

Tilburg University

A business-aware web services transactions model

Papazoglou, M.; Kratz, B.

Published in:
Proceedings of the 4th International Conference on Service-Oriented Computing (ICSOC 2006)

Publication date:
2006

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Papazoglou, M., & Kratz, B. (2006). A business-aware web services transactions model. In A. Dan, & W.
Lamersdorf (Eds.), Proceedings of the 4th International Conference on Service-Oriented Computing (ICSOC
2006) (pp. 352-364). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/3071ae9d-ca69-46ff-970d-cf2b93b070b2

A Business-Aware Web Services
Transaction Model

Mike P. Papazoglou and Benedikt Kratz

Tilburg University, Infolab
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

{mikep, B.Kratz}@uvt.nl

Abstract. Advanced business applications typically involve well-defined
standard business functions such as payment processing, shipping and
tracking, managing market risk and so on, which apply to a variety of
application scenarios. Although such business functions drive transac-
tional applications between trading partners they are completely exter-
nal to current Web services transaction mechanisms as they are only ex-
pressed as part of application logic. To remedy this situation, this paper
proposes a business aware Web services transaction model and support
mechanisms. The model allows expressing and blending business and
QoS aware transactions on the basis of business agreements stipulated
in SLAs and business functions.

1 Introduction

As enterprises follow the path to e-business, business processes are becoming in-
creasingly complex and integrated both within internal corporate business func-
tions (e.g., manufacturing, design engineering, sales and marketing, and enter-
prise services) and across the external supply chain. In this environment there
is a clear need for advanced business applications to coordinate multiple Web
services into a multi-step business transaction. This requires that several Web
service operations or processes attain transactional properties reflecting business
semantics, which are to be treated as a single logical (atomic) unit of work. For
example, consider, a manufacturer that develops Web service based solutions to
automate the order and delivery business functions with its suppliers as part of
a business transaction. The transaction between the manufacturer and its sup-
pliers may only be considered as successful once all products are delivered to
their final destination, which could be days or even weeks after the placement
of the order, and payment has ensued.

In contrast to Web service transactions, which are driven by purely technical
requirements such as coordination, data consistency, recovery, and so on, business
transactions are driven by economic needs and their objective is accomplished
only when the agreed upon conclusion among trading parties is reached, e.g.,
payment in exchange for goods or services.

This approach requires distilling from the structure of a business collaboration
the key capabilities that must necessarily be present in a business transaction

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 352–364, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Business-Aware Web Services Transaction Model 353

and specifying them accurately and independently of any specific implemen-
tation mechanisms. The business transaction then becomes the framework for
expressing detailed operational business semantics.

Conventional approaches to business transactions, such as Open EDI
(http://www.iso.org) and more recently ebXML, focus only on the documents
exchanged between partners, and ignore important constituents in a business
transaction such as business operations and their behavioral semantics. A more
natural approach to business transactions is to make common business opera-
tional requirements and operational level relationships between trading partners
first class tenets in a business transaction. This requires providing a common
core of well-understood business operational principles (or business transaction
functions) such as ordering, transport, distribution and payment that can be ra-
tionalized and appropriately combined across any supply chain to create seman-
tically enhanced business transactions. Developers can then build transactional
applications by using, combining, and, possibly specializing, these constructs in
a similar way that abstract data types are used in programming languages.

This paper focuses on introducing an advanced business transaction model
and on providing operational business principles for specifying and modeling
business transactions along with their QoS characteristics. The approach taken
mimics business operation semantics and does not depend upon underlying
technical protocols and implementations. The paper also presents a Business
Transaction Model Language (BTML) that is used at design time to specify the
elements of a business transaction. Run-time support for this environment is pro-
vided by conventional Web services standards such as BPEL, WS-Coordination
and WS-Transaction and will be briefly highlighted in the context of a reference
architecture. Detailed descriptions of the run-time environment as well as run-
time transformations between the BTML and equivalent constructs supported
by Web services transaction standards are outside the scope of this paper.

2 The Business Transaction Model

An important requirement in making cross-enterprise business process automa-
tion happen is the ability to describe the collaboration aspects of the business
processes, such as business commitments, mutual obligations and exchange of
monetary resources, in a standard form that can be consumed by tools for busi-
ness process implementation and monitoring. This gives raise to the concept
of a business transaction model that encompasses a set of business transaction
functions and several standard business primitives and conventions that can be
utilized to develop complex business applications involving transactional and
monetary exchanges.

Central to the business transaction model is the notion of a business trans-
action. Business transactions cover many domains of activity that businesses
engage in, such as request for quote, supply chain execution, purchasing, manu-
facturing, and so on. A business transaction is defined as a trading interaction
between possibly multiple parties that strives to accomplish an explicitly shared

354 M.P. Papazoglou and B. Kratz

business objective, which extends over a possibly long period of time and which is
terminated successfully only upon recognition of the agreed conclusions between
the interacting parties. A business transaction is driven by well-defined business
tasks and events that directly or indirectly contribute to generating economic
value, such as processing and paying an insurance claim. If a business transac-
tion completes successfully then each participant will have made consistent state
changes, which, in aggregate, reflect the desired outcome of the multi-party busi-
ness interaction. The purpose of a business transaction is to facilitate specifying
common business procedures and practices in the form of business application
scenarios that allow expressing business operational semantics and associated
message exchanges as well as the rules that govern business transactions. Such
rules include operational business conventions, agreements, and mutual obliga-
tions. The combination of all these factors characterizes the nature of business
relationships among the parties involved in a business transaction. It enforces
trading parties to achieve a common semantic understanding of the business
transaction and the implications of all messages exchanged.

The business transaction is initiated by a single organization and brings about
a consistent change in the state of a business relationship between two or more
trading parties. A business relationship is any distributed state held by the
parties, which is subject to contractual constraints agreed by those parties. A
business transaction needs to express features like the parties that are involved
in the transaction; the entities under transaction; the destination of payment
and delivery; the transaction time frame; permissible operations; links to other
transactions; receipts and acknowledgments; and finally, the identification of
money transferred outside national boundaries.

The previous definition of a business transaction has been derived from (clas-
sical) commerce models and serves as a common high-level, non-technical view of
how business organizations interact with each other. The definition emphasizes
the operational business view of a transaction. There are four key components
in a business transaction model that help differentiate it from (general) message
exchange that business processes involve. These are: (1) commitment exchange;
(2) the party (or parties) that has the ability to make commitments; (3) busi-
ness constraints and invariants that apply to the message exchanged between
the interacting parties; and (4) business objects (documents) that are operated
upon by business activities (transactional operations) or by processes. These
terms are introduced and explained below, while Fig. 1 represents them and
their inter-relationships in UML.

A commitment exchange occurs between two or more interacting parties and
concerns tasks or functions to be carried out and usually involves formal trading
partner agreements. A commitment exchange identifies such things as the overall
business process, the partner roles, the business documents used, message and
document flow, legal aspects, security aspects, business level acknowledgments
and status, and so on. Partners inside a transaction have distinct roles (such as
buyer and seller) and the ability to make commitments, being held responsible
for, having rights and obligations, in the context of the business transactions.

A Business-Aware Web Services Transaction Model 355

BusinessFunction

BusinessTransaction Party

1 * -commits to1*

BusinessPrimitive

1 *

Role

**

Order

Payment

Delivery

Transport

DescriptiveReferential

BusinessConstraint
1*

-restrict

* *

InterParty Invariant SectorialInvariant

BusinessOperation

1
*

SimpleOperation Process

BusinessObject

-worksOn

1
*

Protocol Activity

Business

Technical

1 *

-performedDuring*

*

Fig. 1. UML view of a business transaction

One party can act as the initiator of the transaction while the others can act as
responders.

A business transaction constraint is defined as an explicitly stated rule that
prescribes, limits, or specifies any aspect of a business transaction that forms
part of the commitment(s) mutually agreed to among the interacting parties.
Business invariants are constraints external to constraints agreed by interacting
parties in a transaction and include universal legal requirements, commercial
and/or international trade and contract terms, public policy (e.g., privacy/data
protection, product or service labeling, consumer protection), laws and regula-
tions that are applicable to parts of a transaction. Invariants ensure the nature
of the business transaction and/or the goods or services delivered while guar-
anteeing that no regulations are compromised. Business invariants are universal
(or horizontal) in nature and apply regardless of the type of business or sec-
tor within which the business occurs. There are, however, constraints external
to parties that are of a sectorial nature called Sectorial invariants which can
be found in sectors such as telecommunications, transportation and delivery, fi-
nancial/banking, and so on. Universal and sectorial invariants can be combined
with inter-party business constraints for building application use scenarios. It is
important to understand that in such situations invariants take precedence over
internal constraints in a business transaction.

Business transactions may be characterized by universally acceptable business
operational primitives (or simply business functions), which represent functions
that are critical to the conduct of business. A business function is a description of
a well-defined and commonly acceptable critical business principle, e.g., payment
or delivery of goods or services, that transforms business values and causes state
changes to transaction participants, e.g., transforms an unpaid order to paid
order. To achieve this the business function uses contextually aware polymor-
phic business operations, e.g., cancel an order or cancel a payment, constraints

356 M.P. Papazoglou and B. Kratz

and dependencies, (see Sect. 4 for further details). Business transactions usually
operate on business (document-based) objects. These are traditionally associ-
ated with items such as purchase orders, catalogues (documents that describe
products and service content to purchasing organizations), inventory reports,
ship notices, bids and proposals. Document objects are usually associated with
agreements, contracts or bids.

In a Web services environment business transactions are used to capture and
define the integration between business operational requirements and technical
transactional requirements. Business transactions are found only in the applica-
tion (business-logic) level and essentially trigger transactional Web service in-
teractions between organizations at the systems-level (using Web services-based
business processes and transactional standards) in order to accomplish some
well-defined shared business objective. A business transaction in its simplest
form could represent an order of some goods from some company. The comple-
tion of an order results in a consistent change in the state of the affected business:
the back-end order database is updated and a document copy of the purchase
order is filed. More complex business transactions may involve activities such as
payment processing, shipping and tracking, determining new product offerings,
granting/extending credit, and so on.

At run-time the business transaction model requires support from systems-
level transactional frameworks provided by Web Services standards that include
the Web Services Coordination and Transaction [1,2,3] and the Web Services
Composite Application Framework (WS-CAF) [4]. Objective of systems-level
transactional support is to automate the internal flow of transaction process-
ing, spanning multiple disparate applications provide solutions for reliable, con-
sistent, and recoverable composition of back-end services. Important systems-
related aspects of a business transaction include features like the ability to
support long-running interactions; to specify exceptional conditions; to support
compensatible and contingency transactions; to make use of alternate trans-
actions; to reconcile and link transactions with other transactions; to support
secure transactions and to allow transactions to be monitored, audited/logged
and recovered.

3 Integrated Logistics Example

In this section we present a simple integrated logistics example based on standard
business protocol RosettaNet PIPs [5], which we shall enhance in subsequent
sections with transactional functions and business operational semantics as well
as QoS features.

Fig. 2 depicts an integrated logistics scenario involving a customer, suppliers
and a logistics service provider. This logistics model consists of forecast notifi-
cation, forecast acceptance, inventory reporting, shipment receipt, request and
fulfil demand, consumption and invoice notification processes provided by Roset-
taNet PIPs. In Fig. 2 PIP 4A2 supports a process in which a forecast owner sends
forecast data to a forecast recipient. PIP 4A5 provides visibility of available

A Business-Aware Web Services Transaction Model 357

SuppliersSuppliers

Logistics Logistics
Service ProviderService Provider

3.Inventory Reporting
(PIP 4C1)

3.Inventory Reporting
(PIP 4C1)

5.Shipment
Receipt (PIP 4B2) 5.Shipment

Receipt (PIP 4B2)

6. Consumption Notification (PIP 4B3)

7.Invoice Notification (PIP 3C3)

2. Forecast Acceptance (PIP 4A5)

1. Notify of Forecast (PIP 4A2)

4.Request and
Fulfill Demand
(PIP 3B2)

4.Request and
Fulfill Demand (PIP
3B2)

CustomerCustomer Information Flow: Request purchase order

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er
Physical Flow: Deliver product

Physical Flow: Deliver product

8. Remittance Advice (PIP 3C6)

SuppliersSuppliers

Logistics Logistics
Service ProviderService Provider

3.Inventory Reporting
(PIP 4C1)

3.Inventory Reporting
(PIP 4C1)

5.Shipment
Receipt (PIP 4B2) 5.Shipment

Receipt (PIP 4B2)

6. Consumption Notification (PIP 4B3)

7.Invoice Notification (PIP 3C3)

2. Forecast Acceptance (PIP 4A5)

1. Notify of Forecast (PIP 4A2)

4.Request and
Fulfill Demand
(PIP 3B2)

4.Request and
Fulfill Demand (PIP
3B2)

CustomerCustomer Information Flow: Request purchase order

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er
Physical Flow: Deliver product

Physical Flow: Deliver product

8. Remittance Advice (PIP 3C6)

Fig. 2. Integrated logistics example using RosettaNet PIPs

forecasted product quantity between two trading partners. PIP 4C1 supports
a process in which an inventory information provider reports the status of the
inventory to an inventory user. The inventory report can include any product,
active or inactive, held in inventory. PIP 3B2 allows a shipper to notify a re-
ceiver that a shipment has been assigned. This notification is often a part of the
shipment process. PIP 4B2 supports a process used by a consignee to report the
status of a received shipment to another interested party, such as a shipper. The
customer then issues an invoice notification (PIP 4B3) to communicate material
consumption to the supplier, allowing the supplier to trigger invoicing for the
consumed material. PIP 3C3 enables a provider to invoice another party, such
as a buyer, for goods or services performed. Finally, PIP 3C6 enables a payer
to send remittance advice to a payee (in this case the supplier) which indicates
which payables are scheduled for payment.

4 Operational Business Principles and QoS Functions

In the previous we argued for the identification of functional capabilities nec-
essary to support business transactions and introduced the concept of critical
business functions. Figure 3 describes the elements of the business functions in
the business transaction model which is described schematically in Fig. 1. Note
that Fig. 3 due to reasons of brevity depicts only constraints and not invariants.
In particular, this figure illustrates that the business transaction model divides
trade into four broad areas - ordering, paying, delivery and transportation, which
are referred to as operational business principles (or business functions) in this
figure. These areas represent common business functions that are generic, indus-
try neutral and re-usable and can be used to develop business transactions in a
multiplicity of business scenarios. In this way we remove excess complexity from
the business transaction, allowing common business functions such as ordering,

358 M.P. Papazoglou and B. Kratz

D
es

cr
ip

ti
ve

p
ri

m
it

iv
es

R
ef

er
en

ti
al

p
ri

m
iti

ve
s

(C
o

n
te

xt
 a

w
ar

e)
B

u
si

n
es

s
O

p
er

at
io

n
s

Order Payment Delivery Transport General QoS Security Transactional
Identification Value + Negotiable Means Means Accessibility Authentication Means
Method Means Method Method Accuracy Integrity Operative

Settlement Pick-Up Pick-Up Efficiency Confidentiality Participants
Status Status Reliability Authorization/Access Control Dependencies
Restrictions Restrictions Responsiveness Repudiation

Immediacy Immediacy Immediacy Immediacy
Order Order

Payment Payment Payment Temporal Location Routing
Delivery Transport Time Spatial Point Sequential
Repudiation Repudiation Repudiation Repudiation Date Route Parallel

Refund Duration URI Selective
Respend Interval Spectra Choice
Transfer
Trace
Retry Retry Retry General BO BO Associations Operations

Change Change Change Change Identification Business Function Reference set/get
Cancel Cancel Cancel Cancel Properties Other BO Reference change

QoS Operational Principles

Business Objects

Constraints

Operational Business Principles
D

es
cr

ip
ti

ve
p

ri
m

it
iv

es
R

ef
er

en
ti

al
p

ri
m

iti
ve

s

(C
o

n
te

xt
 a

w
ar

e)
B

u
si

n
es

s
O

p
er

at
io

n
s

Order Payment Delivery Transport General QoS Security Transactional
Identification Value + Negotiable Means Means Accessibility Authentication Means
Method Means Method Method Accuracy Integrity Operative

Settlement Pick-Up Pick-Up Efficiency Confidentiality Participants
Status Status Reliability Authorization/Access Control Dependencies
Restrictions Restrictions Responsiveness Repudiation

Immediacy Immediacy Immediacy Immediacy
Order Order

Payment Payment Payment Temporal Location Routing
Delivery Transport Time Spatial Point Sequential
Repudiation Repudiation Repudiation Repudiation Date Route Parallel

Refund Duration URI Selective
Respend Interval Spectra Choice
Transfer
Trace
Retry Retry Retry General BO BO Associations Operations

Change Change Change Change Identification Business Function Reference set/get
Cancel Cancel Cancel Cancel Properties Other BO Reference change

QoS Operational Principles

Business Objects

Constraints

Operational Business Principles

Fig. 3. Description of common business functions, QoS principles and constraints

distribution and payment to be expressed in a form analogous to abstract data
types and rationalizing them across an integrated supply chain.

Figure 3 shows that each business function uses a number of descriptive prim-
itives (or attributes) that describe a certain business function, e.g., the means
of payment. There are also referential primitives that refer to other business
functions, e.g., payment refers to an associated order. Finally, the context aware
business operations introduce a set of polymorphic business operations that col-
lectively transform business values and cause state changes to the business trans-
action participants.

Business functions not only help streamline and rationalize common business
practices across an integrated supply chain, they also help enforce participant
commitments. They introduce a mandatory set of four business level atomicity
criteria that reflect the operational semantics the four standard business func-
tions (ordering, payment, delivery and transportation). For instance, payment
atomicity affects the transfer of funds from one party to another in the transac-
tion. This means that the transaction would fail if payment is not made within a
pre-specified time period that was agreed between a supplier and a customer. De-
livery atomicity, on the other hand, implies that the right goods will be delivered
to a customer at the time that has been agreed.

Each atomicity criterion is treated as a single indivisible logical unit of work,
which determines a set of viable outcomes for a business transaction. The out-
comes of a business transaction may involve non-critical partial failures, or se-
lection among contending service offerings, rather than the strict all-or-nothing
assumption of conventional ACID transactions, and govern the duration and
character of participation in a transaction. They also allow provisional results to
be revealed deliberately to allow such business activities as probabilistic inven-
tory management. Atomicity criteria can be characterized as vital or non-vital.
If a business level atomicity criterion is characterized as vital and fails then
the transaction aborts at the system-level. If, however, the atomicity criterion is
characterized as non-vital then a contingency activity may be issued in case that
a given atomicity criterion, e.g., transportation, fails. For instance, using another
shipper in case that the chosen one fails to deliver. The above characteristics give

A Business-Aware Web Services Transaction Model 359

Means <!- The means of the delivery (depends on nature of goods) -->
•setMeans

•setChannel
•Online <!- intangible goods --> / offline <!- tangible goods -->

•setDeliveryMeans
•Air / Sea / Ground / Combinations

Method <!- Method of the delivery -->
•setDeliveryMethod <!- How will goods be delivered (e.g., batch, all in once, etc) -->

•setNumberOfDeliveries <!- How often will goods be delivered (if in batches) -->
•setDeliveryOptions

•Express
•Type

•Next day / Two day / ...
•Boolean Delivery_Signature_Required

•setTransportCompany <!- Which company is responsible for the transport -->
•setTransportCompanyDetails

•setDeliveryPeriod
•Temporal

Fig. 4. Describing the delivery business function attributes

the ability to a business transaction to explicitly describe business operational
semantics, specify the proper behavior of common business functions and their
implications in case of success or failure.

The business transaction model not only expresses the purpose of each busi-
ness collaboration interaction but is also capable of capturing the timing and
sequence of message exchanges. The model has fixed sequencing semantics which
require that ordering occurs first and is followed by transport and delivery. Pay-
ment can happen before or after the delivery function. For instance, in the
integrated logistics scenario described in the previous section, there might be an
implicit or explicit agreement that the delivery of goods must take place before
the payment and that payment always follows the confirmation of an order. This
situation is depicted by the following code snippet that uses BTML:

<BTx>
<name>LogisticsScenario</name> ...
<sequence>
<BF> <name>Order</name> </BF>
<BF> <name>Delivery</name> </BF>
<BF> <name>Payment</name> </BF> ...
</sequence>
</BTx>

By using these constructs, each participant can understand and plan for con-
formance to the business protocol being employed.

Figure 4 shows two of the attributes of the delivery business function. These
are means and method which describe the means and method of delivery, respec-
tively. The delivery business function is seen from Fig. 3 to also use referential
primitives to refer to such other functions as payment, and transport. It also
uses context aware polymorphic business operations, such as retry to retry a
failed delivery, change to change a delivery and cancel to cancel a delivery. All
attributes and operations in Fig. 3 have been defined and formalized and are
available on request.

Finally, an important element of the business model is the quality of ser-
vice required from the functional capabilities for the business transactions. For

360 M.P. Papazoglou and B. Kratz

instance, one of the referential primitives used in business functions such as or-
dering, payment, transport and delivery, is the issue of non-repudiation using
digital signatures, see Fig. 3. In this way business transactions can also become
QoS-aware and QoS principles can be blended with constraints and business re-
quirements enforced by the business functions. Other QoS primitives that can
be attached to a business transaction and govern its behavior may include gen-
eral QoS primitives such as desired performance rates, mean time to respond,
accessibility periods, time-to-repair a service that has failed, desirable security
protocols and tokens, and so on. These are also depicted in Fig. 3. QoS criteria
can be registered in a Service Level Agreement, which specifies the agreements
and commitments of trading partners involved in a business transaction. More
specifically, they form part of the agreed service-level objectives, which define
the levels of service that both the service customers and the service providers
agree on, and usually include a set of service level indicators, like availability,
performance and reliability.

5 Business Transaction Reference Architecture

The reference architecture that supports the business transaction model is de-
picted in Fig. 5. Application scenarios are specified by using the business re-
lated aspects of the model, e.g., business principles, constraints, QoS criteria,
and so forth. Both the business aspects of the model are connected to a run-
time infrastructure providing the system-level support for executing a business
transaction. Each business level construct is appropriately mapped to a cor-
responding infrastructure primitive(s) that that can be found in Web services
standards, such as BPEL, WS-Coordination, WS-AtomicTransaction and WS-
BusinessActivity. For instance, constructs such as activities, sequences and roles
map directly to BPEL constructs as presented in [6], while vital business level
atomicity criteria map directly to WS-AtomicTransaction and non-vital atom-
icity criteria map to WS-BusinessActivity. Currently, the above set of Web ser-
vices standards is used to implement business transactions. This infrastructure
is based on open an source implementation framework provided by JBoss Trans-
actions (http://www.jboss.org) which supports the latest Web services transac-
tions standards, providing all of the components necessary to build interoperable,
reliable, multi-party, Web services-based applications quickly and easily.

Figure 5 also shows how QoS criteria can be registered in an SLA. An SLA
contains several entries that are related to a business transaction. These include
the scope of the agreement (the services covered in the agreement), penalties
(sanctions should apply in case the service provider under-performs and is unable
to meet the objectives specified in the SLA), optional services (any services that
are not normally required by the user, but might be required in case of an
exception) and exclusion terms (specify what is not covered in the SLA). QoS
criteria in the context of a business transaction are expressed as assertions by
an assertion sub-language of BTML. This assertion language is an extension of
the WS-Policy assertion language [7] thereby reusing existing functionality like

A Business-Aware Web Services Transaction Model 361

WS-Sec WS-C/T WS-CAF BPEL WS-AG WS-Pol

Business Applications

QoS
Principles

Business
Principles

Constraints

Transformation

Infrastructure Primitives
(cancel, commit, compensate, sign, etc)

SLA

B
usiness P

rotocols

T
echnical P

rotocols

WS-Sec WS-C/T WS-CAF BPEL WS-AG WS-Pol

Business Applications

QoS
Principles

Business
Principles

Constraints

Transformation

Infrastructure Primitives
(cancel, commit, compensate, sign, etc)

SLA

B
usiness P

rotocols

T
echnical P

rotocols

Fig. 5. Business transaction reference architecture

normal form, referential and combined policies. BTML’s assertion language also
contains context specific assertion definitions for a business transaction. This
part of the BTML can then be incorporated as guarantee terms into agreements
templates specified by WS-Agreement [8] to enable the specification, negotiation
and acceptance of SLAs that are used to drive business transactions.

Finally, the reference architecture supports the use of business and techni-
cal protocols in the context of the business transaction model. Currently, the
architecture supports one business protocol namely, RosettaNet, and one tech-
nical protocol, the Secure Electronic Transactions (SET) [9]. In the following
section we however concentrate on illustrating how to semantically enhance the
RosettaNet business protocol, which lacks the notion of a business transaction
as defined in Sect. 2, by injecting into it business functions, explicit sequencing
of interactions, partner commitments and constraints.

6 Emulating Business and Technical Protocols

In this section we will illustrate how we can supplant transactional primitives into
the integrated logistics scenario in Fig. 2 to semantically enhance the operational
characteristics of the interacting RosettaNet processes.

This procedure is performed according to the following steps. We start first
by grouping the individual PIPs into related sets that realize a specific common
business function. We observe that PIPs 4A2, 4A5 and 4C1 are all part of the
order business function. PIP 3B2 is part of the transport function and PIPs 4B2
and 4B3 are part of the delivery function. The payment function is covered by
PIPs 3C3 and 3C6.

Following this we need to capture the message and commitment exchange re-
quirements between any trading partners, identifying the timing and sequence
of message exchanges. We assume that the trading partners have agreed on a
business protocol (developed on the basis of RosettaNet) which requires that
payment follows order and delivery. This is specified in BTML as shown in
Sect 4. Subsequently, we can specify the business functions using BTML. We
assume that in the integrated logistics example the customer and the supplier
have agreed on an all or nothing express delivery method, which specifies that

362 M.P. Papazoglou and B. Kratz

<BF>
<name>Delivery</name>
<Means>
<DeliveryMeans>Air</DeliveryMeans>

</Means>
<Method>
<DeliveryMethod>Complete</DeliveryMethod>
<TransportCompany>UPS</TransportCompany>...

</Method>
<Goods><!-- References Goods Business Objects -->
</Goods>
<Change>
<permitted>true</permitted>
<element>location</element>
<numberoftimes>2</numberoftimes>
<prize monetary="$">150</prize>
<paymentmeans>invoice</paymentmeans>

</Change>...
</BF>

<BF>
<name>Payment</name>
<BusinessProtocol>
<participant>
<name>SteelWorks</name>
<role>Supplier</role>
<activities>
<activity>
<name>Create&Send Invoice</name>
<messages>
<messageOutgoing>InvoiceMessage</messageOutgoing>...
</messages>

</activity>...
</activities>

</participant>...
<sequence>
<activity>Create&Send Invoice</activity>
<activity>Receive&Check Remittance Advice</activity>
<selective>
<sequence>
<activity>Accept Remittance Advice</activity>
<activity>Process Remittance Advice</activity>

</sequence>
<activity>Decline Remittance Advice</activity>

</selective>
</sequence>...

</BusinessProtocol>...
</BF>

Listing 1 Listing 2

Listing 3<activities>
<activity>
<name>Create&Send Invoice</name>
<messages>
<messageOutgoing>
<name>Invoice Notification</name>
<acknowledgeable>true</acknowledgeable>
<tta type="maxdurationinhours">2hours</tta>
<signed>
<encryptionalgorithm keylength ="1024">
DES</encryptionalgorithm>

<hashalgorithm keylength="256">
SHA</hashalgorithm>...

</messageOutgoing>...
</messages>

</activity>
</activities>

Fig. 6. Listings of BTML snippets

if the goods are ready for transport the delivery should not take more than two
days (which requires delivery by air). The specification in BTML can be found
in Listing 1 of Fig. 6. Listing 1 also specifies that the delivery location is change-
able at most twice at a cost of 150 $ per time and that the fees will be added
to the original invoice. Listing 2 of the same figure specifies part of a simple
payment protocol seen from the vantage point of the supplier. Finally, Listing 3
adds QoS properties to the elements of the business transaction. In particular,
we may wish to indicate that the InvoiceNotification process (PIP 3C in Fig.
2) requires that the time to acknowledge an Invoice Notification message send
from the Create&Send Invoice activity of the Supplier to the Receive Invoice
activity of the Customer is no longer then 2 hours. This property can be speci-
fied using the Responsiveness primitive in the General QoS field in Fig. 3. The
QoS Responsiveness primitive has an operator called setAcknowledgeable that
specifies whether a particular message should or should not be acknowledgeable
and also the time frame for this to happen. We may also wish to add other QoS
constraints on messages or message parts. For example we may wish to spec-
ify further security primitives indicating whether or not a message or message
part should be non-reputable or signed with a particular hash and encryption
function. All of this can be specified in BTML as shown in Listing 3 of Fig 6.

Another important aspect of the business reference architecture is that it can
blend business with technical protocols. For instance, the business application
that we sketched in the previous does not have any concrete way to handle the
actual payment so that it can transfer funds using a financial service provider.

A Business-Aware Web Services Transaction Model 363

This situation also holds for the RosettaNet PIPs. To remedy this situation
we also extended the payment part of the business transaction described in
the previous with a technical protocol, such as SET, that guarantees secure
payments [10].

7 Related Work

Automated business transactions are a new category of research, wider than his-
torical data-centric local, distributed of federated transactions. This third gener-
ation of transaction management builds out from core transactional technology,
particularly the concept of a open nested transactions and multi-phase distrib-
uted outcomes (two-phase commit in conventional database/messaging transac-
tions). Research in this paper was inspired by the work found in [11], which
motivates the need for using transactions that mimic real business exchanges
and presents an overview of several technologies and protocols that may sup-
port a business transaction framework. Research in the business transactions
area is also related to the creation of meta-models for Web service transaction
models. In [12], a meta-modeling approach to transaction management is pro-
posed; that approach however focuses on the modeling and representation of
transaction models driven purely from database technology perspective without
taking into account business and workflow requirements. To support our imple-
mentation efforts, the work found in [13] is used, where the authors propose to
combine multiple transaction models as WS-C coordination types into BPEL
specifications that can support transactional workflows. The work reported in
this paper can also benefit from other ongoing research in the SOC domain. Of
particular interest is the work on SLAs reported in [14]. Here, the authors define
a template-based approach that enables automated service provisioning. This
provisioning can be guided by the WS-Agreement [8] protocol. Finally, the work
reported in [15] is quite relevant as it describes many non-functional properties
applicable for Web services that can also benefit business transactions.

8 Summary

In the previous we have described a business transaction model, business transac-
tion specification language and associated reference architecture. Key character-
istics of this model is that it sharply distinguishes between a business related and
a systems related view of transactions. At the business-level, the transactions of
our model are weaved around commonly standard business functions that apply
to a variety of application scenarios and can represent business exchanges, the
sequencing and timing, business agreements stipulated in SLAs, liabilities and
dispute resolution policies, and blends these transactions with QoS criteria. Busi-
ness transactions in the systems-level retain the driving ambition of consistency
and provide support for conventional ACID as well as open-nested long-running
transactions. Implementation of the systems-level services is currently provided
by Web services standards like BPEL, WS-Coordination, and WS-Transaction.

364 M.P. Papazoglou and B. Kratz

The potential benefits of this approach arise largely from its ability to stan-
dardize common business functions, better align business processes with business
objectives and provide information to enable monitoring and troubleshooting of
problems and delays. Business decisions can be made at every step of the business
transaction to align it with business objectives and to alleviate undesirable con-
ditions. For example, in case of a purchase order cancellation due to a faulty part,
an order transaction can automatically reserve a suitable replacement product
and notify the billing and inventory processes of the changes. When all inter-
actions between the various business processes have been completed and the
new adjusted schedule is available, the purchase order Web service notifies the
customer sending her an updated invoice.

References

1. Cabrera, L.F., et al.: Web Services Coordination (2005)
2. Cabrera, L.F., et al.: Web Services Atomic Transaction (2005)
3. Cabrera, L.F., et al.: Web Services Business Activity Framework (2005)
4. Bunting, D., et al.: Web Services Composite Application Framework (2003)
5. RosettaNet: Standards required to support xml-based b2b integration (2001)

http://xml.coverpages.org/rosettanetStandardsForIntegration.pdf.
6. Khalaf, R.: From rosettanet pips to bpel processes: A three level approach for

business protocols. In BPM, Proceedings. Volume 3649 of LNCS (2005) 364–373
7. Bajaj, S., et al.: Web Services Policy 1.2 - Framework (WS-Policy). W3C (2006)

http://www.w3.org/Submission/WS-Policy/.
8. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement). TR,

Grid Resource Allocation Agreement Protocol (GRAAP) WG (2005)
9. Merkow, M.S., et al.: Building SET Applications for Secure Transactions. Wiley

& Sons, USA (1998)
10. Kratz, B.: Emulating SET in BTML. ITRS 30, Infolab, Tilburg University (2006)
11. Papazoglou, M.: Web services and business transactions. World Wilde Web: In-

ternet and Web Information Systems 6(1) (2003) 49–91
12. Hrastnik, P., Winiwarter, W.: Using advanced transaction meta-models for cre-

ating transaction-aware web service environments. International Journal of Web
Information Systems 1(2) (2005) 89–99

13. Tai, S., et al.: Transaction policies for service-oriented computing. Data & Knowl-
edge Engineering 51 (2004) 59–79

14. Ludwig, H., et al.: Template based automated service provisioning supporting the
agreement driven service life-cycle. In ICSOC 2005, Proceedings. Volume 3826 of
LNCS (2005) 283–295

15. O’Sullivan, J., et al.: Formal description of non-functional service descriptions.
TR, QUT (2005) http://www.bpm.fit.qut.edu.au/about/docs/non-functional.jsp.

	Introduction
	The Business Transaction Model
	Integrated Logistics Example
	Operational Business Principles and QoS Functions
	Business Transaction Reference Architecture
	Emulating Business and Technical Protocols
	Related Work
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

