xs : URI
v a l u e = xs : any>

</ e f s o c : r o l e a t t r i b u t e v a l u e>

4.6.5 Event

Events consists of an event body which can contain any structured data respresen-
tation which is part of event envelope, which also contains a number of headers.

An event is defined as follows

96 Chapter 4. EFSOC Definition and Execution Language

<e f s o c : e v e n t
ID = xs : ID>
Conten t : ((e f s o c : e v e n t h e a d e r)� , e f s o c : even tbody)

</ e f s o c : event>

4.6.6 Event Header

An event header conveys some kind of meta-information about the event body that
is being sent. An event header is defined as

<e f s o c : e v e n t h e a d e r
name = xs : S t r i n g>
Conten t : (xs : any)

</ e f s o c : even theade r>

Each event header has a required name and a structured content. Event headers
may repeat, although it is likely that more expressiveness is obtained by using an
adequately defined content.

The following event headers are minimally supported:

1. <e f s o c : e v e n t h e a d e r name=” c a u s a l i t y ”>
#123

</ e f s o c : even theade r>

The causality header contains references to events that caused the current
event to be sent. If the cardinality header is omitted, the current event does not
have any causal relationships. If the cardinality header is repeated multiple
times, the current event is sent as a result of the combination all events listed.

2. <e f s o c : e v e n t h e a d e r name=” t imestamp�s e n t ”>
2006�02�15 1 4 : 3 6 : 4 5 . 1 3 4 + 0 2 : 0 0

</ e f s o c : even theade r>

Contains a timestamp which signifies the time that the current event was orig-
inally sent. This header must contain a single valid date/time value according
to RFC3339 (Klyne and Newman, 2002).

4.6.7 Event Body

While an event body type defines the name and the structure of future event bodies,
event bodies themselves contain instantiated data. An event body is defined as

<e f s o c : even tbody
t ype = xs : anyURI>
Conten t : (xs : any)

</ e f s o c : eventbody>

The type attribute is a required attribute. An event body must always reference
its event body type. The event body content must match the structure of the refer-
ences event body type.

4.7 Execution language definitions 97

4.6.8 Event Body Type

Event bodys define the structure of events. An event body can take any data struc-
ture. It is defined as follows:

<e f s o c : even tbody t ype
ID = xs : ID>
Conten t : (xs : schema)

</ e f s o c : eventbody>

The ID attribute is a required attribute. Each event body must be uniquly iden-
tifyable by an ID and be referencable via a URI.

4.6.9 Access Control Policies

Access control rules function as groupings of access control rules. Access control
policies are defined as follows:

<e f s o c : a c c e s s c o n t r o l p o l i c y
ID = xs : ID
owner re f = xs : anyURI>
Conten t : (d e f a u l t p e r m i s s i o n : P e r m i s s i o n L i s t)

</ e f s o c : a c c e s s c o n t r o l p o l i c y>

The ID attribute and the owner attribute are required attribute. Each access
control policy must have a unique ID and must have an owner which is a URI
reference to a subject.

4.7 Execution language definitions

4.7.1 Publish

Events, subjects, roles, access control policies or access control rules can be pub-
lished by using thepublish operator. The publish operator expects an event body,
a role, a subject, an access control policy or an access control rule as input. Publish
is defined as

<e f s o c : p u b l i s h>
Conten t : (e f s o c : s u b j e c t r e f ,

(e f s o c : even tbody t ypej e f s o c : r o l ej e f s o c : s u b j e c tj
e f s o c : a c c e s s c o n t r o l p o l i c yj
e f s o c : a c c e s s c o n t r o l r u l e

)+
)

</ e f s o c : p u b l i s h>

The publish operator takes as parameters a single URI identifying a subject and
a list of at least one event body type, role or subject that must be published. The
publish operator must function as a single transaction. In other words, all event
body types must be published successfully, or none may be published.

98 Chapter 4. EFSOC Definition and Execution Language

The definition ofeventbodytype and an example showing how to use the
publish operator is shown in Section 4.5.1.

For example, publication of the ‘patient admitted’ event would looks like

<e f s o c : p u b l i s h>
<e f s o c : s u b j e c t r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / s u b j e c t #1234
</ e f s o c : s u b j e c t r e f>
<e f s o c : even tbody type>< / e f s o c : even tbody type>

</ e f s o c : p u b l i s h>

4.7.2 Unpublish

The unpublish operator works similarly to thepublish operator.
Unpublish is defined as follows

<e f s o c : unpub l i sh>
Conten t : (e f s o c : s u b j e c t r e f ,

(e f s o c : e v e n t b o d y t y p e r e fj e f s o c : r o l e r e fj
e f s o c : s u b j e c t r e fj
e f s o c : a c c e s s c o n t r o l p o l i c y r e fj
e f s o c : a c c e s s c o n t r o l r u l e r e f

)+
)

</ e f s o c : unpub l i sh>

All parameters are URI references to their corresponding elements. An unpub-
lish operation must be considered as a transaction. In other words, if one unpublish
operation fails, all unpublish operations must fail.

For example, unpublication of the ‘patient admitted’ event looks like

<e f s o c : unpub l i sh>
<e f s o c : e v e n t b o d y t y p e r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / even tbody t ype /#1234
</ e f s o c : e v e n t b o d y t y p e r e f>

</ e f s o c : unpub l i sh>

4.7.3 Send

Events can be generated (sent) by using thesend operator. The generate operator
expects an event as input. Generate is defined as

<e f s o c : send>
Conten t : (e f s o c : s u b j e c t r e f , (e f s o c : e v e n t) +)

</ e f s o c : send>

4.7 Execution language definitions 99

The generate operator takes as parameter a single URI identifying a subject and
a list of at least one event that must be generated. Thesend operator must function
as a single transaction. In other words, if multiple events are listed, all of them must
be generated successfully, or none may be generated at all.

For example, to represent the fact that a ‘patient admitted’ event is generated by
the subject with ID 1234, the following representation would be used

<e f s o c : send>
<e f s o c : s u b j e c t r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / s u b j e c t #1234
</ e f s o c : s u b j e c t r e f>
<e f s o c : event>< / e f s o c : event>

</ e f s o c : send>

4.7.4 Subscribe

Subjects may subscribe to events by using the subscribe operator. The subscribe
operator is defined as

<e f s o c : s u b s c r i b e>
Conten t : (e f s o c : s u b j e c t r e f , (e f s o c : e v e n t b o d y t y p e r e f) +)

</ e f s o c : s u b s c r i b e>

Each subject must be referenced by a single unique uniform resource indicator
(URI). Each event body type must be referenced by a URI. In a single subscribe
operation, a subject may subscribe to one or more different event body types by
listing their URIs. If a subscribe statement contains multiple event body URIs, the
subscription must be considered a transaction. In other words, all subscriptions
must be successful for the operation to succeed. In case of failure, the subject must
not be subscribed to any additional URIs.

For example, to represent the fact that subject #1234 subscribes to the ‘patient
admission event’ (event #1234), the following fragment can be used

<e f s o c : s u b s c r i b e>
<e f s o c : s u b j e c t r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / s u b j e c t #1234
</ e f s o c : s u b j e c t r e f>
<e f s o c : e v e n t b o d y t y p e r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / even tbody t ype /#1234
</ e f s o c : e v e n t b o d y t y p e r e f>

</ e f s o c : s u b s c r i b e>

4.7.5 Unsubscribe

The unsubscribe operator works similarly to thesubscribe operator. Pa-
rameters and their meaning are identical.Unsubscribe is defined as follows

<e f s o c : u n s u b s c r i b e>

100 Chapter 4. EFSOC Definition and Execution Language

Conten t : (e f s o c : s u b j e c t r e f , (e f s o c : e v e n t b o d y t y p e r e f) +)
</ e f s o c : u n s u b s c r i b e>

4.7.6 Assign

Theassign operator is used to link subjects to roles. The assign operator is de-
fined as

<e f s o c : ass ign>
Conten t : (e f s o c : s u b j e c t r e f + , e f s o c : r o l e r e f +)

</ e f s o c : ass i gn>

The assign operator takes one or more URIs as a reference to a subject as an
attribute and any number of URI references to roles. In a single assign operation, a
subject may be assigned to multiple roles or multiple subjects may be assigned to
multiple roles. The assign operator must function as a transaction. In other words,
if one assignment fails, no assignments may take place at all.

For example, to represent that subject #1234 is assigned the ‘patient admission
service’ role (#101) as well as the ‘hospital service’ role (#102), the following XML
can be used.

<e f s o c : ass ign>
<e f s o c : s u b j e c t r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / s u b j e c t #1234
</ e f s o c : s u b j e c t r e f>
<e f s o c : r o l e r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / r o l e #101
</ e f s o c : r o l e r e f>
<e f s o c : r o l e r e f>

h t t p : / / e f s o c . i n f o l a b . uv t . n l / r o l e #102
</ e f s o c : r o l e r e f>

</ e f s o c : ass i gn>

4.7.7 Unassign

Theunassign operator is used to link subjects to roles. The unassign operator is
defined as

<e f s o c : unass ign>
Conten t : (e f s o c : s u b j e c t r e f , (e f s o c : r o l e r e f) +)

</ e f s o c : unass ign>

The unassign operator takes one URI as a reference to a subject as an attribute
and any number of URI references to roles. In a single unassign operation, a subject
may be unassigned from multiple roles. The unassign operator must function as a
transaction. In other words, if one unassignment fails, no unassignments may take
place at all.

4.8 Access Control Rules 101

4.7.8 Activate

The activate operator is activate roles for subjects. The activate operator is
defined as

<e f s o c : a c t i v a t e>
Conten t : (e f s o c : s u b j e c t r e f , (e f s o c : r o l e r e f) +)

</ e f s o c : a c t i v a t e>

The activate operator takes one URI as a reference to a subject as an attribute
and any number of URI references to roles. In a single activate operation, a subject
may activate multiple roles. The activate operator must function as a transaction. In
other words, if one activation fails, no activations may take place at all.

4.7.9 Deactivate

Thedeactivate operator is used to deactivate roles for subject. The deactivate
operator is defined as

<e f s o c : d e a c t i v a t e>
Conten t : (e f s o c : s u b j e c t r e f , (e f s o c : r o l e r e f) +)

</ e f s o c : d e a c t i v a t e>

The deactivate operator takes one URI as a reference to a subject as an attribute
and any number of URI references to roles. In a single deactivate operation, a
subject may deactivate multiple roles. The deactivate operator must function as a
transaction. In other words, if one deactivation fails, no deactivations may take
place at all.

4.7.10 Set

Theset operator is used to set role attribute values. The operator is defined as

<e f s o c : se t>
Conten t : (e f s o c : r o l e r e f , e f s o c : r o l e a t t r i b u t e r e f ,

e f s o c : v a l u e)
</ e f s o c : se t>

4.8 Access Control Rules

Access control rules take the form

<e f s o c : a c c e s s c o n t r o l r u l e
ID = xs : ID
p r i o r i t y = xs : I n t e g e r
o p e r a t i o n = O p e r a t i o n L i s t
p e r m i s s i o n = P e r m i s s i o n L i s t
Con ten t : (e f s o c : p o l i c y r e f + , e f s o c : p r i n c i p a l ,

e f s o c : c o n d i t i o n)
</ e f s o c : a c c e s s c o n t r o l r u l e>

102 Chapter 4. EFSOC Definition and Execution Language

ID, operation and permission are required attributes. Priority will default to 1.
The policyref parameter may be repeated and refers by URI to the access control
policy to which this rule belongs.

4.8.1 Principal

Principals are either subjects or roles. The principal tag takes the form

<e f s o c : p r i n c i p a l>
(e f s o c : r o l e r e fj e f s o c : s u b j e c t r e f)+

</ e f s o c : p r i n c i p a l>

When multiple principals are specified, the logical union is assumed.

4.8.2 Permission

PermissionList is defined as follows:

P e r m i s s i o n L i s t : : =
” p e r m i t ”

j ” r e j e c t ”

4.8.3 Operation

OperationList is defined as follows:

O p e r a t i o n L i s t : : =
” p u b l i s h ”

j ” u n p u b l i s h ”
j ” s u b s c r i b e ”
j ” u n s u b s c r i b e ”
j ” send ”
j ” a s s i g n ”
j ” u n a s s i g n ”
j ” a c t i v a t e ”
j ” d e a c t i v a t e ”
j ” s e t ”

This list corresponds to the infrastructure operations that were discussed in the
previous chapter.

4.8.4 Condition

In the previous chapter, conditions were also introduced as consisting of a principal
and an expression. We define a condition as:

<e f s o c : c o n d i t i o n>
Conten t : (xs : any)

</ e f s o c : c o n d i t i o n>

4.8 Access Control Rules 103

Conditions which must be met can be specified on the three different layers:
transport layer, message layer and message-context layer. To this end, the EFSOC
access control language provides a number of expressions which may be used to
express those conditions.

Conditions are expressed in the form of XPath statements which should return
a reference to the event body, if they match the event that is evaluated, or nothing,
if they do not.

4.8.5 Transport level expressions

Source IP address

To match the source IP address of the requester, a condition may inspect the ’origin-
ip’ header.

For example, to validate that the event was sent by a subject at IP address
137.56.127.213, the following expression would be used:

/ e v e n t / c o n t e x t / e v e n t [
e v e n t h e a d e r [@name= ’ sender�ip ’] = ’ 137 .56 .217 .213 ’

]

4.8.6 Message level expressions

Message level expressions are expressed according to XPath specifications. For
example, assume thatMessagetakes the format:

<efsoc:event>
<efsoc:eventbody type="prescribemedication">

<patient>sue</patient>
<drug>Ibuprofin</drug>
<dosage>800 mg, every 8 hours</dosage>
<numberofdoses>15</numberofdoses>

</efsoc:eventbody>
</efsoc:event>

To require that medication for Ibuprofin may only be prescribed in quantities
smaller dan 10 doses, the following expression may be used.

/event[eventbody[@eventbodytype=’prescribemedication’]
/numberofdoses < 10]

Note that EFSOC will not be able to enforce any message-level access control
rules if the event body is encrypted with a key that is not known to the EFSOC
broker. While EFSOC is able to enforce message-level access controls, in most
cases, the services involved in the message exchange will have to perform additional
checking themselves.

104 Chapter 4. EFSOC Definition and Execution Language

4.8.7 Message-context level expressions

As mentioned before, access control rules may contain conditions which apply to
temporal and causal relations. Causality is defined as follows: evente2 is said to be
caused by evente1 when the following conditions are met:

1. Evente1 was received;

2. Evente2 is sent at a point in timeafter e1 was received;

3. The receiver ofe1 and the sender ofe2 are the same;

4. The sender ofe2 explicitlystates that it is sent in response toe1.

EFSOC allows the following message-context level expressions:

Testing for causality

Causality is captured in event headercausality. To test for a causal relationship with
other events, the following XPath expression may be used.

/ e v e n t [e v e n t h e a d e r [@name= ’ c a u s a l i t y ’] = ’ e1 ’]

Testing for event sequence

To test for a temporal sequence in events, the ‘timestamp-sent’ header may be in-
spected. For example, to express the requirement that an event must be sent after a
‘prescribemedication’ event, the following expression may be used:

/ e v e n t [e v e n t h e a d e r [@name= ’ t imestamp�sen t ’] >
/ e v e n t [even tbody [@eventbodytype = ’ p r e s c r i b e m e d i c a t i o n ’]]
/ e v e n t h e a d e r [@name= ’ t imestamp�sen t ’]

]

Testing for chronological sequence

To test for chronological sequencing, i.e., if an event was sent before or after a time,
or in a time interval, the timestamp-sent header can be inspected directly.

For example, to test if an event was sent after a certain time, the following XPath
expression may be used.

/ e v e n t [e v e n t h e a d e r [@name= ’ t imestamp�sen t ’] >
’2006�02�20 12 :01 :01+0100 ’]

4.9 Summary 105

4.8.8 Misc expressions

1. Testing for roles

To test if a

/ e v e n t [e v e n t h e a d e r [@name= ’ sender ’] =
/ a s s i g n [s u b j e c t r e f = / a c c e s s c o n t r o l r u l e / p r i n c i p a l / s u b j e c t r e f]
o r / a s s i g n [r o l e r e f = / a c c e s s c o n t r o l r u l e / p r i n c i p a l / r o l e r e f]

]

4.8.9 Combining conditions

Expressions may also be combined to form more complicated requirements. For
example, a condition which states that an event may only be sent on Mondays be-
tween 3pm and 4pm and after a ‘Prescribe Medication’-event has been received, the
following expression may be used.

/ e v e n t [e v e n t h e a d e r [@name= ’ t imestamp�sen t ’] > ’Monday , 3pm’
and e v e n t h e a d e r [@name= ’ t imestamp�sen t ’] < ’Monday , 4pm’
and e v e n t h e a d e r [@name= ’ t imestamp�sen t ’] >

/ e v e n t [even tbody [@eventbodytype = ’ p r e s c r i b e m e d i c a t i o n ’]]
/ e v e n t h e a d e r [@name= ’ t imestamp�sen t ’]

]

4.9 Summary

The EFSOC definition and execution language consists of two separate sub-
languages, which may be nested. The definition language provide a means to de-
scribe elements, such as subjects, roles or event body types. Definition elements
may be contained in execution language elements, which allows the creating, re-
moval or modification of definition elements. Finally, definition elements may be
contained in event body types that will be pre-registered in EFSOC implementa-
tions. A full reference of EDL can be found in Appendix III.

106 Chapter 4. EFSOC Definition and Execution Language

Chapter 5

EFSOC Query Language

In the previous chapters, we introduced the EFSOC Definition and Constraint Lan-
guage (DCL). The EFSOC DCL is XML-based and provides a number of contructs
for defining elements using the EFSOC vocabulary.

In addition to having the ability to define EFSOC instances, it is often useful to
be able to query the state of the full model.

In this chapter, we investigate querying XML-based repositories, and we intro-
duce the EFSOC Query Language (EQL).

Throughout the chapter, we will be referring to a simple example, as illustrated
in Figure 5.1. The example contains a small fragment of EFSOC DCL in which two
subjects (John and Mary) and one role (Physician) are defined. John and Mary are
both asssigned to the Physician role. Mary has sent an ‘Prescribe Medication’ event
at some point in time.

5.1 Querying XML

Since the EFSOC-DCL is XML-based, it is an obvious choice to use XML-based
tools to define aquery language. The query language may be used to inspect the
state of the model, for a variety of reasons. For example, using a query, a service
provider who wants to deploy a new composite service will be able to check if his
new service will be able to execute its operation given the current access control
constraints.

5.1.1 XPath

While—strictly speaking—XPath is not a query language, most XML querying re-
lies heavily on it. XPath is a language that can be used to locate information in XML
documents. As such, it is possible to formulate XPath expressions that function as
queries, however that is not where its strengths lay.

Consider the EFSOC definitions of Figure 5.1. It is fairly straight-
forward to extract simple information from that example. For ex-
ample, using the XPath expression/efsoc/event[eventbody[

108 Chapter 5. EFSOC Query Language

<e fsoc>
<s u b j e c t ID=”mary ”/>
<s u b j e c t ID=” john ”/>
< r o l e ID=” p h y s i c i a n ”/>

<ass ign>
<s u b j e c t r e f>mary</ s u b j e c t r e f>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ ass i gn>
<ass ign>

<s u b j e c t r e f>john</ s u b j e c t r e f>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ ass i gn>

<e v e n t ID=” e1”>
<e v e n t h e a d e r name=” sender�i p ” >137.56.217.213< / even theade r>
<e v e n t h e a d e r name=” s e n d e r ”>mary</ even theade r>
<e v e n t h e a d e r name=” t imestamp�s e n t ”>99</ even theade r>
<eventbody even tbody t ype =” p r e s c r i b e m e d i c a t i o n ”>

<p a t i e n t>sue</ p a t i e n t>
<drug>I b u p r o f i n</ drug>
<dosage>300 mg , 3 t i m e s per day</ dosage>
<numberofdoses>15</ numberofdoses>

</ eventbody>
</ event>

<e v e n t ID=” e2”>
<e v e n t h e a d e r name=” t imestamp�s e n t ”>100</ even theade r>
<e v e n t h e a d e r name=” c a u s a l i t y ”>e1</ even theade r>

</ event>

<e v e n t ID=” e3 ”/>
</ e f soc>

Figure 5.1: Sample definitions

5.1 Querying XML 109

@eventbodytype=’prescribemedication’]] will return the full
event representation of all events with event body type ‘prescribe medication’.

It is also possible to crete more complicated XPath expressions, such as illus-
trated in the previous chapter. However, the disadvantage of such specifications are
that they become very complicated quickly, and are hard to write, or understand.

Instead, we propose to implement a number of functions in the XQuery lan-
guage, which will shield users from complex expressions and allow them to com-
pose fairly complex statements easier.

For example, assume that we want to represent all subjects whole are assigned
the physician role and who have sentprescribe medicationevents. In the form of
XPath expressions, this would look like

1. An expression to locate all subject who are member of the physician role:

/ e f s o c / s u b j e c t [@ID=
/ e f s o c / a s s i g n [r o l e r e f = ’ p h y s i c i a n ’] / s u b j e c t r e f

2. An expression to locate all subjects who sentprescribe medicationevents:

/ e f s o c / e v e n t [
even tbody [@eventbodytype = ’ p r e s c r i b e m e d i c a t i o n ’]

] / e v e n t h e a d e r [@name= ’ sender ’]

3. An expression which combines the above

/ e f s o c / s u b j e c t [
@ID=/ e f s o c / a s s i g n [r o l e r e f = ’ p h y s i c i a n ’] / s u b j e c t r e f and
@ID=/ e f s o c / e v e n t [

even tbody [@eventbodytype = ’ p r e s c r i b e m e d i c a t i o n ’]
] / e v e n t h e a d e r [@name= ’ sender ’]]

As can illustrated, the expression become complicated (and prone to error)
rapidly.

5.1.2 XQuery

XQuery (XQuery, 2005) is a W3C proposed standard that was designed specifically
for querying XML documents. Unlike many of the X-specification, XQuery (like
XPath) is not an XML language itself. XQuery does rely on XPath expressions to
nagivate through document content, and both languages share the same data model.

The XQuery language is often compared with the structured query language
(SQL) that is used to extract information from relational database. XQuery’s struc-
ture is simple and can be summarized by the acronym FLWOR, which standads for
For-Let-Where-Order-Return.

1. Thefor statement can be used to iterate over nodes in a node set. For example,
the following statement lists the identifiers of all subject elements in the file
efsoc.xml .

110 Chapter 5. EFSOC Query Language

f o r $x i n doc (” e f s o c . xml ”) / e f s o c / s u b j e c t
r e t u r n $x /@ID

2. Thewherestatement can be used to restrict the nodes in a node set. For
example, the following statement lists all subjects in the fileefsoc.xml
who sent events from a specific IP address.

f o r $x i n doc (” e f s o c . xml ”) / e f s o c / e v e n t
where $x / e v e n t h e a d e r [@name= ’ sender�ip ’] = ” 1 3 7 . 5 6 . 1 2 7 . 2 1 3 ”
r e t u r n $x / e v e n t h e a d e r [@name= ’ sender ’]

3. Thelet statement can be used to define a variable and add a value to it. For
example, the statement listed above can also be expressed as:

f o r $x i n doc (” e f s o c . xml ”) / e f s o c / e v e n t
l e t $ ip = ”1 3 7 . 56 . 1 27 . 2 1 3 ”
where $x / e v e n t h e a d e r [@name= ’ sender�ip ’] = $ ip
r e t u r n $x / e v e n t h e a d e r [@name= ’ sender ’]

4. Theorder bycan be used to sort the output. For example, to sort the output
of the previous statement chronologically, the following code can be used:

f o r $x i n doc (” e f s o c . xml ”) / e f s o c / e v e n t
l e t $ ip = ”1 3 7 . 56 . 1 27 . 2 1 3 ”
where $x / e v e n t h e a d e r [@name= ’ sender�ip ’] = $ ip
o r d e r by $x / e v e n t h e a d e r [@name= ’ t imestamp�sen t ’]
r e t u r n $x / e v e n t h e a d e r [@name= ’ sender ’]

Statements listed as above can also be encapsulated in user-defined functions.
For example, to define a function that produces the same output as above, but pa-
rameterizes the required IP address, the following code can be used

d e c l a r e f u n c t i o n sendersBy IP ($ ip)f
f o r $x i n doc (” e f s o c . xml ”) / e f s o c / e v e n t
where $x / e v e n t h e a d e r [@name= ’ sender�ip ’] = $ ip
o r d e r by $x / e v e n t h e a d e r [@name= ’ t imestamp�sen t ’]
r e t u r n $x / e v e n t h e a d e r [@name= ’ sender ’]

g ;

The same query shown that was shown in the previous section can also be made
using XQuery, as illustrated below.

1. Define a function to retrieve subjects playing a certain role:

d e c l a r e f u n c t i o n l o c a l : s u b j e c t s W i t h R o l e ($ r o l e)f
f o r $x i n doc (” example . xml ”) / e f s o c / a s s i g n
where $x / r o l e r e f = $ r o l e
r e t u r n $x / s u b j e c t r e f / t e x t ()

g ;

5.1 Querying XML 111

2. Define a function to retrieve events of a particular type:

d e c l a r e f u n c t i o n l o c a l : EventsOfType ($ type)f
f o r $x i n doc (” example . xml ”) / e f s o c / e v e n t
where $x / even tbody / @eventbodytype = $ type
r e t u r n $x

g ;

3. Define a function that retrieves subjects by ID:

d e c l a r e f u n c t i o n l o c a l : subjectByName ($name)f
f o r $x i n doc (” example . xml ”) / e f s o c / s u b j e c t
where $x /@ID = $name
r e t u r n $x

g ;

4. Define a function that retrieves the ID of the sender of a particular event:

d e c l a r e f u n c t i o n l o c a l : s e n d e r s ($even t)f
f o r $x i n l o c a l : EventsOfType ($even t)
r e t u r n $x / e v e n t h e a d e r [@name=” s e n d e r ”] / t e x t ()

g ;

5. An expression which combines the above

<out>
f

l e t $sende r := l o c a l : subjectByName (
l o c a l : s e n d e r s (” p r e s c r i b e m e d i c a t i o n ”)) ,

$ p h y s i c i a n s := l o c a l : subjectByName (
l o c a l : s u b j e c t s W i t h R o l e (” p h y s i c i a n ”))

r e t u r n $sende r i n t e r s e c t $ p h y s i c i a n s
g

</ out>

As can be seen, the final expression above is easier to understand than the one
using plain XPath expressions.

5.1.3 XSL

The XSL specification is an XML-language used for transforming XML documents
from one structure to another. XSL is commonly used to transform XML documents
into (X)HTML documents that can be shown in a user’s web browser. However,
XSL can also be used to filter XML content, which means that it is usuable as a
query language.

In the example shown in Figure 5.1, we showed an EFSOC DCL fragment which
we subsequently queried using XPath, respectively using XQuery. The same query
can be done using XSL as follows.

112 Chapter 5. EFSOC Query Language

<x s l : t r a n s f o r m v e r s i o n =”1 .0 ”
xmlns : x s l = ” h t t p : / / www. w3 . org / 1 9 9 9 /XSL / Transform”>

<x s l : v a r i a b l e
name=” p h y s i c i a n s ”
s e l e c t = ” / e f s o c / a s s i g n [r o l e r e f = ’ p h y s i c i a n ’] / s u b j e c t r e f ”/>

<x s l : v a r i a b l e
name=” s e n d e r s ”
s e l e c t = ” / e f s o c / e v e n t [even tbody [

@eventbodytype = ’ p r e s c r i b e m e d i c a t i o n ’]] /
e v e n t h e a d e r [@name= ’ sender ’] ” />

<x s l : t e m p l a t e match =”/”>
<x s l : fo r�each s e l e c t =” $ p h y s i c i a n s ”>

<x s l : apply�t e m p l a t e s s e l e c t =” c u r r e n t () ” />
</ x s l : fo r�each>

</ x s l : t emp la te>

<x s l : t e m p l a t e match =” s u b j e c t r e f ”>
<x s l : v a r i a b l e name=” s”>

<x s l : va lue�of s e l e c t =” c u r r e n t () ” />
</ x s l : v a r i a b l e>
<x s l : fo r�each s e l e c t =” $ s e n d e r s ”>

<x s l : i f t e s t =” c u r r e n t () = $s”>
<x s l : va lue�of s e l e c t =” c u r r e n t () ” />

</ x s l : i f >
</ x s l : fo r�each>

</ x s l : t emp la te>

</ x s l : t r ans fo rm>

The code example begins by defining a variablephysicians , which will be
assigned the value of the evaluated XPath expression listed in theselect attribute.
The same happens for the variablesenders . Next, all physicians are checked to
see if they are also in the senders. If that is the true, they become part of the output.

Like the XQuery expression, the listing shown above is preferred over a plain
XPath expression. However, the readablity and level of understanding of both leaves
to be desired.

5.2 EFSOC Query Language Overview

In the previous chapter, we analyzed three query language for use with XML data:
XPath, XQuery and XSL. Of all three languages, XQuery provides the most ex-
pressive querying capabilities and offers methods for encapsulating functionality
via user-defined functions.

For these reasons, we will define a number of XQuery functions that can be used
to inspect the state of a model. These functions can be divided into two categories:

5.2 EFSOC Query Language Overview 113

the first category provides basic queries to retrieve information defined in EDL. The
second category of functions combines functions of the first category to provide
answers to more complicated queries.

5.2.1 Basic queries

The following basic queries are defined. Thestorage() expression in the follow-
ing XPath functions provides access to the persistent storage manager containing all
EFSOC definitions.

1. function local:subjectByID($ID)
Return the subject with the given ID.

d e c l a r e f u n c t i o n l o c a l : sub jec tBy ID ($ID)f
f o r $x i n s t o r a g e () / e f s o c / s u b j e c t
where $x /@ID = $ID
r e t u r n $x

g ;

2. function local:roleByID($ID)
Returns the role with the given ID.

d e c l a r e f u n c t i o n l o c a l : ro leByID ($ID)f
f o r $x i n s t o r a g e () / e f s o c / r o l e
where $x /@ID = $ID
r e t u r n $x

g ;

3. function local:eventTypeByID($ID)
Returns the event body type with the given ID.

d e c l a r e f u n c t i o n l o c a l : eventTypeByID ($ID)f
f o r $x i n s t o r a g e () / e f s o c / even tbody t ype
where $x /@ID = $ID
r e t u r n $x

g ;

4. function local:eventByID($ID)
Returns the event with the given ID.

d e c l a r e f u n c t i o n l o c a l : eventByID ($ID)f
f o r $x i n s t o r a g e () / e f s o c / e v e n t
where $x /@ID = $ID
r e t u r n $x

g ;

5. function local:eventsByType($type)
Returns all events of the given type that have been sent.

114 Chapter 5. EFSOC Query Language

d e c l a r e f u n c t i o n l o c a l : eventsByType ($ type)f
f o r $x i n s t o r a g e () / e f s o c / e v e n t
where $x / even tbody / @eventbodytype = $ type
r e t u r n $x

g ;

6. function local:subjectsByRole($role)
Returns all subjects who are currentlyassignedto the given role.

d e c l a r e f u n c t i o n l o c a l : s u b j e c t s B y R o l e ($ r o l e)f
f o r $x i n s t o r a g e () / e f s o c / a s s i g n
where $x / r o l e r e f = $ r o l e
r e t u r n $x / s u b j e c t r e f / t e x t ()

g ;

7. function local:rolesBySubject($subject)
Returns all roles that are currentlyassignedto the given subject. The subject
is references by ID.

d e c l a r e f u n c t i o n l o c a l : r o l e s B y S u b j e c t ($ s u b j e c t)f
f o r $x i n s t o r a g e () / e f s o c / a s s i g n
where $x / s u b j e c t r e f = $ s u b j e c t
r e t u r n $x / r o l e r e f / t e x t ()

g ;

8. function local:subjectsBySubscription($type)
Returns identifiers of subjects who are subscribed to the given event body
type.

d e c l a r e f u n c t i o n l o c a l : s u b j e c t s B y S u b s c r i p t i o n ($ type)f
f o r $x i n s t o r a g e () / e f s o c / s u b s c r i b e
where $x / e v e n t b o d y r e f = $ type
r e t u r n $x

g ;

9. function local:eventsBySubscriber($subject)
Returns identifiers of all event body types that the given subject is subscribed
to.

d e c l a r e f u n c t i o n l o c a l : e v e n t s B y S u b s c r i b e r ($ s u b j e c t)f
f o r $x i n s t o r a g e () / e f s o c / s u b s c r i b e
where $x / s u b j e c t r e f = $ s u b j e c t
r e t u r n $x

g ;

10. function local:roleWithAttribute($roleattribute)
Returns identifiers of all roles that have a role attribute with the given name.

5.3 Summary 115

d e c l a r e f u n c t i o n l o c a l : r o l e s W i t h A t t r i b u t e ($ a t t r i b u t e)f
f o r $x i n s t o r a g e () / e f s o c / r o l e a t t r i b u t e t y p e
where $x /@ID= $ a t t r i b u t e
r e t u r n $x

g

11. function local:activeRolesOfSubject($subject)
Returns the role identifiers that the specified subject currently has active.

d e c l a r e f u n c t i o n l o c a l : a c t i v e R o l e s O f S u b j e c t ($ s u b j e c t)f
f o r $x i n s t o r a g e () / e f s o c / a c t i v a t e
where $x / s u b j e c t r e f = $ s u b j e c t
r e t u r n $x

g

5.2.2 Second-order queries

The following second-order queries are defined. Some examples of such queries are
enumerated below:

1. function sendersOfEventType($type)
Returns subject ID’s of all subjects who have sent events of the given type.

d e c l a r e f u n c t i o n l o c a l : sendersOfEventType ($ type)f
f o r $x i n eventsByType ($ type)
r e t u r n $x / e v e n t h e a d e r [@type= ’ sender ’]

g

2. function local:subjectWithAttributeValue($roleattribute,
$value)
Returns identifiers of all subjects who have a role with the given role attribute
and the value of that role attribute is equal to the specified value.

d e c l a r e f u n c t i o n
l o c a l : s u b j e c t s W i t h A t t r i b u t e V a l u e ($ r o l e a t t r i b u t e , $va lue)f
l e t $y := s t o r a g e () / e f s o c / r o l e a t t r i b u t e v a l u e [

@ r o l e a t t r i b u t e t y p e r e f = $ r o l e a t t r i b u t e and
@value= $va lue] / r o l e a s s i g n m e n t r e f

f o r $a i n s t o r a g e () / e f s o c / a s s i g n
f o r $b i n $y
where $a /@ID = $b
r e t u r n $a / s u b j e c t r e f

g ;

5.3 Summary

In this chapter, we evaluated three languages that can be used to query XML data.
XPath is a language that can be used to locate data in XML documents. Strictly

116 Chapter 5. EFSOC Query Language

speaking, this means that it is not a query language per se, but it can be used as
such. While XPath expressions tend to quickly become large and complex, they are
useful for smaller lookups. In addition, XPath is used heavily in XQuery.

XQuery is a W3C proposed standard that was designed specifically for querying
XML documents. Unlike many of the X-specification, XQuery (like XPath) is not
an XML language. XQuery’s structure is simple and can be summarized by the
acronym FLWOR, which standads for For-Let-Where-Order-Return.

The third language that was used is XSL. The XSL specification is an XML-
language used for transforming XML documents from one structure to another.
XSL is commonly used to transform XML documents into (X)HTML documents
that can be shown in a user’s web browser. However, XSL can also be used to filter
XML content, which means that it is usuable as a query language.

After evaluating of the three languages, we chose to implement the EFSOC
Query Language (EQL) as a set of XQuery functions. The functions that are
provided can easily be extended by defining additional ones, which may use pre-
existing queries.

Part II

Validation

Chapter 6

Formal Foundations

Entia non sunt multiplicanda praeter necessitatem
William of Ockham, c. 1288–1348

This chapter aims to provide a formal analysis of the EFSOC framework. By
including this analysis, we illustrate that the underlaying framework isoperationally
consistentand that it can be implemented into a working software solution. As a
result, we will show that the framework does not violate its own integrity constraints
and that the framework can indeed be instantiated.

In this section, the first step is to define a basicvocabulary, which may be used
to expressfactsandaxioms. Next, we will describe access control rules and access
control policies and their relationship to the vocabulary.

6.1 Reasons for formalizing

Unfortunately, all too often, a formalism is viewed as a goal in its own right. We
disagree with this view, and are convinced that a formalism is only useful when it
addresses a specific goal that is known in advance. There are several good reasons
to formalize an approach, a framework or a model.

1. Our everyday use of language is vague, and our everyday level of thinking is
often muddled (Suppes, 1957). Logic formalisms can play a role in clarifying
certain types of descriptive language, most notably concepts and relations
between concepts. This is most commonly achieved by providing a small
set of language constructs that have an agreed upon meaning, and ways to
combine those constructs.

Formalizing can be used as a means to explain concepts and their relation-
ships using precise semantics.

2. Since a formalism provides a description of concepts and relationships be-
tween concepts, it is possible to express separate ‘systems’ using a common
vocabulary. This makes it possible to compare the systems and make exact
statements about properties of thoe systems.

120 Chapter 6. Formal Foundations

Formalizing can be used as a means to compare different ‘systems’.

3. Many formalisms offer a way to create prove. By combining facts with ax-
ioms (A self-evident and necessary truth, or a proposition whose truth is so
evident as first sight that no reasoning or demonstration can make it plainer),
propositions and deductive rules, it can be deduced that facts are in compli-
ance with axioms and rules.

Formalizing can be used as a means to proof that a set of facts is consistent
with a set of axioms and deductive rules.

In this thesis, we will use the process of formalization in the first role: as a means
to explain concepts and their relationships using precise semantics. In other words,
we will express the EFSOC framework in logic in order to explain in a common lan-
guage of which elements it consists and how elements are related. The formalized
representation of the EFSOC framework presented in this chapter is intended for a
human reader. As such, representations that are primarily intended for automated
processing, such as the Web Ontology Language (McGuinness and van Harmelen,
2004), are not considered.

Secondly, we will use the framework defined in the formalism to show that the
results of a case study, expressed in terms of the framework, are logically consistent
with the rules and constraints put forward by the EFSOC approach.

6.2 Approach

In any formalistic approach, choosing the correct formalism is a very difficult prob-
lem, as well as an important decision. To be able to make the right choice, we
require a formalism to have the following properties:

1. The ability to express facts;

2. The ability to express deductive rules;

3. The ability to express constraints;

4. The ability to express queries;

5. Support for complex data types;

6. The ability to represent information at multiple levels of abstraction

After an initial survey, the shortlist for formalisms that were considered consists
of predicate logic, Datalog and Telos. Each of these formalisms will be discussed
briefly and evaluated against the criteria listed above.

6.2 Approach 121

6.2.1 Predicate Logic

Predicate logic is an extension of propositional logic, which can be used to express
facts and assigns truth values to combinations of facts, and extends it with the abil-
ity to express quantified statements. In particular, predicate logic introduces the
existential quantifier9, which is pronounced ‘for some’ or ‘there exists at least one’
and the universal quantifier8, which is pronounced ‘for all’.

Predicate logic, or rather, propositional logic, is extremely well suited for ex-
pressing facts, and for combining facts with logic operators to arrive at sentences
which may (or may not) be true. For example, we introduce the predicatesubject(a)
to represent thata is a subject and the predicaterole(b) to represent thatb a role.
Furthermore, assume that the predicateassigned(a; b) represents the fact thata is
assigned roleb.

Using propositional logic, it can now be expressed that ‘john’ is a subject,
‘physician’ is a role and that John plays the role of physician:

(subject = fjohng; role = fphysiciang; assigned = f(john; physician)g)

Deductive rules can be specified with the same amount of ease. To state that a
relationa is true if b or c are true, one would simply write

a b _ c

Like specifying deductive rules, constraints can be interpreted as rules that must
always be true. To express the constraint that all subjects must be assigned a role,
one would write

8s subject(s)! 9r role(r) assigned(s; r)

When predicate logic is defined as full clausal logic, it is also possible to spec-
ify variables. Using variables and predicate logic, it becomes possible to specify
queries. For example, to specify a query that retrieves the subject who play the role
physician, one could write

physician(X) subject(X) ^ assigned(X; physician)

Note that the direction of the implication arrow is reversed from when specifying
a constraint.

While we have shown that predicate logic can be used to express facts, rules,
constraints and queries, predicate logic is not intuitive for expressing complex data
types. For example, to express that subject john was born on the first of January,
1970, that his username is ”john” and that his password is ”secret”, we would need
to introduce the following data

(username = f"john"g, password = f"secret"g, birthdate = f”1970-01-
01”g, subjectusers = f(john, "john")g, subjectpassword = f(john, "secret")g,
subjectbirthdate = f(john, "1970� 01� 01")g)

122 Chapter 6. Formal Foundations

While it is possibleto express complex data using predicate logic, it is not a
convenient formalism to do so.

In addition, (first order) predicate logic is not suitable for combining multiple
layers of abstration in a single model.

6.2.2 Datalog

Datalog is a logic-based data model which is loosely based on the Prolog program-
ming language. The underlaying mathematical model of data for datalog is essen-
tially that of the relational model. Predicate symbols in datalog denote relations.
Datalog supports two types of relations: existential database relations and sinten-
sional database relations. Existential database relations (EDBs) are relations that
are reflected directly in the database of facts, while intentional database relations
(IDBs) are only defined by logical rules (Ullman, 1988).

The above excerpt implies that Datalog provides support for representing facts
(through a database), and rules to deduce new facts from known ones.

Since Datalog is essentially built on the relational model, it is—at least
partially— possible to store complex data types. The restriction in complexity is
caused by the fact that the relational model does not allow tables to contain nested
structures, like it is common in for example XML databases.

Datalog supports the formulation of queries via rules that derive predicates in a
bottom-up fashion. For example, the query to retrieve which subjects play the role
of physician can be represented as follows:

p h y s i c i a n (X) :� s u b j e c t (X) , a s s i g n e d (X, p h y s i c i a n)

Datalog allows for the specification of constraints using the same rule system.
By specifying the consequent of the rule as ‘inconsistent’, the antecedent must re-
main false. For example, to specify that the physician role and the patient role
cannot be assigned to the same subject, the following representation can be used.

i n c o n s i s t e n t :� s u b j e c t (X) , a s s i g n e d (X, p h y s i c i a n) ,
a s s i g n e d (X, p a t i e n t)

Unfortunately, like predicate logic, Datalog is not able to natively specify infor-
mation at different levels of abstraction.

6.2.3 Telos

Telos provides facilities for constructing, querying and updating structured knowl-
edge bases. It includes a first order assertion sublanguage as means of specifying
integrity constraints and deductive rules (Mylopoulos et al., 1990).

The Telos knowledge base may contain structured objects calledpropositions
that can either beindividualsor attributes. An individual is a concrete entity, such
as a subject, orjohn , while an attribute represents a binary relationship between
entities or other relationships.

Telos offers the additional benefit that it is able to express a model that is lay-
ered; in other words, Telos understands the concepts of instances, models and meta

6.2 Approach 123

models. A proposition that has no instances represents concrete entities in the do-
main of discourse and is called atoken. Simple classes are tokens that only have
tokens as instances, meta-classes are tokens that only have simple classes as in-
stances, etc.

Every attribute consists of a source, a label and a destination and can be rep-
resented by a three-tuple[source, label, to]. Consider the previous example. To
express that John is a subject, physician a role and that john plays the role of physi-
cian, the following Telos representation would be used:

Token p h y s i c i a n i n Role end
Token john i n S u b j e c t w i th

uses use1 : p h y s i c i a n
end

We can also define subjects to be complex data types containing the attributes
password and birthdate.

C l as s S u b j e c t i n S imp leC lass wi th
a t t r i b u t e

b i r t h d a t e : Date ;
password : S t r i n g ;
a s s i g n e d : Role ;
uses : Role

end

While Telos will translate the above complex data types to a structure that is
similar to the one that was explained in Section 6.2.1, we can abstract from this and
do not need to worry about it.

The definition of Subject can be extended with the constraint that a role can only
be activated on a subject if it has been assigned to him. The definition of Subject
will then be

C l as s S u b j e c t i n S imp leC lass wi th
a t t r i b u t e

b i r t h d a t e : Date ;
password : S t r i n g ;
a s s i g n e d : Role ;
uses : Role

c o n s t r a i n t
c : $ f o r a l l r / Role (t h i s uses r)

==> (r i n t h i s . a s s i g n e d)
$

end

In other words, the Telos language meets all requirements that were outlined in
Section 6.2.

124 Chapter 6. Formal Foundations

6.3 Definition and Constraint Language

The basic concepts that comprise the EFSOC framework are: Role, Role Attribute,
Subject, Event, Event Type. For each of these concepts, a corresponding Telos Sim-
pleClass is defined. Additionally, roles and subjects can be related via relationships
publish, assigned and uses. Subjects can be related to events via the sent relation-
ships and subject can be related to event body types via the subscribe and publish
relationships.

This leads to the following vocabulary for the definition and constraint language.

1. Subjects are defined as

C l as s S u b j e c t i n S imp leC lass wi th
a t t r i b u t e

a s s i g n e d : Role ;
uses : Role
s u b s c r i b e d t o : EventBody

c o n s t r a i n t
c : $ f o r a l l r / Role (t h i s uses r)

==> (t h i s a s s i g n e d r)
$

end

Axiom 6.1 A role can only be used by a subject if the role is also assigned to
that subject.

2. Roles are defined as

C l as s Role i n S imp leC lass isA P r i n c i p a l w i th
a t t r i b u t e

p u b l i s h e d b y : S u b j e c t ;
r o l e a t t r i b u t e : R o l e A t t r i b u t e T y p e

c o n s t r a i n t
c : $ e x i s t s s / S u b j e c t (t h i s p u b l i s h e d b y s) and

f o r a l l s1 / S u b j e c t s2 / S u b j e c t
(t h i s p u b l i s h e d b y s1) and (t h i s p u b l i s h e d b y s2)
==> (s1 == s2) $

end

Axiom 6.2 All roles must be published by one subject.

3. Role Attribute Types are defined as

C l as s R o l e A t t r i b u t e T y p e i n S imp leC lass end

4. Role Attribute (values) are defined as

6.3 Definition and Constraint Language 125

C l as s R o l e A t t r i b u t e i n S imp leC lass wi th
a t t r i b u t e

ro l eAss ignmen t : S u b j e c t ! uses ;
r o l e A t t r i b u t e T y p e : R o l e A t t r i b u t e T y p e ;
v a l u e : S t r i n g

end

5. Events are defined as

C l as s Even tC lass i n MetaClass wi th
a t t r i b u t e

heade r : EventHeader ;
body : EventBody ;

end

An event class must be instantiated before it can be used as an event.

6. Event Bodies are defined as

C l as s EventBody i n MetaClass wi th
a t t r i b u t e

p u b l i s h e d b y : S u b j e c t
c o n s t r a i n t

c : $ e x i s t s s / S u b j e c t (t h i s p u b l i s h e d b y s) and
f o r a l l s1 , s2 / S u b j e c t (t h i s p u b l i s h e d b y s1) and
(t h i s p u b l i s h e d b y s2) ==> (s1 == s2) $

end

Axiom 6.3 All event bodies must be published by one subject.

7. Event Headers are defined as

C l as s EventHeader i n MetaClass end

Note that the Event Header class is defined as a meta class. As a result, it
must be instantiated before it can be used in an event.

The minimal set of headers that an event must have is

1. sender; representing the sender of the event.

C l as s Even tHeade rsende r i n S imp leClass , EventHeader
end

It is important that the only one who is able to set headers or modify header
values is the EFSOC system itself. The reason for this is that event headers contain
data that are important to achieve proper security. For example, if subjects were
able to set their own sender header, identity spoofing would easily be achieved.

Assume the situation outlined in the previous example. The knowledge base
will be populated as follows:

126 Chapter 6. Formal Foundations

Token p h y s i c i a n i n Role w i th
p u b l i s h e d b y

p : e f s o c
end

Token john i n S u b j e c t w i th
a s s i g n e d

a1 : p h y s i c i a n
uses

u1 : p h y s i c i a n
end

Further assume that john is able to prescribe medication to patients by generat-
ing prescribeMedicationEvents.

C l as s P r e s c r i b e M e d i c a t i o n B o d y i n EventBody , S imp leC lass
wi th a t t r i b u t e

p a t i e n t : S u b j e c t ;
drugname : S t r i n g ;
dosage : S t r i n g ;
numbero fdoses : I n t e g e r

end

C l as s P r e s c r i b e M e d i c a t i o n E v e n t i n Even tC lass , S imp leC lass
wi th body

b : P r e s c r i b e M e d i c a t i o n B o d y
end

As a result, an event instance which represents a prescription for Sue concerning
800 mg Ibuprofin, to be administered 3 times a day for a week would look like

Token p r e s c r i p t i o n 1 b d y i n P r e s c r i b e M e d i c a t i o n B o d y wi th
p a t i e n t s : sue
drugname drug : ” I b u p r o f i n ”
dosage dose : ”800 mg , 3 t i m e s per day ”
numbero fdoses : 21

end

Token p r e s c r i p t i o n 1 e v e n t i n P r e s c r i b e M e d i c a t i o n E v e n t
w i th

body b : p r e s c r i p t i o n 1 b d y
end

The full implementation of the EFSOC definition and execution language is
included for reference in Appendix III.

6.4 Query Language

Having laid down the basic EFSOC vocabulary in the previous section, the section
can now be used to specify queries. The EFSOC query language consists of a

6.4 Query Language 127

number of predefined queries that can be used to inspect the state of the model. For
practical purposes, the query language can be divided in queries that directly query
classes for instances, and for in queries that are more complex and add relationships.

For example, to find out which subjects are subscribed to a particular event body
type, the following query can be used:

Token S u b j e c t s B y S u b s c r i p t i o n i n Gener i cQueryC lass
isA S u b j e c t w i th

p a r a m e t e r
e v e n t : EventBody

c o n s t r a i n t
c : $ (˜ t h i s s u b s c r i b e d t o ˜ e v e n t)
$

end

A slightly more complicated query retrieves all subjects who have ever sent an
event of a specific type. The query uses the fact that Telos considers all objects as
individuals or as attributes.

Token SendersOfEventType i n Gener i cQueryC lass
isA S u b j e c t w i th

p a r a m e t e r
e b t : Even tC lass

c o n s t r a i n t
c : $ e x i s t s e / I n d i v i d u a l s / Even tHeaderSender

(e i n ˜ e b t) and
(e s e n d e r s) and
(s s u b j e c t ˜ t h i s)

$
end

Another example of a query which appears as a complicated one is illustrated
by Figure 6.1. Assume that we wish to query the model to find all subjects who
have a specific value for a given role attribute. For example, this query would be
used to find out who are treating a particular patient.

Expressed in ConceptBase notation, this query looks as follows:

Token S u b j e c t W i t h R o l e A t t r i b u t e V a l u e i n Gener i cQueryC lass
isA S u b j e c t w i th

p a r a m e t e r
a t t r : R o l e A t t r i b u t e T y p e ;
v a l u e : S t r i n g

c o n s t r a i n t
c : $ e x i s t s r a / R o l e A t t r i b u t e u / S u b j e c t ! uses

(r a r o l e A t t r i b u t e T y p e ˜ a t t r) and
(r a v a l u e ˜ v a l u e) and
(r a ro l eAss ignmen t u) and
Ai (˜ t h i s , uses , u)

$
end

128 Chapter 6. Formal Foundations

Figure 6.1: Role Attribute Example

The query works by identifying the role attribute values that match on type
and value, and, using the role assignment associated with the value, identify the
appropriate subjects.

The full query language has been implemented as ConceptBase Generic-
QueryClasses and is included for reference in Appendix III.

6.5 Expressing Security Policies and Security Rules

As outlined previously Security Policies may contain access control rules, which
regulate permission to execute certain operations, and membership rules, which
regulate membership access to a policy. This section discusses how policies and
rules are expressed, and how they can be used to achieve separation of duty, as
explained in Section 2.6.2.

First, we establish the concept of a security policy:

C l as s A c c e s s C o n t r o l P o l i c y i n S imp leC lass wi th
a t t r i b u t e

owner : S u b j e c t
end

This provides us with a simple owned class that can be referenced by access
control rules at a later point. As expressed in a previous chapter, access control
rules themselves consist of an operation, a principal and a condition, and belong to
a specific policy and may have a priority. This is expressed as follows:

C l as s AccessCon t ro lRu le i n S imp leC lass wi th
a t t r i b u t e

o p e r a t i o n : O p e r a t i o n ;
c o n d i t i o n : P r o p o s i t i o n ;
p e r m i s s i o n : P e r m i s s i o n ;
p r i o r i t y : I n t e g e r ;
p o l i c y : A c c e s s C o n t r o l P o l i c y ;

6.6 Implementing Separation of Duty 129

p r i n c i p a l : P r i n c i p a l
end

Enforcing these access control policies and access control rules is kept out-of-
scope. The goal of this formalization is to explain the EFSOC concepts and their
relationships using precise semantics. For that reason, we will provide a way to
specify access control constructs, but we will not implement the algorithm in Con-
ceptBase.

6.5.1 Security Rules: Queries or Constraints

Security rules can be viewed as constraints which preserve the state of a database
in a logically consistent fashion, or as queries which can be executed by a reference
monitor who uses them to decide whether or not access will be granted. In EFSOC,
we choose view security rules as queries.

6.6 Implementing Separation of Duty

Separation of duty comes in two different forms: static separation of duty prevents
two roles or more to beassignedsimultaneously to a subject, while dynamic sep-
aration of duty allows roles to be assigned simultaneous, but not to beactivatedat
the name time.

Encforcing separation of duty constraints can be divided in two parts: maintain-
ing records of which combinations of roles will be considered as a separation of
duty (either static or dynamic), and enforcing the separation of duty.

A static separation of duty can be described as:

8s 2 Subject r1; r2 2 Role (s assigned r1) ^ (s assigned r2) ^ :(r1 == r2)

)

:9f 2 SSDConstraint(f role r1) ^ (f role r2)

Smilarly, a dynamic separation of duty can be described as:

8s 2 Subject r1; r2 2 Role (s uses r1) ^ (s uses r2) ^ :(r1 == r2)

)

:9f 2 DSDConstraint(f role r1) ^ (f role r2)

The formula specifies that if a single subject is assigned two (or more) distinct
roles, there may not be a static separation of duty constraint that restricts the two
roles from being used as the same time.

The separations of duty are enforced by two classes which only contain a simple
consstraint. These classes are calledSSDEnforcer andDSDEncforcer . To
specify a dynamic separation between physicians and patients, and between nurses

130 Chapter 6. Formal Foundations

and patients, and between physicians and nurses, the following constraints can be
specified:

Token dsd1 i n DSDConst ra in t w i th
r o l e

r1 : p h y s i c i a n ;
r2 : p a t i e n t

end

Token dsd2 i n DSDConst ra in t w i th
r o l e

r1 : n u r s e ;
r2 : p a t i e n t

end

Token dsd3 i n DSDConst ra in t w i th
r o l e

r1 : p h y s i c i a n ;
r2 : n u r s e

end

6.7 Relationship with EDL

All of the Telos classes listed in the previous sections are direct representations
of the EDL specification language elements, which were introduced in Chapter 4.
In addition to these representation, this formalization include model constraints to
ensure the consistency of the model. These model constraints provide a concrete
and unambiguous representation of assumptions that were left implicit until know.
The assumptions are:

1. A role can only be used by a subject if the role is assigned to that subject.

2. All roles must be published by exactly one subject.

3. All event body types must be published by exactly one subject.

4. Roles for which a dynamic separation of duty has been defined may not be
usedby a subject at the same time.

5. Roles for which a static separation of duty has been defined may not beas-
signedby a subject at the same time.

6. Event Body Types may not be used insendoperations, until they have been
published.

7. When an event body type is unpublished, all subscriptions to that event body
type are unsubscribed automatically.

6.8 Discussion 131

8. When a role is unpublished, all assignments to that role are unassigned.

9. When a role is unassigned, all activations of that role are deactivated.

Telos allows constraints to be specified and enforced by specifying them as part
of any class. Constraints are defined on a global level, which means that their
restrictive power is not limited to the class in which they are defined.

6.8 Discussion

In this chapter, we expressed the EFSOC definition and constraint language and of
the EFSOC query language using the Telos language. To validate that the imple-
mentation is correct, we implemented the full model in ConceptBase. The associ-
ated specifications are available in Appendix III.

132 Chapter 6. Formal Foundations

Chapter 7

Prototype Implementation

The World is a book, and those who do not travel read only a page.
St. Augustine, 354–430

7.1 Introduction

Having defined the EFSOC concepts and architectures in Chapter 3, the EFSOC
definition and constraint language in Chapter 4, and finally the EFSOC query lan-
guage in Chapter 5, this chapter applies the concepts and language elements in the
form of a prototype implementation and a laboratory experiment using that proto-
type.

First, we discuss the laboratory experiment, which is based on the running ex-
ample of Section 3.2. Next, we introduce the architecture of the main prototype
and the technologies that were used to implement it. We also discuss a number of
smaller proofs of concept that were implemented during the research phase of this
project.

Having introduced the architecture and the technologies, we then proceed by
using them to implement the laboratory experiment. Those results are discussed in
Sections 7.4 and 7.5. Finally, we discuss the lessons learned and we conclude the
chapter in Section 7.6.

7.2 Laboratory Experiment

To test the prototype, we defined a laboratory experiment based on the running ex-
ample of Section 3.2. In the experiment, we defined four subjects namedJohn,
Mark, Mary andSueand three rolesPhysician, NurseandPatient. The physician
role will have one role attribute,patient, and the nurse role will have one role at-
tribute,floor.

John and Mark will be members of the physician role, Mary will be a member
of the Nurse role and Sue will be a member of the Patient role. Furthermore, Sue
will be listed as one of John’s patients and Mary will work on the Oncology floor,
on which Sue is a patient.

134 Chapter 7. Prototype Implementation

In addition to these human subjects, we define the following services:Billing
Service, Charting Service, Laboratory Service, Radiology Service, Pharmacy Ser-
viceand theInsurance Service.

We also define the following events:UpdateChart, InspectChart, Chart, Order-
LaboratoryTest, RetrieveTestResults, LaboratoryTest, PrescribeMedication, Dis-
penseMedication.

In the laboratory experiment, the following access control policies are defined:

1. Charting Service Policy
The charting service policy dictates that physicians and nurses may access any
patient’s records. Charts may be updated by the physicians who are treating
a patient, or by a nurse if the patient is on her floor.

2. Laboratory Service Policy and Radiology Service Policy
The laboratory service policy dictates that the charting service, nurses and
physicians may accessall test results as they become available. Only physi-
cians may order tests to take place.

3. Pharmacy Service Policy
The pharmacy service policy dictates that only physicians may prescribe med-
ications to patients. Medication may be dispensed to patients, only if a pre-
scription for that medication and patient has been received and is not yet
filled.

7.3 Architecture and Technology

For the creation of the prototype, a two-track approach was followed. The main
track consists of a thorough implementation, using as many ‘production-grade’
components as possible. The secondary track consists of smaller proofs of concept,
built from scratch, using either ConceptBase or small scripts written in the PHP
scripting language. The two tracks complement each other, because the smaller
proofs of concept are easier to adapt to changing viewpoints and provide a ideal
proofing ground for early ideas.

7.3.1 Main prototype

The EFSOC model itself does not impose any requirements forbootstrappingthe
model. In the main prototype, we have addressed this by having one hard-coded
subject called ’efsoc’. The policies associated with this user play the role ofEFSOC
global policyand can be used to constrain publication of new subjects, event body
types or roles.

The main prototype was implemented as a set of Java server pages that are de-
ployed using Apache Tomcat1. The Tomcat engine is bundled with the JBoss appli-
cation server2, which is J2EE 1.4 certified. The prototype architecture is graphically

1http://tomcat.apache.org/
2http://www.jboss.com

http://tomcat.apache.org/
http://www.jboss.com

7.3 Architecture and Technology 135

depicted in Figure 7.1.
The main prototype consists of the five main components outlined in the main

EFSOC block:

1. Event Director
The Event Director manages event subscriptions and provides the inter-
face by which services exchange messages. The event router implements
subscription-based event routing.

All interaction between EFSOC and external services are channeled through
the event director. The event director uses Apache’s Axis3 to provide support
for WSDL messages.

2. Security Director
The Security Director implements EFSOC’s access control model. It provides
access control policy selection, evaluation and enforcement.

3. Persistent Storage
The Persistent Storage module is built using existing technologies. The un-
derlying database is MySQL4, which may be accessed through Hibernate5.
Hibernate enables a developer to develop applications according to the object-
oriented paradigm and maps objects to relational databases.

4. Audit Trail Director
The Audit Trail Director is responsible for capturing, storing and protecting
all state changes of the EFSOC model. The Audit Trail Director also provides
facilities for querying the model.

5. Java Messaging System
All EFSOC modules interact with each other via the Java Message System
which is provided by JBoss. The Java Message System may be replaced by
Enterprise Service Bus implementations.

In addition to the components described above, a management interface which
directly access the database has been realized. That interface will allow for easier
inspection and debugging of the prototype implementation.

7.3.2 Proofs-of-concept

In addition to the main prototype implementation, a number of smaller proofs-
of-concept (PoC) have been realized. Each proof-of-concept address specific and
highly specialized issues, such as validating EDL or testing the EFSOC query lan-
guage.

3http://axis.apache.org
4http://www.mysql.com
5http://www.hibernate.org

http://axis.apache.org
http://www.mysql.com
http://www.hibernate.org

136 Chapter 7. Prototype Implementation

Figure 7.1: Prototype reference architecture

7.3 Architecture and Technology 137

The PoC’s are generally not written using the same technology as above, but
rely on scripting languages such as the PHP language6.

The reason for using the script languages is that they support a much faster
development cycle because they eliminate the need to compile and deploy sources
via the application server environment that is used for the main prototype.

Definition Language Validator

The language validator is fully written in the PHP5 scripting language and relies
heavily on PHP’s abilities to handle DOM trees and evaluate XPath expressions.
The objectives of the prototype can be summarized as follows:

1. Validate case study specifications (listed in Section III) against EFSOC XML
Schema presented in the same section.

2. Ability to parse access control rules against a number of pre-defined events.

In addition to the functionality specified above, the language validator will also
resolve role assignments to the corresponding users. A partial screen-shot is shown
in Figure 7.2.

As shown, the charting service’s access control policies contains a rule which
permits physicians and nurses to send events, under a certain condition. The condi-
tion is expressed as an XPath query and can be executed by clicking on the corre-
sponding like. The user interface includes an expansion of the roles physician and
nurse to the corresponding subjects.

Execution of the second access control rule leads to the screen as shown in Fig-
ure 7.3. The screen-shot includes the XPath query, and the results of the evaluation
of the query on the full database. In this case, the event shown in the figure will be
permitted to be sent.

Query Language Validator

The EFSOC query language was implemented as a collection of XQuery functions.
To come to this decision, we evaluated three possible technologies:

1. XPath
To evaluate XPath queries, we used a tool called ‘XPath Explorer’7. The tool
provides a graphical user interface which loads an XML fragment, parses it
into a DOM tree and graphically presents it to the user. Using a simple input
field, XPath queries can be formulated and they are applied directly to the
DOM tree in the GUI. This allows for rapid evaluation of XPath queries and
proved to be an invaluable tool.

6http://www.php.net
7http://xpe.sourceforge.net

http://www.php.net
http://xpe.sourceforge.net

138 Chapter 7. Prototype Implementation

Figure 7.2: Language validator: Access control policy

7.3 Architecture and Technology 139

Figure 7.3: Language validator: Access control rule evaluation

140 Chapter 7. Prototype Implementation

2. XSL Transformations
To evaluate XSL Transformations, we had to develop our own code. Like in
the case of the validator for the definition and constraint language, we used
the PHP scripting language, and used its interface to the libxslt programming
library8.

The tool that we developed only provided a rudimentary interface with al-
lowed us to load two files: one XML file containing EFSOC definitions,
and one file containing the XSL style-sheet. The prototype subsequently ap-
plied the style-sheet to the XML document and presented the output in a web
browser.

3. XQuery
While XQuery is often heralded as the language of choice for querying XML
data, surprisingly few implementations turned out to be available that support
the whole XQuery candidate recommendations. Eventually, we settled on
using two existing pieces of software. The first is called ipsi-xq, which is
developed by the German Fraunhofer institute. Ipsi-XQ9 provides full support
for XQuery, including the ability to specify functions. It also comes with a
graphical user interface, as well as a command-line query processor. The
second tool is called Qexo10. Qexo is distributed as Free Software under
the GNU General Public License and is integrated in the Kawa Language
Framework11.

Both Qexo and Ipsi-XQ provide interactive ways of specifying and executing
XQuery statements, and did not need any additional development to meet our
purposes.

7.4 Element definitions

Having determined the playing field and the scope of the laboratory experiment, we
proceeded by defining the subject, roles and role-attributes, and we assigned roles
to users and role attribute values to role assignments.

The corresponding definitions can be found in Appendix III. The same defini-
tions were also implemented in the ConceptBase implementation of the model and
are included in Appendix III. For example, the following fragments shows the Telos
and XML definitions of the subject ‘John’ playing the role ‘Physician’ and having
role attribute ‘Patient’ set to the value ‘”sue”’.

Token john i n S u b j e c t w i th
a s s i g n e d a : p h y s i c i a n
uses u : p h y s i c i a n

end

8http://xmlsoft.org/XSLT
9http://www.ipsi.fraunhofer.de/

10http://www.gnu.org/software/qexo/
11 http://www.gnu.org/software/kawa

http://xmlsoft.org/XSLT
 http://www.ipsi.fraunhofer.de/
 http://www.gnu.org/software/qexo/
http://www.gnu.org/software/kawa

7.4 Element definitions 141

Figure 7.4: Instance level definitions in laboratory experiment

Token r o l e a t t r 1 i n R o l e A t t r i b u t e w i th
ro l eAss ignmen t ra1 : john ! u
r o l e A t t r i b u t e T y p e r a t 1 : p a t i e n t A t t r
v a l u e v1 : ” sue ”

end

The XML representation of the same definitions is included below:

<s u b j e c t ID=” john ”/>
<a s s i g n ID=” ra1”>

<s u b j e c t r e f>#john</ s u b j e c t r e f>
< r o l e r e f>#p h y s i c i a n</ r o l e r e f>

</ ass i gn>

< r o l e a t t r i b u t e t y p e ID=” p a t i e n t A t t r ”/>
< r o l e a t t r i b u t e v a l u e ID=” r o l e a t t r 1 ”

r o l e a t t r i b u t e t y p e r e f = ”# p a t i e n t A t t r ”
r o l e a s s i g n m e n t r e f = ” ra1 ”/>” sue ”</ r o l e a t t r i b u t e v a l u e>

</ r o l e a t t r i b u t e v a l u e>

A graphical representation of the full set of role definitions, subject definitions,
role assignment, role attribute types and role attribute value definitions is show in
Figure 7.4.

Starting near the top-right of the figure, the object labeled ‘john’ can be found.

142 Chapter 7. Prototype Implementation

John uses the ‘physician’ role, which has a role attributed associated with it called
‘patientAttr’. The object with label ‘roleattr1’ is a role attribute with role attribute
type ‘patientAttr’ and is linked to John’s role as physician. The value of the role
attribute is “Sue”, which is the name of the object labeled ‘sue’.

Sue is ‘patient’ who is admitted to the ‘oncology’ floor.
Mary, who is a nurse, works on the oncology floor. This is represented by the

role attribute ‘floorAttr’, which used by the object with label ‘roleattr2’ to denote
the fact.

Using the graph, relationships between John, Mary and Sue are illustrated. John
is physician who treats Sue, Sue is a patient on the Oncology ward, and Mary works
there.

Similar definitions were also made to represent the different event body types, as
illustrated by the Telos definitions of the event body type for ‘PrescribeMedication’
event body.

Token P r e s c r i b e M e d i c a t i o n B o d y i n EventBody wi th
a t t r i b u t e

p a t i e n t : S t r i n g ;
drugname : S t r i n g ;
dosage : S t r i n g ;
numberofDoses : I n t e g e r

end

The definition specifies that the event body of a ‘PrescribeMedication’ event
must contain four elements: patient, drugname, dosage and numberofDoses.

An actual event body of this type then looks like

Token p resc r i beMed i ca t i onBodySue i n P r e s c r i b e M e d i c a t i o n B o d y
wi th

p a t i e n t p : ” sue ”
drugname drug : ” i b u p r o f i n ”
dosage d : ”600mg 3 t i m e s per day a f t e r meal ”
numberofDoses num : 15

end

Such an event body can then be used to create an event.

7.5 Defining access control rules

The next step in the approach is to define a set of access control rules. The require-
ments for the rules were introduced in Section 7.2.

In Appendix III we provide the fully specified access control policy for the
Northside laboratory experiment using the EDL format. In this section, we will
take one rule and discuss it in more detail. For this, we have chosen the second rule
in the charting service’s access control policy. That rule states that medical charts
may be updated by physicians who are treating the patient.

In EFSOC terms, this means that the principal of the rule is the role ‘physician’,
the permission is ‘permit’ for a ‘send operation’.

7.5 Defining access control rules 143

This is represented by the first part of the access control rule.

<a c c e s s c o n t r o l r u l e i d =” c h a r t i n g r u l e 2 ”
p o l i c y r e f =”# c h a r t i n g p o l i c y ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>#p h y s i c i a n</ r o l e r e f>

</ p r i n c i p a l>

The<accesscontrolrule> element contains a number of attributes which
specify a unique identifier, a reference to the policy of which the rule is part, and
references to operations and permissions. The first element in the body of the tag is
the<principal> tag, which specifies to who the access control rule applies. In
this example, rule applies to all subjects playing the role ‘physician’, but references
to multiple roles and references to multiple subjects may be listed here.

The remainder of the access control rule states under which conditions physi-
cians are permitted to send events.

1 <c o n d i t i o n>
2 (/ e f s o c / e v e n t / e v e n t h e a d e r [@name=” s e n d e r ”] =
3 / e f s o c / a s s i g n [r o l e r e f =” p h y s i c i a n ”] / s u b j e c t r e f)
4 AND
5 (/ e f s o c / e v e n t / even tbody [@eventbodytype =” u p d a t e c h a r t ”]
6 / p a t i e n t =
7 / e f s o c / r o l e a t t r i b u t e v a l u e [
8 @ r o l e a t t r i b u t e t y p e r e f =”# p a t i e n t ”
9 AND @ro leass ignment = / e f s o c / a s s i g n [

10 s u b j e c t r e f = / e f s o c / s u b j e c t [
11 @ID=/ e f s o c / e v e n t / e v e n t h e a d e r [@name=” s e n d e r ”]
12] / @ID
13] / @ID
14])
15 </ c o n d i t i o n>
16 </ a c c e s s c o n t r o l r u l e>

The<condition> element takes an XPath(Berglund et al., 2005) expression
as its body. Complex XPath expressions may lead to complex rules, as shown above.
However, we feel that this is not a problem since much of the rule creation can be
automated and hidden from the end-users.

This particular expression states in lines 2–3 that the sender of the event must be
a member of the role ‘physician’. This is tested by inspecting the ‘sender’ header
of the event envelope, which is set by EFSOC. Next, a test is performed to see if the
role ‘physician’ is indeed assigned to this subject.

Lines 5–14 validate that the type of the event body is ‘updatechart’, and that the
‘patient’ element of the event body is listed in the subject’s role attribute values of
the role attribute type ‘patient’.

When all these conditions are met, the rule will ‘permit’ the event to be ‘sent’.

144 Chapter 7. Prototype Implementation

7.6 Observations and Conclusions

The proofs-of-concept for the definition and constraint language and for the query
language illustrated in a very convincing way that our initial thoughts, which were
to use XPath exclusively, would not be a good choice. While it would be possible
to use XPath, the expressions would be excessively complicated and hard to write
or understand.

Implementing the laboratory experiment made it obvious that the EFSOC model
requires parameterized roles. Not doing so would have resulted in the definition of
a large number of roles, each of which would only have a very limited number of
members. This in itself is not undesirable per se, however when analyzing the sit-
uation, it became clear that in the model without such role parameters, each patient
would need to have a role designed specifically for them. This will invalidate the
main benefit of role-based access control (i.e., the reduced management overhead),
and must therefor be addressed differently.

After introducing parameterized roles into the EFSOC conceptual framework,
we were able successfully use the framework to express all definitions and access
control policies, and implement them in the prototype.

Chapter 8

Conclusions, Discussion and Future
Research

8.1 Summary

If one cannot effectively manage the growing volume of security events flooding the
enterprise, one cannot secure one’s business. New technologies and the continued
expansion of the enterprise environment only means that this security overload will
get worse (Kelley and Moritz, 2006).

Service-Oriented Computing (SOC) is the computing paradigm that utilizes ser-
vices as fundamental elements for developing applications (Papazoglou and Geor-
gakapoulos, 2003). The paradigm of service-orientation is a relatively recent enrich-
ment to the discipline of designing distributed applications. Its vision encompasses
a future in which application development is not constrained by organizational or
technological boundaries.

Services may be perceived as self-describing, open components that support
rapid, low-cost composition of distributed applications.

The need for addressing security in web services has been acknowledged in
an early stage by the IBM Corporation and the Microsoft Corporation. In April,
2002, the two software giants published a joint white-paper titledSecurity in a Web
Services World: A Proposed Architecture and Roadmap(Web Services Security
Roadmap, 2002).

The architecture that is presented in the article proposes a solution which places
the entire security stack in the realm of SOAP headers.

Unfortunately, despite many years of work, the security road-map is currently in
an early stage of development; only the WS-Security and the WS-Policy standards
have reached a stage of adolescence.

In addition, the security road-map is strongly tied to the web services SOA in
that all security operations are implemented in basic SOAP headers. Finally, there
is no common vocabulary or shared processing model for the components that make
up the joint road-map.

To address the issue of security, and, more specifically,access controlin service-
oriented computing, we developed the EFSOC framework. EFSOC conceptualizes

146 Chapter 8. Conclusions, Discussion and Future Research

service-oriented computing and access control and provides an architecture and sug-
gested implementation for a secure service middleware layer.

EFSOC lets go of the premise that services are required to invoke each other
directly. Instead, we assume that services publish their interfaces to aservice broker.

Adopting this approach facilitates the service broker (or the service brokers,
in case of a distributed solution) to establish an certifiableaudit trail in a single
location, which can be used to settle differences of opinion which may arise in the
future.

Furthermore, by routing the service interactions through a broker, it becomes
possible to specify and enforce access control policies unambiguously and at a sin-
gle point. An event-driven approach with distributed service brokers provides a
flexible mechanism for ensuring increased availability of services, the ability to
implement competing services and provides a reliable infrastructure for service in-
teractions.

This chapter summarized and discusses the research results that were presented
in the previous chapters, and the research questions that were formulated in Sec-
tion 1.4 are answered.

8.2 Research Results

In Chapter 1, we explained the research methodology for this thesis. The method-
ology consisted of a problem definition phase, in which the research goal was for-
mulated and the strategic research questions were formulated. The literature re-
search was used to refine the strategic research questions and find answers to those
questions. The solution design phase continued finding answers to questions, by
proposing an architecture, definition language and query language. The validation
phase consisted of the creation of the Telos model which was used to analyze the
framework, a case study to establish usability and a prototype to illustrate the fact
that the architecture can be implemented.

In this section, we provide answers to the strategic research questions.

1. Question: What is the state-of-the-art in access control?

Answer: The current state-of-the-art in access control is captured by Role-
Based Access Control, and by the specifications in XACML and SAML. Ad-
ditionally, the WS-* security specifications apply these standards to web ser-
vices technology.

2. Question: Is the current state of the art of access control adequate for use in
service-oriented computing?

Answer: The current state-of-the-art in access control is comprised of the
Role-Based Access Control model (RBAC), and of technologies such as
XACML and the WS-* security specification.

Role-based access control is not sufficient for use in service-oriented comput-
ing for the following reasons (see also Section 2.2.8):

8.2 Research Results 147

(a) RBAC does not define the meaning of ’permissions’.

(b) RBAC assumes a central administration of access control.

The WS-* security specifications are currently not developed enough to
be ready for large scale use. Of the total set of specification, the WS-
Authorization standard addresses the issue of access control and authoriza-
tion. Unfortunately, WS-Authorization only suggests a generic representa-
tion format, and does not include a common methodological framework or
reference architecture.

A reference framework for access control in distributed environments is pro-
vided by XACML. However, XACML also does not provide a common
methodological framework.

The questions that arose as a result of the framework design are answered as
follows:

3. Question: In what way should a definition language that supports the frame-
work be formed?

Answer: A support language that supports the framework should be formed
as a declarative XML-based language. The dominant reason for this choice
is that XML provides an easily extendible infrastructure, which is widely
accepted in the software development industry. As a result software tools are
readily available.

A second reason is that by choosing an XML-based approach, interoperability
with other XML-based specifications becomes trivial.

4. Question: In what way should a query language that supports the framework
be formed?

Answer: A query language should be formed as a set of XML Queries. XML
Query is a query language specifically designed for querying XML docu-
ments, and has reached an early stage of maturity. By defining the query
language as XML Queries, they are portable and easily implemented in a
variety of XML-based infrastructures.

5. Question: What does an architecture for implementing the framework look
like?

Answer: The architecture that is presented in Chapter 7 uses existing of-
the-self technology. By using an XML-based specification language, and an
XQuery-based query language, the proposed architecture uses very few com-
ponents that needed to be developed fully from scratch.

We proposed a solution which is based on commonly available Java compo-
nents, such as JMS. The application server that was chosen was JBoss. A
detailed description of the architecture can be found in Chapter 7.

148 Chapter 8. Conclusions, Discussion and Future Research

8.3 Case study results

The case study that was performed at Northside Hospital provided us with valuable
feedback about our approach. In a number of telephone interviews that were con-
ducted with the hospital’s information technology specialists, it became clear that a
service-oriented approach will offer many benefits for the organization when they
move to fully computerized medical charts.

One of the most important observations that we made was that the number of
roles was almost proportional to the number of patients and/or physicians. This
observation seriously undermined one of the main reasons to adopt a role-based
approach. Fortunately, by introducing the concept that roles can be parameterized
by use ofrole attributes, we were able to overcome this problem.

After adding role attributes to the model, the case study showed that we were
indeed able to express a realistic scenario using EFSOC concepts. A detailed de-
scription of the definitions that were used can be found in Appendix III.

In addition to the lessons learned from conducting the case study, the implemen-
tation of the case study in the laboratory experiment confirmed that the technology
choices that were made for the prototype were correct. Using as much existing
off-the-shelf technology, we were able to relatively quickly deploy the Northside
scenario in the prototype.

8.4 Contributions

Current approaches to access control in distributed environments tend to focus on
centrally administered access control policies, which are deployed to decentralized
points of enforcement. The benefit of this approach is that security administrators
only need to keep one central policy, which allows them to maintain large access
control systems.

In service-oriented architectures, this assumption is not valid. While services
that belong to one single organization may be administered centrally, cooperating
services may be offered by different organizations, each of which prescribes their
own security policies.

We assume that all services should be in full control of their own security poli-
cies. In other words, we advocate decentralized access control policy administra-
tion. In this thesis, this principle is known as theservice autonomyprinciple, at the
solution that we propose respects this principle.

Contribution 1 We introduced an access control model for service-oriented archi-
tectures that is decentrally administered, yet centrally enforced.

Of all the access control models, Role-Based Access Control is often heralded
as the most modern approach, and as an approach that closely aligns with the way
that enterprises organize their processes. Role-Based Access Control (RBAC) is
based on the abstraction of users into roles, and of the assignment of permissions
to roles. An underlying assumption is that the mapping of users to roles is more

8.5 Benefits and Limitations 149

volatile than the mapping of roles to permissions, but that the mapping of roles to
permissions is larger. By abstracting users from their roles, the latter administrative
load reduces, and the system becomes more scalable.

EFSOC adopts a parameterized role-based approach, but acknowledges the fact
that some permissions must not be assigned to roles, but should be assigned to
individuals within a role. The direct assignment of users to permissions is often
called discretionary access control.

Contribution 2 EFSOC adopts a discretionary parameterized role-based access
control model.

Service-oriented architectures do not implement a common access control
model. A specification known as WS-Authorization attempts to fill this gap, how-
ever, it does not provide a common methodological framework for access control,
and it does not provide a reference architecture. Instead, WS-Authorization restricts
itself to providing a generic representation format for access control data.

Contribution 3 EFSOC provides a common methodological framework and pro-
vides a reference architecture for decentrally managed, yet centrally enforced, dis-
cretionary parameterized role-based access control.

The benefits of our approach are:

1. Services are able to individually specify their own access control policies, but
can rely on EFSOC for enforcement of those policies. As a consequence,
EFSOC provides service autonomy.

2. EFSOC’s messaging model (which is an event-based model), conveniently
maps to the Enterprise Service Bus. As a consequence, EFSOC can easily be
implemented in existing enterprises that have adopted the ESB.

3. By using a common definition of roles and event types, EFSOC provides a
natural approach to facilitate services that span organizational boundaries.

4. EFSOC provides a common framework for access control in Service-Oriented
Architectures, which captures the roles that subjects play in the processes that
require or provide services. That information can subsequently be used to
provide access control policies.

8.5 Benefits and Limitations

Adopting the EFSOC approach enables organizations that adopt a service-based
approach to decentrally specify access control policies, without the need to also
implement access control functions in each service. Such a reduction in code size
increases the speed by which new services can be created and published, and re-
duces the complexity of services.

150 Chapter 8. Conclusions, Discussion and Future Research

A potential area which may slow down the adoption of EFSOC may be that all
service providers who participate must be aware of the semantics of roles and event
body types. However, using standard classification schemes to achieve interoper-
ability is an area that is currently receiving much attention by the ontology research
community.

EFSOC’s messaging model provides a convenient way to distribute events over
multiple services, which can be used to implement multicast messaging. In many
cases, a single event may need to be delivered to many subscribed parties and EF-
SOC’s approach allows this to take place naturally.

Another area of interest is not specific to EFSOC, but applies toall web-based
solutions. By channeling traffic over HTTP or HTTPS, traditional firewalling ap-
proaches become much less effective. A traditional network firewall operates based
on the network addresses and ports of the sender and the of receiver of datapack-
ets. Most firewalls are capable of providing some additional analysis, which allows
sessions to be established and maintained. Even more advanced firewalls are capa-
ble of inspecting the protocol that is transferred over such ports (e.g., HTTP). With
web-services technology increasingly being adopted, firewalls will need to be come
more and more intelligent to prevent data from leaving or entering the organization
without proper authorization.

8.6 Future Research

After having conducted the research presented in this thesis, many new questions
arise that need further attention. These questions include, but are not limited to:

1. Methodology for Access Control in Service-Oriented Architectures
After having developed a policy-neutral framework for access control in
service-oriented architectures, we came to the conclusion that the well-known
phrase “security transcends technology” applies fully in the SOA domain.
Whereas most current efforts are technology driven, EFSOC provided an
architecture-driven solution.

However, while the architecture-driven solution is an critical tool for the im-
plementation of access control requirements, it does not address issues such
as identification of critical assets, risk management procedures, continuity
planning, etc.

Since the focus of this research was on access control, these elements have
been left out-of-scope justifiably. Now that this part of the research has
completed, it is time to step back and look at security in the bigger picture
and consider those elements once more. How are critical assets identified
in service-oriented architectures? What are the specific risks associated with
those assets, and how can those risks be assessed and mitigated?

2. Service clusters
Identity management is an important consideration in any business applica-
tion. Service-oriented applications rely on short term collaboration which are

8.6 Future Research 151

Figure 8.1: Trust relationships spanning service clusters

often created and used in an ad-hoc fashion. Such collaborating services may
not belong to the same EFSOC service cluster, yet it is desirable that identities
that have been established in one cluster can be ported to others.

To this effect, services are allowed to authenticate themselves at one EFSOC
service, and re-use that identity in other clusters. While it is possible to regu-
late the use of such ‘deep identities’ in access control rule, the assumption is
once more that the establishment of the trust-relationships per sé takes places
out-of-band.

To illustrate this concept, consider Figure 8.1. It shows two EFSOC service
clusters, each with a number of services participating in it. Both clusters
have agreed on two things: roler2 in both clusters have the same semantics
and both clusters will acknowledge each other’s authentications of subjects in
those roles.

We introduce the following notations:

(a) s1:r1 represents a subjects1 playing roler1.

(b) @c1 represents that an identity is limited to a certain EFSOC service
cluster.

(c) e1(e0) represents the fact thate1 is causally linked to evente0. In other
words,e1 is a direct result ofe0.

For example,s1@c1 represents subjects1 at clusterc1, r2@c1 represents role
r2 at clusterc1, s1:r2@c2 represents subjects1 playing roler2 at clusterc2,
etc.

152 Chapter 8. Conclusions, Discussion and Future Research

Figure 8.2: Trust relationships spanning service clusters combined with service ag-
gregation

Given Figure 8.1, it is now possible to express access control rules such as 1)
“evente0 may only sent by subjects playing roler1”, and 2) “evente0 may
be sent to all subjects playing roler2”, or 3) “evente0 may only be sent to
subjects in clusterc1 who are are playing roler2, The difference between
rules 2) and 3) is that rule 2) only mentions that recipients must be playing
role r2, which means that trust relationships will be respected and subject
s3@c2 is also a valid recipient. Rule 3) explicitly states that the event may
only be received by subjects in clusterc1. In that case, explicit restrictions
supersede derived trust relationships.

This scenario can be extended as shown in Figure 8.2, which assumes that
s2@c1 is actually a composite service which relies on two additional services
s3@c1 ands4@c1.

For example, assume a hospital scenario in which a patient is committed for a
routine surgery. The admission of the patient is represented by evente0. As a
result of the patient getting admitted, patient records are sent to the hospital’s
administrative department for proper billing (e1), and to the planning depart-
ment so that an operating room can be scheduled (e2). In such a scenario, an
access control rule that can be specified is that patient records may only be
transferred to the planning department after the patient has been committed.
In other words, a causal dependency exists betweene0 ande2.

3. Workflow support
The EFSOC reference architecture provides the ability to deploy a workflow
monitor, which may influence the way that messages are transferred. Using
the workflow manager provides a way to bridge the gap between access con-
trol rules and business rules, and allows EFSOC-based services to interact

8.6 Future Research 153

seamlessly with, for example, BPEL systems.

More research needs to be devoted to questions that address problems such
as required primitives for expressing inter-service workflows, consequences
of service-based workflows that cross organizational boundaries, handling of
security-related exceptions in workflows, etc.

4. Intrusion Detection Systems
No matter how well designed an architecture, and how well engineered the
products that instantiate the architecture, there will always be attack vectors
that can be exploited. While EFSOC attempts to provide a secure framework
that provides strong access control and has containment features, it must be
assumed that attacks against EFSOC-based systems will be attempted. This
is true not only for EFSOC-based Service-Oriented Architectures, but for all
SOAs.

A future research project could resolve around the question of what types of
attack vectors are specific to service-based solutions, how to detect attacks
(successful and unsuccessful), and how to mitigate the effects of a successful
attack.

154 Chapter 8. Conclusions, Discussion and Future Research

Part III

Appendices

EFSOC XML Definitions

This appendix contains the XML Schema definitions of the EFSOC definition lan-
guage (EDL) and the detailed definitions used for the laboratory experiment.

Definition and Constraint Language Defintions

<?xml v e r s i o n =”1.0”?>

<xs : schema
ta rge tNamespace = ” h t t p : / / i n f o l a b . uv t . n l / e f s o c . xsd ”
xmlns : xs = ” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>

<xs : e lemen t name=” e f s o c ” t ype =” e fsocType ”/>

<xs : complexType name=” e fsocType”>
<xs : sequence>

<xs : e lemen t name=” o p e r a t i o n ” t ype =” e f s oc O p e r a t i o n T yp e ”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” e f s oc O p e r a t i o n T yp e ”>
<xs : sequence>
<xs : e lemen t name=” p u b l i s h ” t ype =” pub l i shType ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” u n p u b l i s h ” t ype =” unpub l i shType ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” s u b s c r i b e ” t ype =” s u b s c r i b e T y p e ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” u n s u b s c r i b e ” t ype =” unsubsc r i beType ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” g e n e r a t e ” t ype =” gene ra teType ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” a s s i g n ” t ype =” ass ignType ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” u n a s s i g n ” t ype =” unass ignType ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” a c t i v a t e ” t ype =” a c t i v a t e T y p e ”

158 Appendix . EFSOC XML Definitions

minOccurs =”0” maxOccurs =” unbounded ”/>
<xs : e lemen t name=” d e a c t i v a t e ” t ype =” d e a c t i v a t e T y p e ”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” pub l i shType”>
<xs : sequence>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =”1”/>

<xs : e lemen t name=” eventbody ” t ype =” EventBodyTypeType ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” s u b j e c t ” t ype =” Sub jec tType ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” r o l e ” t ype =” RoleType ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” a c c e s s c o n t r o l p o l i c y ”
t ype =” a c c e s s c o n t r o l p o l i c y T y p e ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” a c c e s s c o n t r o l r u l e ”
t ype =” a c c e s s c o n t r o l p o l i c y R u l e T y p e ”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” unpub l i shType”>
<xs : sequence>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =”1”/>

<xs : e lemen t name=” e v e n t b o d y r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” r o l e r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” a c c e s s c o n t r o l p o l i c y r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” a c c e s s c o n t r o l p o l i c y r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” gene ra teType”>
<xs : sequence>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =”1”/>

<xs : e lemen t name=” e v e n t ” t ype =” eventType ”
minOccurs =”1” maxOccurs =” unbounded ”/>

159

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” s u b s c r i b e T y p e ”>
<xs : sequence>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =”1”/>

<xs : e lemen t name=” e v e n t b o d y t y p e r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =” unbounded ”/>

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” unsubsc r i beType”>
<xs : sequence>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =”1”/>

<xs : e lemen t name=” e v e n t b o d y t y p e r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =” unbounded ”/>

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” eventType”>
<xs : sequence>

<xs : e lemen t name=” heade rg roup ” t ype =” eventHeaderGroupType ”
minOccurs =”1” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” body ” t ype =” eventBodyType ”
minOccurs =”1” maxOccurs =”1”/>

</ xs : sequence>
</ xs : complexType>

<xs : complexType name=” eventHeaderGroupType”>
<xs : sequence>

<xs : e lemen t name=” heade r ” t ype =” eventHeaderType ”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>
<xs : a t t r i b u t e name=” owner ” t ype =” xs : anyURI ”/>

</ xs : complexType>

<xs : complexType name=” eventHeaderType”>
<xs : a t t r i b u t e name=”name” t ype =” xs : s t r i n g ”/>

</ xs : complexType>

<xs : complexType name=” eventBodyType”>
<xs : a t t r i b u t e name=” t ype ” t ype =” xs : anyURI ”/>

</ xs : complexType>

<xs : complexType name=” eventBodyTypeType”>
<xs : a t t r i b u t e name=”name” t ype =” xs : s t r i n g ”/>

160 Appendix . EFSOC XML Definitions

</ xs : complexType>

<xs : complexType name=” s u b j e c t T y p e ”>
<xs : a t t r i b u t e name=” i d ” t ype =” xs : ID”/>

</ xs : complexType>

<xs : complexType name=” ro leType”>
<xs : a t t r i b u t e name=” i d ” t ype =” xs : ID”/>

</ xs : complexType>

<xs : complexType name=” ass ignType”>
<xs : sequence>

<xs : e lemen t name=” r o l e r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>
<xs : a t t r i b u t e name=” s u b j e c t r e f ” t ype =” xs : anyURI ”/>

</ xs : complexType>

<xs : complexType name=” unass ignType”>
<xs : sequence>

<xs : e lemen t name=” r o l e r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>
<xs : a t t r i b u t e name=” s u b j e c t r e f ” t ype =” xs : anyURI ”/>

</ xs : complexType>

<xs : complexType name=” a c c e s s c o n t r o l p o l i c y T y p e ”>
<xs : sequence>

<xs : e lemen t name=” l a b e l ” t ype =” l a b e l T y p e ”/>
</ xs : sequence>
<xs : a t t r i b u t e name=” owner re f ” t ype =” xs : anyURI ”/>
<xs : a t t r i b u t e name=” ID” t ype =” xs : ID”/>

</ xs : complexType>

<xs : s impleType name=” l a b e l T y p e ”>
<xs : r e s t r i c t i o n base =” xs : S t r i n g ”/>

</ xs : s impleType>

<xs : complexType name=” a c c e s s c o n t r o l r u l e T y p e ”>
<xs : sequence>

<xs : e lemen t name=” p o l i c y r e f ” t ype =” xs : anyURI ”
minOccurs =”1” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” c o n d i t i o n ” t ype =” c o n d i t i o n T y p e ”
minOccurs =”1” maxOccurs =”1”/>

</ xs : sequence>
<xs : a t t r i b u t e name=” o p e r a t i o n ” t ype =” xs : o p e r a t i o n L i s t ”

use =” r e q u i r e d ”/>
<xs : a t t r i b u t e name=” p e r m i s s i o n ” t ype =” xs : p e r m i s s i o n L i s t ”

161

use =” r e q u i r e d ”/>
</ xs : complexType>

<xs : complexType name=” c o n d i t i o n T y p e ”>
<xs : sequence>

<xs : e lemen t name=” r o l e r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” s u b j e c t r e f ” t ype =” xs : anyURI ”
minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e lemen t name=” e x p r e s s i o n ” t ype =” exp ress ionType ”
minOccurs =”1” maxOccurs =”1”/>

</ xs : sequence>
</ xs : complexType>

<xs : s impleType name=” o p e r a t i o n L i s t ”>
<xs : r e s t r i c t i o n base =” xs : s t r i n g ”>

<xs : enumera t i on v a l u e =” p u b l i s h ”/>
<xs : enumera t i on v a l u e =” u n p u b l i s h ”/>
<xs : enumera t i on v a l u e =” s u b s c r i b e ”/>
<xs : enumera t i on v a l u e =” u n s u b s c r i b e ”/>
<xs : enumera t i on v a l u e =” g e n e r a t e ”/>
<xs : enumera t i on v a l u e =” a s s i g n ”/>
<xs : enumera t i on v a l u e =” u n a s s i g n ”/>
<xs : enumera t i on v a l u e =” a c t i v a t e ”/>
<xs : enumera t i on v a l u e =” d e a c t i v a t e ”/>

</ xs : r e s t r i c t i o n>
</ xs : s impleType>

<xs : s impleType name=” p e r m i s s i o n L i s t ”>
<xs : r e s t r i c t i o n base =” xs : s t r i n g ”>

<xs : enumera t i on v a l u e =” p u b l i s h ”/>
<xs : enumera t i on v a l u e =” u n p u b l i s h ”/>
<xs : enumera t i on v a l u e =” s u b s c r i b e ”/>
<xs : enumera t i on v a l u e =” u n s u b s c r i b e ”/>
<xs : enumera t i on v a l u e =” g e n e r a t e ”/>
<xs : enumera t i on v a l u e =” a s s i g n ”/>
<xs : enumera t i on v a l u e =” u n a s s i g n ”/>
<xs : enumera t i on v a l u e =” a c t i v a t e ”/>
<xs : enumera t i on v a l u e =” d e a c t i v a t e ”/>

</ xs : r e s t r i c t i o n>
</ xs : s impleType>

<xs : complexType name=” exp ress i onType ”/>

</ xs : schema>

Laboratory experiment definitions

162 Appendix . EFSOC XML Definitions

<e f s o c xmlns : xs = ” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>

<!�� s u b j e c t d e f i n i t i o n s��>
<s u b j e c t ID=” john”><name>John</name></ s u b j e c t>
<s u b j e c t ID=”mark”><name>Mark</name></ s u b j e c t>
<s u b j e c t ID=”mary”><name>Mary</name></ s u b j e c t>
<s u b j e c t ID=” sue”><name>Sue</name>

< f l o o r>oncology</ f l o o r>
</ s u b j e c t>

<s u b j e c t ID=” b i l l i n g s e r v i c e ”>
<wsdl>h t t p : / / l o c a l h o s t / ws / b i l l i n g s e r v i c e</wsdl>

</ s u b j e c t>

<s u b j e c t ID=” c h a r t i n g s e r v i c e ”>
<wsdl>h t t p : / / l o c a l h o s t / ws / c h a r t i n g s e r v i c e</wsdl>

</ s u b j e c t>

<s u b j e c t ID=” l a b s e r v i c e ”>
<wsdl>h t t p : / / l o c a l h o s t / ws / l a b s e r v i c e</wsdl>

</ s u b j e c t>

<s u b j e c t ID=” r a d i o s e r v i c e ”>
<wsdl>h t t p : / / l o c a l h o s t / ws / r a d i o s e r v i c e</wsdl>

</ s u b j e c t>

<s u b j e c t ID=” p h a r m a s e r v i c e ”>
<wsdl>h t t p : / / l o c a l h o s t / ws / pha rmaserv i ce</wsdl>

</ s u b j e c t>

<s u b j e c t ID=” i n s u r a n c e s e r v i c e ”>
<wsdl>h t t p : / / l o c a l h o s t / ws / i n s u r a n c e s e r v i c e</wsdl>

</ s u b j e c t>
<!�� r o l e and r o l e a t t r i b u t e d e f i n i t i o n s��>
< r o l e ID=” p h y s i c i a n ”/>
< r o l e ID=” n u r s e ”/>
< r o l e ID=” p a t i e n t ”/>

< r o l e a t t r i b u t e t y p e ID=” p a t i e n t ” r o l e r e f =” p h y s i c i a n ”/>
< r o l e a t t r i b u t e t y p e ID=” f l o o r ” r o l e r e f =” n u r s e ”/>

<!�� e v e n t body t y p e s��>

<even tbody t ype ID=” u p d a t e c h a r t ”>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” m e d i c a l d a t a ” t ype =” xs : s t r i n g ”/>

</ even tbody type>

163

<even tbody t ype ID=” i n s p e c t c h a r t ”>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : cname”/>

</ even tbody type>

<even tbody t ype ID=” c h a r t ”>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : cname”/>
<xs : e lemen t name=” m e d i c a l d a t a ” t ype =” xs : s t r i n g ”/>

</ even tbody type>

<even tbody t ype ID=” o r d e r l a b o r a t o r y t e s t ”>
<xs : e lemen t name=” t e s t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” r e a s o n ” t ype =” xs : s t r i n g ”

minOccurs =”0”/>
</ even tbody type>

<even tbody t ype ID=” r e t r i e v e t e s t r e s u l t s ”>
<xs : e lemen t name=” t e s t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : s t r i n g ”/>

</ even tbody type>

<even tbody t ype ID=” l a b o r a t o r y t e s t ”>
<xs : e lemen t name=” t e s t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” r e s u l t s ” t ype =” xs : s t r i n g ”/>

</ even tbody type>

<even tbody t ype ID=” p r e s c r i b e m e d i c a t i o n ”>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” drugname ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” dosage ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” numbero fdoses ” t ype =” xs : i n t e g e r ”/>

</ even tbody type>

<even tbody t ype ID=” d i s p e n s e m e d i c a t i o n ”>
<xs : e lemen t name=” p a t i e n t ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” drugname ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” dosage ” t ype =” xs : s t r i n g ”/>
<xs : e lemen t name=” numbero fdoses ” t ype =” xs : i n t e g e r ”/>

</ even tbody type>

<!�� r o l e a s s i g n m e n t s and r o l e a t t r i b u t e a s s i g n m e n t s��>
<a s s i g n ID=” ra1”>

<s u b j e c t r e f>john</ s u b j e c t r e f>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ ass i gn>

<a s s i g n ID=” ra2”>

164 Appendix . EFSOC XML Definitions

<s u b j e c t r e f>mark</ s u b j e c t r e f>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ ass i gn>

< r o l e a t t r i b u t e v a l u e ID=” rav1 ”
r o l e a t t r i b u t e t y p e r e f =” p a t i e n t ”
r o l e a s s i g n m e n t = ” ra1 ”
v a l u e =” sue ”/>

<a s s i g n ID=” ra3”>
<s u b j e c t r e f>mary</ s u b j e c t r e f>
< r o l e r e f>nurse</ r o l e r e f>

</ ass i gn>

< r o l e a t t r i b u t e v a l u e ID=” rav2 ”
r o l e a t t r i b u t e t y p e r e f =” f l o o r ”
r o l e a s s i g n m e n t =” ra3 ”
v a l u e =” onco logy ”/>

<a s s i g n ID=” ra4”>
<s u b j e c t r e f>sue</ s u b j e c t r e f>
< r o l e r e f>p a t i e n t</ r o l e r e f>

</ ass i gn>

<!�� C h a r t i n g s e r v i c e a c c e s s c o n t r o l p o l i c y��>
<a c c e s s c o n t r o l p o l i c y ID=” c h a r t i n g p o l i c y ”

owner re f =” c h a r t i n g s e r v i c e ”/>

<a c c e s s c o n t r o l r u l e ID=” c h a r t i n g r u l e 1 ”
p o l i c y r e f =” c h a r t i n g p o l i c y ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>
< r o l e r e f>nurse</ r o l e r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / e v e n t [even tbody [@eventbodytype =” i n s p e c t c h a r t ”]]
</ c o n d i t i o n>

</ a c c e s s c o n t r o l r u l e>

<a c c e s s c o n t r o l r u l e ID=” c h a r t i n g r u l e 2 ”
p o l i c y r e f =” c h a r t i n g p o l i c y ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ p r i n c i p a l>

165

<c o n d i t i o n>
/ e f s o c / e v e n t [

even tbody [@eventbodytype = ’ u p d a t e c h a r t ’] and
e v e n t h e a d e r [@name= ’ sender ’] = / e f s o c / a s s i g n [

@ID=/ e f s o c / r o l e a t t r i b u t e v a l u e [
@ r o l e a t t r i b u t e t y p e r e f = ’ p a t i e n t ’ and
@value = / e f s o c / e v e n t / even tbody / p a t i e n t and
@ro leass ignment = / e f s o c / a s s i g n [

r o l e r e f = ’ p h y s i c i a n ’
] / @ID

] / @ro leass ignment
] / s u b j e c t r e f

]</ c o n d i t i o n>
</ a c c e s s c o n t r o l r u l e>

<a c c e s s c o n t r o l r u l e ID=” c h a r t i n g r u l e 3 ”
p o l i c y r e f =” c h a r t i n g p o l i c y ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>nurse</ r o l e r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / e v e n t [
even tbody [@eventbodytype = ’ u p d a t e c h a r t ’] and
e v e n t h e a d e r [@name= ’ sender ’] = / e f s o c / a s s i g n [

@ID=/ e f s o c / r o l e a t t r i b u t e v a l u e [
@ r o l e a t t r i b u t e t y p e r e f = ’ f l o o r ’ and
@value =/ e f s o c / s u b j e c t [

@ID=/ e f s o c / e v e n t / even tbody / p a t i e n t
] / f l o o r and
@ro leass ignment = / e f s o c / a s s i g n [

r o l e r e f = ’ nurse ’
] / @ID

] / @ro leass ignment
] / s u b j e c t r e f]
</ c o n d i t i o n>

</ a c c e s s c o n t r o l r u l e>

<!�� L a b o r a t o r y s e r v i c e a c c e s s c o n t r o l p o l i c y��>
<a c c e s s c o n t r o l p o l i c y ID=” l a b o r a t o r y p o l i c y ”

owner re f =” l a b s e r v i c e ”/>

<a c c e s s c o n t r o l r u l e ID=” l a b o r a t o r y r u l e 1 ”
p o l i c y r e f =” l a b o r a t o r y p o l i c y ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>

166 Appendix . EFSOC XML Definitions

<s u b j e c t r e f>c h a r t i n g s e r v i c e</ s u b j e c t r e f>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>
< r o l e r e f>nurse</ r o l e r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / e v e n t / even tbody [@eventbodytype =” r e t r i e v e t e s t r e s u l t s ”]
</ c o n d i t i o n>

</ a c c e s s c o n t r o l r u l e>

<a c c e s s c o n t r o l r u l e ID=” l a b o r a t o r y r u l e 2 ”
p o l i c y r e f =” l a b o r a t o r y p o l i c y ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / even tbody [@eventbodytype =” o r d e r l a b o r a t o r y t e s t ”]
</ c o n d i t i o n>

</ a c c e s s c o n t r o l r u l e>

<a c c e s s c o n t r o l r u l e ID=” l a b o r a t o r y r u l e 3 ”
p o l i c y r e f =” l a b o r a t o r y p o l i c y ”
o p e r a t i o n =” r e c e i v e ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>
< r o l e r e f>nurse</ r o l e r e f>
<s u b j e c t r e f>c h a r t i n g s e r v i c e</ s u b j e c t r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / even tbody [@eventbodytype =” l a b o r a t o r y t e s t ”]
</ c o n d i t i o n>

</ a c c e s s c o n t r o l r u l e>

<!�� pharamacy p o l i c y��>
<a c c e s s c o n t r o l p o l i c y ID=” pharmapo l i cy ”

owner re f =” p h a r m a s e r v i c e ”/>

<a c c e s s c o n t r o l r u l e ID=” pharmacy ru le1 ”
p o l i c y r e f =” pharmapo l i cy ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
< r o l e r e f>p h y s i c i a n</ r o l e r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / e v e n t / even tbody [@eventbodytype =” p r e s c r i b e m e d i c a t i o n ”]

167

</ c o n d i t i o n>
</ a c c e s s c o n t r o l r u l e>

<a c c e s s c o n t r o l r u l e ID=” pharmacy ru le2 ”
p o l i c y r e f =” pha rmapo l i cy ”
o p e r a t i o n =” send ”
p e r m i s s i o n =” p e r m i t ”>

<p r i n c i p a l>
<s u b j e c t r e f>pharmaserv i ce</ s u b j e c t r e f>

</ p r i n c i p a l>
<c o n d i t i o n>

/ e f s o c / e v e n t / even tbody [@eventbodytype =” d i s p e n s e m e d i c a t i o n ”]
and

/ e f s o c / e v e n t [@ID=/ e f s o c / e v e n t h e a d e r [@name=” c a u s a l i t y ”]] / body
[@eventbodytype =” p r e s c r i b e m e d i c a t i o n ”]

and
/ e f s o c / e v e n t [@ID=/ e f s o c / e v e n t h e a d e r [@name=” c a u s a l i t y ”]] / body
/ p a t i e n t = / e f s o c / e v e n t / even tbody / p a t i e n t

and
/ e f s o c / e v e n t [@ID=/ e f s o c / e v e n t h e a d e r [@name=” c a u s a l i t y ”]] / body
/ drugname = / e f s o c / e v e n t / even tbody / drugname

and
/ e f s o c / e v e n t [@ID=/ e f s o c / e v e n t h e a d e r [@name=” c a u s a l i t y ”]] / body
/ dosage = / e f s o c / e v e n t / even tbody / dosage

and
/ e f s o c / e v e n t [@ID=/ e f s o c / e v e n t h e a d e r [@name=” c a u s a l i t y ”]] / body
/ numbero fdoses = / e f s o c / e v e n t / even tbody / numbero fdoses

</ c o n d i t i o n>
</ a c c e s s c o n t r o l r u l e>

<!�� Example e v e n t s t h a t shou ld be a c c e p t e d��>
<e v e n t ID=” e1”>

<e v e n t h e a d e r name=” s e n d e r ”> john</ even theade r>
<eventbody even tbody t ype =” u p d a t e c h a r t ”>

<p a t i e n t>sue</ p a t i e n t>
<med ica lda ta> . .< / med i ca lda ta>

</ eventbody>
</ event>

<e v e n t ID=” e2”>
<e v e n t h e a d e r name=” s e n d e r ”>mary</ even theade r>
<eventbody even tbody t ype =” u p d a t e c h a r t ”>

<p a t i e n t>sue</ p a t i e n t>
<med ica lda ta> . .< / med i ca lda ta>

</ eventbody>
</ event>

<e v e n t ID=” e3”>

168 Appendix . EFSOC XML Definitions

<e v e n t h e a d e r name=” s e n d e r ”> john</ even theade r>
<eventbody even tbody t ype =” o r d e r l a b o r a t o r y t e s t ”>
. . .
</ eventbody>

</ event>

<e v e n t ID=” e4”>
<e v e n t h e a d e r name=” s e n d e r ”>mary</ even theade r>
<eventbody even tbody t ype =” r e t r i e v e t e s t r e s u l t s ”>
. . .
</ eventbody>

</ event>

<e v e n t ID=” e5”>
<e v e n t h e a d e r name=” s e n d e r ”> john</ even theade r>
<eventbody even tbody t ype =” p r e s c r i b e m e d i c a t i o n ”>

<p a t i e n t>sue</ p a t i e n t>
<drugname>i bup ro fen</ drugname>
<dosage>600 mg , 3x per day</ dosage>
<numberofdoses>15</ numberofdoses>

</ eventbody>
</ event>

<e v e n t ID=” e6”>
<e v e n t h e a d e r name=” s e n d e r ”>

p h a r m a c y s e r v i c e
</ even theade r>
<e v e n t h e a d e r name=” c a u s a l i t y ”>e1</ even theade r>
<eventbody even tbody t ype =” d i s p e n s e m e d i c a t i o n ”>

<p a t i e n t>sue</ p a t i e n t>
<drugname>i bup ro fen</ drugname>
<dosage>600 mg , 3x per day</ dosage>
<numberofdoses>15</ numberofdoses>

</ eventbody>
</ event>

</ e f soc>

EFSOC Conceptbase definitions

This appendix contains the formal representation of the EFSOC Definition Lan-
guage (EDL) in Telos. The definitions also include model constraints to ensure the
integrity of the model. In addition to the EDL definitions, this chapter also includes
the EFSOC Query Language (EQL) and the detailed definitions for the laboratory
experiment.

Model definitions

f� $Id : e f s o c . sml , v 1 .4 2005 /10 /26 13 :5 4 :18 kees Exp $�g
f� $Source : / home / cvs / phd�kees / t h e s i s / d r a f t / s r c / e f s o c . sml , v $�g

f� Meta c l a s s d e f i n i t i o n s�g
C l as s P r i n c i p a l i n MetaClass end

C l as s Role i n S imp leC lass isA P r i n c i p a l w i th
a t t r i b u t e

p u b l i s h e d b y : S u b j e c t ;
r o l e a t t r i b u t e : R o l e A t t r i b u t e T y p e

c o n s t r a i n t
c1 : $ e x i s t s s / S u b j e c t (t h i s p u b l i s h e d b y s) and

f o r a l l s1 / S u b j e c t s2 / S u b j e c t
(t h i s p u b l i s h e d b y s1) and (t h i s p u b l i s h e d b y s2)
==> (s1 == s2) $

end

C l as s S u b j e c t i n S imp leC lass isA P r i n c i p a l w i th
a t t r i b u t e

a s s i g n e d : Role ;
uses : Role ;
s u b s c r i b e d t o : EventBody

c o n s t r a i n t
c1 : $ f o r a l l r / Role (t h i s uses r) ==> (t h i s a s s i g n e d r) $

end

C l as s R o l e A t t r i b u t e T y p e i n S imp leC lass end

170 Appendix . EFSOC Conceptbase definitions

C l as s R o l e A t t r i b u t e i n S imp leC lass wi th
a t t r i b u t e

ro l eAss ignmen t : S u b j e c t ! uses ;
r o l e A t t r i b u t e T y p e : R o l e A t t r i b u t e T y p e ;
v a l u e : S t r i n g

end

C l as s Even tC lass i n MetaClass wi th
a t t r i b u t e

heade r : EventHeader ;
body : EventBody

end

C l as s EventHeader i n MetaClass end

C l as s EventBody i n MetaClass wi th
a t t r i b u t e

p u b l i s h e d b y : S u b j e c t
c o n s t r a i n t

c : $ e x i s t s s / S u b j e c t (t h i s p u b l i s h e d b y s) and
f o r a l l s1 , s2 / S u b j e c t (t h i s p u b l i s h e d b y s1) and
(t h i s p u b l i s h e d b y s2) ==> (s1 == s2) $

end

C l as s Even tHeaderSender i n S imp leClass , EventHeader w i th
a t t r i b u t e

s u b j e c t : S u b j e c t
end

C l as s O p e r a t i o n i n S imp leC lass isA S u b j e c t end

C l as s MessageOpera t ion i n S imp leC lass isA O p e r a t i o n end

C l as s Ro leOpe ra t i on i n S imp leC lass isA O p e r a t i o n end

Token p u b l i s h i n O p e r a t i o n end

Token u n p u b l i s h i n O p e r a t i o n end

Token s u b s c r i b e i n MessageOpera t ion end

Token u n s u b s c r i b e i n MessageOpera t ion end

Token send i n MessageOpera t ion end

Token a s s i g n i n Ro leOpe ra t i on end

171

Token revoke i n Ro leOpe ra t i on end

Token a c t i v a t e i n Ro leOpe ra t i on end

Token d e a c t i v a t e i n Ro leOpe ra t i on end

C l as s P e r m i s s i o n i n S imp leC lass end

Token p e r m i t i n P e r m i s s i o n end

Token r e f u s e i n P e r m i s s i o n end

C l as s A c c e s s C o n t r o l P o l i c y i n S imp leC lass
wi th
a t t r i b u t e

owner : S u b j e c t
end

C l as s AccessCon t ro lRu le i n S imp leC lass wi th
a t t r i b u t e

o p e r a t i o n : O p e r a t i o n ;
c o n d i t : P r o p o s i t i o n ;
p e r m i s s i o n : P e r m i s s i o n ;
p r i o r i t y : I n t e g e r ;
p o l i c y : A c c e s s C o n t r o l P o l i c y ;
p r i n c i p a l : P r i n c i p a l

end

SDCons t ra i n t i n S imp leC lass wi th
a t t r i b u t e

r o l e : Role
end

DSDConst ra in t isA SDCons t ra i n t end
SSDCons t ra in t isA SDCons t ra i n t end

DSDEnforcer i n C l a s s wi th
c o n s t r a i n t c :

$ f o r a l l s / S u b j e c t r1 , r2 / Role (s uses r1) and (s uses r2) and
no t (r1 == r2)
==>
no t e x i s t s f / DSDConst ra in t (f r o l e r1) and (f r o l e r2)

$
end

SSDEnforcer i n C l a s s wi th
c o n s t r a i n t c :

$ f o r a l l s / S u b j e c t r1 , r2 / Role (s a s s i g n e d r1) and (s a s s i g n e d r2) and

172 Appendix . EFSOC Conceptbase definitions

no t (r1 == r2)
==>
no t e x i s t s f / SSDCons t ra in t (f r o l e r1) and (f r o l e r2)

$
end

Query language

f� Id �g

f���� FIRST ORDER QUERIES����g
Token EventsByType i n Gener i cQueryC lass isA P r o p o s i t i o n w i th
p a r a m e t e r

eventType : EventBody
c o n s t r a i n t

c : $ (˜ t h i s i n ˜ eventType) $
end

Token Sub jec tsByRo le i n Gener i cQueryC lass isA S u b j e c t w i th
p a r a m e t e r

r o l e : Role
c o n s t r a i n t

c : $ (˜ t h i s a s s i g n e d ˜ r o l e) $
end

Token Ro lesBySub jec t i n Gener i cQueryC lass isA Role w i th
p a r a m e t e r

s u b j e c t : S u b j e c t
c o n s t r a i n t

c : $ (˜ s u b j e c t a s s i g n e d ˜ t h i s) $
end

Token S u b j e c t s B y S u b s c r i p t i o n i n Gener i cQueryC lass
isA S u b j e c t w i th

p a r a m e t e r
e v e n t : EventBody

c o n s t r a i n t
c : $ (˜ t h i s s u b s c r i b e d t o ˜ e v e n t)
$

end

Token Ev en t sB y Su b sc r i b e r i n Gener i cQueryC lass
isA EventBody wi th

p a r a m e t e r
s u b j e c t : S u b j e c t

c o n s t r a i n t
c : $ (˜ s u b j e c t s u b s c r i b e d t o ˜ t h i s)
$

173

end

Token R o l e W i t h A t t r i b u t e i n Gener i cQueryC lass
isA Role w i th

p a r a m e t e r
a t t r i b u t e : R o l e A t t r i b u t e T y p e

c o n s t r a i n t
c : $ (˜ t h i s r o l e a t t r i b u t e ˜ a t t r i b u t e) $

end

Token A c t i v e R o l e s O f S u b j e c t i n Gener i cQueryC lass
isA Role w i th

p a r a m e t e r
s u b j e c t : S u b j e c t

c o n s t r a i n t
c : $ (˜ s u b j e c t uses ˜ t h i s) $

end

f����� SECOND ORDER�����g

Token S u b j e c t W i t h R o l e A t t r i b u t e V a l u e i n Gener i cQueryC lass
isA S u b j e c t w i th

p a r a m e t e r
a t t r : R o l e A t t r i b u t e T y p e ;
v a l u e : S t r i n g

c o n s t r a i n t
c : $ e x i s t s r a / R o l e A t t r i b u t e u / S u b j e c t ! uses

(r a r o l e A t t r i b u t e T y p e ˜ a t t r) and
(r a v a l u e ˜ v a l u e) and
(r a ro l eAss ignmen t u) and
Ai (˜ t h i s , uses , u)

$
end

Token SendersOfEventType i n Gener i cQueryC lass
isA S u b j e c t w i th

p a r a m e t e r
e b t : Even tC lass

c o n s t r a i n t
c : $ e x i s t s e / I n d i v i d u a l s / Even tHeaderSender

(e i n ˜ e b t) and
(e s e n d e r s) and
(s s u b j e c t ˜ t h i s)

$
end

Laboratory experiment definitions

174 Appendix . EFSOC Conceptbase definitions

Token john i n S u b j e c t end
Token mark i n S u b j e c t end
Token sue i n S u b j e c t end
Token mary i n S u b j e c t end

Token admin i n S u b j e c t end

Token p h y s i c i a n i n Role w i th
p u b l i s h e d b y p : admin
r o l e a t t r i b u t e r : p a t i e n t A t t r

end

Token n u r s e i n Role w i th
p u b l i s h e d b y p : admin

end

Token p a t i e n t i n Role w i th
p u b l i s h e d b y p : admin

end

Token john i n S u b j e c t w i th
a s s i g n e d a : p h y s i c i a n
uses u : p h y s i c i a n

end

Token mary i n S u b j e c t w i th
a s s i g n e d a : n u r s e
uses u : n u r s e

end

Token sue i n S u b j e c t w i th
a s s i g n e d a : p a t i e n t
a t t r i b u t e name : ” sue ” ;

f l o o r : ” onco logy ”

end

Token mark i n S u b j e c t w i th
a s s i g n e d a : p h y s i c i a n

end

Token B i l l i n g S e r v i c e i n S u b j e c t end

Token C h a r t i n g S e r v i c e i n S u b j e c t w i th
s u b s c r i b e d t o

s1 : I nspec tCha r tBody
end

175

Token L a b o r a t o r y S e r v i c e i n S u b j e c t end

Token R a d i o l o g y S e r v i c e i n S u b j e c t end

Token PharamacyServ ice i n S u b j e c t end

Token I n s u r a n c e S e r i c e i n S u b j e c t end

Token p a t i e n t A t t r i n R o l e A t t r i b u t e T y p e end
Token f l o o r A t t r i n R o l e A t t r i b u t e T y p e end

Token r o l e a t t r 1 i n R o l e A t t r i b u t e w i th
ro l eAss ignmen t ra1 : john ! u
r o l e A t t r i b u t e T y p e r a t 1 : p a t i e n t A t t r
v a l u e v1 : ” sue ”

end

Token r o l e a t t r 2 i n R o l e A t t r i b u t e w i th
ro l eAss ignmen t ra1 : mary ! u
r o l e A t t r i b u t e T y p e r a t 1 : f l o o r A t t r
v a l u e v1 : ” onco logy ”

end

Token UpdateChartBody i n EventBody wi th
a t t r i b u t e

p a t i e n t : S t r i n g ;
m e d i c a l d a t a : S t r i n g

p u b l i s h e d b y
p : admin

end

Token Inspec tCha r tBody i n EventBody wi th
a t t r i b u t e

p a t i e n t : S t r i n g
p u b l i s h e d b y

p : admin
end

Token ChartBody i n EventBody wi th
a t t r i b u t e

p a t i e n t : S t r i n g ;
m e d i c a l d a t a : S t r i n g

p u b l i s h e d b y
p : admin

end

Token OrderLabora to ryTes tBody i n EventBody wi th
a t t r i b u t e

176 Appendix . EFSOC Conceptbase definitions

t e s t : S t r i n g ;
p a t i e n t : S t r i n g ;
r e a s o n : S t r i n g

p u b l i s h e d b y
p : admin

end

Token R e t r i e v e T e s t R e s u l t B o d y i n EventBody wi th
a t t r i b u t e

t e s t : S t r i n g ;
p a t i e n t : S t r i n g

p u b l i s h e d b y
p : admin

end

Token Labora to ryTes tBody i n EventBody wi th
a t t r i b u t e

t e s t : S t r i n g ;
p a t i e n t : S t r i n g ;
r e s u l t s : S t r i n g

p u b l i s h e d b y
p : admin

end

Token P r e s c r i b e M e d i c a t i o n B o d y i n EventBody wi th
a t t r i b u t e

p a t i e n t : S t r i n g ;
drugname : S t r i n g ;
dosage : S t r i n g ;
numberofDoses : I n t e g e r

p u b l i s h e d b y
p : admin

end

Token DispenseMed ica t ionBody i n EventBody wi th
a t t r i b u t e

p a t i e n t : S t r i n g ;
drugname : S t r i n g ;
dosage : S t r i n g ;
numberofDoses : I n t e g e r

p u b l i s h e d b y
p : admin

end

Token C h a r t i n g P o l i c y i n A c c e s s C o n t r o l P o l i c y w i th
owner o : C h a r t i n g S e r v i c e

end

177

Token Cha r t i ngRu le1 i n AccessCon t ro lRu le w i th
p o l i c y po l : C h a r t i n g P o l i c y
o p e r a t i o n op1 : send
p e r m i s s i o n perm1 : p e r m i t
p r i n c i p a l p r i n c 1 : p h y s i c i a n ;

p r i n c 2 : n u r s e
end

C l as s I n s p e c t C h a r t E v e n t i n Even tC lass wi th
heade r s e n d e r : Even tHeaderSender
body bdy : I nspec tCha r tBody

end

Token inspec tCha r tBodySue i n Inspec tCha r tBody wi th
p a t i e n t p : ” sue ”

end

Token i n s p e c t C h a r t S e n d e r H e a d e r S u e i n Even tHeaderSender
w i th

s u b j e c t s : sue
end

Token e1 i n I n s p e c t C h a r t E v e n t w i th
s e n d e r s : i n s p e c t C h a r t S e n d e r H e a d e r S u e
bdy b : i nspec tCha r tBodySue

end

Token p resc r i beMed i ca t i onBodySue i n P r e s c r i b e M e d i c a t i o n B o d y
wi th

p a t i e n t p : ” sue ”
drugname drug : ” i b u p r o f i n ”
dosage d : ”600mg 3 t i m e s per day a f t e r meal ”
numberofDoses num : 15

end

f� EOF �g

178 Appendix . EFSOC Conceptbase definitions

Samenvatting

Service-Oriented Computing(SOC) is een relatief nieuwe stroming binnen het ont-
werpen en integreren van informatiesystemen. De stroming manifesteert zich in
oplossingen die gebaseerd zijn op deservicegerichte architectuur(Engels:Service-
Oriented Architecture, SOA) en dieweb servicesworden genoemd.

In de SOA is het beveiligingsaspect en met name het controleren van toegang
tot services, onderbelicht gebleven. Het onderzoek dat gepresenteerd wordt in dit
proefschrift heeft dan ook als centraal thema: toegangscontrole en servicegerichte
architecturen.

De gevolgde onderzoeksmethodologie omvat een aantal stappen dat elkaar
bëınvloedt. Allereerst is begonnen met de precieze formulering van het probleem
dat in deze studie wordt onderzocht. Deze formulering is:

Ontwerp, ontwikkel en valideer een referentiekader voor toe-
gangscontrole voor servicegerichte architecturen. Het referentiekader
dient toepasbaar te zijn bij architecturen die zich binnenéén enkele or-
ganisatie bevinden, maar ook op architecturen die organisatiegrenzen
overschrijden.

Om dit doel te bereiken wordt een aantal stappen uitgevoerd, zoals aangegeven
in figuur 1.3. Deze stappen omvatten het uitvoeren van een (doorlopende) litera-
tuurstudie, gevolgd door het creëren van het ontwerp van een referentiekader. Het
ontwerp is gebaseerd op de bevindingen van deze literatuurstudie.

Het referentiekader wordt vervolgens empirisch gevalideerd met behulp van het
uitvoeren van een casestudie en door de uitvoering van een gecontroleerd labora-
toriumexperiment. In deze studie, die plaats vond in het Amerikaanse Northside
ziekenhuis, zijn informatiestromen in kaart gebracht rond de opname en behandel-
ing van een chirurgisch patiënt.

De resultaten van de studie zijn vervolgens gebruikt om devolledigheiden de
nauwkeurigheidvan het voorgestelde raamwerk te toetsen. Op basis van de con-
cepten die in het referentiekader zijn geı̈ntroduceerd is vervolgens een technisch
prototype gemaakt. Dit prototype is gepopuleerd met voorbeelden die zijn afgeleid
uit de studie in Northside. Bij het populeren van het prototype werd met name
gezocht naar een antwoord op de vraag of gewenste situaties werden geaccepteerd
door het prototype en ongewenste situaties werden geweigerd. De interpretatie van
de studie en de beoordeling van situaties als gewenst of ongewenst is door ons zelf

180 Appendix . Samenvatting

uitgevoerd. Met het populeren van het prototype werd aangetoond dat het proto-
type, alsmede het referentiekader waarop het prototype is gebaseerd,operationeel
consistentis.

De belangrijkste onderzoeksvragen worden als volgt beantwoord:

1. Vraag: Wat is de state-of-the-art van toegangscontrole?
Antwoord : De huidige state-of-the-art van toegangscontrole omvat rolge-
baseerde toegangscontrole en de specificaties van de XACML- en SAML-
standaarden. Verder spelen ook de specificaties van de WS-* beveiligings-
standaarden een rol.

2. Vraag: Is de huidige state-of-the-art van toegangscontrole adequaat bruik-
baar voor servicegerichte architecturen?
Antwoord : De huidige state-of-the-art van toegangscontrole is onvoldoende.
De overwegingen om tot dit oordeel te komen zijn dat 1) RBAC de betekenis
van ‘toestemming’ niet definieert en 2) dat RBAC gebaseerd is op de aanname
van centraal beheerde toegangscontrole.

De WS-* specificaties zijn niet voldoende ontwikkeld voor grootschalig ge-
bruik. XACML biedt weliswaar een referentiekader, maar omvat geen con-
ceptueel methodologisch raamwerk.

Op basis van het referentiekader dat in dit proefschrift wordt geı̈ntroduceerd
kunnen onze bijdragen aan toegangscontrole voor servicegerichte architecturen als
volgt worden samengevat:

1. In het onderzoek introduceren wij een toegangscontrolemodel voor ser-
vicegerichte architecturen dat decentraal wordt beheerd, maar centraal wordt
afgedwongen.

2. Het toegangscontrolemodel van EFSOC kan worden gecategoriseerd als dis-
cretionair en rolgebaseerd.

3. Het toegangscontrolemodel van EFSOC voorziet in een gemeenschappelijk
methodologisch referentiekader en voorziet in een referentiearchitectuur voor
decentraal beheerde, maar centraal uitgevoerde, discretionaire geparame-
teriseerde rolgebaseerde toegangscontrole.

Part IV

Reference

SIKS Dissertation Series

Other books that have appeared in the SIKS Dissertation Series:

1998-1Johan van den Akker (CWI)DE-
GAS - An Active, Temporal Database of
Autonomous Objects

1998-2Floris Wiesman (UM)Informa-
tion Retrieval by Graphically Browsing
Meta-Information

1998-3 Ans Steuten (TUD)A Con-
tribution to the Linguistic Analysis of
Business Conversations within the Lan-
guage/Action Perspective

1998-4 Dennis Breuker (UM)Memory
versus Search in Games

1998-5 E.W.Oskamp (RUL) Comput-
erondersteuning bij Straftoemeting

1999-1Mark Sloof (VU) Physiology of
Quality Change Modelling; Automated
modelling of Quality Change of Agricul-
tural Products

1999-2Rob Potharst (EUR)Classifica-
tion using decision trees and neural nets

1999-3Don Beal (UM) The Nature of
Minimax Search

1999-4Jacques Penders (UM)The prac-
tical Art of Moving Physical Objects

1999-5Aldo de Moor (KUB) Empow-
ering Communities: A Method for the
Legitimate User-Driven Specification of
Network Information Systems

1999-6Niek J.E. Wijngaards (VU)Re-
design of compositional systems

1999-7 David Spelt (UT) Verification
support for object database design

1999-8Jacques H.J. Lenting (UM)In-
formed Gambling: Conception and
Analysis of a Multi-Agent Mechanism
for Discrete Reallocation.

2000-1 Frank Niessink (VU)Perspec-
tives on Improving Software Mainte-
nance

2000-2Koen Holtman (TUE)Prototyp-
ing of CMS Storage Management

2000-3Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenader-
ing en actorperspectief.

2000-4 Geert de Haan (VU)ETAG, A
Formal Model of Competence Knowl-
edge for User Interface Design

184 Chapter . SIKS Dissertation Series

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in
Information Retrieval.

2000-6Rogier van Eijk (UU)Program-
ming Languages for Agent Communica-
tion

2000-7 Niels Peek (UU) Decision-
theoretic Planning of Clinical Patient
Management

2000-8Veerle Coup’e (EUR)Sensitivity
Analyis of Decision-Theoretic Networks

2000-9Florian Waas (CWI)Principles
of Probabilistic Query Optimization

2000-10 Niels Nes (CWI) Image
Database Management System Design
Considerations, Algorithms and Archi-
tecture

2000-11 Jonas Karlsson (CWI)Scal-
able Distributed Data Structures for
Database Management

2001-1 Silja Renooij (UU) Qualitative
Approaches to Quantifying Probabilistic
Networks

2001-2Koen Hindriks (UU)Agent Pro-
gramming Languages: Programming
with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)Con-
junctive and Disjunctive Version Spaces
with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A
Matter of Style

2001-6 Martijn van Welie (VU) Task-
based User Interface Design

2001-7Bastiaan Schonhage (VU)Diva:
Architectural Perspectives on Informa-
tion Visualization

2001-8 Pascal van Eck (VU)A Com-
positional Semantic Structure for Multi-
Agent Systems Dynamics.

2001-9 Pieter Jan ´t Hoen (RUL)To-
wards Distributed Development of Large
Object-Oriented Models, Views of Pack-
ages as Classes

2001-10Maarten Sierhuis (UvA)Mod-
eling and Simulating Work Practice,
BRAHMS: a multiagent modeling and
simulation language for work practice
analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of
Mental Models in Business Systems De-
sign

2002-01Nico Lassing (VU)Architecture-
Level Modifiability Analysis

2002-02 Roelof van Zwol (UT) Mod-
elling and searching web-based docu-
ment collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for In-
formation Retrieval

2002-04Juan Roberto Castelo Valdueza
(UU) The Discrete Acyclic Digraph
Markov Model in Data Mining

2002-05 Radu Serban (VU)The Pri-
vate Cyberspace Modeling Electronic
Environments inhabited by Privacy-
concerned Agents

185

2002-06 Laurens Mommers (UL)Ap-
plied legal epistemology; Building a
knowledge-based ontology of the legal
domain

2002-07 Peter Boncz (CWI)Monet:
A Next-Generation DBMS Kernel For
Query-Intensive Applications

2002-08Jaap Gordijn (VU)Value Based
Requirements Engineering: Exploring
Innovative E-Commerce Ideas

2002-09 Willem-Jan van den
Heuvel(KUB) Integrating Modern Busi-
ness Applications with Objectified
Legacy Systems

2002-10Brian Sheppard (UM)Towards
Perfect Play of Scrabble

2002-11Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational Applica-
tions

2002-12Albrecht Schmidt (UvA)Pro-
cessing XML in Database Systems

2002-13Hongjing Wu (TUE)A Refer-
ence Architecture for Adaptive Hyper-
media Applications

2002-14 Wieke de Vries (UU)Agent
Interaction: Abstract Approaches to
Modelling, Programming and Verifying
Multi-Agent Systems

2002-15Rik Eshuis (UT)Semantics and
Verification of UML Activity Diagrams
for Workflow Modelling

2002-16 Pieter van Langen (VU)The
Anatomy of Design: Foundations, Mod-
els and Applications

2002-17 Stefan Manegold (UVA)Un-
derstanding, Modeling, and Improving
Main-Memory Database Performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02Jan Broersen (VU)Modal Ac-
tion Logics for Reasoning About Reac-
tive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Pres-
ence in Virtual Reality Exposure Ther-
apy

2003-04Milan Petkovic (UT) Content-
Based Video Retrieval Supported by
Database Technology

2003-05Jos Lehmann (UVA)Causation
in Artificial Intelligence and Law - A
modelling approach

2003-06Boris van Schooten (UT)De-
velopment and specification of virtual
environments

2003-07 Machiel Jansen (UvA)For-
mal Explorations of Knowledge Inten-
sive Tasks

2003-08 Yongping Ran (UM) Repair
Based Scheduling

2003-09Rens Kortmann (UM)The res-
olution of visually guided behaviour

2003-10 Andreas Lincke (UvT)Elec-
tronic Business Negotiation: Some ex-
perimental studies on the interaction be-
tween medium, innovation context and
culture

2003-11Simon Keizer (UT)Reasoning
under Uncertainty in Natural Language
Dialogue using Bayesian Networks

186 Chapter . SIKS Dissertation Series

2003-12Roeland Ordelman (UT)Dutch
speech recognition in multimedia infor-
mation retrieval

2003-13 Jeroen Donkers (UM)Nosce
Hostem - Searching with Opponent Mod-
els

2003-14Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation
Processes across ICT-Supported Organ-
isations

2003-15Mathijs de Weerdt (TUD)Plan
Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses

2003-17David Jansen (UT)Extensions
of Statecharts with Probability, Time,
and Stochastic Timing

2003-18Levente Kocsis (UM)Learning
Search Decisions

2004-01Virginia Dignum (UU)A Model
for Organizational Interaction: Based
on Agents, Founded in Logic

2004-02 Lai Xu (UvT) Monitoring
Multi-party Contracts for E-business

2004-03Perry Groot (VU)A Theoreti-
cal and Empirical Analysis of Approxi-
mation in Symbolic Problem Solving

2004-04Chris van Aart (UVA)Organi-
zational Principles for Multi-Agent Ar-
chitectures

2004-05 Viara Popova (EUR)Knowl-
edge discovery and monotonicity

2004-06Bart-Jan Hommes (TUD)The
Evaluation of Business Process Model-
ing Techniques

2004-07Elise Boltjes (UM)Voorbeeldig
onderwijs; voorbeeldgestuurd onder-
wijs, een opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek(UM) Politie
en de Nieuwe Internationale Infor-
matiemarkt, Grensregionale politionele
gegevensuitwisseling en digitale exper-
tise

2004-09Martin Caminada (VU)For the
Sake of the Argument; explorations into
argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-
objects

2004-11 Michel Klein (VU) Change
Management for Distributed Ontologies

2004-12The Duy Bui (UT) Creating
emotions and facial expressions for em-
bodied agents

2004-13Wojciech Jamroga (UT)Using
Multiple Models of Reality: On Agents
who Know how to Play

2004-14Paul Harrenstein (UU)Logic in
Conflict. Logical Explorations in Strate-
gic Equilibrium

2004-15 Arno Knobbe (UU) Multi-
Relational Data Mining

2004-16Federico Divina (VU) Hybrid
Genetic Relational Search for Inductive
Learning

2004-17Mark Winands (UM) Informed
Search in Complex Games

187

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualita-
tive Knowledge Models

2004-19Thijs Westerveld (UT) Using
generative probabilistic models for mul-
timedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating mul-
tidisciplinary design teams

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing
Induction-Based Applications

2005-02Erik van der Werf (UM)) AI
techniques for the game of Go

2005-03Franc Grootjen (RUN)A Prag-
matic Approach to the Conceptualisa-
tion of Language

2005-04 Nirvana Meratnia (UT) To-
wards Database Support for Moving Ob-
ject data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for
Natural Language Parsing

2005-06Pieter Spronck (UM)Adaptive
Game AI

2005-07Flavius Frasincar (TUE)Hyper-
media Presentation Generation for Se-
mantic Web Information Systems

2005-08 Richard Vdovjak (TUE) A
Model-driven Approach for Building
Distributed Ontology-based Web Appli-
cations

2005-09Jeen Broekstra (VU)Storage,
Querying and Inferencing for Semantic
Web Languages

2005-10 Anders Bouwer (UVA) Ex-
plaining Behaviour: Using Qualitative
Simulation in Interactive Learning Envi-
ronments

2005-11Elth Ogston (VU)Agent Based
Matchmaking and Clustering - A Decen-
tralized Approach to Search

2005-12Csaba Boer (EUR)Distributed
Simulation in Industry

2005-13Fred Hamburg (UL)Een Com-
putermodel voor het Ondersteunen van
Euthanasiebeslissingen

2005-14Borys Omelayenko (VU)Web-
Service configuration on the Semantic
Web; Exploring how semantics meets
pragmatics

2005-15Tibor Bosse (VU) Analysis of
the Dynamics of Cognitive Processes

2005-16Joris Graaumans (UU)Usabil-
ity of XML Query Languages

2005-17 Boris Shishkov (TUD) Soft-
ware Specification Based on Re-usable
Business Components

2005-18 Danielle Sent (UU) Test-
selection strategies for probabilistic net-
works

2005-19Michel van Dartel (UM)Situ-
ated Representation

2005-20 Cristina Coteanu (UL)Cyber
Consumer Law, State of the Art and Per-
spectives

2005-21 Wijnand Derks (UT) Im-
proving Concurrency and Recovery in
Database Systems by Exploiting Appli-
cation Semantics

188 Chapter . SIKS Dissertation Series

2006-01Samuil Angelov (TUE)Foun-
dations of B2B Electronic Contracting

2006-02Cristina Chisalita (VU)Contex-
tual issues in the design and use of infor-
mation technology in organizations

2006-03 Noor Christoph (UVA) The
role of metacognitive skills in learning to
solve problems

2006-04 Marta Sabou (VU) Building
Web Service Ontologies

2006-05 Cees Pierik (UU)Validation
Techniques for Object-Oriented Proof
Outlines

2006-06Ziv Baida (VU) Software-aided
Service Bundling - Intelligent Methods
& Tools for Graphical Service Modeling

2006-07 Marko Smiljanic (UT) XML
schema matching – balancing efficiency
and effectiveness by means of clustering

2006-08 Eelco Herder (UT)Forward,
Back and Home Again - Analyzing User
Behavior on the Web

2006-09Mohamed Wahdan (UM)Auto-
matic Formulation of the Auditor’s Opin-
ion

2006-10Ronny Siebes (VU)Semantic
Routing in Peer-to-Peer Systems

2006-11Joeri van Ruth (UT)Flattening
Queries over Nested Data Types

2006-12Bert Bongers (VU) Interacti-
vation - Towards an e-cology of people,
our technological environment, and the
arts

2006-13Henk-Jan Lebbink (UU)Dia-
logue and Decision Games for Informa-
tion Exchanging Agents

2006-14Johan Hoorn (VU) Software
Requirements: Update, Upgrade, Re-
design - towards a Theory of Require-
ments Change

2006-15Rainer Malik (UU) CONAN:
Text Mining in the Biomedical Domain

2006-16Carsten Riggelsen (UU)Ap-
proximation Methods for Efficient
Learning of Bayesian Networks

2006-17Stacey Nagata (UU)User As-
sistance for Multitasking with Interrup-
tions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Lan-
guage Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Se-
mantic Approach

2006-20Marina Velikova (UvT) Mono-
tone models for prediction in data min-
ing

2006-21Bas van Gils (RUN)Aptness on
the Web

2006-22Paul de Vrieze (RUN)Funda-
ments of Adaptive Personalisation

2006-23Ion Juvina (UU) Development
of Cognitive Model for Navigating on
the Web

2006-24Laura Hollink (VU) Semantic
Annotation for Retrieval of Visual Re-
sources

2006-25Madalina Drugan (UU) Con-
ditional log-likelihood MDL and Evolu-
tionary MCMC

189

2006-26Vojkan Mihajlovic (UT) Score
Region Algebra: A Flexible Framework
for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI) Vox
Populi: generating video documen-
taries from semantically annotated me-
dia repositories

2006-28Borkur Sigurbjornsson (UVA)
Focused Information Access using XML
Element Retrieval

190 Chapter . SIKS Dissertation Series

List of Figures

1.1 EFSOC overview . 3

1.2 Positioning of research . 5

1.3 Research methodology . 7

1.4 Thesis outline . 11

2.1 Public Key Infrastructure CA Hierarchy 19

2.2 Web of Trust . 21

2.3 Role-Based Access Control (Sandhu et al., 1996) 25

2.4 Publishing, Discovering and Invoking Services 29

2.5 The Extended SOA (Papazoglou and Georgakapoulos, 2003) 29

2.6 The IBM and Microsoft Security Specification for Web Services . . 33

2.7 XACML Dataflow Diagram (XACML, 2005) 37

2.8 Brokered publish-subscribe interaction 43

3.1 Case study elicitation process . 56

3.2 Northside Hospital Activity diagram 59

3.3 Running example . 63

3.4 The EFSOC Conceptual Model . 65

3.5 EFSOC Event Model . 66

3.6 Subscribe to event activity diagram 67

3.7 Sending events . 68

192 LIST OF FIGURES

3.8 EFSOC Role Model . 71

3.9 Access Control Model . 72

3.10 Taking access control decisions . 73

3.11 Evaluating access control policies 77

3.12 Evaluating access control rules . 78

3.13 EFSOC Service Architecture . 79

3.14 EFSOC Event Processing Overview 81

3.15 Pharmacy’s access control policy 83

3.16 Charting Service Access Control Policy 84

3.17 EFSOC in relation to the WS Security Roadmap 86

3.18 EFSOC Delegation . 89

4.1 EFSOC Languages . 92

4.2 An XML event representation . 94

5.1 Sample definitions . 108

6.1 Role Attribute Example . 128

7.1 Prototype reference architecture 136

7.2 Language validator: Access control policy 138

7.3 Language validator: Access control rule evaluation 139

7.4 Instance level definitions in laboratory experiment 141

8.1 Trust relationships spanning service clusters 151

8.2 Trust relationships spanning service clusters combined with service
aggregation . 152

Bibliography

Bacon, J., Moody, K., and Yao, W. (2002). A Model of OASIS Role-Based Access
Control and Its Support for Active Security.ACM Transactions on Information and
System Security, 5(4):492 – 540.

Bajaj, S., Della-Libera, G., Dixon, B., Dusche, M., Hondo, M., Hur, M., Kaler,
C., Lockhart, H., Maruyama, H., Nadalin, A., Nagaratnam, N., Nash, A., Pra-
fullchandra, H., and Shewchuk, J. (2003). Web Services Federation Language
(WS-Federation). Technical report.

Bajaj, S. and et al, D. B. (2004). Web Services Policy Framework (WS-Policy).
Technical report, BEA Systems, IBM, Microsoft, SAP AG, Sonic Software,
Verisign, Inc.

Banavar, G., Chandra, T., Strom, R., and Sturman, D. (1999). A case for message
oriented middleware.Lecture Notes in Computer Science, 1693:1–18.

Barka, E. S. (2002).Framework for Role-Based Delegation Models. PhD thesis,
George Mason University.

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E., Eastlake, D., Reagle, J.,
and Solo, D. (2002). XML-Signature Syntax and Processing. W3C Recommen-
dation, W3C. http://www.w3.org/TR/xmldsig-core/.

Bell, D. E. and LaPadula, L. J. (1973). Secure computer systems: Mathematical
foundations. Technical report, The MITRE Corporation. MITRE Technical Report
2547, Volume I.

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J., and
Siméon), J. (2005). XML Path Language (XPath) 2.0. W3C Working Draft, W3C.
http://www.w3.org/TR/xpath20/.

Biba, K. (1977). Integrity constraints for secure computer systems. Technical
report, USAF Electronic System Division, Bedford, Massachusetts. Technical Re-
port ESD-TR76-372.

Botha, R. and Eloff, J. (2001). Separation of duties for access control enforcement
in workflow environments.IBM Systems Journal, 40(3):666–682.

194 BIBLIOGRAPHY

Brambilla, M., Ceri, S., Passamani, M., and Riccio, A. (2004). Managing Asyn-
chronous Web Services Interactions. InProceedings of the IEEE International
Conference on Web Services (ICWS’04). IEEE.

Bray, T., Hollander, D., and Layman, A. (1999). Namespaces in XML. Technical
report, W3C.

Burrows, M., Abadi, M., and Needham, R. (1990). A Logic of Authentication.
ACM Transactions on Computer Systems, 8(1):18–36.

Ceri, S., Fraternali, P., and Navathe, S. B. (1997).Designing Database Appli-
cations with Objects and Rules. Series on Database Systems and Applications.
Addison-Wesley.

Chappell, D. A. (2004). Enterprise Service Bus. O’Reilly Media, Inc. ISBN
0-596-00675-6.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001).
Web Services Description Language (WSDL) 1.1. W3C Note, W3C.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

Clark, D. and Wilson, D. (1987). A comparison of commercial and military com-
puter security policies. InProc. of the IEEE Symposium on Security and Privacy.

Della-Libera, G. and et al, B. D. (2002). Web Services Secure Conversation Lan-
guage (WS-SecureConversation). Technical report.

deTroyer, O. and Leune, K. (1998). WSDM: A User-Centered Design Method
for Web Sites. InComputer Networks and ISDN Systems, Proceedings of the 7th
WWW conference, pages 85–94. Elsevier.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The
many faces of publish/subscribe.ACM Computing Surveys, 35(2):114–131.

Farell, S., Reid, I., Lockhart, H., Orchard, D., Sankar, K., Adams, C., Moses, T.,
Edwards, N., Pato, J., Blakley, B., Erdos, M., Cantor, S., Morgan, R. B., Chan-
liau, M., McLaren, C., Knouse, C., Godik, S., Platt, D., Moreh, J., Hodges, J.,
and Hallam-Baker, P. (2003). Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V1.1. Committee specification, OASIS.
http://www.oasis-open.org/committees/documents.php?wgabbr ev=security.

Ferraiolo, D. F., Barkey, J. F., and Kuhn, D. R. (1999). A role-based access control
model and reference implementation within a corporate intranet.ACM Transac-
tions on Information and System Security, 2(1):34–64.

Gasser, M., Goldstein, A., Kaufman, C., and Lampson, B. (1989). The digital
distributed system security architecture. InProc. 12th NIST-NCSC National Com-
puter Security Conference, pages 305–319.

BIBLIOGRAPHY 195

Gavrilla, S. I. and Barkley, J. F. (1998). Formal Specification for Role Based Ac-
cess Control User/Role and Role/Role Relationship Management. InProceedings
of the 3rd ACM Workshop on Role-Based Access Control, pages 81–90.

Giuri, L. and Iglio, P. (1997). Role Templates for Content-Based Access Control.
In Proceedings of RBAC’97.

Gollmann, D. (2006). Computer Security. John Wiley & Sons. ISBN 0-470-
86293-9.

Gudgin, M. and et al, A. N. (2001–2005). Web Services Trust Language (WS-
Trust). Technical report, Actional Corporation, BEA Systems, Inc., Computer As-
sociates International, Inc., International Business Machines Corporation, Layer
7 Technologies, Microsoft Corporation, Oblix Inc., OpenNetwork Technologies
Inc., Ping Identity Corporation, Reactivity Inc., RSA Security Inc., and VeriSign
Inc.

Haas, H. and Brown, A. (2004). Web services glossary. Technical report, W3C.

Hamada, T. (1998). Role-Based Access Control in Telecommunication Service
Management. InProceedings of the 3rd ACM Workshop on Role-Based Access
Control, pages 105–113.

Hansche, S., Berti, J., and Hare, C. (2004).Official (ISC)2 Guide to the CISSP
Exam. Auerbach Publications.

Hansen, S. and Fossum, T. (2004). Events Not Equal To GUIs. InProceedings of
SIGCSE’04, pages 378–381. ACM.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976). Protection in Operation
Systems.Communications of the ACM, pages 461–471.

Hartman, B., Flinn, D. J., Beznosov, K., and Kawamoto, S. (2003).Mastering Web
Services Security. Wiley Publishing, Inc. ISBN 0-471-26716-3.

Hayton, R., Bacon, J., and Moody, K. (1998). Access control in an open dis-
tributed environment. InProceedings of the 1998 IEEE Symposium on Security
and Privacy, pages 3–14.

van den Heuvel, W.-J. (2002).Integrating Modern Business Applications with
Objectified Legacy Systems. PhD thesis, CentER for Economic Research.

van den Heuvel, W.-J., Leune, K., and Papazoglou, M. P. (2005). EFSOC: A
Layered Framework for Developing Secure Interactions between Web-Services.
Distributed and Parallel Databases, 18:115–145.

HIPAA Privacy Rule (2003). Summary of the HIPAA Privacy Rule. Technical
report.

196 BIBLIOGRAPHY

Hsiao, T.-Y., Perng, N.-C., Lo, W., Chang, Y.-S., and Yuan, S.-M. (2003). A
new development environment for an event-based distributed system.Computer
Standards & Interfaces, 25:345–355.

Kelley, D. and Moritz, R. (2006). Best Practice for Building a Security Operations
Center.Information Systems Security.

Klyne, G. and Newman, C. (2002). Date and Time on the Internet: Timestamps.
Technical report, IETF Network Working Group. RFC 3339.

Leune, K., Papazoglou, M., and van den Heuvel, W.-J. (2004a). Specification
and Querying Security Constraints in the EFSOC Framework. InICSOC ’04:
Proceedings of the 2nd international conference on Service oriented computing.
ACM Press.

Leune, K., van den Heuvel, W.-J., and Papazoglou, M. (2004b). Exploring a multi-
faceted framework for soc: How to develop secure web-service interactions? In
Proceedings of the 14th International Workshop on Research Issues on Data En-
gineering: Web Services for E-Commerce and E-Government applications, pages
56 – 61.

Li, N., Mitchell, J. C., and Winsborough, W. H. (2004). Design of a role-based
trust-management framework. InProceedings of the IEEE Symposium on Security
and Privacy.

Luckham, D. (2002). The Power of Events. An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Press.

Lupu, E. and Sloman, M. (1997). Reconciling Role Based Management and Role
Based Access Control. InProceedings of RBAC’97.

M. Krause, H. T. (1999).Handbook of Information Security Management. Auer-
bach Publications, 4th edition edition.

Maheshwari, P., Tang, H., and Liang, R. (2004). Enhancing web services with
message-oriented middleware. InProceedings of the IEEE International Confer-
ence on Web Services (ICWS’04). IEEE.

McGuinness, D. L. and van Harmelen, F. (2004). OWL Web Ontology Language
Overveiw. W3C Recommendation, W3C. http://www.w3.org/TR/2004/REC-owl-
features-20040210/.

Morgan, T. (2002).Business Rules and Information Systems. Addison-Wesley.
ISBN 0-201-74391-4.

Mühl, G. (2002). Large-Scale Content-Based Publish/Subscribe Systems. PhD
thesis, Tecnischen Universität Darmstadt.

BIBLIOGRAPHY 197

Mylopoulos, J., Borgida, A., and Koubarakis, M. (1990). Telos: Representing
knowledge about information systems.ACM Transactions on Information Sys-
tems, 8(4).

Neon Orange Book (1987). A guide to understanding discretionary access control
in trusted systems. Technical Report Library No. S-228,576, National Computer
Security Center.

Orange Book (1985). Trusted computer system evaluation criteria. Technical
Report Library No. S225,711, Department of Defense.

Paolucci, M. and Sycara, K. (2003). Autonomous semantic web services.IEEE
Internet Computing, pages 34–41.

Papazoglou, M. and Georgakapoulos, G. (2003). Introduction to the Special Issue
about Service-Oriented Computing.Communications of the ACM, 46(10):24–29.

Papazoglou, M. P. and van den Heuvel, W.-J. (2006). Service oriented architec-
tures.VLDB Journal, To be published.

Reagle, J. (2002). XML Encryption Requirements. W3C Note, W3C.
http://www.w3.org/TR/xml-encryption-req.

Saltzer, J. and Schroeder, M. (1975). The protection of information in computer
systems.Proceedings of the IEEE, 63(9):1278 – 1308.

Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-Based Access
Control Models.IEEE Computer.

Sandhu, R., Ferraiolo, D., and Kuhn, R. (2000). The nist model for role based
access control: Towards a unified standard. InProceedings, 5th ACM Workshop
on Role-Based Access Control.

Sandhu, R. and Samarati, P. (1996). Authentication, Access Control, and Audit.
ACM Computing Surveys, 28(1).

Schmidt, M.-T., Hutchison, B., Lambros, P., and Phippen, R. (2005). The Enter-
prise Service Bus: Making service-oriented architecture real.IBM Systems Jour-
nal, 44(4):781–797.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., and
Sommerlad, P. (2006).Security Patterns. John Wiley& Sons, Ltd.

Suppes, P. (1957).Introduction to Logic. Dover Publications.

Tai, S., Mikalsen, T., Rouvellou, I., and Jr., S. M. S. (2002). Conditional mes-
saging: Extending reliable messaging with application conditions. InProceed-
ings of the 22nd International Conference on Distributed Computing Systems
(ICDCS’02). IEEE.

198 BIBLIOGRAPHY

Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N. (2001). Xml schema
part 1: Structures. Technical report, W3C. http://www.w3.org/TR/xmlschema-1/.

Ullman, J. D. (1988).Principles of database and knowledge systems.Computer
Science Press. ISBN 0-7167-8158-1.

UML 2.0 (2005). Unified Modeling Language (UML). Technical report, OMG.

Vinoski, S. (2002). Where is the middleware?IEEE Internet Computing, pages
83–85.

Web Services Security Roadmap (2002). Security in a Web Services World: A
Proposed Architecture and Roadmap. Technical report, IBM Corporation and Mi-
crosoft Corporation.

Welke, R. (1981). IS/DSS: DBMS Support for information systems development.
Technical Report ISRAM WP-8105-1.0, McMaster University, Hamilton.

Wolter, R. (2001). Xml web services basics. Technical report, Microsoft Corpo-
ration. http://msdn.microsoft.com/webservices/understanding/webserv icebasic-
s/default.aspx.

XACML (2005). eXtensible Access Control Markup Language (XACML). OASIS
Standard, OASIS.

XQuery (2005). XQuery1.0: An XML Query Language. Technical report, W3C.
Candidate Recommendation.

Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C., and Maler, E. (2004). Ex-
tensible Markup Language (XML) 1.0. Technical report, W3C.

Author Index

Abadi, Martin 16

Adams, Carlisle 34, 35

Altunay, M. 51

Bacon, Jean 49

Bacon, J.M. 22

Bajaj, Siddharth 34

Banavar, G. 38

Barka, Ezedin S. 47

Barkey, John F. 24, 69

Barkley, John F. 69

Bartel, Mark 34, 91

Beech, D. 91

Bell, D. Elliott 23

Berglund, Anders 143

Berti, John 49

Bertino, Elisa 52

Beznosov, Konstantin 35

Biba, K.J. 23

Blakley, Bob 34, 35

Boag, Scott 143

Borgida, A. 122

Botha, R.A. 22, 24

Boyer, John 34, 91

Brambilla, Marco 39

Bray, Tim 91

Brown, Allen 31

Brown, D. 51

Burrows, Michael 16

Buschmann, Frank 21

Byrd, G. 51

Cantor, Scot 34, 35

Ceri, Stefano 39

Chamberlin, Don 143

Chandra, T. 38

Chang, Yue-Shan 38

Chanliau, Marc 34, 35

Chappell, David A. 38, 41

Christensen, E. 28

200 Author Index

Clark, D. 24

Coyne, E.J. 25, 71, 191

Curbera, F. 28

Damiani, Maria Luisa 52

Dean, R. 51

Della-Libera, G. 34

Della-Libera, Giovanni 34

deTroyer, Olga 205

Deubler, Martin 52

Dixon, Brendan 34

Dusche, Mike 34

Eastlake, Donald 34, 91

Edwards, Nigel 34, 35

Eloff, J.H.P. 22, 24

Erdos, Marlena 34, 35

et al, Anthony Nadalin 34

et al, B. Dixon 34

et al, Don Box 34

Eugster, Patrick Th. 42

Farell, Stephen 34, 35

Feinstein, H.I. 25, 71, 191

Felber, Pascal A. 42

Fernandez-Buglioni, Eduardo 21

Ferńandez, Mary F. 143

Ferraiolo, D. 24, 69

Ferraiolo, David F. 24, 69

Flinn, Donald J. 35

Fossum, Timothy 38, 39

Fox, Barb 34, 91

Fraternali, Piero 39

Gasser, M. 71

Gavrilla, Serban I. 69

Geihs, K. 52

Georgakapoulos, G. 28–30, 32, 145, 191

Giuri, Luigi 70

Godik, Simon 34, 35

Goldstein, A. 71

Gollmann, Dieter 73

Grode, A. 52

Grünbauer, Johannes 52

Gudgin, Martin 34

Guerraoui, Rachid 42

Haas, Hugo 31

Hallam-Baker, Phillip 34, 35

Hamada, Takeo 24, 69

Hansche, Susan 49

Hansen, Stuart 38, 39

Hare, Chris 49

Harrison, Michael A. 22

Hartman, Bret 35

Author Index 201

Hayton, R.J. 22

Hodges, Jeff 34, 35

Hollander, Dave 91

Hondo, Maryann 34

Hsiao, Tsun-Yu 38

Hur, Matt 34

Hutchison, B. 69

Hybertson, Duane 21

Iglio, Pietro 70

Jr., Stanley M. Sutton 38

Jürjens, Jan 52

Kalcklösch, R. 52

Kaler, Chris 34

Kaufman, C. 71

Kawamoto, Shirley 35

Kay, Michael 143

Kelley, Diana 145

Kermarrec, Anne-Marie 42

Klyne, G. 96

Knouse, Charles 34, 35

Koubarakis, M. 122

Kuhn, D. Richard 24, 69

Kuhn, R. 24, 69

LaMacchia, Brian 34, 91

Lambros, P. 69

Lampson, B. 71

LaPadula, Leonard J. 23

Layman, Andrew 91

Leune, Kees 2, 26, 38, 205

Li, Ninghui 70

Liang, Roger 38

Lo, Winston 38

Lockhart, Hal 34, 35

Luckham, D. 39

Lupu, Emil 70

M. Krause, H.F. Tipton 22

Maheshwari, Piyush 38

Maler, Eve 91

Maloney, M. 91

Maruyama, Hiroshi 34

McGuinness, Deborah L. 120

McLaren, Chris 34, 35

Mendelsohn, N. 91

Meredith, G. 28

Mikalsen, Thomas 38

Mitchell, John C. 70

Momini, Davide 52

Moody, K. 22

Moody, Ken 49

Moreh, Jahan 34, 35

202 Author Index

Morgan, RL ”Bob” 34, 35

Morgan, Tony 39

Moritz, Rom 145

Moses, Tim 34, 35, 37, 191

Mühl, Gero 45

Mylopoulos, J. 122

Nadalin, Anthony 34

Nagaratnam, Nataraj 34

Nash, Andrew 34

Navathe, Shamkant B. 39

Needham, Roger 16

Newman, C. 96

Orchard, David 34, 35

Paoli, Jean 91

Paolucci, Massimo 48

Papazoglou, Mike 2, 26

Papazoglou, Mike P. 38, 41

Papazoglou, M.P. 28–30, 32, 145, 191

Passamani, Mario 39

Pato, Joe 34, 35

Perng, Nei-Chiung 38

Phippen, R. 69

Platt, Darren 34, 35

Prafullchandra, Hemma 34

Reagle, Joseph 34, 91

Reid, Irving 34, 35

Riccio, Alberto 39

Robie, Jonathan 143

Rouvellou, Isabelle 38

Ruzzo, Walter L. 22

Saltzer, J. 21, 71

Samarati, Pierangela 16

Sandhu, R. 24, 69

Sandhu, Ravi 16

Sandhu, R.S. 25, 71, 191

Sankar, Krishna 34, 35

Schmidt, M.-T. 69

Schroeder, M. 21, 71

Schumacher, Markus 21

Shewchuk, John 34

Siméon), J́erôme 143

Simon, Ed 34, 91

Sloman, Morris 70

Solo, David 34, 91

Sommerlad, Peter 21

Sperberg-McQueen, C.M. 91

Steele, Robert 51

Stoll, Clifford xiii

Strom, R. 38

Sturman, D. 38

Author Index 203

Suppes, Patrick 119

Sycara, Katia 48

Tai, Stefan 38

Tang, Hua 38

Tao, Will 51

Thompson, H.S. 91

Ullman, Jeffrey D. 22, 122

van den Heuvel, Willem-Jan 2, 6, 26,
38, 41

van Harmelen, Frank 120

Vinoski, Steve 38

Weerawarana, Sanjiva 28

Welke, R. 6

Wilson, D. 24

Wimmel, Guido 52

Winsborough, William H. 70

Wolter, Roger 32

Yao, Walt 49

Yergeau, François 91

Youman, C.E. 25, 71, 191

Yuan, Shyan-Ming 38

204 Author Index

Index

*-Property, 23

A-I-C triad, 49
Access control, 1, 21
Access control policies, 72
access control policy, centrally adminis-

tered, 9
Access control policy, decentralized ad-

ministration, 50
Access control policy, evaluating, 73
Access control rule, condition, 73
Access control rule, operation, 72
Access control rule, permission, 72
Access control rule, principal, 73
Access control rule, priority, 77
Access control rules, 72
Access control rules, evaluating, 78
Access control system, 64
Access control, message-context level,

50
Access matrix, 22
Active security, 49, 50
Apache Tomcat, 134
Asynchronous, 40
Asynchronous communication, 38
Audit trail, 16, 26, 50, 55
Auditability, 49
Auditability, and EFSOC, 87
Auditing, 16, 26
Authentication, 16, 50
Authentication, and EFSOC, 87
Authentication, by being, 17
Authentication, by knowledge, 17
Authentication, by possession, 17
Authorization, 16
Availability, 49
Availability, and EFSOC, 87

Bell-LaPadula model, 23
Biba model, 23
BLP, 23
Business rule, 80

Case study, 8

Causal relationship, 40
Causal relationship of events, 68
Causality header, EDL, 96
Certificate, 18
Certificate Authority, 18
Certificate path, 18
Certificate revocation, 18
Chronological relationship, 40
Chronological relationship of events, 68
Clark-Wilson model, 24
Communication, asynchronous, 38
Communication, event-driven, 38
Composition layer, 28
ConceptBase, 134
Confidentiality, 16, 17, 23, 49
Confidentiality, and EFSOC, 87
Constraints, 120
Constraints, and Datalog, 122
Constraints, and predicate logic, 121
Containment, 48
Containment, and EFSOC, 87
Credentials, shared, 16

DAC, 22
Data types, complex, 120
Datalog, 122
Datalog, and Constraints, 122
Datalog, and queries, 122
Deductive rules, and predicate logic, 121
Definition and Constraint Language, 91
Delegation, 46
Delegation of roles, characteristics, 47
Delegation, in EFSOC, 88
Digital signing, 17
Discretionary access control, 22
Distributed systems, loosely coupled, 30

EDL, 91
EDL, accesscontrolpolicy , 97
EDL, accesscontrolrule , 101
EDL, activate , 101
EDL, assign , 100
EDL, condition , 102
EDL, deactivate , 101

206 INDEX

EDL, eventbodytype , 97
EDL, eventbody , 96
EDL, eventheader , 96
EDL, event , 95
EDL, operation , 102
EDL, permission , 102
EDL, principal , 102
EDL, publish , 97
EDL, roleattributetype , 95
EDL, roleattributevalue , 95
EDL, role , 95
EDL, send , 98
EDL, set , 101
EDL, subject , 93
EDL, subscribe , 99
EDL, unassign , 100
EDL, unpublish , 98
EDL, unsubscribe , 99
EDL, definition language, 91
EDL, event headercausality , 96
EDL, event header

timestamp-sent , 96
EDL, execution language, 91
EDL, in relation to WSDL, 92
EDL, vocabulary, 91
EFSOC query language, 107
EFSOC, and Auditability, 87
EFSOC, and Authentication, 87
EFSOC, and Availability, 87
EFSOC, and Confidentiality, 87
EFSOC, and Containment, 87
EFSOC, and Integrity, 87
EFSOC, and message-context level ac-

cess control, 87
EFSOC, and Security Roadmap, 86
EFSOC, and separation of duty, 87
EFSOC, and service autonomy, 86
EFSOC, and web services, 85
EFSOC, Architecture, 78
EFSOC, Event routing, 80
EFSOC, Message-level access control,

80
EFSOC, querying, 107
EFSOC, Service mapper, 81
EFSOC, Transport-level access control,

78
EFSOC, Workflow monitor, 80
Encryption, 18
Encryption, asymmetric, 19
End-entity, 18
Enterprise Service Bus, 41
EQL, 107
EQL, basic queries, 113
EQL, second order queries, 115

ESB, 41
ESOA, 28
ESOA, Composition layer, 28
ESOA, Composition layer, Confor-

mance, 30
ESOA, Composition layer, Coordina-

tion, 28
ESOA, Composition layer, Monitoring,

30
ESOA, Composition layer, QoS compo-

sition, 30
ESOA, Service management layer, 30
Event, 42, 64
Event cloud, 39
Event operation, publish, 65
Event operation, receive, 65
Event operation, send, 65
Event operation, subscribe, 65
Event operation, unpublish, 66
Event operation, unsubscribe, 66
Event operations, 65
Event processing, cardinality property,

41
Event processing, receiver cardinality

property, 40
Event processing, relativity property, 40
Event processing, synchronicity prop-

erty, 40
Event processing, temporal property, 41
Event, aspects of, 39
Event, causal relationship, 68
Event, characteristics of relationship be-

tween sender and receiver, 39
Event, chronological relationship, 68
Event, form aspect, 39
Event, relativity aspect, 39
Event, sequential relationship, 68
Event, significance aspect, 39
Event-driven communication, 38
Events, publishing, 66
Events, receiving, 67
Events, sending, 67
Extended SOA, 28

Fire-and-forget, 43
FLWOR, 109, 116
Formalism, required properties, 120
Formalizing, reasons for, 119

Grid computing, 27

Hibernate, 135
HIPAA, 57

Identity, 16, 18

INDEX 207

identity, 16
Information security, 15
Inheritance, roles, 70
Integrity, 16, 17, 23, 49
Integrity *-property, 23
Integrity, and EFSOC, 87
Interaction patterns, fire-and-forget, 43
Interaction patterns, polling, 43
Interaction patterns, publish-subscribe,

42
Inverted semantics, 39

J2EE, 134
Java server pages, 134
JBoss, 134

Laboratory Experiment, 9
Laboratory experiment, 133
Late binding, 30
Least privilege, 21, 49
Literature research, 7
Loosely coupled, 30

MAC, 23
Mandatory access control, 23
Member, of role, 71
Message-context level access control in

EFSOC, 87
Message-level protection, 17
Message-oriented middleware, 38
methodology, 6
MOM, 38
Multicasting, 39
Multilevel access control, 23
Multiplexing, 39
MySQL, 135

No read up, 23
No write down, 23
No write up, 23
Non-repudiation, 16, 49
Northside Hospital, 56
Notification, 42
Notification filtering, 43
Notification filtering, content-based, 45
Notification filtering, subject based, 44
Notification filtering, topic-based, 44

Operation, 64
Operations, 3

Parameterized roles, 70
Permission, 24
PHP, 134
PKI, 18

PKI, CA, 18
PKI, CA Hierarchy, 18
PKI, Certificate administration, 18
Policy, access control, 72
Polling, 43
Predicate logic, and constraints, 121
Predicate logic, and deductive rules, 121
Principal, 16, 64, 71
Principal, access control rule, 73
Privacy Rule, 57
Private key, 19
Problem definition, 7
Prolog, 122
Proof-of-concept, 135
Protection, message-level, 17
Prototype, 9, 133, 134
Prototype, architecture, 134
Prototype, audit trail director, 135
Prototype, event director, 135
Prototype, Java messaging system, 135
Prototype, persistent storage, 135
Prototype, security director, 135
Public key, 19
Public key infrastructure, 18
Publish-subscribe, 42
Publishing events, 66

Queries, 120
Queries, and Datalog, 122

RBAC, 24
Receiving events, 67
Research goal, 5
Research methodology, 6
Research objectives, 6
Results, assessment, 9
Role, 24, 64, 70
Role assignment, 71
Role attributes, 70
Role hierarchies, in EFSOC, 88
Role operation, activate role, 69
Role operation, assign attribute, 69
Role operation, assign role, 69
Role operation, deactivate role, 69
Role operation, revoke role, 69
Role operations, 69
Role session, 71
Role, inheritance, 70
Role, member of, 71
Role-based access control, 24, 70
Roles, parameterized, 70
Rule, business, 80
Rule, security, 80
Rules, access control, 72
Rules, deductive, 120

208 INDEX

SAML, 35
SAML Authority, 36
SAML, Attribute assertion, 36
SAML, Authentication assertion, 36
SAML, Authorization assertion, 36
Sarbanes-Oxley Act, 26
Secure message layer, 51
Secure transport layer, 51
Security Assertion Markup Language,

35
Security Roadmap, 32
Security roadmap, and EFSOC, 86
Security rule, 80
Semantics, inverted, 39
Sending events, 67
Separation of Duty, 22
Separation of duty, 49
Separation of Duty, and EFSOC, 87
Separation of duty, dynamic, 22, 49
Separation of duty, static, 22, 49
Sequential relationship of events, 68
Service, 64
Service aggregation, 31
Service autonomy, 48
Service autonomy, and EFSOC, 86
Service broker, 55
Service composition, 30
Service management layer, 30
Service-oriented Architecture, 32
Service-oriented architecture, 28
Service-oriented computing, 28
Services, 3
Shared credentials, 16
Signing, digitally, 17
Simple integrity property, 23
Simple security property, 23
SOA, 28, 32
SOA, Design objects for a secure, 48
SOC, 28
Software bus, 42
Solution design, 7
SOX, 26
Subject, 16, 24, 64
Synchronous, 40

Telos, 122
Telos, attribute, 122
Telos, individual, 122
Telos, meta class, 123
Telos, proposition, 122
Telos, simple class, 123
Telos, token, 123
Trust, 45
Trusted third parties, 18

Trusted third party, 19

Validation, 8

web of trust, 19
Web service, 31
Web services, and EFSOC, 85
WS-Authorization, 35
WS-Encryption, 51
WS-Federation, 34
WS-Policy, 34
WS-Privacy, 34
WS-SecureConversation, 34
WS-Security, 32
WS-Signatures, 51
WS-Trust, 34
WSDL, 28
WSDL, in relation to EDL, 92

XACML, 36
XACML, PAP, 36
XACML, PDP, 36
XACML, PEP, 36
XACML, PIP, 36
XACML, Policy Administration Point,

36
XACML, Policy Decision Point, 36
XACML, Policy Enforcement Point, 36
XACML, Policy Information Point, 36
XML, 91
XML Web services, 32
XML, querying, 107
XPath, 107
XQuery, 109
XQuery, FLWOR, 109, 116
XSL, 111

Curriculum Vitae

Cornelis Jan (Kees) Leune was born in Breda, on 29 August 1973. After finish-
ing high school (Atheneum) at the Orduynen College in ’s-Hertogenbosch, he en-
rolled as a full-time student in the Information Systems and Technology program
at Tilburg University. During his studies, Kees was a board member of the student
association SBIT, and teaching assistant for four years for a variety of courses.

His graduation project was titled ‘Wisdom on the Web’, and attempted to find a
formal design method for designing Web sites and Web-enabled application. The
results of his research work were published at the seventh International World Wide
Web conference in Brisbane, Australia (deTroyer and Leune, 1998).

After graduating, Kees took a position as a full-time researcher at CentER Applied
Research. At that time, CentER Applied Research was an independent research
institute. His work focused mainly on data modeling, information discovery and on
electronic commerce.

In 2003, Kees switched back from CentER Applied Research to his Alma Mater,
where the department of Information Systems and Management facilitated him to
pursue his PhD research. This quickly led to several academic publication, such
as ‘Exploring a Multi-Faceted Framework for SOC’ (RIDE ’04) and ’EFSOC: A
Layered Framework for Developing Secure Interactions Between Web Services’
(Distributed and Parallel Databases, September 2005, Vol. 18, No. 2). In addition
to his publications, Kees also contributed to the scientific world by peer review-
ing articles and by being the local chair of the 2005 International Conference on
Service-Oriented Computing.

Kees was also involved in teaching activities. His principal activities centered
around an introductory course on Database Systems, but he also gave many guest
lectures for courses such as Telematics, Software Engineering, Computer Infras-
tructures, etc.

Finally, Kees was a member of Tilburg University’s Computer Security Incident
Response Team, member of the computer and network security task force of the
University, and a member of the Dutch o-IRT-o.

As of October 2006, Kees works as an Information Security specialist at North-
wave.

	Contents
	Introduction
	EFSOC
	Research Motivation
	Research goal and scope of the research
	Research questions
	Research methodology
	Contributions
	Structure of this thesis

	I Background and Theory
	Background in SOA, Security and Event-Driven Processing
	Introduction
	Service Security
	Authentication
	Integrity and Confidentiality
	Public Key Infrastructures
	Web of Trust
	Access Control
	Discretionary Access Control
	Mandatory Access Control
	Role-Based Access Control
	Auditing
	Security and Grid Services
	Discussion

	Service-Oriented Computing
	Service-Oriented Architecture
	Loosely Coupled Message-Oriented Systems
	Service Composition
	Web Services
	The IBM and Microsoft Road-map for Web Services Security
	SAML: Security Assertion Markup Language
	XACML
	Discussion

	Event-driven processing
	Properties of event-driven processing
	Enterprise Service Bus
	Event-driven interaction patterns
	Event message filtering

	Discussion
	Trust
	Delegation

	Conclusions
	Objectives for a secure SOA
	Requirements for Access Control and Service-Oriented Architectures
	State of the Art in Research
	Summary

	The EFSOC Service-Oriented Architecture
	Introduction
	Case study
	Elicitation Process
	The HIPAA Privacy Rule
	Northside Hospital
	Hospital Policies
	Running example

	Concepts
	Event operations
	Publishing events and subscribing to events
	Sending and receiving events
	Events in context

	EFSOC and the Enterprise Service Bus
	Role operations
	Subjects and roles
	Role assignments and role sessions

	Access control
	Taking access control decisions
	Evaluating access control policies
	Evaluating access control rules

	Architecture
	Example: Applying Access Control Policies
	Discussion
	EFSOC and Web Services
	EFSOC and its design objectives
	Delegation and role hierarchies

	Summary

	EFSOC Definition and Execution Language
	Extensible Markup Language
	The EDL language
	EDL in relation to WSDL
	Notational conventions
	Definition Language
	Representing events

	Vocabulary Definitions
	Subject
	Role
	Role Attribute Type
	Role Attribute Value
	Event
	Event Header
	Event Body
	Event Body Type
	Access Control Policies

	Execution language definitions
	Publish
	Unpublish
	Send
	Subscribe
	Unsubscribe
	Assign
	Unassign
	Activate
	Deactivate
	Set

	Access Control Rules
	Principal
	Permission
	Operation
	Condition
	Transport level expressions
	Message level expressions
	Message-context level expressions
	Misc expressions
	Combining conditions

	Summary

	EFSOC Query Language
	Querying XML
	XPath
	XQuery
	XSL

	EFSOC Query Language Overview
	Basic queries
	Second-order queries

	Summary

	II Validation
	Formal Foundations
	Reasons for formalizing
	Approach
	Predicate Logic
	Datalog
	Telos

	Definition and Constraint Language
	Query Language
	Expressing Security Policies and Security Rules
	Security Rules: Queries or Constraints

	Implementing Separation of Duty
	Relationship with EDL
	Discussion

	Prototype Implementation
	Introduction
	Laboratory Experiment
	Architecture and Technology
	Main prototype
	Proofs-of-concept

	Element definitions
	Defining access control rules
	Observations and Conclusions

	Conclusions, Discussion and Future Research
	Summary
	Research Results
	Case study results
	Contributions
	Benefits and Limitations
	Future Research

	III Appendices
	EFSOC XML Definitions
	EFSOC Conceptbase definitions
	Samenvatting

	IV Reference
	SIKS Dissertation Series
	List of Figures
	Bibliography
	Author Index
	Index

