

Tilburg University

Processing games with shared interest

Quant, M.; Meertens, M.; Reijnierse, J.H.

Published in:
Annals of Operations Research

Publication date:
2008

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Quant, M., Meertens, M., & Reijnierse, J. H. (2008). Processing games with shared interest. Annals of
Operations Research, 158(1), 219-228.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/e83018e2-d6fb-4829-b6eb-fb73964f2a5e

Ann Oper Res (2008) 158: 219–228
DOI 10.1007/s10479-007-0235-8

Processing games with shared interest

Marieke Quant · Marc Meertens · Hans Reijnierse

Published online: 18 September 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper introduces processing problems with shared interest as an extension
of processing situations with restricted capacities (Meertens, M., et al., Processing games
with restricted capacities, 2004). Next to an individual capacity to handle jobs, each player
now may have interest in the completion of more than one job, and the degrees of interest
may vary among players. By cooperating the players can bundle their capacities and follow
an optimal processing scheme to minimize total joint costs. The resulting cost allocation
problem is analyzed by considering an associated cooperative cost game. An explicit core
allocation of this game is provided.

Keywords Processing games · Scheduling · Core allocation

1 Introduction

Consider the situation in which a number of jobs need to be completed by a number of
players. Each player is endowed with an individual capacity for handling jobs. Each job
requires a certain amount of effort (i.e., it has a processing demand) and for each time unit
a job is uncompleted it generates a fixed cost (called the cost-coefficient of the job).

In Meertens et al. (2004) these so-called processing situations are studied in a cooperative
game theory framework. They consider a model in which a player is assigned to exactly one
job (i.e., there is a one-one correspondence between the jobs and the players). If a coalition
of players cooperate, costs savings can be made by helping each other by means of using
a player’s capacity to speed up the completion of a job of another coalition member. So, a
coalition has the sum of the capacities of its members to its disposal for completing all jobs
of the coalition in such a way that the total costs are minimized. To minimize the total costs

M. Quant (�) · M. Meertens · H. Reijnierse
CentER and Department of Econometrics & OR, Tilburg University, P.O. Box 90153, 5000, LE Tilburg,
The Netherlands
e-mail: quant@uvt.nl

220 Ann Oper Res (2008) 158: 219–228

in a processing problem, jobs have to be completed one by one according to the order of
decreasing urgencies (cf. Smith 1956).

At first sight, this observation might lead to the idea that the cooperative games derived
from processing situations are equivalent to sequencing games with one machine and ag-
gregated weighted completion times (cf. Curiel et al. 1989). However, this is not the case.
The diversion between these two classes of games is due to two main differences between a
processing situation and a sequencing situation with one machine and aggregated weighted
completion times. The first difference is that players have individual, and in general, differ-
ent capacities for handling jobs (not necessarily their own), while in a sequencing situation
with one machine, there is a constant capacity (the capacity of the machine) for handling
jobs. The second difference is that in a sequencing situation there is an initial scheduling
of the jobs in front of the machine. In a processing situation, however, there are no initial
restrictions nor rights on the order in which players may want to process their jobs.

The main result in Meertens et al. (2004) shows total balancedness of the cost-games
derived from processing situations by providing an explicit core element. In this paper, we
extend this result to a wider class of processing situations. These extensions are similar to the
ones that can be found in recent literature on sequencing situations. There, the assumption
that each player is obliged to one job has been dropped and the idea that a job can be
of interest for different players has been introduced (see Estévez-Fernández et al. 2004 or
Calleja et al. 2004).

Here, we study processing situations with shared interest. In a processing situation with
shared interest each player has again a individual capacity for completing jobs which have
certain processing demands. However, a player may have interest for more than one job (or
even for all jobs) to be completed. Moreover the cost-coefficients do not only depend on
the jobs, but also on the players. So, a job may be of interest for several players, but the
costs for the time this job is uncompleted may be different for each player involved. The
cost-games derived from processing situations with shared interest are totally balanced. In
fact, we provide an explicit core element for these type of cost-games.

The paper is organized as follows. In Sect. 2 we briefly repeat the results of Meertens
et al. (2004). Section 3 introduces the new model and provides an explicit core element.
Section 4 contains the conclusions.

2 Processing games

A processing problem P with restricted capacity consists of a tuple

〈J,p = (pj)j∈J , α = (αj)j∈J , β〉.
Here, J is a finite set of jobs that need to be completed. The vector p ∈ R

J++ contains
the processing demands or efforts of the jobs, furthermore α ∈ R

J+ is the vector of cost
coefficients and β is a strictly positive real number denoting the maximum available effort
per time unit, or shortly capacity. The costs for job j ∈ J to be uncompleted for a period
of time t equals αj · t . The objective is to find a feasible schedule such that the total costs
are minimized. This minimum is denoted by c(P). To attain these minimal costs, the jobs
should be completed one after an other. The order in which this is done depends on the
urgency of the jobs. This leads to the following proposition.

Proposition 2.1 (cf. Smith 1956) Let P be a processing problem such that J = {1, . . . , |J |}
and the jobs are numbered such that α1

p1
≥ · · · ≥ α|J |

p|J | . Then it is optimal to process the jobs

Ann Oper Res (2008) 158: 219–228 221

in increasing order and

c(P) = 1

β

|J |∑

i=1

αi · [p1 + · · · + pi].

In a processing situation 〈N,J,p = (pj)j∈J , α = (αj)j∈J , (βi)i∈N 〉 there is a finite set of
players N , in which each player i ∈ N is endowed with a strictly positive capacity of βi in
order to perform jobs. Each job j ∈ J has a processing demand pj > 0 and cost coefficient
αj ≥ 0. As long as job j is uncompleted, it generates a cost of size αj per time unit. It is
assumed that each job is assigned to a different player. Therefore, we denote the processing
demand and the cost coefficient of the job of player i by pi and αi respectively.

Let S ⊆ N be a coalition of players who decide to cooperate. This coalition has the
individual capacities of its members to its disposal, i.e. coalition S can maximally generate
an amount of effort of size β(S) := ∑

i∈S βi per time unit. The aim of coalition S is to
complete all jobs of its members, such that aggregate costs are minimized. This situation
gives rise to the processing problem

P(S) := 〈J (S), (pi)i∈S, (αi)i∈S, β(S)〉,
in which J (S) denotes the set of jobs of players in S. The processing game 〈N,cP〉 in which
cP : 2N → R+ is the map defined by

cP(S) := c(P(S)) for all S ⊆ N.

Theorem 2.1 (Meertens et al. 2004) Processing games are totally balanced.

Let 〈N,J,p = (pj)j∈J , α = (αj)j∈J , (βi)i∈N 〉 be a processing situation. In fact the au-
thors show that the vector y ∈ R

N with

yi = αi

β(N)

i∑

k=1

pk + τi − βi

β(N)

n∑

k=1

τk, (1)

for all i ∈ N , is a core allocation of the corresponding processing game, provided that N :=
{1, . . . , n} and α1

p1
≥ · · · ≥ αn

pn
. Here τi denotes the tax paid by player i, and this tax is defined

by:

τi := pi

β(N)
·
[

1

2
· αi +

n∑

k=i+1

αk

]
.

So, the amount player i ∈ N has to pay in the core allocation y consists of three parts. The
first part αi

β(N)

∑i

k=1 pi gives the actual costs of player i. These are the product of the cost
coefficient of player i and the completion time of his job. The second part τi is the tax paid
by player i, which is paid because all players work on the job of player i and all jobs with
lower urgencies have to wait for their completion. The sum of taxes is redivided among
the players proportionally to their capacities. This results in the third part − βi

β(N)

∑n

k=1 τk ,
called the subsidy to player i. It is done in order to reward players with large capacity and
compensate players of which the job is at the end of the line. A more detailed explanation
of this core element can be found (Meertens et al. 2004).

222 Ann Oper Res (2008) 158: 219–228

3 Processing games with shared interest

In this section we analyze an extension of processing situations and the corresponding
processing games. Instead of each player having one job, we allow them to have interest
in several jobs. We prove that the corresponding games are totally balanced.

A processing situation with shared interest P can be described by a tuple 〈N,J,p =
(p)j∈J ,A,β = (βi)i∈N 〉. Here, N is a finite set of players and J a finite set of jobs. The
vector p ∈ R

J++ contains the processing demands of the jobs. β contains the capacities with
which the players are endowed. The matrix A ∈ R

N+ × R
J+ contains the cost coefficients of

all players for all possible jobs. The number Aij denotes the cost coefficient of player i ∈ N

with respect to job j ∈ J . If Aij = 0 then player i has no interest in job j . Contrary to the
original setting it is now possible for a player to have interest in several jobs and a job can be
of interest for more than one player. The original problem can be modeled as a processing
situation with shared interest by choosing the matrix A to be a diagonal matrix. Let i ∈ N .
The set of jobs in which player i is interested is denoted by Ji = {j ∈ J | Aij > 0}.

If a coalition S ⊆ N decides to cooperate, its members have a total capacity of β(S) :=∑
i∈S βi available in order to construct a schedule which completes all their jobs, such that

total weighted costs are minimized. This situation gives rise to the processing problem

P(S) := 〈J (S), (pj)j∈J (S), (Aj (S))j∈J (S), β(S)〉,
in which J (S) denotes ∪i∈SJi , the set of all jobs which are of interest for players of S.∑

i∈S Aij is the total cost coefficient of coalition S for job j and is denoted by Aj(S). Anal-
ogous to the problem in which each player has only one job, one can associate a processing
game with shared interest 〈N,cP 〉 with cP : 2N → R+ as follows:

cP (S) := c(P(S)) for all S ⊆ N.

Next we provide an example of a processing situation with shared interest, derived from a
maintenance problem.

Example 3.1 Suppose a tree network is given, that connects all players to the root. The
players are situated in the nodes of the tree. Over time the network has deteriorated and the
players suffer from periodic costs (e.g., leakage, delay because of bad roads). One day they
decide to collectively perform a renovation. Each edge j in the network needs a specific
amount of effort pj to be renovated, e.g., one worker needs pj days to fix road j . Each
player i can contribute βi workers. Each player i suffers an amount of costs equal to Aij for
each day that edge j has not been repaired yet. Note that Aij is positive only if edge j is
along the path of node i to the root. The players have to decide in which order the edges will
be repaired. Furthermore, players with relatively high costs on edges that are repaired in a
late stage, or who contribute more workers have to be compensated. The situation described
can be modeled by a processing game with shared interest. Let us illustrate this further by
means of a numerical example.

Suppose we have two players and three edges, one of them used by both. The efforts for
renovating the edges equal p := (30,15,20), i.e. one worker needs pj days to repair edge j

(see Fig. 1).
Player 1 contributes one worker, while player 2 can contribute two workers. The costs

that each player suffers for each day an edge is not yet fixed, are reflected in the following
matrix

A =
(

3 0 1
0 1 2

)
.

Ann Oper Res (2008) 158: 219–228 223

Fig. 1 Tree with two players.
The black nodes (including the
root) are vacant

Row i denotes the costs of player i with respect to the edges. If player 1 works by
himself, then he first renovates the edge with requires an effort of 30 and finally the common
edge. Since, he is all by himself (i.e., β1 = 1) this yields a total costs of cP ({1}) = 3 ·
30
1 + 1 · 20+30

1 = 140. Similarly, the costs for player 2 (note that β2 := 2) equals cP ({2}) =
2 · 20

2 +1 · 15+20
2 = 37 1

2 . If both players decide to cooperate they can contribute three workers
for the renovations. Although the common edge does not require the most effort, it should be
repaired first (it is of interest for both players), then the private edge of player 1 and finally
the private edge of player 2. The total minimal joint costs equal

cP (N) = 3 · 20

3
+ 3 · 20 + 30

3
+ 1 · 20 + 30 + 15

3
= 91

2

3
.

The main result of this paper is stated in the following theorem.

Theorem 3.1 A processing game with shared interest is balanced.

In the proof of Theorem 3.1 an explicit core allocation is provided. We first introduce this
core allocation x and give an intuitive explanation.

Let P = 〈N,J,p,A,β〉 be a processing situation with shared interest, such that J =
{1, . . . , |J |} and A1(N)

p1
≥ · · · ≥ A|J |(N)

p|J | (this means that if the grand coalition cooperates, the
jobs are performed in the order (1, . . . , |J |)). Then

xi :=
(

∑

j∈J

Aij

β(N)

j∑

k=1

pk

)
+

(∑

j∈J

Aij

Aj (N)
τj

)
− βi

β(N)

∑

j∈J

τj (2)

for all i ∈ N . The value τj , is for every j ∈ J defined by

τj = pj

β(N)

[
1

2
Aj(N) +

|J |∑

k=j+1

Ak(N)

]
.

The division of the allocation into three parts is still accurate. The first part concerns the
actual costs of the jobs. Each player i has to pay his personal actual costs of each job j .
The second part gives the taxes of the jobs. These are imposed in proportion with the costs

224 Ann Oper Res (2008) 158: 219–228

coefficients. The third part concerns the subsidies, which are still allocated proportionally
with respect to the capacities of the players.

The core element x is independent on the optimal order chosen. Namely, (2) can be
rewritten as

xi :=
∑

j∈J

Aij

Aj (N)

(
Aj(N)

β(N)

j∑

k=1

pk + τj

)
− βi

β(N)

∑

j∈J

τj . (3)

The independence now follows immediately from Meertens et al. (2004), since they prove
that if another optimal order is used, the total amount of taxes paid does not change, and
neither does the term

Aj (N)

β(N)

∑j

k=1 pk + τj for each j ∈ J .
We now turn to the proof of Theorem 3.1. We first prove a lemma on balancedness for

processing situations with multiple jobs using a processing game in the original setting. In
a processing situation with multiple jobs players can have interest in more than one job,
but each job is still of interest for only one player. In fact each player “owns” a set of jobs.
Subsequently, the proof of Theorem 3.1 is built along the following lines: first it is shown that
it is sufficient to prove that the allocation x as described in formula (2) is a core allocation
in case |N | = 2. Then we prove that x is a core element for all processing situations in
which |N | = 2. The proof is given by an induction argument on the number of jobs for
which both players have a positive cost coefficient. Note that if this number equals zero, we
have a multiple jobs processing situation of which a core element is already provided. In the
induction step, a job with joint interest is split into two jobs, both with single interest. With
the help of this new processing situation on which the induction hypothesis can be applied
(and hence a core element is known), the result is proved.

Lemma 3.1 Every multiple jobs processing game is totally balanced.

Proof Let (N, cP) be a multiple jobs processing game with associated situation P =
〈N,J,p,A,β〉, i.e. Ji ∩ Jk = ∅ for all i, k ∈ N with i �= k. Define the processing situa-
tion P̄ = 〈J (N), J,p, ᾱ, β̄〉 as follows. For each job in J a player is created, so the player
set of P̄ is J (N) and J (N) = J . A ‘player’ j , which is actually a job, keeps its processing
demand pj and its cost coefficient becomes ᾱj = Aij > 0, in which i is the unique player
such that Aij > 0. The capacity βi of a regular player i in N is split equally over all new
players originating from his job set Ji , resulting in:

β̄j := βi

|Ji | for all i ∈ N, j ∈ Ji.

It is left to the reader to verify that for each coalition S ⊆ N the following is true,

cP (S) = cP̄(J (S)). (4)

According to Theorem 2.1, the game 〈J (N), cP̄〉 is totally balanced and has a core allocation
y in R

J (N), see (1). Define x in R
N by xi := ∑

j∈Ji
yj for all i in N . Since equation (4) is

valid and y ∈ C(cP̄), it follows that x ∈ C(cP). �

Proof of Theorem 3.1 Let P = 〈N,J,p,A,β〉 be a processing situation with shared interest.
Without loss of generality we assume that J = {1, . . . , |J |} and A1(N)

p1
≥ · · · ≥ A|J |(N)

p|J | . Let x

be the allocation as described in (2).

Ann Oper Res (2008) 158: 219–228 225

Step 1: in this step we show that is sufficient to prove that x is a core allocation if |N | = 2.
Suppose that P is such that x �∈ C(cP). Then there exists a coalition S ⊂ N such that

x(S) = ∑
i∈S xi > cP (S). We construct a new processing situation P̄ , with player set N̄ =

{1,2} and show that for this new situation the corresponding allocation x̄ is not a core
element.

Define a two person processing situation P̄ with shared interest: P̄ = 〈N̄ = {1,2}, J,

p, Ā, β̄〉. The job set and the vector of processing demands remain unchanged. Player 1 can
be seen as a representative of coalition S and player 2 as a representative of coalition N\S.
The matrix of cost coefficients Ā is defined as follows: the cost coefficient Ā1j of player 1
and job j equals the total cost coefficient for coalition S: Ā1j = Aj(S). Similarly, the cost
coefficient Ā2j of player 2 and job j equals the total cost coefficient for coalition N\S:
Ā2j = Aj(N\S). The vector of capacities β̄ is given by β̄ = (β(S),β(N\S)). Note that the
coalitions N and N̄ perform exactly the same jobs and for each job j ∈ J , Aj(N) = Āj (N̄).
Hence, the optimal orders of the problems coincide. The same is true for the coalitions S

and {1}, and N\S and {2}. Hence

cP (N) = cP̄ (N̄), cP (S) = cP̄ ({1}), cP (N\S) = cP̄ ({2}).
Let x̄ be the allocation corresponding to P̄ (as described in (2)). Since Ā1j = ∑

i∈S Aij and
Ā2j = ∑

i∈N\S Aij , it follows from equation (3) that

x(S) = x̄1,

x(N\S) = x̄2

This indicates that x̄ is not a core allocation of the game 〈N̄, cP̄ 〉. Hence, if there exists a
situation in which x is not a core allocation, then there exists also such a situation with only
two players.

Step 2: in this step we prove that for all processing situations with two players, the allo-
cation x as described in (2) is a core element.

Assume that |N | = 2. Let �(P) be the number of jobs for which both players have a
strictly positive cost coefficient (i.e. �(P) := {j ∈ J | A1j > 0 and A2j > 0}). We prove our
statement by induction on �(P).

If �(P) = 0 we deal with a processing problem with multiple jobs. In this case, x co-
incides with the allocation that is shown to be in the core of the corresponding processing
game with multiple jobs in the proof of Lemma 3.1.

Let k ∈ N. Assume that for each two person processing game with shared interest for
which �(P) does not exceed k, x is a core element. Let P = 〈N = {1,2}, J,p,A,β〉 be a
processing situation such that �(P) equals k +1. We prove that x ∈ C(cP), which completes
the induction argument.

Let j be a job with shared interest. Without loss of generality we assume that the
processing demand of job j equals the total cost coefficient: pj = Aj(N) (this is just a
matter of scaling). So the urgency of job j equals 1. Define another processing situation
P̄ = 〈N, J̄ , p̄, Ā, β〉 as follows. P̄ arises from P by splitting j into two jobs ja and jb with
single interest, both having urgency 1, like j . This yields

J̄ = {1, . . . , j − 1, ja, jb, j + 1, . . . , |J |},
p̄ = {p1, . . . , pj−1,A1j ,A2j ,pj+1, . . . , p|J |},

Ā =
(

A11 . . . A1(j−1) A1j 0 A1(j+1) . . . A1|J |
A21 . . . A2(j−1) 0 A2j A2(j+1) . . . A2|J |

)
.

226 Ann Oper Res (2008) 158: 219–228

Let x̄ be the allocation defined by (2) that corresponds to P̄ . By the induction hypothesis
it holds that x̄ ∈ C(cP̄). Hence cP̄ ({i}) − x̄i ≥ 0 for i ∈ {1,2}. Note that it is sufficient to
prove that cP ({i}) − xi ≥ cP̄ ({i}) − x̄i , since this guarantees that x is a core element. It is
equivalent to show that

cP ({i}) − cP̄ ({i}) ≥ xi − x̄i . (5)

In order to prove inequality (5), we prove two statements:

cP ({i}) − cP̄ ({i}) ≥ A1jA2j

βi

, (6)

xi − x̄i = A1jA2j

2β(N)
(7)

for i ∈ {1,2}. Inequality (5) immediately follows from inequality (6), equality (7) and the
fact that βi < β(N).

Proof of inequality (6): let i = 1. Note that the job set of player 1 in the new situation can
be written as J̄1 = (J1\{j}) ∪ {ja}. Let σ be the optimal order of player 1 for the processing
problem P({1}) and let σ̄ be the same order as σ , but job j is replaced by ja . This means
that player 1 completes the jobs in the old order σ , but instead of job j , job ja is performed.
Order σ̄ is a possible order to solve the processing problem P̄({1}). We compare the costs of
σ with the costs of σ̄ . Since the processing demands of jobs j and ja are not equal (contrary
to their cost coefficients!), this yields a cost reduction of at least

1

β1
(pj − pja) · A1j = 1

β1
(Aj (N) − A1j)A1j = A1jA2j

β1
.

Note that the ready times of jobs beyond j become smaller in σ̄ , which yields an extra cost
reduction. Hence the value found above is a lower bound for the cost reduction. It is possible
that for player 1 another order becomes optimal when facing P̄({1}), so:

cP̄ ({1}) ≤ c(σ̄) ≤ cP ({1}) − A1jA2j

β1
,

where c(σ̄) denotes the costs if player {1} performs his job in the order σ̄ . The same argu-
ment holds for player 2, which proves inequality (6).

Proof of inequality (7): jobs ja and jb have equal urgency for coalition N . Since x does
not change if jobs with the same urgency are switched, we assume that the order correspond-
ing to x̄ equals (1, . . . , j − 1, ja, jb, j + 1, . . . , |J |). Let τ̄ be the vector of taxes correspond-
ing with x̄. Before calculating the difference between the two allocations, we first show that
the total amount of taxes paid in the new situation, equals the amount of taxes paid in the
old situation:

∑
k∈J̄ τ̄k = ∑

k∈J τk .
Denote

∑
k>j Ak(N) by s. The following equations are valid,

τ̄k = τk for all k ∈ J̄\{ja, jb},

τ̄ja = A1j

β(N)

(
1

2
Āja (N) + Ājb (N) + s

)
,

τ̄jb = A2j

β(N)

(
1

2
Ājb (N) + s

)
.

Ann Oper Res (2008) 158: 219–228 227

Because Āja (N) = A1j , Ājb (N) = A2j and pj = A1j + A2j , we have

τ̄ja + τ̄jb = 1

β(N)

(
1

2
A2

1j + A1jA2j + A1j s + 1

2
A2

2j + A2j s

)

= 1

β(N)

(
1

2
(A1j + A2j)

2 + (A1j + A2j)s

)

= pj

β(N)

(
1

2
pj + s

)
= τj .

This implies that the total amount of taxes paid, does not change.
We can now calculate the difference between the two allocations x1 and x̄1, and x2 and

x̄2. Recall that:

x1 =
∑

�∈J

A1�

β(N)

�∑

k=1

pk +
∑

k∈J

A1k

Ak(N)
τk − β1

β(N)

∑

k∈J

τk,

x̄1 =
∑

�∈J̄

Ā1�

β(N)

�∑

k=1

p̄k +
∑

k∈J̄

Ā1k

Āk(N)
τ̄k − β1

β(N)

∑

k∈J̄

τ̄k .

Since p̄ja + p̄jb = pj , the completion times of all other jobs remain unchanged: p̄k = pk for
all k ∈ J̄\{ja, jb}. Furthermore, recall that Ā1ja = A1j , Ā1jb = 0 and Ā2ja = 0, Ā2jb = A2j

and pj = A1j + A2j , p̄ja = A1j and p̄jb = A2j and τj = Aj (N)

β(N)
(1

2Aj(N) + s). Hence,

x1 − x̄1 = A1j

β(N)

j∑

k=1

pk + A1j

Aj (N)
τj − Ā1ja

β(N)

ja∑

k=1

p̄k − Ā1ja

Āja (N)
τ̄ja

= A1j

β(N)
pj − A1j

β(N)
p̄ja + A1j

Aj (N)
τj − τ̄ja

= A1jA2j

β(N)
+ A1j

β(N)

(
1

2
Aj(N) + s

)
− Ā1ja

β(N)

(
1

2
Āja (N) + Ājb (N) + s

)

= A1jA2j

β(N)
+ A1j

β(N)
· 1

2
(A1j + A2j) − A1j

β(N)

(
1

2
A1j + A2j

)

= A1jA2j

2β(N)
.

Similarly,

x2 =
∑

�∈J

A2�

β(N)

�∑

k=1

pk +
∑

k∈J

A2k

Ak(N)
τk − β2

β(N)

∑

k∈J

τk,

x̄2 =
∑

�∈J̄

Ā2�

β(N)

�∑

k=1

p̄k +
∑

k∈J̄

Ā1k

Āk(N)
τ̄k − β2

β(N)

∑

k∈J̄

τ̄k .

228 Ann Oper Res (2008) 158: 219–228

And

x2 − x̄2 = A2j

β(N)

j∑

k=1

pk + A2j

Aj (N)
τj − Ā2jb

β(N)

jb∑

k=1

p̄k − Ā2jb

Ājb (N)
τ̄jb

= A2j

β(N)
pj + A2j

Aj (N)
τj − Ā2jb

β(N)
(p̄ja + p̄jb) − τ̄jb

= A2j

Aj (N)
τj − τ̄jb

= A2j

Aj (N)

(
Aj(N)

β(N)

(
1

2
Aj(N) + s

))
− A2j

β(N)

(
1

2
Ājb (N) + s

)

= A2j

β(N)

(
1

2
(A1j + A2j) + s

)
− A2j

β(N)

(
1

2
A2j + s

)

= A1jA2j

2β(N)
.

This proves (7) and the theorem. �

4 Conclusions

In this paper we introduce an extension of processing situations with restricted capacities,
the so-called processing situations with shared interest. In this extension players may have
interest for several jobs to be completed. We prove that the associated cost-games derived
from these situations are totally balanced. This statement is proved by explicitly providing an
allocation of the total costs which is a core element of the associated cost-game. Moreover,
it is shown that this allocation is independent on the optimal order chosen to process the
jobs.

References

Calleja, P., Estévez-Fernández, A., Borm, P., & Hamers, H. (2004). Job scheduling, cooperation and control.
CentER DP 2004-65, Tilburg University, Tilburg, The Netherlands.

Curiel, I., Pederzoli, G., & Tijs, S. (1989). Sequencing games. European Journal of Operational Research,
40, 344–351.

Estévez-Fernández, A., Borm, P., Calleja, P., & Hamers, H. (2004). Sequencing games with repeated players.
CentER DP 2004-128, Tilburg University, Tilburg, The Netherlands.

Meertens, M., Borm, P., Quant, M., & Reijnierse, H. (2004). Processing games with restricted capacities.
CentER DP 2004-83, Tilburg University, Tilburg, The Netherlands.

Smith, W. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3,
59–66.

	Processing games with shared interest
	Abstract
	Introduction
	Processing games
	Processing games with shared interest
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

