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Abstract

A random intersection graph is constructed by independently assigning each
vertex a subset of a given set and drawing an edge between two vertices if and
only if their respective subsets intersect. In this paper a model is developed in
which each vertex is given a random weight, and vertices with larger weights
are more likely to be assigned large subsets. The distribution of the degree of a
given vertex is determined and is shown to depend on the weight of the vertex.
In particular, if the weight distribution is a power law, the degree distribution
will be so as well. Furthermore, an asymptotic expression for the clustering in
the graph is derived. By tuning the parameters of the model, it is possible to
generate a graph with arbitrary clustering, expected degree and – in the power
law case – tail exponent.

Keywords: Random intersection graphs, degree distribution, power law distri-
bution, clustering, social networks.

JEL classification: C65, Z13.

1 Introduction

During the last decade there has been a large interest in the study of large complex
networks; see e.g. Dorogovtsev and Mendes (2003) and Newman et al. (2006) and
the references therein. Due to the rapid increase in computer power, it has become
possible to investigate various types of real networks such as social contact struc-
tures, telephone networks, power grids, the Internet and the World Wide Web. The
empirical observations reveal that many of these networks have similar properties.
For instance, they typically have power law degree sequences, that is, the fraction of
vertices with degree k is proportional to k−τ for some exponent τ > 1. Furthermore,
many networks are highly clustered, meaning roughly that there is a large number
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of triangles and other short cycles. In a social network, this is explained by the
fact that two people who have a common friend often meet and become friends,
creating a triangle in the network. A related explanation is that human populations
are typically divided into various subgroups – working places, schools, associations
etc – which gives rise to high clustering in the social network, since members of a
given group typically know each other; see Palla et al. (2005) for some empirical
observations.

Real-life networks are generally very large, implying that it is a time-consuming
task to collect data to delineate their structure in detail. This makes it desirable
to develop models that capture essential features of the real networks. A natural
candidate to model a network is a random graph, and, to fit with the empirical
observations, such a graph should have a heavy-tailed degree distribution and con-
siderable clustering. We will quantify the clustering in a random graph by the
conditional probability that there is an edge between two vertices given that they
have a common adjacent vertex. Other definitions occur in the literature, see e.g.
Newman (2003), but they all capture essentially the same thing.

Obviously, the classical Erdős-Rényi graph will not do a good job as a network
model, since the degrees are asymptotically Poisson distributed. Moreover, existing
models for generating graphs with a given degree distribution – see e.g. Molloy and
Reed (1995, 1998) – typically have zero clustering in the limit. In this paper, we
propose a model, based on the so-called random intersection graph, where both the
degree distribution and the clustering can be controlled. More precisely, the model
makes it possible to obtain arbitrary prescribed values for the clustering and to
control the mean and the tail behavior of the degree distribution.

1.1 Description of the model

The random intersection graph was introduced in Singer (1995) and Karoński et al.
(1999), and has been further studied and generalized in Fill et al. (2000), Godehardt
and Jaworski (2002), Stark (2004) and Jaworksi et al. (2006). Newman (2003) and
Newman and Park (2003) discuss a similar model. In its simplest form the model is
defined as follows.

1. Let V = {1, . . . , n} be a set of n vertices and A a set of m elements. For
p ∈ [0, 1], construct a bipartite graph B(n,m, p) with vertex sets V and A
by including each one of the nm possible edges between vertices from V and
elements from A independently with probability p.

2. The random intersection graph G(n,m, p) with vertex set V is obtained by
connecting two distinct vertices i, j ∈ V if and only if there is an element
a ∈ A such that both i and j are adjacent to a in B(n,m, p).

When the vertices in V are thought of as individuals and the elements of A as social
groups, this gives rise to a model for a social network in which two individuals are
joined by an edge if they share at least one group. In the following, we frequently
borrow the terminology from the field of social networks and refer to the vertices as
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individuals and the elements of A as groups, with the understanding that the model
is of course much more general.

To get an interesting structure, the number of groups m is typically set to m =
bnαc for some α > 0; see Karoński et al. (1999). We will assume this form for m in
the following. Let Di be the degree of vertex i ∈ V in G(n,m, p). The probability
that two individuals do not share a group in B(n, m, p) is (1− p2)m. It follows that
the edge probability in G(n,m, p) is 1− (1− p2)m and hence the expected degree is

E[Di] = (n− 1)(1− (1− p2)m)
= (n− 1)

(
mp2 + O(m2p4)

)
.

To keep the expected degree bounded as n → ∞, we let p = γn−(1+α)/2 for some
constant γ > 0. We then have that E[Di] → γ2.

Stark (2004; Theorem 2) shows that in a random intersection graph with the
above choice of p, the distribution of the degree of a given vertex converges to a point
mass at 0, a Poisson distribution or a compound Poisson distribution depending on
whether α < 1, α = 1 or α > 1. This means that the current model cannot account
for the power law degree distributions typically observed in real networks. In the
current model, the number of groups that a given individual belongs to is binomially
distributed with parameters m and p. A generalization of the model, allowing for
an arbitrary group distribution, is described in Godehardt and Jaworski (2002).
The degree of a given vertex in such a graph is analyzed in Jaworski et al. (2006),
where conditions on the group distribution are specified under which the degree is
asymptotically Poisson distributed.

In the current paper, we are interested in obtaining graphs where non-Poissonian
degree distributions can be identified. To this end, we propose a generalization
of the original random intersection graph where the edge probability p is random
and depends on weights associated with the vertices. The model is inspired by a
generalization of the Erdős-Rényi random graph studied in Britton et al. (2006), in
which the vertices are equipped with random weights to obtain more arbitrary degree
distributions. See also Yao et al. (2005) for a related model (with deterministic
weight) aimed specifically at producing power law degree distributions. The model
is defined as follows:

1. Let n be a positive integer, and define m = bβnαc with α, β > 0. As before,
take V = {1, . . . , n} to be a set of n vertices and A a set of m elements. Also,
let {Wi} be an i.i.d. sequence of positive random variables with distribution
F , where F is assumed to have mean 1 if the mean is finite. Finally, for some
constant γ > 0, set

pi = γWin
−(1+α)/2 ∧ 1. (1)

Now construct a bipartite graph B(n, m,F ) with vertex sets V and A by
adding edges to the elements of A for each vertex i ∈ V independently with
probability pi.

2. The random intersection graph G(n,m,F ) is obtained as before by drawing an
edge between two distinct vertices i, j ∈ V if and only if they have a common
adjacent vertex a ∈ A in B(n,m, F ).
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In the social network setting, the weights can be interpreted as a measure of
the social activity of the individuals. Indeed, vertices with large weights are more
likely to join many groups and thereby acquire many social contacts. There are
several other examples of real networks where the success of a vertex (measured
by its degree) depends on some specific feature of the vertex; see e.g. Palla et al.
(2005) for an example in the context of protein interaction networks. Furthermore,
an advantage of the model is that it has an explicit and straightforward construction
which, as we will see, makes it possible to exactly characterize the degree distribution
and the clustering in the resulting graph.

1.2 Results

Our main results concern the degree distribution and the clustering in the graph
G(n, m,F ). As for the degree distribution, first note that, conditional on Wi and Wj ,
the probability that there is an edge between two individuals i, j ∈ V in G(n, m,F )
is

1− (1− pipj)m = βγ2WiWjn
−1 + O(W 2

i W 2
j n−2).

By summing the expectations of the edge indicators over j, it is easy to see that, at
least when the weights have finite second moment, the expected degree of individual
i given its weight Wi is βγ2Wi (recall that weight distributions with finite mean are
assumed to be scaled so that the mean equals 1). The following theorem, which is
a generalization of Theorem 2 in Stark (2004), gives a full characterization of the
degree distribution for different values of α.

Theorem 1.1 Let Di be the degree of vertex i ∈ V in a random intersection graph
G(n, m,F ) with m = bβnαc and pi as in (1).

(a) If α < 1 and F has finite mean, then, as n → ∞, the degree Di converges in
distribution to a point mass at 0.

(b) If α = 1 and F has finite moment of order 1 + ε for some ε > 0, then Di

converges in distribution to a sum of a Poisson(βγWi) distributed number of
Poisson(γ) variables, where all variables are independent.

(c) If α > 1 and F has finite moment of order 1 + ε for some ε > 0, then Di is
asymptotically Poisson(βγ2Wi) distributed.

To get some intuition for Theorem 1.1, note that the expected number of groups
that individual i belongs to is roughly βγWin

(α−1)/2. If α < 1 and Wi has finite
mean, this number converges to 0 in probability, so that the degree distribution
converges to a point mass at 0, as stated in (a). For α = 1, the number of groups
that individual i is a member of is Poisson(βγWi) distributed as n → ∞, and the
number of other individuals in each of these groups is approximately Poisson(γ)
distributed, which explains (b). Finally, for α > 1, individual i belongs to infinitely
many groups as n →∞. This means that the edges indicators will be asymptotically
independent, giving rise to the Poisson distribution specified in (c).
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Moving on to the clustering, write Eij for the event that individuals i, j ∈ V have
a common group in the bipartite graph B(n,m, F ) – that is, Eij is equivalent to
the event that there is an edge between vertices i and j in G(n,m, F ) – and let P̄n

be the probability measure of B(n, m,F ) conditional on the weights {W1, . . . ,Wn}.
Given three distrinct vertices i, j, k ∈ V, the clustering cn(G) is defined as

cn(G) = E
[
P̄n (Eij |Eik, Ejk)

]
(2)

where the expectation is taken over the weights, and we write c(G) = limn→∞ cn(G).
Clearly the vertices are indistinguishable, so cn(G) does not depend on the partic-
ular choice of the vertices i, j and k. However, the clustering does depend on the
parameter α, as demonstrated by the following theorem.

Theorem 1.2 Consider the random intersection graph G(n,m, F ) with m = bβnαc
and pi as in (1). If F has finite mean, then we have that

(a) c(G) = 1 for α < 1;

(b) c(G) = E
[
(1 + βγWk)−1

]
for α = 1;

(c) c(G) = 0 for α > 1.

To get some intuition for Theorem 1.2, consider three given individuals i, j, k ∈ V
and assume that i and k share a group and that j and k share a group. Then, the
probability that i and j also have a common group depends on the number of groups
that the common neighbor k belongs to. Indeed, the fewer groups k belongs to, the
more likely it is that i and j in fact share the same group with k. Recall that the
expected number of groups that k belongs to is roughly βγWkn

(α−1)/2. If α > 1, this
goes to 0 as n →∞. Since it is then very unlikely that k belongs to more than one
group when n is large, two given edges {i, k} and {j, k} are most likely generated
by the same group, meaning that i and j are connected as well. On the other hand,
if α > 1, the number of groups that k belongs to is asymptotically infinite. Hence,
that i and j each belong to one of these groups, does not automatically make it
likely that they actually belong to the same group. If α = 1, individual k belongs
to βγWk groups on average, explaining the expression in part (b) of the theorem.

From Theorem 1.2 it follows that, to get a nontrivial tunable clustering, we
should choose α = 1. For a given weight distribution F (with finite mean), the value
of the clustering can then be varied between 0 and 1 by adjusting the parameters
β and γ. Furthermore, when α = 1, the degree distribution for a given vertex
is asymptotically compound Poisson with the weight of the vertex as one of the
parameters – see Theorem 1.1 (b) – and it is not hard to see that, if F is a power
law with exponent τ , then the degree distribution will be so as well. Since the mean
of F is set to 1, the expected asymptotic degree is βγ2. Taken together, this means
that, when α = 1, we can obtain a graph with a given value of the clustering and
a power law degree distribution with prescribed exponent and prescribed mean by
first choosing F to be a power law with the desired exponent and then tuning the

5



parameters β and γ to get the correct values of the clustering and the expected
degree.

The rest of the paper is organized as follows. In Sections 2 and 3, Theorem 1.1
and Theorem 1.2 are proved, respectively. The clustering is analyzed for the im-
portant example of a power law weight distribution in Section 4. Finally, Section 5
provides an outline of possible future work.

2 The degree distribution

We begin by proving Theorem 1.1.
Proof of Theorem 1.1. We prove the theorem for vertex i = 1. Write D1 = D,
and denote by N the number of groups that individual 1 belongs to. If individual 1
is not a member of any group, then clearly D = 0, and hence (a) follows if we show
that P(N = 0) → 1 as n → ∞ for α < 1. Conditional on W1, the variable N is
binomially distributed with parameters m and p1 and thus

P̄n(N = 0) = (1− p1)m = 1−O(mp1).

By the choice of m and p1, we have that mp1 ≤ βγW1n
(α−1)/2, and, by Markov’s

inequality,

P
(
W1n

(α−1)/2 > δ
)
≤ E[W1]

δn(1−α)/2
for any δ > 0.

If α < 1 and W1 has finite mean, then the right-hand-side above converges to 0. It
follows that P̄n(N = 0) → 1 in probability. Bounded convergence then gives that
P(N = 0) = E[P̄n(N = 0)] → 1, as desired.

To prove (b) and (c), we condition on the weight W1, which is thus assumed
to be fixed in what follows, and show that the generating function of D converges
to the generating function of the claimed limiting distribution. To do this, let Xi

(i = 2, . . . , n) denote the number of common groups of individual 1 and individual
i. Since two individuals are connected if and only if they have at least one group
in common, we can write D =

∑n
i=2 1{Xi ≥ 1}. Furthermore, conditional on N

and {Wi}i≥2, the Xi’s are independent and binomially distributed with parameters
N and pi. Hence, with ¯̄Pn denoting the probability measure of the bipartite graph
B(n,m, F ) conditional on both {Wi}i≥2 and N , the generating function of D can
be written as

E[tD] = E

[
n∏

i=2

E
[
t1{Xi≥1}∣∣{Wi}, N

]]

= E

[
n∏

i=2

(
1 + (t− 1) ¯̄Pn(Xi ≥ 1)

)]

where t ∈ [0, 1]. Using the Taylor expansion log(1 + x) = x + O(x2) and

¯̄Pn(Xi ≥ 1) = 1− (1− pi)N = Npi + O(N2p2
i ),
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we get that

n∏

i=2

(
1 + (t− 1) ¯̄Pn(Xi ≥ 1)

)
= e(t−1)N

P
pi+O

(
N2
P

p2
i

)
(3)

= e(t−1)N
P

pi + Rn,

where
Rn = e(t−1)N

P
pi

(
eO(N2

P
p2

i ) − 1
)
.

Since the product in (3) is the conditional expectation of tD with t ∈ [0, 1], it takes
values between 0 and 1, and, since e(t−1)N

P
pi ∈ (0, 1], it follows that Rn ∈ [−1, 1].

We will show that

(i) E
[
e(t−1)N

P
pi

] → eβγW1(eγ(t−1)−1) if α = 1;

(ii) E
[
e(t−1)N

P
pi

] → eβγ2W1(t−1) if α > 1;

(iii) Rn → 0 in probability for α ≥ 1.

The limits in (i) and (ii) are the generating functions for the desired compound
Poisson and Poisson distribution in part (b) and (c) of the theorem, respectively.
Moreover, by bounded convergence, (iii) implies that E[Rn] → 0. Hence the theorem
is proved once (i)-(iii) are established.

Starting with (i) and (ii), we first note that the expectation with respect to
N of e(t−1)N

P
pi is given by the generating function for N evaluated at the point

e(t−1)
P

pi . Since N is binomially distributed with parameters m and p1, we have
that

E
[
e(t−1)N

P
pi

]
= E

[(
1 + p1

(
e(t−1)

P
pi − 1

))m]
. (4)

For α = 1, we have m = bβnc and pi = γWin
−1 ∧ 1. Recalling that E[Wi] = 1, it

follows that
∑

pi → γ. Hence,

(
1 + p1

(
e(t−1)

P
pi − 1

))bβnc
→ eβγW1(eγ(t−1)−1) as n →∞,

and it follows from bounded convergence that the expectation converges to the same
limit, proving (i).

For α > 1, define p̃i = n(α−1)/2pi. With m = bβnαc and pi = γW1n
−(1+α)/2 ∧ 1,

we get after some rewriting, for n large so that p1 = γW1n
−(1+α)/2, that

(
1 + p1

(
e(t−1)

P
pi − 1

))m
=

(
1 +

γW1(t− 1)
∑

p̃i

nα
· e(t−1)n(1−α)/2

P
p̃i − 1

(t− 1)n(1−α)/2
∑

p̃i

)bβnαc
.

Clearly
∑

p̃i → γ, and, since (ex−1)/x → 1 as x → 0, it follows that the right hand
side above converges to eβγ2W1(t−1) as n → ∞. By (4) and bounded convergence,
this proves (ii).
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It remains to show (iii). First recall the definition of Rn and note that, since
t ∈ [0, 1], to establish that Rn → 0 it is sufficient to show that N2

∑
p2

i → 0. To do
this, define ξ = ε(1 + ε)−1 and write

N2
∑

p2
i =

(
Nn−(α−1+ξ)/2

)2
nα−1+ξ

∑
p2

i .

Since E[N ] = E[mp1] ≤ βγn(α−1)/2, by Markov’s inequality, we have for any δ > 0
that

P
(
Nn−(α−1+ξ)/2 > δ

)
≤ βγ

δnξ/2

and it follows that Nn−(α−1+ξ)/2 → 0 in probability as n → ∞. To see that
nα−1+ξ

∑
p2

i → 0 as well, note that, since p2
i ≤ γ2W 2

i n−(1+α), we have that

nα−1+ξ
∑

p2
i ≤ γ2

∑
W 2

i

n2−ξ
.

Hence it suffices to show that
∑

W 2
i /n2−ξ → 0. Obviously, Wi ≤ maxk≤n{Wk}, so

that ∑
W 2

i

n2−ξ
≤

(∑
Wi

n

) (
max{Wi}

n1−ξ

)
.

By the law of large numbers, we have that
∑

Wi/n → 1 and, recalling the definition
of ξ, for any δ > 0, we have that

P
(
max{Wi} > δn1−ξ

)
≤ nP(Wi > δn1−ξ)

= nP(W 1+ε
i > δ1+εn).

Here, nP(W 1+ε
i > δ1+εn) → 0, since Wi has finite 1 + ε moment. It follows that∑

W 2
i /n2−ξ → 0 in probability, and the proof of (iii) is complete. 2

3 Clustering

In this section, we prove Theorem 1.2. First recall that Eij denotes the event that
the individuals i, j ∈ V share at least one groups. It will be convenient to generalize
this notation. To this end, for i, j, k ∈ V, denote by Eijk the event that there is at
least one group to which all three individuals i, j and k belong, and write Eij,ik,jk

for the event that there are at least three distinct groups to which i and j, i and
k, and j and k respectively belong. Similarly, the event that there are two distinct
groups to which individuals i and k, and j and k respectively belong is denoted by
Eik,jk. The proof of Theorem 1.2 relies on the following lemma.

Lemma 3.1 Consider a random intersection graph G(n,m, F ) with m = bβnαc and
pi defined as in (1). For any three distinct vertices i, j, k ∈ V, we have that

(a) P̄n(Eijk) = βγ3WiWjWk

n(3+α)/2 + O

(
W 2

i W 2
j W 2

k

n3+α

)
;
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(b) P̄n(Eij,ik,jk) =
β3γ6W 2

i W 2
j W 2

k

n3 + O

(
W 3

i W 3
j W 3

k

n4

)
;

(c) P̄n(Eik,jk) = β2γ4WiWjW 2
k

n2 + O

(
W 2

i W 2
j W 3

k

n3

)
;

(d) P̄n(EijkEik,jk) = O

(
W 2

i W 2
j W 2

k

n(5+α)/2

)
.

Proof. As for (a), the probability that three given individuals i, j and k do not share
a group at all is (1−pipjpk)m. Using the definitions of m and the edge probabilities
{pi}, it follows that

P̄n(Eijk) = 1− (1− pipjpk)m

=
βγ3WiWjWk

n(3+α)/2
+ O

(
W 2

i W 2
j W 2

k

n3+α

)
.

To prove (b), note that the probability that there is exactly one group to which
both i and j belong is mpipj(1− pipj)m−1 = mpipj + O(m2p2

i p
2
j ). Given that i and

j share one group, the probability that i and k share exactly one of the other m− 1
groups is (m− 1)pipk(1− pipk)m−2 = mpipk + O(m2p2

i p
2
k). Finally, the conditional

probability that there is a third group to which both j and k belong given that the
pairs i, j and i, k share one group each is 1− (1− pjpk)m−2 = mpjpk + O(m2p2

jp
2
k).

Combining these estimates, and noting that scenarios in which i and j or i and k
share more than one group have negligible probability in comparison, we get that

P̄n(Eij,ik,jk) = m3p2
i p

2
jp

2
k + O

(
m4p2

i p
2
jp

2
k(pipj + pipk + pjpk)

)

=
β3γ6W 2

i W 2
j W 2

k

n3
+ O

(
W 3

i W 3
j W 3

k

n4

)
.

Part (c) is derived analogously.
As for (d), note that the event EijkEik,jk occurs when there is at least one group

that is shared by all three vertices i, j and k and a second group shared by either
i and k or j and k. Denote by r the probability that individual k and at least one
of the individuals i and j belong to a fixed group. Then r = pk(pi + pj − pipj),
and, conditional on that there is exactly one group to which all three individuals i,
j and k belong (the probability of this is mpipjpk(1 − pipjpk)m−1 = O(mpipjpk)),
the probability that there is at least one other group that is shared either by i and
k or by j and k is 1− (1− r)m−1 = O(mr). It follows that

P̄n(EijkEik,jk) = O(m2pipjpkr)

= O

(
W 2

i W 2
j W 2

k

n(5+α)/2

)
.

2

Using Lemma 3.1, it is not hard to prove Theorem 1.2.
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Proof of Theorem 1.2. Recall the definition (2) of the clustering cn(G) and note
that

P̄n(Eij |EikEjk) =
P̄n(Eijk ∪ Eij,ik,jk)
P̄n(Eijk ∪ Eik,jk)

.

As for (a), applying the estimates of Lemma 3.1 and merging the error terms yields

P̄n(Eij |EikEjk) ≥ P̄n(Eijk)
P̄n(Eijk) + P̄n(Eik,jk)

=
1 + O(WiWjWkn

−(3+α)/2)
1 + Wk[βγn(α−1)/2 + O(WiWjWkn−(3−α)/2)]

. (5)

By Markov’s inequality, when α < 1, we have for any δ > 0 that

P(WiWjWkn
−(3−α)/2 > δ) ≤ E[WiWjWk]

δn
→ 0,

since Wi, Wj and Wk are independent and have finite mean. This means that
WiWjWkn

−(3−α)/2 goes to 0 in probability, and, similarly, WiWjWkn
−(3+α)/2 → 0

in probability. Furthermore, it is easy to see that n(α−1)/2 → 0 for α < 1 as n →∞.
Hence the fraction in (5) converges to 1 in probability for α < 1, and it follows from
bounded convergence that cn(G) → 1.

To prove part (b), note that for α = 1, it follows from (5) and the above
reasoning that lim inf cn(G) ≥ E

[
(1 + βγWk)−1

]
, and so it suffices to show that

lim sup cn(G) ≤ E
[
(1 + βγWk)−1

]
. Applying Lemma 3.1 with α = 1 and simplify-

ing, we get that

P̄n(Eij |EikEjk) ≥ P̄n(Eijk) + P̄n(Eij,ik,jk)
P̄n(Eijk) + P̄n(Eik,jk)− P̄n(EijkEik,jk)

=
1 + O(WiWjWkn

−1)
1 + Wk[βγ + O(WiWjWkn−1)]

.

Since the weights are independent with finite mean, Markov’s inequality can be
used to conclude that WiWjWkn

−1 converges to 0 in probability, and the desired
conclusion follows from bounded convergence.

As for (c), we apply Lemma 3.1 again to get the bound

P̄n(Eij |EikEjk) ≤ P̄n(Eijk) + P̄n(Eij,ik,jk)
P̄n(Eik,jk)

=
n(1−α)/2 + O(WiWjWkn

−1)
Wk[βγ + O(WiWjWkn−1)]

. (6)

Obviously n(1−α)/2 → 0 if α > 1, and, by Markov’s inequality, we have that
WiWjWkn

−1 → 0 in probability. Hence the fraction in (5) converges to 0 in proba-
bility and bounded convergence gives that cn(G) → 0. 2
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Figure 1: (a) The clustering as a function of λ for different values of βγ: βγ = 1
(—), βγ = 5 (− − −), βγ = 10 (− · −). (b) The clustering as a function of βγ for
different values of λ: λ = 2.1 (—), λ = 2.5 (−−−), λ = 4 (− · −).

4 Clustering for a power law weight distribution

When α = 1, the clustering is given by E[(1+βγWk)−1]. In general, it is not possible
to give an explicit expression for this expectation, but numerical solutions are easily
obtained. We now investigate the clustering in more detail in the important case
when F is a power law. More precisely, we take F to be a Pareto distribution with
density

f(x) =
(λ− 2)λ−1

(λ− 1)λ−2
x−λ for x ≥ λ− 2

λ− 1
.

When λ > 2, this distribution has mean 1, as desired. The clustering c(G) is given
by the integral

(λ− 2)λ−1

(λ− 1)λ−2

∫ ∞

λ−2
λ−1

(1 + βγx)−1x−λdx. (7)

Defining u := (λ− 2)/(x · (λ− 1)), we obtain

c(G) =
1

βγ

(λ− 1)2

(λ− 2)

∫ 1

0
uλ−1

(
1 +

u

βγ

(
λ− 1
λ− 2

))−1

du

=:
1

βγλ

(λ− 1)2

(λ− 2) 2F1

(
1, λ; 1 + λ;− 1

βγ

(
λ− 1
λ− 2

))
,

where 2F1 is the hypergeometric function (Abramomowitz and Stegun, 1964). For
βγ ≥ (λ− 1)/(λ− 2), a series expansion of the integrand yields that

c(G) =
1

βγ

(λ− 1)2

(λ− 2)

∞∑

k=0

(
− 1

βγ

(
λ− 1
λ− 2

))k 1
k + λ

=:
1

βγ

(λ− 1)2

(λ− 2)
Φ

(
− 1

βγ

(
λ− 1
λ− 2

)
, 1, λ

)
,
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where Φ is the Lerch transcedent. Furthermore, when λ is an integer, the expression
for the clustering becomes

c(G) =
(λ− 2)λ−1

(λ− 1)λ−2

[
(−βγ)λ−1 ln

(
1 +

λ− 1
βγ(λ− 2)

)
+

λ−1∑

`=1

(−βγ)λ−1−`

`

(
λ− 1
λ− 2

)`
]

.

Since 2F1(a, b; c; z) is increasing in z, the clustering falls monotonically in βγ.
Also, the clustering decreases when λ increases, since more mass is then put on large
values of x where the function (1 + βγx)−1 is small. Figure 1 (a) and (b) show how
the clustering depends on λ and βγ respectively. For any c ∈ (0, 1) and a given
tail exponent λ, we can find a value of βγ such that the clustering is equal to c.
Combining this with a condition on βγ2, induced by fixing the mean degree in the
graph, the parameters β and γ can be specified.

5 Future work

There are a number of possible directions for future research. Apart from the degree
distribution and the clustering, an important feature of real networks is that there is
typically significant correlation for the degrees of neighboring nodes, that is, either
high (low) degree vertices tend to be connected to other vertices with high (low)
degree (positive correlation), or high (low) degree vertices tend to be connected to
low (high) degree vertices (negative correlation). A next step is thus to quantify the
degree correlations in the current model. The fact that individuals share groups most
likely induces positive degree correlation, which agrees with empirical observations
from social networks; see Newman (2003) and Newman and Park (2003).

Also other features of the model are worth investigating. For instance, many real
networks are “small worlds”, meaning roughly that the distances between vertices
remain small also in very large networks. It would be interesting to study the relation
between the distances between vertices, the degree distribution and the clustering
in the current model. On the one hand, when the clustering is large, there are
many “redundant” edges, which indicates that, for a given edge density, one would
expect the average distance between individuals to be larger if the network is highly
clustered. On the other hand, when the clustering is large, individuals tend to be
organized in groups, and once a path reaches a group, all members of the group are
only one step away. This acts to reduce the distances in clustered networks.

Finally, dynamic processes can be expected to behave differently on clustered
networks as compared to more tree-like networks. Most work to date, however,
has focused on the latter class. The current model makes it possible to vary the
clustering and to choose the degree distribution, and it would be interesting to
study the behavior of dynamic processes as a function of these properties.
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