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Abstract

A population of items is said to be ‘‘group-testable’’, (i) if the items can be classified as ‘‘good’’ and ‘‘bad’’, and (ii) if it is
possible to carry out a simultaneous test on a batch of items with two possible outcomes: ‘‘Success’’ (indicating that all
items in the batch are good) or ‘‘failure’’ (indicating a contaminated batch). In this paper, we assume that the items to
be tested arrive at the group-testing centre according to a Poisson process and are served (i.e., group-tested) in batches
by one server. The service time distribution is general but it depends on the batch size being tested. These assumptions
give rise to the bulk queueing model M/G(m,M)/1, where m and M(>m) are the decision variables where each batch size
can be between m and M. We develop the generating function for the steady-state probabilities of the embedded Markov
chain. We then consider a more realistic finite state version of the problem where the testing centre has a finite capacity and
present an expected profit objective function. We compute the optimal values of the decision variables (m, M) that max-
imize the expected profit. For a special case of the problem, we determine the optimal decision explicitly in terms of the
Lambert function.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Applied probability; Queueing; Quality control
1. Introduction

Consider a population of items, each of which can be classified into one of two categories: good with prob-
ability q or defective with probability p = 1 � q. These items are said to be group-testable if for any subset of
them it is possible to carry out a simultaneous test (group test) with two possible outcomes: ‘‘success’’,
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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indicating that all items in the subset are good, and ‘‘failure’’, indicating a contaminated subset, i.e., at least
one of the items is defective without knowing which or how many are defective. Traditional group-testing pol-
icies aim at a ‘‘complete identification’’ of the population, i.e., to separate all defective units from the good
units. Obviously, there are many policies which achieve this goal. An optimal policy is usually defined to
be one for which the expected number of group tests is minimized.

Dorfman [11] was the first to introduce a group-testing policy for detecting syphilis in blood samples taken
from US draftees during the Second World War. His suggestion was to pool a fixed number of blood samples
and test the pooled sample, instead of individual samples, for the presence of the syphilis. Since the prevalence
rate of syphilis in the draftees’ population was small, great savings were obtained when syphilis was only pres-
ent in very few pooled samples. If the disease was present then all individual samples were tested separately.
Since the pioneering work of Dorfman [11], numerous variants of group testing procedures have been intro-
duced and discussed in the literature. For a comprehensive review and key references on the subject the reader
is referred to the monograph by Du and Hwang [12].

Group testing procedures are applied in medicine for analyzing blood or urine samples to detect HIV, the
variants of hepatitis, as well as other viruses and bacteria. Applications to HIV screening are given, among
others, by Hammick and Gastwirth [13], Litvak, Tu and Pagano [15], Tu, Litvak and Pagano [21], Wein and
Zenios [23]. Hung and Swallow [14] used binomial grouping in hypotheses testing for the classification of
quantitative covariables. Combinatorial questions in the context of DNA library screening were studied
by Macula [16,17]. Various group testing models with features like incomplete identification, refined
cost functionals, optimization under probabilistic constraints and testing errors have been studied by Bar-
Lev, Stadje and Van der Duyn Schouten [4–7]. These papers also provide a detailed discussion of the
literature.

Recently, Abolnikov and Dukhovny [2,3] studied deterministic and stochastic models for optimal group
testing with complete identification (i.e., with exact determination of all contaminated items). In particular,
they considered static optimization for pooled screening of a fixed population followed by individual or by
subgroup testing. For randomly arriving items and random testing times they proposed a queueing approach
of which the model underlying our analysis is a special case. In contrast to Abolnikov and Dukhovny [2,3] we
are interested in optimization under incomplete identification, which is based on the determination of several
long-run average performance functionals.

In this study we consider a queueing model, denoted by M/G(m,M)/1, and apply it to group testable items.
Each item, independently of the others, can be either good with probability q or defective with probability
p = 1 � q. Items arrive in a storage system according to a Poisson process with rate k and are served (tested)
in batches (groups) by one server (kit). The service time distribution is general and may depend on the batch
size being served. Each batch size can range between m and M, where both m and M are considered to be
decision variables satisfying 1 < m 6M 6M0, for some pre-known kit capacity M0. If there are less than m

items present at a service termination, the system waits until there are m ones and then starts serving them
in a batch. If there are between m and M items present, all items are tested together as a group, and if their
number exceeds M, a group of M is tested next. The service time distribution of a batch of size j is Gj and has
mean 1/lj, j = m, . . ., M. We assume that the Gj’s, as well as q, are known. For every served batch there are
two possible outcomes: ‘‘clean’’, implying that all items in the group are good, or ‘‘contaminated’’, implying
that at least one of them in the group tested has to be defective. Batches which are found clean are kept and
recorded for meeting a possible demand requirement. Contaminated batches are set aside but recorded for,
perhaps, other possible uses.

The above bulk queueing model was suggested by Abolnikov and Dukhovny [2,3] with the additional fea-
ture of i.i.d. batch arrivals. In accordance with their aim of complete identification they considered service time
distributions of a special form. In the case of single item arrivals considered here this system has already been
studied in detail by Nair and Neuts [18] and Neuts [19]. Bulking is of course a classical topic in queueing the-
ory; see e.g., Chaudhry and Templeton [9,10] and the more recent Bocharov et al. [8]. From the queueing anal-
ysis we need for our purposes only the steady-state distribution of the embedded Markov chain of the queue
lengths left behind by departing customers. Neuts [19] gives much more general analytical results, which how-
ever seem intractable for optimization purposes and in particular for numerical calculations. Below we briefly
indicate how to compute the steady-state distribution by standard queueing methods. This short derivation is



228 S.K. Bar-Lev et al. / European Journal of Operational Research 183 (2007) 226–237
similar to that in Abolnikov and Dukhovny [2,3]; relations (6) and (7) can be obtained as special cases from
Theorem 5.1 in Abolnikov and Dukhovny [1] (see also their Theorem 2 in [2]). We then specialize to the case of
a finite waiting room, which seems general enough to cover group testing applications. The important new
feature of this paper is the detailed presentation of several long-run average profit and cost functionals which
are needed to assess the efficiency of the system in the case of incomplete identification: acquisition cost, test-
ing cost, revenue from sales of good items and revenue from sales of contaminated batches. We show that all
these functionals can be expressed in terms of the steady-state distribution of the embedded Markov chain.
These results pave the way towards numerical optimization. Our decision variables are the threshold m for
the minimum size of a batch that is pooled and the maximum group size M.

In this paper, we do not consider complete identification which would require retesting of all items in those
groups that have been found contaminated. As is reflected in our choice of profit and cost functionals, our
objective is to study the group testing system from a purely economic (profit-raising) point of view. In many
medical applications retesting is called for because the aim is to establish a diagnosis for all patients involved.
However, in industrial and also in blood bank applications the further processing of contaminated groups may
not be required or even possible, for example because items can be unavailable for retesting or they would be
destroyed in the process. Moreover, there may be a residual economic value, however reduced, to items
belonging to contaminated groups.

The paper is organized as follows. In Section 2 we present a detailed and formal description of the queueing
model and determine the steady-state distribution of the embedded Markov chain. The core of this paper is
Section 3 in which all pertinent profit and cost functionals are expressed in terms of this distribution. We take
into account purchase costs of arriving items, testing costs of batches, idleness costs, and the revenues from
sales of clean as well as contaminated items. The resulting optimization problem aims at searching for the opti-
mal lower and upper batch sizes m and M that maximize the total net reward. Since only numerical optimi-
zation seems possible, we present in Section 4 some computational examples, including an analysis of the
dependence of the objective function and the optimal solutions on the system parameters.
2. Model description and related functionals

Consider the queueing model M/G(m,M)/1 as described in the previous section. Let Xn, n 2 N, be the number
of items left behind in line immediately after the departure of the nth batch. Then, if Xn < m the server will wait
until at least m items are accumulated in line. When the number of items becomes m, a batch service of size m

is immediately started. If m < Xn 6M all items in line will start immediately their batch service. Finally, if
Xn > M, then M items will immediately start service. Let Y ðjÞn , n 2 N0, j 2 Am,M G {m, m + 1, . . ., M} be the
number of items arrived into the system during a service of type j of the nth batch. The dynamics of
X = {Xn: n P 0} is then given by the recursion
X nþ1 ¼

Y ðmÞnþ1; if X n ¼ 0; 1; 2; . . . ;m;

Y ðmþ1Þ
nþ1 ; if X n ¼ mþ 1;

..

. ..
.

Y ðMÞnþ1; if X n ¼ M ;

X n �M þ Y ðMÞnþ1; if X n ¼ M þ 1; . . .

8>>>>>>>><
>>>>>>>>:
Due to the memoryless property of the exponential distribution, the random variables Y ðjÞn , n 2 N0,
j 2 Am,M, are independent, while for any fixed j they are also identically distributed. Moreover, they are inde-
pendent of {Xi: i 6 n � 1}. Consequently, the process X = {Xn: n P 1}, embedded at departure times of
batches, is a Markov chain. Moreover, X is a stable process if and only if
k
MlM

< 1; ð1Þ
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see Neuts [19, Theorem 2]. The transition probability matrix of the Markov chain X is given by
P ¼

aðmÞ0 aðmÞ1 aðmÞ2 � � � aðmÞm aðmÞmþ1 � � � aðmÞM aðmÞMþ1 aðmÞMþ2 � � �

aðmÞ0 aðmÞ1 aðmÞ2 � � � aðmÞm aðmÞmþ1 � � � aðmÞM aðmÞMþ1 aðmÞMþ2 � � �

aðmÞ0 aðmÞ1 aðmÞ2 � � � aðmÞm aðmÞmþ1 � � � aðmÞM aðmÞMþ1 aðmÞMþ2 � � �

..

. ..
. ..

. . .
. ..

. ..
. . .

. ..
. ..

. ..
. . .

.

aðmÞ0 aðmÞ1 aðmÞ2 � � � aðmÞm aðmÞmþ1 � � � aðmÞM aðmÞMþ1 aðmÞMþ2 � � �

aðmþ1Þ
0 aðmþ1Þ

1 aðmþ1Þ
2 � � � aðmþ1Þ

m aðmþ1Þ
mþ1 � � � aðmþ1Þ

M aðmþ1Þ
Mþ1 aðmþ1Þ

Mþ2 � � �

..

. ..
. ..

. . .
. ..

. ..
. . .

. ..
. ..

. ..
. . .

.

aðMÞ0 aðMÞ1 aðMÞ2 � � � aðMÞm aðMÞmþ1 � � � aðMÞM aðMÞMþ1 aðMÞMþ2 � � �

0 aðMÞ0 aðMÞ1 � � � aðMÞm�1 aðMÞm � � � aðMÞM�1 aðMÞM aðMÞMþ1 � � �

0 0 aðMÞ0 � � � aðMÞm�2 aðMÞm�1 � � � aðMÞM�2 aðMÞM�1 aðMÞM � � �

..

. ..
. ..

. . .
. ..

. ..
. . .

. ..
. ..

. ..
. . .

.

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

ð2Þ
where the rows and columns are indexed as 0, 1, 2, . . ., m, m + 1, . . ., M, M + 1, M + 2, . . .and
aðjÞk ¼
Z 1

0

e�ktðktÞk

k!
dGjðtÞ; k 2 N0; j 2 Am;M
is the probability of k arrivals during a service of type j.
It is useful to note here that the probabilities aðjÞk can be computed using the Laplace transform

~gjðsÞ ¼
R1

0
e�st dGjðtÞ of the service time distribution Gj(t). Denote by AðjÞðzÞ ¼

P1
k¼0aðjÞk zk the generating func-

tion of Y ðjÞn . This simplifies to
AðjÞðzÞ ¼
X1
k¼0

aðjÞk zk ¼
X1
k¼0

zk

Z 1

0

e�ktðktÞk

k!
dGjðtÞ ¼

Z 1

0

e�kt
X1
k¼0

ðktzÞk

k!

 !
dGjðtÞ

¼
Z 1

0

e�ktð1�zÞ dGjðtÞ ¼ ~gjðkð1� zÞÞ:
Thus, the required probabilities aðjÞk can be generated using the relation
aðjÞk ¼
1

k!

dk~gjðkð1� zÞÞ
dzk

����
z¼0

; k ¼ 0; 1; . . .
For example, if Y ðjÞn is Erlang(j, l)—as we will assume in Section 4—then the LT is given by
~gjðkð1� zÞÞ ¼ l
lþ kð1� zÞ

� �j
which can be easily differentiated with respect to z.

Let pi, i = 0, 1,. . .be the stationary probabilities of X so that
pi ¼ lim
n!1

PrðX n ¼ iÞ; i ¼ 0; 1; . . . ;
and denote by PðzÞ ¼
P1

i¼0pizi the corresponding generating function. P(z) can be determined as follows.
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Assuming that (1) holds, the stationary probabilities satisfy the set of linear equations
pj ¼
X1
i¼0

piP ij; j ¼ 0; 1; . . . ð3Þ

X1
j¼0

pj ¼ 1: ð4Þ
The equation for j = 0 contains only the probabilities p0, . . ., pM:
p0 ¼ aðmÞ0 p0 þ � � � þ aðmÞ0 pm þ aðmþ1Þ
0 pmþ1 þ � � � þ aðMÞ0 pM : ð5Þ
After a short calculation (3) yields
PðzÞ ¼ AðmÞðzÞ
Xm

i¼0

pi þ
XM

i¼mþ1

piA
ðiÞðzÞ þ AðMÞðzÞ

zM
PðzÞ �

XM

i¼0

pizi

 !
:

Isolating P(z) we obtain
PðzÞ ¼ 1

AðMÞðzÞ � zM
AðMÞðzÞ

XM

i¼0

pizi � zM AðmÞðzÞ
Xm

i¼0

pi �
XM

i¼mþ1

piA
ðiÞðzÞ

 !
: ð6Þ
Clearly, (6) provides an expression for P(z) in terms of its first M + 1 coefficients p0, . . ., pM, which we have to
determine.

Let us assume that AðMÞðzÞ ¼
P1

n¼0aðMÞn zn has a radius of convergence larger than 1; by our assumptions it
also satisfies aðMÞn > 0,

P1
n¼0aðMÞn ¼ 1 and ðd=dzÞAðMÞð1Þ ¼

P1
n¼0naðMÞn < M . Then, Rouché’s Theorem (Saaty

[20, p. 87]) implies that A(M)(z)�zM has exactly M zeros with absolute value 61. To prove this, set
f(z) = zM and g(z) = �A(M)(z). On the circle jzj = 1 + e in the complex plane we have, for small e > 0,
jgðzÞj ¼ jAðMÞðzÞj 6 AðMÞðjzjÞ ¼ AðMÞð1þ eÞ ¼ 1þ d

dz
AððMÞ1Þ½eþ oðeÞ� < 1þMe < ð1þ eÞM ¼ jf ðzÞj:
Thus, by Rouché’s Theorem, the function f(z) + g(z) has the same number of roots inside the circle jzj = 1 + e
as f(z). Letting e! 0 we see that A(M)(z)�zM has exactly M zeros satisfying jzj 6 1. One of them is of course
z = 1.

Denote the roots by z0 = 1,z1, . . ., zM�1 and assume that they are distinct. The numerator on the right side
of (6) has to vanish for z 2 {z1, . . ., zM�1}, which gives us for the unknowns p0, . . ., pM the M � 1 linear
equations
AðMÞðzkÞ
XM

i¼0

pizi
k � zM

k AðmÞðzkÞ
Xm

i¼0

pi �
XM

i¼mþ1

piA
ðiÞðzkÞ ¼ 0; k ¼ 1; . . . ;M � 1: ð7Þ
Setting z = 1 in (6) the numerator vanishes trivially, but factoring out z � 1 in the numerator and in the
denominator (i.e., applying l’Hôpital’s rule) gives us one more equation because P(1) = 1. Together with
(5) and (7) we arrive at M + 1 linear equations from which p0, . . ., pM can be computed. In the case of multiple
roots one has to take derivatives in (6) to obtain the necessary number of equations.

This general solution requires the calculation of the roots of A(M)(z) � zM, which in practice can result in
numerical inaccuracies especially when the decision variable M assumes a large value. Therefore we examine in
Section 4 the finite-state case of the problem in which the (waiting room) capacity of the group testing center is
bounded by a finite number B. For example, when (m, M) = (2, 4) and B = 7, the transition matrix assumes
the form



Table
CPU t

B

100
300
500
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P8�8 ¼

að2Þ0 að2Þ1 að2Þ2 að2Þ3 að2Þ4 að2Þ5 að2Þ6 1�
P6
j¼0

að2Þj

að2Þ0 að2Þ1 að2Þ2 að2Þ3 að2Þ4 að2Þ5 að2Þ6 1�
P6
j¼0

að2Þj

að2Þ0 að2Þ1 að2Þ2 að2Þ3 að2Þ4 að2Þ5 að2Þ6 1�
P6
j¼0

að2Þj

að3Þ0 að3Þ1 að3Þ2 að3Þ3 að3Þ4 að3Þ5 að3Þ6 1�
P6
j¼0

að3Þj

að4Þ0 að4Þ1 að4Þ2 að4Þ3 að4Þ4 að4Þ5 að4Þ6 1�
P6
j¼0

að4Þj

0 að4Þ0 að4Þ1 að4Þ2 að4Þ3 að4Þ4 að4Þ5 1�
P5
j¼0

að4Þj

0 0 að4Þ0 að4Þ1 að4Þ2 að4Þ3 að4Þ4 1�
P4
j¼0

að4Þj

0 0 0 að4Þ0 að4Þ1 að4Þ2 að4Þ3 1�
P3
j¼0

að4Þj

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775
where the rows and columns are indexed as 0, 1, . . ., 7.
When the testing centre capacity B assumes large values, the problem becomes computationally very chal-

lenging since the entries aðjÞk of the transition matrix P of (2) require symbolic differentiation of the LT
~gjðkð1� zÞÞ. In order to construct the matrix P and to solve for the stationary probabilities we have employed
1
ime to compute the stationary probabilities for large values of B

m M CPU time (seconds)

60 80 2.2
180 240 46.1
300 400 268.2

Fig. 1. The stationary distribution pi, i = 0, 1, . . ., B when B = 100 and (m, M) = (60, 80).
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the computer algebra system Maple 10 http://www.maplesoft.com/products/maple/ which can perform symbolic
differentiation of expressions and solve large-scale linear systems. As an example of a non-trivial problem we
considered a case where items arrive according to a Poisson process with rate k = 0.5 units per unit time and
where the time to complete the testing of k items is assumed to be Erlang (k, l) with l = 3 completions per unit
time. We solved this problem on a Pentium 4 machine running on Windows XP with 2.53 GHz CPU and
512 MB memory for three different values of B and calculated the stationary probabilities. Our numerical cal-
culations were extremely accurate—the solution of the linear system pj ¼

PB
i¼0piP ij, j = 0,1, . . ., B withPB

j¼0pj ¼ 1 produced nonnegative probabilites which added up to 0.9999999 even for the case with
B = 500. See Table 1 for the input values of B and (m, M) and the corresponding CPU times to compute
the probabilities; also see Fig. 1 for the plot of the probabilities when B = 100 with (m, M) = (60, 80).
3. The objective function

Let Zm,M be the size of a tested batch in steady-state, taking values in {m,m + 1, . . ., M} with probabilities
PðZm;M ¼ jÞ ¼

Pm
i¼0

pi; if j ¼ m;

pj; if mþ 1 6 j 6 M � 1;P1
i¼M

pi; if j ¼ M ;

8>>>>><
>>>>>:
In the objective function we need its expected value E(Zm,M) which is clearly given by
EðZm;MÞ ¼ m
Xm

i¼0

pi þ
XM�1

i¼mþ1

ipi þM
X1
i¼M

pi; ð8Þ
where
P1

i¼Mpi ¼ 1�
PM�1

i¼0 pi.
The objective function of expected net profit [denoted by Pðm;MÞ] is based on the long-run average crite-

rion and is defined as follows:
Pðm;MÞ ¼ Gðm;MÞ þ Cðm;MÞ � Aðm;MÞ � T ðm;MÞ � Iðm;MÞ; ð9Þ
where G(m, M) is the expected revenue per time unit obtained from the sales of ‘‘Good’’ items, C(m, M) is the
expected revenue per time unit obtained from the sales of ‘‘Contaminated’’ items, A(m, M) is the ‘‘Acquisi-
tion’’ cost of the incoming items per time unit, T(m, M) is the ‘‘Testing’’ cost per time unit and I(m, M) is
the ‘‘Idleness’’ cost per time unit.

In the following we assume B <1, i.e., the waiting room is finite. We now elaborate on each of the terms
on the right-hand side of (9).

1. Acquisition cost. The acquisition cost of an arriving item is $c/unit. But since only the fraction 1 � pB of
arriving units enter the testing center (and hence are purchased), the long-run average cost is
Aðm;MÞ ¼ kcð1� pBÞ;

where, in general, pB = pB(m, M).
2. Testing cost. Let the batch testing cost (regardless of the batch size) be $b/batch. Hence, the testing cost is

$b/E(Zm,M) per item where E(Zm,M) is given by (8). Thus, the long-run average testing costs are
T ðm;MÞ ¼ kð1� pBÞb
EðZm;MÞ

:

It is important to note that when optimizing the expected profit there exists a trade-off between the revenue
from sales G(m, M) and the testing costs T(m, M). That is, while greater batch sizes result in smaller testing
costs per item, they also result in a smaller probability that all items in the batch will be good (and hence,
a smaller revenue from sales of clean items).

http://www.maplesoft.com/products/maple/


S.K. Bar-Lev et al. / European Journal of Operational Research 183 (2007) 226–237 233
3. Idleness cost. We impose a cost of $s/time unit on idleness of the testing center. Thus, the associated long-
run average idleness cost is
Iðm;MÞ ¼ s
Xm�1

i¼0

pi

since the tester will be idle for the fraction
Pm�1

i¼0 pi of time.
4. Revenue from sales of good items. First, note that each unit of a good (clean) item is sold for $r/unit and the

effective rate of arrival is k(1 � pB) units per time and thus k(1 � p B)r would be the expected revenue if all
incoming items were good. However, since some items are not good, we need to calculate the probability that
a batch is clean before we can determine the expected revenue from sales of good items.
Let W be defined as the event that a batch is good. By conditioning on the number X of units left behind by
a departing batch, we have
PrðW Þ ¼
X1
j¼0

PrðW j X ¼ jÞPrðX ¼ jÞ ¼ qm
Xm

j¼0

pj þ
XM

j¼mþ1

pjqj þ qM
XB

j¼Mþ1

pj:
Note that if j items are left behind after a batch service completion, then the next batch size is m, if j 6 m,
with probability p 0 + p1 + � � � + pm. Hence, qm

Pm
i¼0pi is the probability that a batch of size m is clean if

j 6 m. Similarly,
PM

j¼mþ1pjqj is the probability that a batch of size of j is clean if m < j 6M, and is
qM
PB

j¼Mþ1pj the probability that a batch of size of M is clean if j > M. Thus, the expected revenue from
sales of good (clean) items is found to be

m M B
 !
Gðm;MÞ ¼ kð1� pBÞr qm
X
j¼0

pj þ
X

j¼mþ1

pjqj þ qM
X

j¼Mþ1

pj ð10Þ
5. Revenue from sales of contaminated (bad) items. Let r0 be the sale price of an item belonging to a contam-
inated batch, where clearly r0� r. In a manner similar to that used to compute (10), it can be immediately
seen that the long-run average sale price of a contaminated batch is
Cðm;MÞ ¼ kð1� pBÞr0 ð1� qmÞ
Xm

j¼0

pj þ
XM

j¼mþ1

pjð1� qjÞ þ ð1� qMÞ
XB

j¼Mþ1

pj

" #
:

Hence, by combining all of the above five factors, the long-run average profit is obtained as
Pðm;MÞ ¼ kð1� pBÞ ðr � r0Þ qm
Xm

j¼0

pj þ
XM

j¼mþ1

pjqj þ qM
XB

j¼Mþ1

pj

 !
þ r0

" #

� kð1� pBÞ cþ b m
Xm

i¼0

pi þ
XM�1

i¼mþ1

ipi þM
XB

i¼M

pi

 !�1
2
4

3
5� s

Xm�1

i¼0

pi:
Now, the optimization problem we consider is
max
16m6M6M0

Pðm;MÞ
where, as indicated before, M0 is the pre-known kit capacity.

4. A numerical analysis

We now present a specific example in detail. We use the following base values for the revenue and cost
parameters:
r r0 c b s
50 3 10 15 10

: ð11Þ



Fig. 2. The plot of the objective function Pðm;MÞ defined over the feasible region M ¼ fðm;MÞ : m 6 M 6 Bg when
(r, r0, c, b, s) = (50, 3, 10, 15, 10), B = M0 = 20, k = 0.5 and l = 3. The optimal solution is found as (m*, M*) = (2, 8) with a maximum
expected profit of P� ¼ 4:52.
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We also assume that the capacity of the testing centre is B = 20 (which also equals the kit size, i.e., M0 = B)
and that the items arrive according to a Poisson process with rate k = 0.5 units per unit time. The time to com-
plete the testing of k items is assumed to be Erlang(k, l) with l = 3 completions per unit time. Thus, it takes an
average of k/l time units to complete the testing of k items.

With these parameter values the objective function Pðm;MÞ is maximized over the region
M ¼ fðm;MÞ : m 6 M 6 Bg, which gives (m*, M*) = (2, 8) with a maximum expected profit of P� ¼ 4:52.
See Fig. 2 for a graph of the objective function over the feasible region M and Fig. 3 for a graph of the sta-
tionary distribution pi, i = 0, 1, . . ., B.

To obtain additional insights into the nature of the optimal solution we varied the parameters around their
base values given in (11) and solved the resulting problems as shown in Table 2.
Fig. 3. The stationary distribution pi, i = 0, 1, . . ., B when (m*, M*) = (2, 8) arising from using (r, r0, c, b, s) = (50, 3, 10, 15, 10),
B = M0 = 20, k = 0.5 and l = 3.



Table 2
Sensitivity of the optimal solution to changing parameter values

r r0 c b s m* M* Pðm�;M�Þ
35 5 5 0.00
50 2 8 4.52

65 2 13 11.29
1 2 8 4.43
3 2 8 4.52

5 2 8 4.62
5 2 10 7.02

10 2 8 4.52

20 5 5 0.00
5 1 8 7.81

15 2 8 4.52

25 3 9 2.71
5 3 13 9.26

10 2 8 4.52

15 1 6 0.05

The results corresponding to the base values (r, r0, c, b, s) = (50, 3, 10, 15, 10) are indicated by bold font.
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It is worth noting here that both M and the difference M � m increases in the unit revenue r. Such an
increase in batch sizes (and the potentially high cost resulting from a higher probability of rejecting a large
batch) is compensated by the high unit revenue. The re-sale price of contaminated items r0 does not affect
the optimal solution for the narrow range we have examined. On the other hand, lower values of the unit pur-
chase cost c have the same effect on the optimal batch sizes as the unit revenue: lower the purchase price,
higher the allowed batch sizes (despite the increased probability of rejecting a batch). When the testing cost
per batch b increases we observe a parallel increase in the batch sizes which results in a reduction of the testing
cost per item. Finally, for higher values of the idleness cost s, we observe a narrowing of the difference M � m

which would have the effect of reducing the idleness of the tester.

Remark 1. A (nearly) closed-form solution to the above model can be obtained under the simplifying
assumptions that, (i) the idleness cost is zero, i.e., s = 0, (ii) B is large so that pB = 0, (iii) and when it is
decided, a priori, that m = M. In this case, the individual revenue and cost terms simplify to E(Zm,m) = m,
A(m, m) = kc, T(m, m) = kb/m, I(m, m) = 0, G(m, m) = krqm and C(m, m) = kr0(1 � qm), so that the approx-
imate objective function becomes
P̂ðm;mÞ ¼ kðr � r0Þqm � kb
m
� kðc� r0Þ;
where the last term k(c � r0) P 0 is a constant. With a further simplification, we assume that m is a continuous
variable and differentiate P̂ðmÞ with respect to m, to obtain
dP̂ðmÞ
dm

¼ kðr � r0Þqm lnðqÞ þ kb
m2
; ð12Þ
and
d2P̂ðmÞ
dm2

¼ kðr � r0Þqm½lnðqÞ�2 � 2kb
m3

:

Solving (12) for m, we find the optimal solution for the approximate problem as
m̂ ¼
2L � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnðqÞb

r�r0

q� �
lnðqÞ > 0; ð13Þ
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where LðxÞ is defined as the Lambert function, which is the solution to the nonlinear equation yey = x for a
given x. (For a detailed description of the Lambert function, see Valluri, Jeffrey and Corless [22].) It can be
shown that
d2P̂ðmÞ
dm2

�����
m�

< 0
and that P̂ðmÞ is a unimodal function. Thus, m̂ found from (13) will be the globally optimal solution for the
approximate problem.

With the parameter values used in the detailed example of this Section, i.e., (r, r0, c, b, s) = (50, 3,
10, 15, 10), (k, l) = (0.5, 3) and q = 0.95, the approximate profit function P̂ðmÞ is maximized at m̂ ¼
2:67 ’ 3.
5. Summary and conclusions

In this paper we use a bulk queueing model to analyze a problem in group testing. We assume that the items
to be tested arrive at the group-testing centre according to a Poisson process and are served (i.e., group-tested)
in batches by one server. The service time distribution of this queue depends on the batch size being tested.
With these assumptions we obtain the bulk queueing model M/G(m,M)/1 where m and M(>m) are the decision
variables to be determined. We develop first find the generating function for the steady-state probabilities of
the embedded Markov chain of the M/G(m,M)/1 system and then consider a more realistic finite state version of
the problem. We compute the optimal values of the decision variables (m, M) that maximize the expected
profit. For a special case of the problem, we determine the optimal decision explicitly in terms of the Lambert
function.

The model presented in this paper can be generalized to accommodate other cases. It is useful to note that
distinguishing between m and M is also important in the case of deteriorating items. In such a situation—
occurring in blood banks, for example—there is a trade-off between losing items due to deterioration and test-
ing (too) small groups. This aspect would lead us to the realm of bulk queues with reneging. Another inter-
esting extension of our model comes into the picture when we make the demand process more explicit (taking
lost sales or backorders into account). Also this situation seems to be quite natural in blood banks. Incurring
costs for non-delivery could be another reason to work with distinction between m and M.
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