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Scalable classification-based word
prediction and confusible correction

Antal van den Bosch

ILK / Language and Information Science
Tilburg University
P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands

Antal.vdnBosch@uvt.nl

ABSTRACT.We present a classification-based word prediction model based on IGTREE, a
decision-tree induction algorithm with favorable scalingabilities. Through a first series of
experiments we demonstrate that the system exhibits log-linear increases in prediction accu-
racy and decreases indiscrete perplexity, a new evaluation metric, with increasing numbers
of training examples. The induced trees grow linearly with the amount of training examples.
Trained on 30 million words of newswire text, prediction accuracies reach 42.2% on the same
type of text. In a second series of experiments we show that this generic approach to word pre-
diction can be specialized to confusible prediction, yielding high accuracies on nine example
confusible sets in all genres of text. The confusible-specific approach outperforms the generic
word-prediction approach, but with more data the difference decreases.

RÉSUMÉ.Cet article présente un modèle pour la tâche de prédiction demots, considérée ici
comme une tâche de classification. Ce modèle repose sur l’utilisation de IGTREE, un algo-
rithme d’inférence d’arbre de décision capable de traiter àla fois un grand nombre de classes
et d’exemples d’apprentissage. À travers une première série d’expérimentations nous montrons
que la capacité de prédiction du modèle augmente log-linéairement avec le nombre d’exemples
d’entraînement. Le même comportement est obtenu avec laperplexité discrète, une nouvelle
métrique introduite pour la tâche de prédiction de mots ; la taille des arbres inférés croît, elle,
linéairement. Lorsque notre modèle est entraîné sur un corpus journalistique de 30 millions de
mots, le nombre de mots correctement prédits est de 42.2 % surdes textes journalistiques. Une
seconde série d’expérimentations démontre que ce prédicteur générique peut être spécialisé
pour traiter des configurations dans lesquelles l’ensembledes mots à prédire se restreint à un
petit ensemble. Le modèle spécialisé atteint des meilleursrésultats que le classifieur générique.

KEYWORDS:word prediction, language modeling, induction of decisiontrees, perplexity.

MOTS-CLÉS :prédiction de mots, modèles de langage, inférence d’arbresde décision, perplexité.
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1. Introduction

Word prediction is an intriguing language engineering semi-product. Arguably it
is the “archetypal prediction problem in natural language processing” (Even-Zohar
and Roth, 2000). It is usually not an engineering end in itself to predict the next
word in a sequence, or fill in a blanked-out word in a sequence.Yet, it is an asset
in higher-level proofing or authoring tools, e.g. to be able to automatically discern
among confusibles and thereby to detect confusible errors (Golding and Roth, 1999;
Even-Zohar and Roth, 2000; Banko and Brill, 2001; Huang and Powers, 2001), or
to suggest words in a word processing environment, both under normal circumstances
and in special cases such as language learning or augmentative communication (Wood,
1996; Garay-Vitoria and González-Abascal, 1997). It couldalleviate problems with
low-frequency and unknown words in natural language processing and information
retrieval, by replacing them with likely and higher-frequency alternatives that carry
similar information; it could provide answers to some questions in question answering
systems by filling in blanks. And finally, since the task of word prediction is a direct
interpretation of language modeling, a word prediction system could provide useful
information for language modeling components in speech recognition systems (Wuet
al., 1999) and information retrieval systems (Hiemstra, 2001).

A unique aspect of the word prediction task, as compared to most other tasks in nat-
ural language processing, is that real-world examples abound in large amounts, with-
out any annotation cost involved and hardly without data collection hurdles. Nowa-
days, gigascale and terascale document collections1 are available for research pur-
poses. Any digitized text can be used as training material for a word prediction sys-
tem capable of learning from examples, as employed in the study described in this
article. Banko and Brill (2001) use the abundance aspect of the task to perform learn-
ing curve experiments on confusible disambiguation, extracting their training material
from English text corpora containing up to one billion words.

More general than focusing on limited numbers of confusiblesets such as
to/two/too and there/their/they’re (Golding and Roth, 1999; Banko and Brill, 2001)
we define the word prediction task as to predictany word in context, where we as-
sume we have a left context of words, or both left and right contexts, which are both
realistic variants of this task. In the first, in which only the left context of a word is
given, the word predictor is relying only on the recent history to suggest continua-
tions to the user, or to support a directional language modelfor speech recognition
(Jelinek, 1998). In the second variant, both left and right contexts are given, and the
word in the middle is queried. For example, given a left context of Alice was beginning
to get veryand a right context ofof sitting by her sister on the bank, the system would
ideally predict that the word in the middle istired. A realistic use of this prediction
based on context on both sides is in spelling correction, where a given but possibly

1. Two examples of large-scale corpora are the data used in theTerabyte Tracks of TREC 2004
and 2005, http://www-nlpir.nist.gov/projects/terabyte/, and the English Gigaword corpus pro-
duced by the Linguistic Data Consortium, at http://www.ldc.upenn.edu/
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misspelled word may be blanked out and the word predictor mayguess what the most
appropriate form is given the left and right contexts (Reynaert, 2004; Reynaert, 2005).
In this article we largely focus on the task of having both left and right context, but we
also provide results on the left-context-only task.

It is stating the obvious that the word prediction task in both variants is hard, and
surely impossible to perform perfectly. In the example of the aforementioned first
sentence ofAlice’s Adventures in Wonderland(Carroll, 1865), the missing wordtired
could have been a host of other likely and unlikely words; machines nor humans can
predict which. No word prediction method will ever produce 100% accurate predic-
tions on any text; the upper bound will typically be much lower. We expect, however,
to do relatively well on predicting function words. The problem of word prediction in
English and similar languages could be seen as a combinationof two problems: pre-
dicting function words and content words. Predicting function words involves being
able to recognize syntactic structure and lexical preferences of neighboring content
words. Predicting content words involves, ultimately, knowing what a sentence and
the text around it is about and how it relates to the world and the social context which
it was intended for.

Function words abound, while content words are less frequent to rare (Zipf, 1935).
Any digital text will provide many examples of the same function words in context, but
may provide only few or single examples of rare content wordsin context at the same
time. A machine learning algorithm will tend to struggle with generalizing from these
rare examples to predict the same word again, unless the context is quite or exactly
the same as during training – provided that the learning algorithm has remembered the
exact context.

In this study we encode context only by words, and not by any higher-level lin-
guistic non-terminals which have been investigated in related work on word predic-
tion (Wuet al., 1999; Even-Zohar and Roth, 2000). This choice is motivatedby earlier
findings that with more data, there are increasingly less benefits from non-terminal lev-
els such as part-of-speech tags in natural language processing tasks (Van den Bosch
and Buchholz, 2002) — but it certainly leaves open the question how the same tasks
can be learned from examples when non-terminal symbols are taken into account as
well.

From an engineering point of view, our study addresses two new questions that
have only partially been investigated in earlier related work:

1) How will a machine learning system applied to word prediction scale up to
tens of thousands ofclassesor more, rather than just the two or three classes of a
confusible set? Such a system will need to choose among the tens of thousands of
words it has seen in the training material, and this might notbe practically feasible
given that for some machine learning algorithms the number of classes is a factor that
adds complexity to the costs of storing the learned model or in classification (e.g., as
with binary support-vector machines).

2) How will this learner scale up to being presented with millions ofexamplesof
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words in context as training material, and how will it scale up in classification mode,
making the predictions? The typical experiment in which machine learning algorithms
are applied to natural language processing tasks is based onhundreds to thousands to
maximally a few million examples, while for this task many millions of examples can
be easily generated. Also, some machine learning classifiers may be prohibitively slow
in classifying even with moderate amounts of training material (e.g., with classifiers
based on thek-nearest neighbor classification rule).

The choice for our algorithm, a decision-tree approximation of k-nearest-neigbor
(k-NN) based or memory-based learning, is motivated by the fact that, as we describe
in this article, this particular algorithm has interestingscaling abilities in these two
dimensions: it can scale up to predicting tens of thousands of words, while simultane-
ously scaling up to nearly ten million examples as training material, predicting words
at useful rates of hundreds to thousands of words per second.

The article is structured as follows. In Section 2 we describe what data we selected
for our experiments, and we provide an overview of the experimental methodology
used throughout the experiments, including a description of the IGTREE algorithm
central to our study, as well as a proposal fordiscrete perplexityas an alternative
evaluation metric besides word prediction accuracy. In Section 3 the results of the
word prediction experiments are presented, and the subsequent Section 4 contains the
experimental results of the experiments on confusibles. Webriefly relate our work to
earlier work that inspired the current study in Section 5. The results are discussed, and
conclusions are drawn in Section 6.

2. Data preparation and experimental setup

In this section we outline the prerequisites for the experiments described in the
subsequent sections. First, we identify the textual corpora used. We then describe the
general experimental setup of learning curve experiments,and the IGTREE decision-
tree induction algorithm used throughout all experiments.To conclude the section, we
list the four evaluation metrics used, including the newdiscrete perplexitymetric.

2.1. Data

To generate our word prediction examples, we used the “Reuters Corpus Volume
1 (English Language, 1996-08-20 to 1997-08-19)”2. We tokenized this corpus with
a rule-based tokenizer, and used all 130,396,703 word and punctuation tokens for
experimentation. In the remainder of the article we make no difference between words
and punctuation markers; both are regarded as tokens. We separated the final 100,000
tokens as a held-out test set, henceforth referred to asTEST-REUTERS, and kept the
rest as training set, henceforthTRAIN-REUTERS.

2. For availability of the Reuters corpus, see http://about.reuters.com/researchandstandards/corpus/
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Data set Source Genre Number of tokens
TRAIN-REUTERS Reuters Corpus Volume 1 newswire 130,396,703
TEST-REUTERS Reuters Corpus Volume 1 newswire 100,000
TEST-ALICE Alice in Wonderland fiction 33,361
TEST-BROWN Brown (Penn Treebank) mixed 453,446

Table 1. Training and test set sources, genres, and sizes in terms of numbers of tokens
(words plus punctuation marks)

Additionally, we selected two test sets taken from different corpora. First, we used
the Project Gutenberg3 version of the novelAlice’s Adventures in Wonderland(also
known asAlice in Wonderland) by Lewis Carroll (Carroll, 1865), henceforthTEST-
ALICE. As the third test set we selected all tokens of the Brown corpus part of the
Penn Treebank (Marcuset al., 1993). This is a selected portion of the original one-
million word Brown corpus (Kǔcera and Francis, 1967), a collection of samples of
American English in many different genres, from sources printed in 1961; we refer
to this test set asTEST-BROWN. In sum, we have three test sets, covering texts from
the same genre and source as the training data, a fictional novel, and a mix of genres
wider than the training set. Table 1 summarizes the key training and test set statistics.

2.2. Experimental setup

All experiments described in this article take the form of learning curve experi-
ments (Banko and Brill, 2001; Van den Bosch and Buchholz, 2002). In a learning
curve experiment a sequence of training sets is generated with increasing size. Each
size training set is used to train a model for word prediction, which is subsequently
tested on a held-out test set that is fixed throughout the whole learning curve experi-
ment. Training set sizes are exponentially grown, as earlier studies have shown that
at a linear scale, performance effects tend to decrease in size, but that when measured
with exponentially growing training sets, near-constant (i.e. log-linear) improvements
are observed (Banko and Brill, 2001; Van den Bosch and Buchholz, 2002).

We create incrementally-sized training sets for the word prediction task on the
basis of the 130,296,703-tokenTRAIN-REUTERSset. Each training subset is created
backward from the point at which the final 100,000-wordTEST-REUTERSset starts.
The increments are exponential with base number 10, and for every power of 10 we
cut off training sets atn times that power, wheren = 1, 2, 3, . . . , 8, 9 (for example,
10, 20, . . . , 80, 90).

The actual examples to learn from are created bywindowingover all sequences of
tokens. We encode examples by taking a left context window spanning seven tokens,

3. Project Gutenberg: http://www.gutenberg.net
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Windowed input context Word to be
Left context Right context predicted

once or twice she had peeped intobook her sister was reading , butthe
or twice she had peeped into theher sister was reading , but it book

twice she had peeped into the booksister was reading , but it had her
she had peeped into the book herwas reading , but it had no sister

had peeped into the book her sisterreading , but it had no pictures was

Table 2. Five windowed examples created from the first sentence ofAlice’s Adven-
tures in Wonderland: seven left and right neighboring tokens mapping to the middle
word to be predicted

and a right context also spanning seven tokens. (Later we also report on experiments
in which examples only contain a left context of seven words.) Thus, the task is repre-
sented by a variable number of examples each characterized by 14 positional features
carrying tokens as values, and one class label representingthe word to be predicted.
The choice for 14 is intended to cover at least the superficially most important po-
sitional features: the immediately neighboring tokens. Weassume that a word more
distant than seven positions left or right of a focus word will almost never be informa-
tive for the task. Although a strong assumption, it is supported by empirical evidence
that most collocational word pairs are positioned less thanfive words apart (Martinet
al., 1983). Table 2 displays five examples created for theTEST-ALICE test set from
Alice’s Adventures in Wonderland.

As a variant of this basic setup, we employ simple frequency-of-occurrence-based
muting, as a brute heuristic for dealing with low-frequency words.The muting heuris-
tic deletes all examples of words in the training material that occur below a cer-
tain user-defined occurrence threshold. When occurring as context tokens in another
word’s example, words below the threshold are converted to aspecial symbol. We
varied in all these experiments of training and testing onReutersdata the frequency
threshold for muting, from 1 (no muting) to 10, 100, and 1000.Muting the training set
effectively focuses the word predictor to higher-frequentwords. We do not mute test
material – the underlying reasoning is that the word predictor should in all cases be
evaluated on an “all-words” prediction accuracy. Obviously, no test words muted in
the training set will be predicted, but on the other hand muting could save the classi-
fier from storing low-frequency examples that do not reoccurin the test data, and gives
the classifier a statistically more reliable number of examples per word it is trained to
predict.
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2.3. IGTree

IGTree4 (Daelemans, Van den Bosch, and Weijters, 1997a) is an algorithm for
the top-down induction of decision trees. It compresses a database of labeled ex-
amples into a lossless-compression decision-tree structure that preserves the label-
ing information of all examples, and technically should be named atrie according to
(Knuth, 1973). A labeled example is a feature-value vector,where features represent
some input (here, a sequence of tokens representing context), associated with a sym-
bolic class label representing some output (here, the word to be predicted). After the
construction of the tree, it can be used to classify new examples not in the original
database. A typical trie is composed of nodes that each represent a partition of the
original example database, and the most frequent class of that partition. The root node
of the trie thus represents the entire example database and carries the most frequent
value as class label, while end nodes (leafs) represent ahomogeneouspartition of the
database in which all examples have the same class label. A node is either a leaf, or is
a non-ending node that branches out to nodes at a deeper levelof the trie. Each branch
represents a test on a feature value; branches fanning out ofone node test on values of
the same feature.

To attain high compression levels, IGTREE adopts the same heuristic that most
other decision-tree induction algorithms adopt, such asC4.5 (Quinlan, 1993), and
CART (Breimanet al., 1984), which is to create trees from a starting root node and
branch out to test on the most informative, or most class-discriminative features first.
C4.5 uses information gain (IG) (or a variant, gain ratio) to estimate the most infor-
mative features. IG is an estimate of how much information a feature contributes to
predicting the correct class label. The IG of featurei is measured by computing the
difference in uncertainty (i.e. entropy) between the situations without and with knowl-
edge of the value of that feature with respect to predicting the class label (equation 1):

IGi = H(C) −
∑

v∈Vi

P (v) × H(C|v) [1]

where C is the set of class labels,Vi is the set of values for featurei, and
H(C) = −∑

c∈C
P (c) log2 P (c) is the entropy of the class labels. The probabili-

ties are estimated from relative frequencies in the training set.

IGTREE also uses IG. The key difference between IGTREE and C4.5 is that
IGTREE computes the IG of all features once on the full database of training ex-
amples, makes a feature ordering once on these computed IG values, and uses this
ordering throughout the whole trie. This means that throughout any particular level of
the trie, the same feature is tested. This is not the case withC4.5, which recomputes

4. An implementation of IGTree is freely available as part of the TiMBL software package,
which can be downloaded from http://ilk.uvt.nl/
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IG at every node to determine the next most important feature. This difference makes
IGTREE computationally less complex thanC4.5 in tree induction.

Another difference withC4.5 is that IGTREE does not prune its produced trie,
so that it performs a lossless compression of the labeling information of the original
example database. As long as the database does not contain fully ambiguous examples
(with the same features, but different class labels), the trie produced by IGTREE is
able to reproduce the classifications of all examples in the original example database
perfectly.

Due to the fact that IGTREE computes the IG of all features once, it is function-
ally equivalent toIB1-IG (Daelemans and Van den Bosch, 1992; Daelemans, Van den
Bosch, and Zavrel, 1999), ak-nearest neighbor classifier for symbolic features, with
k = 1 and using a particular feature weighting in the similarity function in which the
weight of each feature is larger than the sum of all weights offeatures with a lower
weight (e.g. as in the exponential sequence1, 2, 4, 8, . . . where2 > 1, 4 > (1 + 2),
8 > (1+2+4), etc.). Both algorithms will base their classification on the example that
matches on most features, ordered by their IG, and guess a majority class of the set of
examples represented at the level of mismatching. IGTREE, therefore, can be seen as
an approximation ofIB1-IG with k = 1 that has favorable asymptotic complexities as
compared toIB1-IG.

IGTREE’s computational bottleneck is the trie construction process, which has an
asymptotic complexity ofO(n lg(v) f) of CPU, wheren is the number of training
examples,v is the average branching factor of IGTREE (how many branches fan out
of a node, on average), andf is the number of features. Storing the trie, on the other
hand, costsO(n) in memory (for which we will provide empirical back-up evidence
later), which is less than theO(n f) of IB1-IG. Classification in IGTREE takes an
efficientO(f lg(v)) of CPU, versus the cumbersomeO(n f) of IB1-IG, given that in
the typical casen is much higher thanf or v (Van den Bosch, 1997).

The example in Figure 1 illustrates the construction of a trie for the case of word
prediction limited to predictingsayor saysin the seven sentences displayed on the left.
These seven sentences are compressed into a trie built up of nodes (the oval units) and
branches (with a rectangular label on them). The root (top) node represents all seven
examples, hence is labeled withsay(which occurs four times, versus three times for
says). The branches connecting the root node to the second-levelnodes represent
all the pronouns in the word to the left, each denoting unambiguously whether the
outcome issayor says. Third-level nodes matching on the one possible right word
(so) are superfluous; so are the second-level nodes that predictthe same class as the
root node. The resulting trie is therefore only the gray part, consisting of four nodes
and three branches. Essentially, this trie encodes that theoutcome issay, unless the
word to the left ishe, she, or it, in which case it issays.
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Figure 1. The disambiguation ofsayandsaysin a limited context of one word to the
left (I, you, he, she, it, we, or they) and one word to the right (so), compressed into a
trie (right), of which only the gray nodes and branches need to be retained

2.4. Evaluation metrics

In our experiments we carry out the following measurements:

1) Token prediction accuracy — the percentage of correctly predicted tokens in
test data.

2) Token prediction speed — the number of test token predictions per second.

3) Number of nodes — the number of trie nodes, including the root node and all
other non-ending nodes.

4) Discrete perplexity — a new metric explained in more detail below.

We introducediscrete perplexity(DP ) as an alternative to the standard notion of
perplexity (Roukos, 1996; Jelinek, 1998), which has a strictly probabilistic interpreta-
tion. A useful informal definition of perplexity is the number of different tokens that
a language model holds as the likely candidate tokens following a token sequence, or
in the middle of a sequence. A naive unigram language model, that knows about the
frequencies of tokens, but not of their co-occurrence, would expect any word at any
position proportional to their likelihood. This “level of surprise” is usually estimated
as two to the power of the word-level entropy of a corpus. For example, the word-level
entropy of theTEST-REUTERStest set (R) in which W is the set of all tokens occur-
ring in R, H(R) = −∑

w∈W
P (w) log2 P (w), is 10.37, which makes its perplexity

210.37 ≈ 1319. Likewise, the entropy of theTEST-BROWN test set is 9.94, thus its per-
plexity 982. Effective stochastic language models (e.g. trigram models with back-off
smoothing) are known to bring the perplexity levels on the full Brown corpus down to
figures such as 242 (Roukos, 1996).

The problem with adopting the probabilistic perplexity metric in our experiments
is that the discrete output of IGTREE does not have a probabilistic interpretation.
If IGT REE predicts a word, it does so either because it has found a fullymatching
variable-width path in its tree leading to a leaf node, or because it returned the class
label stored at the last non-ending node it visited before itfound no match on the
continuing branches. In both cases, the returned class label denotes the majority class
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in the data subset represented at the final node, often based on just a handful or a pair
of locally neighboring training examples, and therefore quite remote from a reliable
probabilistic interpretation.

Nevertheless we aim to have a measurement of the reduction in“surprise”, or
perplexity, that an IGTREE-based classifier is able to attain. Our proposal involves
the mapping of the output of a classifier on test data by changing, in a supervised
post-hoc evaluation similar to computing accuracy, all incorrectly predicted tokens in
the output to a single string, e.g. “XXXXX”, but leaving all correctly predicted tokens
as they are. If the classifier would predict every word incorrectly, it would produce
a text consisting only of “XXXXX”, which has a word-level entropy of 0.0. This
means there has been no decrease whatsoever in the “surprise”, or the perplexity, of
the classifier as compared to the unigram perplexity. At the other end of the spectrum,
if the classifier would predict all tokens correctly, it would produce a text identical to
the original one, with an identical entropy; there would be no surprise left, hence the
classifier would have reduced the perplexity to zero.

More formally, we define the discrete perplexity,DP , of a textTP predicted by
a word-prediction classifier and processed as described above, whereTT is the target
text to be predicted, andH(TT ) andH(TP ) are the word-level entropies of the two
texts, as

DP (TP ) = 2(H(TT )−H(TP )) [2]

3. Word prediction

3.1. Learning curve experiments

The word prediction accuracy learning curves computed on the three test sets,
and trained on increasing portions ofTRAIN-REUTERS, are displayed in Figure 2.
The best accuracy observed is 42.2% with 30 million trainingexamples, onTEST-
REUTERS. Apparently, training and testing on the same type of data yields markedly
higher prediction accuracies than testing on a different-type corpus. Accuracies on
TEST-BROWN are slightly higher than onTEST-ALICE, but the difference is small; at
30 million training examples, the accuracy onTEST-ALICE is 12.6%, and onTEST-
BROWN 15.8%.

A second observation is that all three learning curves are progressing upward with
more training examples, and roughly at a constant log-linear rate. When estimating the
rates after about 50,000 examples (before which the curves appear to be more volatile),
with every tenfold increase of the number of training examples the prediction accuracy
on TEST-REUTERS increases by a constant rate of about 8%, while the increaseson
TEST-ALICE andTEST-BROWN are both about 2% at every tenfold.

We subsequently performed experiments with muting, i.e., the exclusion of ex-
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Figure 2. Learning curves of word prediction accuracies without muting, ofIGTREE

trained onTRAIN-REUTERS, and tested onTEST-REUTERS, TEST-ALICE, andTEST-
BROWN

amples in the training set of words occurring below a frequency threshold. Figure 3
displays the learning curves onTEST-REUTERSwithout muting, compared to muting
levels 10, 100, and 1,000. The shapes of the learning curves bear a clear similarity;
they exhibit the same log-linear increase after about 50,000 examples. The perfor-
mances at muting levels 10 and 100 are slightly higher than the performances without
muting at the same amounts of training examples, while the performance with muting
level 1000 only slightly lags behind, and appears to catch upwith the other curves
with more training examples.

3.2. Memory requirements, classification speed, and discrete perplexity

The most noticeable difference between the experiments with and without mut-
ing is that the decision trees built in the muting experiments are smaller. Moreover,
the numbers of nodes in all different variants also exhibit an interesting linearity with
respect to the number of training examples, as suggested earlier by the asymptotic
complexity orderO(n), wheren is the number of training instances. Figure 4 illus-
trates this relation. The amounts of nodes per muting level related to the number of
training examples appear to lie at almost constant factors below 1.0 (i.e., less than one
node per training example); for example, at muting level 10 the factor appears to be
0.53 (i.e., at 5 million instances,5 × 0.53 ≈ 2.65 million nodes are created)5.

5. In the used implementation, on a 32-bit processor one node takes 20 bytes to store (two four-
byte pointers providing links to other nodes, and three four-byte pointers linking to information
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A factor in classification speed is the average branching factor. Conceivably, the
word prediction task can lead to a large branching factor, especially in the higher levels
of the tree. However, not every word occurs before or after every other word in finite
amounts of text. Furthermore, there are relatively strong constraints (of collocational,
syntactic, and semantic nature) in a language such as English as to which words can
be neighbors. To estimate the average branching factor of a tree we compute thef th
root of the total number of nodes (f being the number of features, i.e. 14). The
largest decision tree currently constructed in the no-muting condition is the one on
the basis of a training set of 30 million examples, having 15,956,878 nodes. This
tree has an average branching factor of14

√
15, 956, 878 ≈ 3.27; all other trees have

smaller branching factors. Together with the fact that we have but 14 features, and the
asymptotic complexity order of classification isO(f lg(v)), wherev is the average
branching factor, classification can be expected to be fast.

Indeed, depending on the machine’s CPU on which the experiment is run and on
the task, we observe quite favorable classification speeds.Figure 5 displays the vari-
ous speeds (in terms of the number of test tokens predicted per second) attained on the
three test sets6. Obviously, higher speeds correlate with lower predictionaccuracies,
but the best performances are still attained at classification speeds of over a hundred
predicted tokens per second. Two other relevant observations are that first, the classifi-
cation speed hardly differs between the three test sets (TEST-BROWN is classified only
slightly slower than the other two test sets), indicating that the classifier is spending
a roughly comparable amount of searching through the decision trees regardless of
genre differences. Second, the graphs in Figure 5 do not exhibit a constant log-log
decrease; rather, the largest slowdown occurs between 10,000 and 1,000,000 training
examples, after which the speed decrease settles on a lower rate. While trees grow
linearly, and performance grows log-linearly, the speed ofclassification slowly dimin-
ishes at decreasing rates (note the logarithmic scale of they-axis of Figure 5).

To illustrate our final measurement, Figure 6 displays the learning curves of the
experiment without muting, testing on all three test sets, in terms of discrete perplex-
ity. On TEST-REUTERS, made up of the same type of newswire data as the training
set, a strong decrease can be observed from the original level of 1319 down to 57,
a level of probabilistic perplexity typically attained by probabilistic language models
on domain-specific texts (Roukos, 1996). OnTEST-ALICE, which has a low discrete
perplexity to begin with, the relative decrease in discreteperplexity is much smaller
(57%) than withTEST-REUTERS(96%). OnTEST-BROWN the relative decrease after
30 million training tokens is 64%, its discrete perplexity at that point being 351, some-
what higher than, but in the same order of magnitude as the aforementioned trigram
model perplexity of 242 on the Brown corpus (Roukos, 1996), which is interesting
given that our training set is not composed of generic English texts.

on the feature value that labels the branch leading to the node, the class label, and frequency
information); consequently, this example tree costs a mere50 megabytes to store.
6. Measurements were made on a GNU/Linux x86-based machine with 2.0 Ghz AMD Opteron
processors.
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# Training examples Context TEST-REUTERS TEST-ALICE TEST-BROWN

1 million Left 22.8 7.1 8.9
Left & right 28.9 8.8 11.4

10 million Left 28.0 8.0 9.9
Left & right 36.9 11.2 14.2

Table 3. Word prediction accuracies on the three test sets at 1 million and 10 million
training examples fromTRAIN-REUTERS, without muting, in the experimental variant
with left context only, and with both left and right context

3.3. Experiments with left context only

As stated earlier, another realistic variant of the word prediction task (e.g. for
sentence completion or directed language modeling) is to predict a word given only the
left context leading up to the word. We performed a series of experiments identical to
the experiments described above, except for the fact that noright context was included
in the examples presented to the machine learner. A straightforward assessment of
the learnability of the “left-context-only” task is that itoffers half the information
available in the task with both left and right context available, so that one might expect
lower prediction accuracies on this task compared to the other task at the same amount
of training material. In fact, we observed that the drop in performance is reasonably
limited. For illustration, Table 3 displays the word prediction accuracies on the three
test sets when training on 1 million (top) and 10 million examples (bottom) from
TRAIN-REUTERSin both experimental conditions.

The learning curves of the “left-context-only” experiments in log-log space turn
out to exhibit roughly the same log-linear shape and steepness as the curves of the
experiments with both contexts available, and are merely horizontally shifted to the
right. Apparently, the lack of information caused by the absence of right context is
only realized as a relative lag in performance of about four to eight percentage points,
and having more training examples compensates for the lack of information: with
10 million training examples, roughly similar word prediction accuracies are attained
with left context only as are obtained with left and right context at 1 million examples.

4. Confusibles

Word prediction from context can be considered a very hard task, due to the many
choices open to the predictor at many points in the sequence.Predicting content
words, for example, is often only possible through subtle contextual clues or by hav-
ing the appropriate domain or world knowledge, or intimate knowledge of the writer’s
social context and intentions. Learning to predict contentwords is furthermore ham-
pered by the fact that examples of these content words tend tobe sparse – they will
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Figure 7. Illustration of confusible disambiguation for correctionpurposes. The bot-
tom test example, with the incorrectthenin focus, finds a best match on the first of the
five training examples, suggesting the alternativethaninstead

typically be in the tail of the Zipfian distribution. In contrast, certain function words
tend to be predictable due to the positions they take in lexico-syntactic phrases and
attachment structures; their high frequency tends to ensure that plenty of examples of
them in context are available.

Due to the important role of function words in syntactic structure, it can be quite
disruptive for a parser and for human readers alike to encounter a mistyped function
word that in its intended form is another function word. In fact, confusible errors
between frequent forms occur relatively frequently. Examples of these so-called con-
fusibles in English arethereversustheir and the contractionthey’re; or the duothan
andthen. Confusibles can arise from having the same pronunciation (homophones),
or having very similar pronunciation (countryor county) or spelling (dessert, desert),
having very close lexical semantics (as betweenamongandbetween), or being in-
flections or case variants of the same stem (I versusme, or walk versuswalks), and
may stem from a lack of concentration or experience by the writer, or from accidental
mistypings, e.g. caused by keyboard proximities.

Distinguishing between confusibles is essentially the same task as word prediction,
except that the number of alternative outcomes is small, e.g. two or three, rather than
thousands or more. The typical application setting is also more specific: given that
a writer has produced a text (e.g. a sentence in a word processor), it is possible to
check the correctness of each occurrence of a word known to bepart of a pair or triple
of confusibles. Figure 7 illustrates this checking-and-correction procedure. Given a
new sentence, with the fragment. . . fighting for more then nine years. . ., a matching
pattern is found in the (decision-tree compression of the) training examples that is
labeled withthan, suggesting a correction ofthenby than.

We performed a series of experiments on disambiguating ninefrequent confusibles
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in English; these are also investigated in (Golding and Roth, 1999). We adopted
an experimental setting in which we use the same experimental data as before (i.e.,
training onTRAIN-REUTERS, and testing onTEST-REUTERS, TEST-ALICE, andTEST-
BROWN), in which only examples of the confusible words are drawn – note that we
ignore possible confusible errors in both training and testset. This data set generation
procedure reduces the amount of examples considerably. Despite having over 130 mil-
lion words inTRAIN-REUTERS, frequent words such asthereandthanoccur just over
100,000 times. To be able to run learning curves with more than this relatively small
amount of examples, we expanded our training material with the New York Times of
1994 to 2002 (henceforthTRAIN-NYT), part of the English Gigaword collection pub-
lished by the Linguistic Data Consortium. This large corpusof 1,096,950,281 tokens
offers about ten times as many examples of the confusible words asTRAIN-REUTERS.

As a first illustration of the experimental outcomes, we focus on the three-way con-
fusiblethere– their – they’refor which we trained one classifier, which we henceforth
refer to as a confusible expert. The learning curve results of this confusible expert are
displayed in Figure 8 as the top three graphs. The logarithmic x-axis displays the full
number of instances fromTRAIN-REUTERSup to 130.3 million examples, and from
TRAIN-NYT after this point. Counter to the learning curves in the generic word pre-
diction experiments, and to the observation by (Banko and Brill, 2001), the learning
curves of this confusible triple in the three different datasets flatten, and converge,
remarkably, to a roughly similar score of about 98%. The convergence only occurs
after examples fromTRAIN-NYT are added.

In the bottom of the same Figure 8 we have also plotted the wordprediction ac-
curacies on the three wordsthere, their, and they’re attained by the generic word
predictor (without muting) described in the previous section, by analyzing the output
of this predictor on the three test sets. The accuracies, or rather recall figures (the
percentage of occurrences of the three words in the test setswhich are correctly pre-
dicted as such), are considerably lower than those on the confusible disambiguation
task. Clearly,there, their, andthey’reare hard to predict for the generic word predictor
(even though it does improve with more training material), while it is quite capable of
distinguishing between them in isolation.

Table 4 presents the experimental results obtained on nine confusible sets when
training and testing on Reuters material. The nine sets are part of the sets studied in
(Golding and Roth, 1999). The third column lists the accuracy scores of the generic
word prediction system (without muting) at the maximal training set size of 30 million
labeled examples; this is the percentage of cases that the generic prediction system has
to predict one of the words in the confusible pair or triple, and actually predicts it cor-
rectly. The third and the fourth columns list the accuraciesattained by the confusible
expert for the particular confusible pair or triple, measured at 30 million training ex-
amples, from which each particular confusible expert’s examples are extracted. The
amount of examples varies for the selected confusible sets,as can be seen in the second
column.

Scores attained by the generic word predictor on these wordsvary from below 10%
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the confusible pairthere, their, andthey’re, by IGTREE trained onReutersdata, and
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ples only; the bottom graphs are attained by the generic wordpredictor trained on
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Accuracy (%) by
Number of generic word confusible

Confusible set examples prediction expert
cite– site– sight 2,286 0.0 100.0
accept– except 3,833 46.2 76.9
affect– effect 4,640 7.7 87.9
fewer– less 6,503 4.7 95.2
among– between 27,025 18.9 96.7
I – me 28,835 55.9 98.0
than– then 31,478 59.4 97.2
there– their – they’re 58,081 23.1 96.8
to – too– two 553,453 60.6 93.4

Table 4. Disambiguation scores on nine confusible set, attained by the generic word
prediction classifier trained on 30 million examples ofTRAIN-REUTERS, and by con-
fusible experts on the same training set. The second column displays the number of
examples of each confusible set in the 30-million word training set; the list is ordered
on this column
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Accuracy on test set (%)
Confusible set TEST-REUTERS TEST-ALICE TEST-BROWN

cite– site– sight 100.0 100.0 69.0
accept– except 84.6 100.0 97.0
affect– effect 92.3 100.0 89.5
fewer– less 90.5 100.0 97.2
among– between 94.4 77.8 74.4
I – me 99.0 98.3 98.3
than– then 97.2 92.9 95.8
there– their – they’re 98.1 97.8 97.3
to – too– two 94.3 93.4 92.9

Table 5. Disambiguation scores on nine confusible set, attained by confusible experts
trained on examples extracted from 1 billion words of text fromTRAIN-REUTERSplus
TRAIN-NYT, on the three test sets

for relatively low-frequent words to around 60% for the morefrequent confusibles; the
latter numbers are higher than the overall accuracy of this system onTEST-REUTERS.
Nevertheless they are considerably lower than the scores attained by the confusible
disambiguation classifiers. While the generic word predictor is trained on all 30 mil-
lion examples, each confusible classifier is trained only onthe subset of examples
labeled with one of their particular confusible words. Mostof the confusible disam-
biguation classifiers attain accuracies of well above 90%.

When the learning curves are continued beyondTRAIN-REUTERS into TRAIN-
NYT, about a thousand times as many training examples can be gathered as training
data for the confusible experts. Table 5 displays the nine confusible expert’s scores
after being trained on examples extracted from a total of onebillion words of text,
measured on all three test sets. Apart from a few outliers, most scores are above 90%,
and more importantly, the scores onTEST-ALICE andTEST-BROWN do not seriously
lag behind those onTEST-REUTERS; some are even better – for instance, the four least
frequent confusibles are predicted perfectly correctly inTEST-ALICE.

5. Related work

As remarked in the cases reported in the literature directlyrelated to the current
article, discrete, classification-based word prediction is a core task to natural language
processing, and one of the few that takes no morpho-syntactic or semantic annota-
tion layer to provide data for supervised machine learning and probabilistic modeling
(Golding and Roth, 1999; Even-Zohar and Roth, 2000; Banko and Brill, 2001). It is
almost puzzling why it is not a focus in current natural language processing research,
as it has been, albeit in a probabilistic interpretation, inlanguage modeling for auto-
matic speech recognition (Jelinek, 1998) - it may have been out of focus due to the
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prohibitively large feature and class spaces; exactly because of this reason it is an ideal
task to consider as a case in scaling studies.

Given that scaling issues are becoming increasingly important in natural language
processing research, our view is that word prediction may beto natural language pro-
cessing what language modeling is to speech processing: a core task that, when per-
formed well, paves the way for dealing with low-frequency words and errors in text in
further processing steps such as syntactic and semantic parsing, potentially surpass-
ing the need for intermediate abstraction levels directly above the word level such as
part-of-speech tagging (Van den Bosch and Buchholz, 2002).The latter goal of pro-
viding alternative, implicit ways of learning about the structure of language from the
bottom up, is an echo of classical ideas of Zellig Harris (Harris, 1957; Harris, 1968),
via which the work reported here inherits a link to current work in grammar induction
(Adriaanset al., 2004).

More directly, the work of Even-Zohar and Roth remains the closest nearest neigh-
bor of this article (Even-Zohar and Roth, 2000). Two of theirarguments deviate
from ours. First, inspired by analogous work in probabilistic language modeling
(Chelba and Jelinek, 1998), they argue that syntactic features are necessary for generic
classification-based word prediction. Although we have notmade the comparison di-
rectly (we may do this in future work), we have set out to show that word prediction
can be learned on the basis of examples that represent merelycontexts of word and
punctuation tokens - arguably, given enough examples, words can take over the role of
part-of-speech tags implicitly, as we argued and showed earlier in (Van den Bosch and
Buchholz, 2002). Second, Even-Zohar and Roth argue that it isnecessaryto focus the
attention of the classifier to limited sets of confusibles, which we see as anoptional
specialization that for practical reasons (given the current capacity of our computers)
still performs better than generic word prediction. They experiment on pairs of verbs
from the Wall Street Journal Penn Treebank corpus that are about equally likely based
on their frequency of occurrence and part-of-speech (e.g.make/sell), which deviates
from our more practically-driven definition of confusible as also used by (Golding and
Roth, 1999; Banko and Brill, 2001). Even-Zohar and Roth use small amounts of train-
ing and test data (together less than 100,000 examples), andreport word error rates
of close to 10% (90% word accuracy), counter to about 65% worderror rate (35%
word accuracy) when training and testing on all verbs simultaneously (Even-Zohar
and Roth, 2000).

The papers by Golding and Roth, and Banko and Brill on confusible correction fo-
cus on the more common type ofthan/thenconfusion that occurs a lot in the process of
text production. Both pairs of authors use the confusible correction task to illustrate
scaling issues, as we have. Golding and Roth illustrate thatmultiplicative weight-
updating algorithms such as Winnow (Littlestone, 1988) candeal with immense input
feature spaces, where for each single classification only a small number of features is
actually relevant (Golding and Roth, 1999). With IGTREE we have an arguably com-
petitive efficient, but one-shot learning algorithm; IGTREE does not need an iterative
procedure to set weights, and can also handle a large featurespace. Instead of viewing
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all positional features as containers of thousands of atomic word features, it treats the
positional features as the basic tests, branching on the word values in the tree. Banko
and Brill, on their part, use the confusible task as a “fruit fly” task to illustrate the
log-linear growth effect in accuracy, when the number of training examples is expo-
nentially grown. Their point is to show that a lot may change in performances when
instead of the seemingly high number of a million examples (which still is the upper
bound for a lot of work in machine learning applied to naturallanguage processing) a
multiple amount of examples becomes available (Banko and Brill, 2001). The paper
provides no exact information on the confusibles that are actually tested; they also
present learning curve graphs with a logarithmic x-axis up to one billion instances,
assumedly to indicate that they sampled from a corpus of up toone billion tokens to
create smaller confusible example subsets.

More generally, as a precursor to the above-mentioned work,confusible disam-
biguation has been investigated in a string of papers discussing the application of var-
ious machine learning algorithms to the task (Yarowsky, 1994; Golding, 1995; Mangu
and Brill, 1997; Huang and Powers, 2001). As a side note, confusible correction is
often referred to as context-sensitive spelling correction (Golding and Roth, 1999),
while it is obvious that non-word spelling correction (i.e.correction of typos that lead
to non-existing words) can greatly benefit from context as well (Kukich, 1992; Rey-
naert, 2004; Reynaert, 2005).

6. Discussion

In this article we explored the scaling abilities of IGTREE, a simple decision-tree
algorithm with favorable asymptotic complexities with respect to multi-label classifi-
cation tasks. IGTREE is applied to word prediction, a task for which virtually unlim-
ited amounts of training examples are available, with very large amounts of predictable
class labels; and confusible disambiguation, a specialization of word prediction fo-
cusing on small sets of confusible words. Best results are 42.2% correctly predicted
tokens (words and punctuation markers) when training and testing on data from the
Reutersnewswire corpus; and confusible disambiguation accuracies of well above
90%.

Analysing the results of the learning curve experiments with increasing amounts
of training examples, we observe that better word prediction accuracy can be attained
simply by adding more training examples, and that the progress in accuracy proceeds
at a log-linear rate. The best rate we observed was an 8% increase in performance
every tenfold multiplication of the number of training examples, when training and
testing on the same data.

In addition, we observed that muting (discarding low-frequency words from the
training data) does not improve word prediction results, but at level 10 (ignoring words
below that frequency of occurrence) it yields the same accuracies with smaller deci-
sion trees. This is an indication that the performances of the word prediction systems
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are largely based on their ability to predict high-frequentwords, i.e. function words,
correctly at certain points.

Also, we observed that predicting words solely on the basis of left context does
lead to lower word prediction accuracies as compared to the variant in which left and
right contexts are available. However, the learning curvesin the “left-context-only”
condition are as log-linear and steep as the learning curvesobserved in the experiments
with left and right context available; the lack of right context can be compensated by
training on more “left-context-only” examples.

Storing the trees is favorably linear in the number of training examples, at a rate
lower than1 : 1, and close to one node for every two training examples in the worst
case (without muting). We also measured classification speeds, and noted that with
more training examples and linearly growing decision trees, classification speeds de-
crease, with an increasingly slower rate of decrease; the slowest measured speed of a
trained word prediction classifier is still over one hundredwords per second.

Accuracies on test data different from the training material, the full text ofAlice’s
Adventures in Wonderlandnovel and the Brown corpus part of the Penn Treebank, are
markedly lower than those on test data from Reuters. Scores on different texts peak
at 15.8% word prediction accuracy, indicating that the highscores onTEST-REUTERS

are due to the large amount of overlap in phrases inReutersnewswire articles over
time. A likely explanation for the large difference is that the overlap in content words
in the training and test data from theReuterscorpus is much higher than the overlap
betweenTRAIN-REUTERSon the one hand, andTEST-ALICE andTEST-BROWN on the
other hand. The 12-16% word prediction accuracies on the latter test data are likely
to stem from the correct identification of certain more frequent tokens, i.e. function
words and punctuation markers, while the gap between these scores and the 43% on
TEST-REUTERS is likely to be due to correctly predicted relatively lower-frequency
tokens, i.e. newswire-specific content words.

We have studied a deliberately simple method, IGTREE, which performs lossless
trie compression (Knuth, 1973), and which operates on examples which represent
mere sequences of words. A severe weakness of IGTREE is its inability to match
an unseen example at several lower-importance features when a feature with a larger
estimated importance mismatches. Its decision-tree strategy dictates that it matches
features in a strict order of importance, returning a best guess as soon as it cannot
find a match on its next feature-value test. The sooner it has to make a guess, the
weaker the guess (Daelemans, Van den Bosch, and Zavrel, 1999). Future work may
focus on softening the search strategies more in the direction of k-nearest neighbor
classification (Daelemans, Van den Bosch, and Zavrel, 1997b), however this will lead
to speed loss. In future work we intend to investigate a parallelization of the tree
construction process on multi-processor hardware, e.g. byparallelizing tree induction
through treating every second-level node as a root node.

The implications of this study are twofold. On the one hand, aword prediction
system based on the method proposed here could be a highly efficient and valuable
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module in authoring environments in which new documents arelike older documents.
The module could play a role in suggesting words or completing phrases, or in spelling
or grammar checking. On the other hand, the quality of prediction breaks down easily
when applied to diverging types of text. The present study offers only slim indications
that the proposed method would perform reasonably well whenapplied to diverging
types of text when trained on (a lot) more training material.

However, as an alternative to generic word prediction, evidence is shown (echoing
demonstrations in earlier work) that particular confusibles of relatively high frequency
can in fact be disambiguated by “confusible experts”, focused classifiers trained exclu-
sively on examples of confusible pairs or triples, which could be used for correction
purposes in text processing environments (and thus have a more limited applicability
than generic word prediction systems). The disambiguationaccuracies on test data of
these experts are mostly above 90%, regardless of the type oftest set, and are already
attained at relatively low amounts (e.g. thousands) of training examples.

To generalize the confusible task, we intend to focus some future work on the
development and software engineering of an automatically-generated ensemble of
confusible experts, in the line of (Huang and Powers, 2001),that would form a
proofing tool plugin for a word processor, where the sets of confusibles are automat-
ically detected in a language-independent fashion, and where the full ensemble of
confusible experts represents an optimal trade-off in memory usage, speed, and word
prediction accuracy.

Acknowledgements

The author would like to thank Martin Reynaert, François Yvon, and three anony-
mous reviewers for their valuable comments and remarks on earlier versions. This
work was funded by NWO, the Netherlands Organisation for Scientific Research.

7. References

Adriaans P., Fernau H., de la Higuera C., van Zaanen M., “ Introduction to the special issue on
grammar induction”,Grammars, vol. 7, p. 41-43, 2004.

Banko M., Brill E., “ Scaling to Very Very Large Corpora for Natural Language Disambigua-
tion”, Proceedings of the 39th Annual Meeting of the Association for Computational Lin-
guistics, Association for Computational Linguistics, p. 26-33, 2001.

Breiman L., Friedman J., Ohlsen R., Stone C.,Classification and regression trees, Wadsworth
International Group, Belmont, CA, 1984.

Carroll L.,Alice’s Adventures in Wonderland, Project Gutenberg, 1865.

Chelba C., Jelinek F., “ Exploiting Syntactic Structure forLanguage Modeling”,Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics and 17th Interna-
tional Conference on Computational Linguistics, Montréal, Quebec, Canada, p. 225-231,
1998.

Daelemans W., Van den Bosch A., “ Generalisation Performance of Backpropagation Learning



62 TAL. Volume 46 – n° 2/2005

on a Syllabification Task”,in M. F. J. Drossaers, A. Nijholt (eds),Proceedings of TWLT3:
Connectionism and Natural Language Processing, Twente University, Enschede, p. 27-37,
1992.

Daelemans W., Van den Bosch A., Weijters A., “IGTree: using trees for compression and
classification in lazy learning algorithms”,Artificial Intelligence Review, vol. 11, p. 407-
423, 1997a.

Daelemans W., Van den Bosch A., Zavrel J., “ A feature-relevance heuristic for indexing and
compressing large case bases”,in M. Van Someren, G. Widmer (eds),Poster Papers of the
Ninth European Conference on Machine Learing, University of Economics, Prague, Czech
Republic, p. 29-38, 1997b.

Daelemans W., Van den Bosch A., Zavrel J., “ Forgetting exceptions is harmful in language
learning”,Machine Learning, Special issue on Natural Language Learning, vol. 34, p. 11-
41, 1999.

Even-Zohar Y., Roth D., “ A classification approach to word prediction”, Proceedings of the
First North-American Conference on Computational Linguistics, ACL, New Brunswick,
NJ, p. 124-131, 2000.

Garay-Vitoria N., González-Abascal J., “ Intelligent word-prediction to enhance text input rate”,
Proceedings of the 2nd International Conference on Intelligent User Interfaces, p. 241-244,
1997.

Golding A. R., “ A Bayesian hybrid method for context-sensitive spelling correction”,Proceed-
ings of the ACL-95 3rd Workshop on Very Large Corpora, p. 39-53, 1995.

Golding A., Roth D., “ A Winnow-Based Approach to Context-Sensitive Spelling Correction”,
Machine Learning, vol. 34, n° 1–3, p. 107-130, 1999.

Harris Z. S., “ Co-Occurrence and Transformation in Linguistic Structure.”,Language, vol. 33,
n° 3, p. 283-340, 1957.

Harris Z. S.,Mathematical structures of language, Wiley, 1968.

Hiemstra D., Using language models for information retrieval, PhD thesis, University of
Twente, 2001.

Huang J. H., Powers D. W., “ Large scale experiments on correction of confused words”,Aus-
tralasian Computer Science Conference Proceedings, Bond University, Queensland AU,
p. 77-82, 2001.

Jelinek F.,Statistical Methods for Speech Recognition, The MIT Press, Cambridge, MA, 1998.

Knuth D. E.,The art of computer programming, vol. 3: Sorting and searching, Addison-Wesley,
Reading, MA, 1973.

Kukich K., “ Techniques for Automatically Correcting Wordsin Text”, ACM Computing Sur-
veys, vol. 24, n° 4, p. 377-439, 1992.

Kučera H., Francis W. N.,Computational Analysis of Present-Day American English, Brown
University Press, Providence, RI, 1967.

Littlestone N., “ Learning Quickly when irrelevant attributes abound: A new linear-threshold
algorithm”,Machine Learning, vol. 2, p. 285-318, 1988.

Mangu L., Brill E., “ Automatic rule acquisition for spelling correction”,Proceedings of the
International Conference on Machine Learning, p. 187-194, 1997.

Marcus M., Santorini S., Marcinkiewicz M., “ Building a Large Annotated Corpus of English:
the Penn Treebank”,Computational Linguistics, vol. 19, n° 2, p. 313-330, 1993.



Scalable word prediction 63

Martin W., Al B., van Sterkenburg P., “ On the processing of a text corpus: From textual data to
lexicographical information”,in R. Hartman (ed.),Lexicography: Principles and Practice,
Applied Language Studies Series, Academic Press, London, 1983.

Quinlan J.,C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.

Reynaert M., “ Text-induced spelling correction”,Proceedings of the 20th International Con-
ference on Computational Linguistics, Geneva, Switserland, p. 117-124, 2004.

Reynaert M., Text-induced spelling correction, PhD thesis, Tilburg University, 2005.

Roukos S., “ Language representation”,in R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen,
V. Zue (eds),Survey of the state of the art in human language technology, Chapter 1.6,
Center for Spoken Language Understanding, 1996.

Van den Bosch A., Learning to pronounce written words: A study in inductive language learn-
ing, PhD thesis, Universiteit Maastricht, 1997.

Van den Bosch A., Buchholz S., “ Shallow parsing on the basis of words only: A case study”,
Proceedings of the 40th Meeting of the Association for Computational Linguistics, p. 433-
440, 2002.

Wood M., Syntactic pre-processing in single-word prediction for disabled people, PhD thesis,
University of Bristol, 1996.

Wu D., Sui Z., Zhao J., “ An information-based method for selecting feature types for word
prediction”,Proceedings of the Sixth European Conference on Speech Communication and
Technology, EUROSPEECH’99, Budapest, p. 472-479, 1999.

Yarowsky D., “ Decision lists for lexical ambiguity resolution: application to accent restoration
in Spanish and French”,Proceedings of the Annual Meeting of the ACL, p. 88-95, 1994.

Zipf G. K., The psycho-biology of language: an introduction to dynamicphilology, The MIT
Press, Cambridge, MA, 1935. Second paperback edition, 1968.




