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Scalable classification-based word
prediction and confusible correction

Antal van den Bosch

ILK / Language and Information Science
Tilburg University
P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands

Antal.vdnBosch@uvt.nl

ABSTRACT.We present a classification-based word prediction modektasn IGTREE, a
decision-tree induction algorithm with favorable scaliagilities. Through a first series of
experiments we demonstrate that the system exhibitsriegflincreases in prediction accu-
racy and decreases idiscrete perplexitya new evaluation metric, with increasing numbers
of training examples. The induced trees grow linearly with amount of training examples.
Trained on 30 million words of newswire text, prediction @ecies reach 42.2% on the same
type of text. In a second series of experiments we show tisageheric approach to word pre-
diction can be specialized to confusible prediction, yiidhigh accuracies on nine example
confusible sets in all genres of text. The confusible-$igempproach outperforms the generic
word-prediction approach, but with more data the differemiecreases.

RESUME.Cet article présente un modéle pour la tache de prédictionmadés, considérée ici
comme une tache de classification. Ce modéle repose suisktittn de|GTREE, un algo-
rithme d'inférence d’arbre de décision capable de traitdadois un grand nombre de classes
et d’exemples d’apprentissage. A travers une premiére stexpérimentations nous montrons
gue la capacité de prédiction du modéle augmente log-lireéant avec le nombre d’exemples
d’entrainement. Le méme comportement est obtenu aveerfdexité discréteune nouvelle
métrique introduite pour la tache de prédiction de mots ;dilé des arbres inférés croft, elle,
linéairement. Lorsque notre modéle est entrainé sur unumjpurnalistique de 30 millions de
mots, le nombre de mots correctement prédits est de 42.2 #esttextes journalistiques. Une
seconde série d’expérimentations démontre que ce prédigenérique peut étre spécialisé
pour traiter des configurations dans lesquelles I'ensendele mots a prédire se restreint & un
petit ensemble. Le modéle spécialisé atteint des meiltéstdtats que le classifieur générique.

KEYworDsword prediction, language modeling, induction of decisi@es, perplexity.
MOTS-CLES prédiction de mots, modéles de langage, inférence d'anteedécision, perplexite.
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1. Introduction

Word prediction is an intriguing language engineering sproduct. Arguably it
is the “archetypal prediction problem in natural languagecpssing” (Even-Zohar
and Roth, 2000). It is usually not an engineering end infitselpredict the next
word in a sequence, or fill in a blanked-out word in a sequene, it is an asset
in higher-level proofing or authoring tools, e.g. to be alblettomatically discern
among confusibles and thereby to detect confusible erfdotd{ng and Roth, 1999;
Even-Zohar and Roth, 2000; Banko and Brill, 2001; Huang amd?s, 2001), or
to suggest words in a word processing environment, bothrnumatenal circumstances
and in special cases such as language learning or augmem@timunication (Wood,
1996; Garay-Vitoria and Gonzalez-Abascal, 1997). It calldviate problems with
low-frequency and unknown words in natural language pringsand information
retrieval, by replacing them with likely and higher-freaqueg alternatives that carry
similar information; it could provide answers to some qiggst in question answering
systems by filling in blanks. And finally, since the task of @iq@rediction is a direct
interpretation of language modeling, a word predictiortesyscould provide useful
information for language modeling components in speeabgeition systems (Wet
al., 1999) and information retrieval systems (Hiemstra, 2001)

A unique aspect of the word prediction task, as compared 81 other tasks in nat-
ural language processing, is that real-world examplesraboularge amounts, with-
out any annotation cost involved and hardly without datdectibn hurdles. Nowa-
days, gigascale and terascale document collectiares available for research pur-
poses. Any digitized text can be used as training materiah fword prediction sys-
tem capable of learning from examples, as employed in thdysdlescribed in this
article. Banko and Brill (2001) use the abundance aspetisofask to perform learn-
ing curve experiments on confusible disambiguation, etitng their training material
from English text corpora containing up to one billion wards

More general than focusing on limited numbers of confusibdds such as
to/two/too andtherdtheir/they’re (Golding and Roth, 1999; Banko and Brill, 2001)
we define the word prediction task as to predinty word in context, where we as-
sume we have a left context of words, or both left and rightexts, which are both
realistic variants of this task. In the first, in which onlyetleft context of a word is
given, the word predictor is relying only on the recent higtto suggest continua-
tions to the user, or to support a directional language mimtedpeech recognition
(Jelinek, 1998). In the second variant, both left and rigittexts are given, and the
word in the middle is queried. For example, given a left cetéAlice was beginning
to get veryand a right context oéf sitting by her sister on the banthe system would
ideally predict that the word in the middle fised. A realistic use of this prediction
based on context on both sides is in spelling correction revhegiven but possibly

1. Two examples of large-scale corpora are the data used iFetiadyte Tracks of TREC 2004
and 2005, http://www-nlpir.nist.gov/projects/terabfytend the English Gigaword corpus pro-
duced by the Linguistic Data Consortium, at http://www.lgienn.edu/
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misspelled word may be blanked out and the word predictorgu@gs what the most
appropriate form is given the left and right contexts (Reyh@004; Reynaert, 2005).
In this article we largely focus on the task of having both #fd right context, but we
also provide results on the left-context-only task.

It is stating the obvious that the word prediction task inHbedriants is hard, and
surely impossible to perform perfectly. In the example af Hforementioned first
sentence oflice’s Adventures in Wonderlar{@arroll, 1865), the missing wortited
could have been a host of other likely and unlikely words; Inira&s nor humans can
predict which. No word prediction method will ever produd®% accurate predic-
tions on any text; the upper bound will typically be much lovw&e expect, however,
to do relatively well on predicting function words. The pletn of word prediction in
English and similar languages could be seen as a combiradtiwo problems: pre-
dicting function words and content words. Predicting fimtivords involves being
able to recognize syntactic structure and lexical prefegsrof neighboring content
words. Predicting content words involves, ultimately, Wirtg what a sentence and
the text around it is about and how it relates to the world &edsbcial context which
it was intended for.

Function words abound, while content words are less fretjfoeare (Zipf, 1935).
Any digital text will provide many examples of the same fuaotwords in context, but
may provide only few or single examples of rare content wand®ntext at the same
time. A machine learning algorithm will tend to strugglelvifeneralizing from these
rare examples to predict the same word again, unless thextdatquite or exactly
the same as during training — provided that the learningréilgo has remembered the
exact context.

In this study we encode context only by words, and not by agidri-level lin-
guistic non-terminals which have been investigated inteelavork on word predic-
tion (Wuetal, 1999; Even-Zohar and Roth, 2000). This choice is motivhyeearlier
findings that with more data, there are increasingly lessfitsrfrom non-terminal lev-
els such as part-of-speech tags in natural language piogdasks (Van den Bosch
and Buchholz, 2002) — but it certainly leaves open the gaestow the same tasks
can be learned from examples when non-terminal symbolsaemtinto account as
well.

From an engineering point of view, our study addresses two gueestions that
have only partially been investigated in earlier relatedkwo

1) How will a machine learning system applied to word préedittscale up to
tens of thousands aflassesor more, rather than just the two or three classes of a
confusible set? Such a system will need to choose among niseofethousands of
words it has seen in the training material, and this mightb®practically feasible
given that for some machine learning algorithms the numbelagses is a factor that
adds complexity to the costs of storing the learned modei atassification (e.g., as
with binary support-vector machines).

2) How will this learner scale up to being presented with il of examplesof
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words in context as training material, and how will it scagei classification mode,
making the predictions? The typical experimentin which hiag learning algorithms
are applied to natural language processing tasks is basednaineds to thousands to
maximally a few million examples, while for this task manyllions of examples can
be easily generated. Also, some machine learning classifiay be prohibitively slow
in classifying even with moderate amounts of training miat€e.g., with classifiers
based on thé-nearest neighbor classification rule).

The choice for our algorithm, a decision-tree approxinratibk-nearest-neigbor
(k-NN) based or memory-based learning, is motivated by thietlfi@at, as we describe
in this article, this particular algorithm has interestixpling abilities in these two
dimensions: it can scale up to predicting tens of thousahd®enls, while simultane-
ously scaling up to nearly ten million examples as trainiregerial, predicting words
at useful rates of hundreds to thousands of words per second.

The article is structured as follows. In Section 2 we descwhat data we selected
for our experiments, and we provide an overview of the expenital methodology
used throughout the experiments, including a descriptfaine |GTREE algorithm
central to our study, as well as a proposal @iiscrete perplexityas an alternative
evaluation metric besides word prediction accuracy. IniSe@ the results of the
word prediction experiments are presented, and the subseg§ection 4 contains the
experimental results of the experiments on confusiblesbki¢dly relate our work to
earlier work that inspired the current study in Section 5e Tésults are discussed, and
conclusions are drawn in Section 6.

2. Data preparation and experimental setup

In this section we outline the prerequisites for the experita described in the
subsequent sections. First, we identify the textual capged. We then describe the
general experimental setup of learning curve experimant$the |G REE decision-
tree induction algorithm used throughout all experimehtsconclude the section, we
list the four evaluation metrics used, including the rdiscrete perplexitynetric.

2.1. Data

To generate our word prediction examples, we used the “Re@erpus Volume
1 (English Language, 1996-08-20 to 1997-08-%9)Ne tokenized this corpus with
a rule-based tokenizer, and used all 130,396,703 word andtyation tokens for
experimentation. In the remainder of the article we makeifierénce between words
and punctuation markers; both are regarded as tokens. \Vieaseg the final 100,000
tokens as a held-out test set, henceforth referred tea$REUTERS and kept the
rest as training set, hencefomtRAIN-REUTERS

2. For availability of the Reuters corpus, see http://alveuters.com/researchandstandards/corpus/



Scalable word prediction 43

Data set Source Genre Number of tokens
TRAIN-REUTERS | Reuters Corpus Volume 1L newswire 130,396,703
TESTREUTERS | Reuters Corpus Volume 1 newswire 100,000
TEST-ALICE Alice in Wonderland fiction 33,361
TEST-BROWN Brown (Penn Treebank) | mixed 453,446

Table 1. Training and test set sources, genres, and sizes in termsolbars of tokens
(words plus punctuation marks)

Additionally, we selected two test sets taken from difféi@rpora. First, we used
the Project Gutenbefgersion of the noveRlice’s Adventures in Wonderlar(dlso
known asAlice in Wonderlanyiby Lewis Carroll (Carroll, 1865), hencefortres™
ALICE. As the third test set we selected all tokens of the Brown usart of the
Penn Treebank (Marciet al., 1993). This is a selected portion of the original one-
million word Brown corpus (Kgera and Francis, 1967), a collection of samples of
American English in many different genres, from sourcestpd in 1961; we refer
to this test set asESTBROWN. In sum, we have three test sets, covering texts from
the same genre and source as the training data, a fictional, rmmnd a mix of genres
wider than the training set. Table 1 summarizes the keyitrgiand test set statistics.

2.2. Experimental setup

All experiments described in this article take the form afrleng curve experi-
ments (Banko and Brill, 2001; Van den Bosch and Buchholz2200n a learning
curve experiment a sequence of training sets is generatbdnereasing size. Each
size training set is used to train a model for word predigtiwhich is subsequently
tested on a held-out test set that is fixed throughout the eMealrning curve experi-
ment. Training set sizes are exponentially grown, as easliglies have shown that
at a linear scale, performance effects tend to decreasedntsit that when measured
with exponentially growing training sets, near-constast (og-linear) improvements
are observed (Banko and Brill, 2001; Van den Bosch and BuzhB0602).

We create incrementally-sized training sets for the woredjmtion task on the
basis of the 130,296,703-tok&RAIN-REUTERSSet. Each training subset is created
backward from the point at which the final 100,000-woEET-REUTERSSet starts.
The increments are exponential with base number 10, and/ésy @ower of 10 we
cut off training sets at times that power, where = 1,2,3,...,8,9 (for example,
10, 20, ..., 80, 90).

The actual examples to learn from are createsvimdowingover all sequences of
tokens. We encode examples by taking a left context wind@mmsing seven tokens,

3. Project Gutenberg: http://www.gutenberg.net
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Windowed input context Word to be
Left context| Right context predicted
once or twice she had peeped intwook her sister was reading , uhe
or twice she had peeped into thieer sister was reading , butit | book
twice she had peeped into the baddister was reading , but it had | her
she had peeped into the book heras reading , but it had no sister
had peeped into the book her sisteeading , but it had no pictures| was

Table 2. Five windowed examples created from the first senten@dicé’s Adven-
tures in Wonderlarntdseven left and right neighboring tokens mapping to the teidd
word to be predicted

and a right context also spanning seven tokens. (Later were@fsrt on experiments
in which examples only contain a left context of seven wqriihus, the task is repre-
sented by a variable number of examples each characteryzbdl positional features
carrying tokens as values, and one class label represeghtngord to be predicted.
The choice for 14 is intended to cover at least the supelfjarabst important po-
sitional features: the immediately neighboring tokens. assume that a word more
distant than seven positions left or right of a focus word alihost never be informa-
tive for the task. Although a strong assumption, it is supgbby empirical evidence
that most collocational word pairs are positioned less fvanwords apart (Martiret
al., 1983). Table 2 displays five examples created formheTALICE test set from
Alice’s Adventures in Wonderland

As a variant of this basic setup, we employ simple frequersfegecurrence-based
muting as a brute heuristic for dealing with low-frequency wortise muting heuris-
tic deletes all examples of words in the training materiait tbccur below a cer-
tain user-defined occurrence threshold. When occurringatekt tokens in another
word’s example, words below the threshold are converteddpezial symbol. We
varied in all these experiments of training and testingReutersdata the frequency
threshold for muting, from 1 (no muting) to 10, 100, and 100@ting the training set
effectively focuses the word predictor to higher-frequeatds. We do not mute test
material — the underlying reasoning is that the word predishould in all cases be
evaluated on an “all-words” prediction accuracy. Obvigusb test words muted in
the training set will be predicted, but on the other hand ngutiould save the classi-
fier from storing low-frequency examples that do not reodattine test data, and gives
the classifier a statistically more reliable number of ex@sper word it is trained to
predict.
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2.3. IGTree

IGTree¢t (Daelemans, Van den Bosch, and Weijters, 1997a) is an tigoffor
the top-down induction of decision trees. It compressestabdae of labeled ex-
amples into a lossless-compression decision-tree steutiat preserves the label-
ing information of all examples, and technically should laened arie according to
(Knuth, 1973). A labeled example is a feature-value veetbere features represent
some input (here, a sequence of tokens representing cprassociated with a sym-
bolic class label representing some output (here, the veobe tpredicted). After the
construction of the tree, it can be used to classify new exasnpot in the original
database. A typical trie is composed of nodes that eachgepra partition of the
original example database, and the most frequent clasapbé#ntition. The root node
of the trie thus represents the entire example databaseaaridscthe most frequent
value as class label, while end nodes (leafs) represkotegeneougartition of the
database in which all examples have the same class labeld@iaeither a leaf, or is
a non-ending node that branches out to nodes at a deepeoi¢keltrie. Each branch
represents a test on a feature value; branches fanning oneofode test on values of
the same feature.

To attain high compression levels, I®EE adopts the same heuristic that most
other decision-tree induction algorithms adopt, suctté4s (Quinlan, 1993), and
CART (Breimanet al, 1984), which is to create trees from a starting root node and
branch out to test on the most informative, or most classriignative features first.
c4.5 uses information gain (IG) (or a variant, gain ratio) stiraate the most infor-
mative features. IG is an estimate of how much informatioaaiure contributes to
predicting the correct class label. The IG of featiiie measured by computing the
difference in uncertainty (i.e. entropy) between the situns without and with knowl-
edge of the value of that feature with respect to predictiegiass label (equation 1):

IG; =H(C)~ Y P(v) x H(C|v) [1]

veV;

where C' is the set of class labeld/; is the set of values for featurg and
H(C) = =) .cc P(c)log, P(c) is the entropy of the class labels. The probabili-
ties are estimated from relative frequencies in the trgisiet.

IGTREE also uses IG. The key difference between KEE and c4.5 is that
IGTREE computes the IG of all features once on the full databaseairitrg ex-
amples, makes a feature ordering once on these computedu€syand uses this
ordering throughout the whole trie. This means that throughny particular level of
the trie, the same feature is tested. This is not the casecAith, which recomputes

4. An implementation of IGTree is freely available as part ld fTiIMBL software package,
which can be downloaded from http://ilk.uvt.nl/
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IG at every node to determine the next most important feafthies difference makes
IGTREE computationally less complex thad.5 in tree induction.

Another difference withc4.5 is that IGTREE does not prune its produced trie,
so that it performs a lossless compression of the labelifoyrimation of the original
example database. As long as the database does not coflitaamibiguous examples
(with the same features, but different class labels), tieepiroduced by IGREE is
able to reproduce the classifications of all examples in tiggnal example database
perfectly.

Due to the fact that IGREE computes the IG of all features once, it is function-
ally equivalenttaB1-1G (Daelemans and Van den Bosch, 1992; Daelemans, Van den
Bosch, and Zavrel, 1999),/anearest neighbor classifier for symbolic features, with
k = 1 and using a particular feature weighting in the similariipdtion in which the
weight of each feature is larger than the sum of all weighteafures with a lower
weight (e.g. as in the exponential sequehc® 4,8, ... where2 > 1,4 > (1 + 2),

8 > (1+2+4), etc.). Both algorithms will base their classification oa &xample that
matches on most features, ordered by their IG, and guessaitpajass of the set of
examples represented at the level of mismatching.REF therefore, can be seen as
an approximation ofs 1-1G with £ = 1 that has favorable asymptotic complexities as
compared toB1-1G.

IGTREEs computational bottleneck is the trie construction pescevhich has an
asymptotic complexity 0O (n lg(v) f) of CPU, wheren is the number of training
examplesy is the average branching factor of IGEE (how many branches fan out
of a node, on average), arfds the number of features. Storing the trie, on the other
hand, cost®)(n) in memory (for which we will provide empirical back-up eviuz
later), which is less than th@(n f) of IB1-1G. Classification in IGREE takes an
efficientO(f lg(v)) of CPU, versus the cumbersor®én f) of IB1-IG, given that in
the typical caser is much higher tharf or v (Van den Bosch, 1997).

The example in Figure 1 illustrates the construction ofafior the case of word
prediction limited to predictingayor saysn the seven sentences displayed on the left.
These seven sentences are compressed into a trie built odes the oval units) and
branches (with a rectangular label on them). The root (toperrepresents all seven
examples, hence is labeled wihy (which occurs four times, versus three times for
say9. The branches connecting the root node to the second#edds represent
all the pronouns in the word to the left, each denoting ungnonduiisly whether the
outcome issayor says Third-level nodes matching on the one possible right word
(so) are superfluous; so are the second-level nodes that pthdisame class as the
root node. The resulting trie is therefore only the gray pastsisting of four nodes
and three branches. Essentially, this trie encodes thaiuto®me issay, unless the
word to the left ishe, she orit, in which case it isays
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| say so

you say so \ | ﬂyou (e || e [ [ we I mey\ word to the left |
he says so
hEE | — coeeecs

it says so :
we say so ‘ so H so H s0 H s0 H s0 H so H so word to the right§

e HEEEHEOE

Figure 1. The disambiguation acfayandsaysin a limited context of one word to the
left (I, you, he, she it, we, or they) and one word to the rights@), compressed into a
trie (right), of which only the gray nodes and branches neelé retained

2.4. Evaluation metrics

In our experiments we carry out the following measurements:

1) Token prediction accuracy — the percentage of correatiyipted tokens in
test data.

2) Token prediction speed — the number of test token prexdfistper second.

3) Number of nodes — the number of trie nodes, including tlod n@de and all
other non-ending nodes.

4) Discrete perplexity — a new metric explained in more déxtaiow.

We introducediscrete perplexityD P) as an alternative to the standard notion of
perplexity (Roukos, 1996; Jelinek, 1998), which has atrigrobabilistic interpreta-
tion. A useful informal definition of perplexity is the numbef different tokens that
a language model holds as the likely candidate tokens fallgpa token sequence, or
in the middle of a sequence. A naive unigram language mdug khows about the
frequencies of tokens, but not of their co-occurrence, d@&xpect any word at any
position proportional to their likelihood. This “level ofigrise” is usually estimated
as two to the power of the word-level entropy of a corpus. kangple, the word-level
entropy of theTEST-REUTERStest set ) in which W is the set of all tokens occur-
rngin R, H(R) = — > cw P(w)log, P(w), is 10.37, which makes its perplexity
21037 ~ 1319. Likewise, the entropy of theEST-BROWN test set is 9.94, thus its per-
plexity 982. Effective stochastic language models (eigram models with back-off
smoothing) are known to bring the perplexity levels on tHeBwwn corpus down to
figures such as 242 (Roukos, 1996).

The problem with adopting the probabilistic perplexity mein our experiments
is that the discrete output of IGREE does not have a probabilistic interpretation.
If IGT REE predicts a word, it does so either because it has found a fiedliching
variable-width path in its tree leading to a leaf node, orduse it returned the class
label stored at the last non-ending node it visited befofeunhd no match on the
continuing branches. In both cases, the returned claskdehetes the majority class
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in the data subset represented at the final node, often bagadt@ handful or a pair
of locally neighboring training examples, and thereforéeytemote from a reliable
probabilistic interpretation.

Nevertheless we aim to have a measurement of the reductitsurprise”, or
perplexity, that an IGREE-based classifier is able to attain. Our proposal involves
the mapping of the output of a classifier on test data by clmandi a supervised
post-hoc evaluation similar to computing accuracy, albimectly predicted tokens in
the output to a single string, e.g. “XXXXX?”, but leaving albectly predicted tokens
as they are. If the classifier would predict every word ineotly, it would produce
a text consisting only of “XXXXX", which has a word-level eopy of 0.0. This
means there has been no decrease whatsoever in the “syrprifee perplexity, of
the classifier as compared to the unigram perplexity. At thereend of the spectrum,
if the classifier would predict all tokens correctly, it wdydroduce a text identical to
the original one, with an identical entropy; there would loesarprise left, hence the
classifier would have reduced the perplexity to zero.

More formally, we define the discrete perplexifyP, of a textTp predicted by
a word-prediction classifier and processed as describedeaiterel - is the target
text to be predicted, anff (Tr) and H(T'p) are the word-level entropies of the two
texts, as

3. Word prediction
3.1. Learning curve experiments

The word prediction accuracy learning curves computed enthinee test sets,
and trained on increasing portions ORAIN-REUTERS are displayed in Figure 2.
The best accuracy observed is 42.2% with 30 million trairesgmples, OImmEST
REUTERS Apparently, training and testing on the same type of datidgimarkedly
higher prediction accuracies than testing on a differgpétcorpus. Accuracies on
TEST-BROWN are slightly higher than omesTALICE, but the difference is small; at
30 million training examples, the accuracy DBST-ALICE is 12.6%, and OITEST
BROWN 15.8%.

A second observation is that all three learning curves argrpssing upward with
more training examples, and roughly at a constant log-tirega. When estimating the
rates after about 50,000 examples (before which the cupgpesza to be more volatile),
with every tenfold increase of the number of training exassphe prediction accuracy
on TESTREUTERSiIncreases by a constant rate of about 8%, while the increases
TEST-ALICE andTEST-BROWN are both about 2% at every tenfold.

We subsequently performed experiments with muting, ilee,exclusion of ex-
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50 1 1 1 1 1 1
TEST-BROWN #nimims
TEST-ALICE ssssssn
TEST-REUTERS s

40
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word prediction accuracy
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100 1,000 10,000 100,000 1,000,000 10,000,000
30,000,000

T

examples

Figure 2. Learning curves of word prediction accuracies without mgtiofIGTREE
trained ONTRAIN-REUTERS and tested OMEST-REUTERS TESTALICE, andTEST
BROWN

amples in the training set of words occurring below a fregyehreshold. Figure 3
displays the learning curves aESTREUTERSwithout muting, compared to muting
levels 10, 100, and 1,000. The shapes of the learning cueasadclear similarity;

they exhibit the same log-linear increase after about ID@&mples. The perfor-
mances at muting levels 10 and 100 are slightly higher thapénformances without
muting at the same amounts of training examples, while th@peance with muting

level 1000 only slightly lags behind, and appears to catchvitip the other curves
with more training examples.

3.2. Memory requirements, classification speed, and discretepfexity

The most noticeable difference between the experiments avitd without mut-
ing is that the decision trees built in the muting experirseare smaller. Moreover,
the numbers of nodes in all different variants also exhibiirgieresting linearity with
respect to the number of training examples, as suggestédrday the asymptotic
complexity orderO(n), wheren is the number of training instances. Figure 4 illus-
trates this relation. The amounts of nodes per muting lelated to the number of
training examples appear to lie at almost constant factelmbl.0 (i.e., less than one
node per training example); for example, at muting levell®factor appears to be
0.53 (i.e., at 5 million instances,x 0.53 ~ 2.65 million nodes are createtl)

5. In the used implementation, on a 32-bit processor one rad@s 20 bytes to store (two four-
byte pointers providing links to other nodes, and three-fmyie pointers linking to information
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A factor in classification speed is the average branchingpfa€onceivably, the
word prediction task can lead to a large branching factpeeéslly in the higher levels
of the tree. However, not every word occurs before or afteryeether word in finite
amounts of text. Furthermore, there are relatively strangstraints (of collocational,
syntactic, and semantic nature) in a language such as Braglito which words can
be neighbors. To estimate the average branching factorrekarte compute thé¢th
root of the total number of nodeg (being the number of features, i.e. 14). The
largest decision tree currently constructed in the no4ngutiondition is the one on
the basis of a training set of 30 million examples, having®%6,878 nodes. This
tree has an average branching factor'¢fi5, 956,878 ~ 3.27; all other trees have
smaller branching factors. Together with the fact that weetiaut 14 features, and the
asymptotic complexity order of classificationd f lg(v)), wherev is the average
branching factor, classification can be expected to be fast.

Indeed, depending on the machine’s CPU on which the expatirmeun and on
the task, we observe quite favorable classification spdédsre 5 displays the vari-
ous speeds (in terms of the number of test tokens predicteskpend) attained on the
three test sets Obviously, higher speeds correlate with lower predictienuracies,
but the best performances are still attained at classificapeeds of over a hundred
predicted tokens per second. Two other relevant obsensadie that first, the classifi-
cation speed hardly differs between the three test sesKBROWN is classified only
slightly slower than the other two test sets), indicatingt time classifier is spending
a roughly comparable amount of searching through the aecisees regardless of
genre differences. Second, the graphs in Figure 5 do nobixhconstant log-log
decrease; rather, the largest slowdown occurs betweeA@ @yt 1,000,000 training
examples, after which the speed decrease settles on a lateer\While trees grow
linearly, and performance grows log-linearly, the speecladsification slowly dimin-
ishes at decreasing rates (note the logarithmic scale gfthés of Figure 5).

To illustrate our final measurement, Figure 6 displays tlaenieg curves of the
experiment without muting, testing on all three test set$erms of discrete perplex-
ity. On TESFREUTERS made up of the same type of newswire data as the training
set, a strong decrease can be observed from the origindldet819 down to 57,
a level of probabilistic perplexity typically attained bygiabilistic language models
on domain-specific texts (Roukos, 1996). @esT-ALICE, which has a low discrete
perplexity to begin with, the relative decrease in discpagplexity is much smaller
(57%) than withTEST-REUTERS(96%). ONnTEST-BROWN the relative decrease after
30 million training tokens is 64%, its discrete perplexityteat point being 351, some-
what higher than, but in the same order of magnitude as themfntioned trigram
model perplexity of 242 on the Brown corpus (Roukos, 1998)ictv is interesting
given that our training set is not composed of generic Ehgésts.

on the feature value that labels the branch leading to the,nbeé class label, and frequency

information); consequently, this example tree costs a rh@nmegabytes to store.
6. Measurements were made on a GNU/Linux x86-based machthewii Ghz AMD Opteron
processors.
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# Training examples Context TEST-REUTERS | TESTALICE | TESTBROWN
1 million Left 22.8 7.1 8.9
Left & right 28.9 8.8 11.4
10 million Left 28.0 8.0 9.9
Left & right 36.9 11.2 14.2

Table 3. Word prediction accuracies on the three test sets at 1 miind 10 million
training examples fromRAIN-REUTERS without muting, in the experimental variant
with left context only, and with both left and right context

3.3. Experiments with left context only

As stated earlier, another realistic variant of the worddotion task (e.g. for
sentence completion or directed language modeling) isadigtra word given only the
left context leading up to the word. We performed a seriexpéements identical to
the experiments described above, except for the fact thdghbcontext was included
in the examples presented to the machine learner. A stfaiglard assessment of
the learnability of the “left-context-only” task is that d@ffers half the information
available in the task with both left and right context avialiéa so that one might expect
lower prediction accuracies on this task compared to theradisk at the same amount
of training material. In fact, we observed that the drop infgenance is reasonably
limited. For illustration, Table 3 displays the word preaia accuracies on the three
test sets when training on 1 million (top) and 10 million exdes (bottom) from
TRAIN-REUTERSIn both experimental conditions.

The learning curves of the “left-context-only” experimein log-log space turn
out to exhibit roughly the same log-linear shape and stespas the curves of the
experiments with both contexts available, and are meretizbiotally shifted to the
right. Apparently, the lack of information caused by theat® of right context is
only realized as a relative lag in performance of about fowgight percentage points,
and having more training examples compensates for the laakfarmation: with
10 million training examples, roughly similar word predict accuracies are attained
with left context only as are obtained with left and right text at 1 million examples.

4. Confusibles

Word prediction from context can be considered a very haskl @ue to the many
choices open to the predictor at many points in the sequeRcedicting content
words, for example, is often only possible through subtletextual clues or by hav-
ing the appropriate domain or world knowledge, or intimatewledge of the writer’s
social context and intentions. Learning to predict contemtds is furthermore ham-
pered by the fact that examples of these content words tehd tparse — they will
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input output
left context right context
... operation for more | | 15 years . ... than |«
... many more sellers | | buyers on the ... than
... as slightly firmer | | in northwest Europe ... than
... been attacked and | | the telephone went ... then
... and the cougar | | turned on her ... then

| ... fighting for more| | nine years ... | |/Lhe(|<—

Figure 7. lllustration of confusible disambiguation for correctipuirposes. The bot-
tom test example, with the incorrebenin focus, finds a best match on the first of the
five training examples, suggesting the alternathaninstead

typically be in the tail of the Zipfian distribution. In coast, certain function words
tend to be predictable due to the positions they take in ¢egimtactic phrases and
attachment structures; their high frequency tends to ertbatt plenty of examples of
them in context are available.

Due to the important role of function words in syntactic stuuwe, it can be quite
disruptive for a parser and for human readers alike to erteo@mistyped function
word that in its intended form is another function word. Iletfaconfusible errors
between frequent forms occur relatively frequently. Exbrsf these so-called con-
fusibles in English ar¢hereversustheir and the contractiothey're or the duathan
andthen Confusibles can arise from having the same pronunciatiompphones),
or having very similar pronunciatioc@untryor county or spelling flessertdeserj,
having very close lexical semantics (as betwaemngand betweed, or being in-
flections or case variants of the same stémefsusme or walk versuswalkg, and
may stem from a lack of concentration or experience by theewior from accidental
mistypings, e.g. caused by keyboard proximities.

Distinguishing between confusibles is essentially theestask as word prediction,
except that the number of alternative outcomes is small,tegor three, rather than
thousands or more. The typical application setting is alsoenspecific: given that
a writer has produced a text (e.g. a sentence in a word praessis possible to
check the correctness of each occurrence of a word knownpatef a pair or triple
of confusibles. Figure 7 illustrates this checking-andrection procedure. Given a
new sentence, with the fragment fighting for more then nine years., a matching
pattern is found in the (decision-tree compression of thehing examples that is
labeled withthan, suggesting a correction tfienby than

We performed a series of experiments on disambiguatingfréneent confusibles



Scalable word prediction 55

in English; these are also investigated in (Golding and Rb€99). We adopted
an experimental setting in which we use the same experirhéata as before (i.e.,
training ONTRAIN-REUTERS and testing OMESTREUTERS TEST-ALICE, andTEST
BROWN), in which only examples of the confusible words are drawroterithat we
ignore possible confusible errors in both training and $est This data set generation
procedure reduces the amount of examples considerablpitBésving over 130 mil-
lion words inTRAIN-REUTERS frequent words such @kereandthanoccur just over
100,000 times. To be able to run learning curves with more the relatively small
amount of examples, we expanded our training material WwighNew York Times of
1994 to 2002 (henceforthRAIN-NYT), part of the English Gigaword collection pub-
lished by the Linguistic Data Consortium. This large corpti$,096,950,281 tokens
offers about ten times as many examples of the confusibld\@8TRAIN-REUTERS

As afirstillustration of the experimental outcomes, we foou the three-way con-
fusiblethere—their—they’refor which we trained one classifier, which we henceforth
refer to as a confusible expert. The learning curve resfiltsi® confusible expert are
displayed in Figure 8 as the top three graphs. The logarithxraixis displays the full
number of instances fromRAIN-REUTERSUp to 130.3 million examples, and from
TRAIN-NYT after this point. Counter to the learning curves in the gengord pre-
diction experiments, and to the observation by (Banko arilti B001), the learning
curves of this confusible triple in the three different dagds flatten, and converge,
remarkably, to a roughly similar score of about 98%. The eogence only occurs
after examples fromRAIN-NYT are added.

In the bottom of the same Figure 8 we have also plotted the wordiction ac-
curacies on the three wordkere their, andthey’re attained by the generic word
predictor (without muting) described in the previous sattby analyzing the output
of this predictor on the three test sets. The accuraciesatber recall figures (the
percentage of occurrences of the three words in the tesivbith are correctly pre-
dicted as such), are considerably lower than those on thieisibie disambiguation
task. Clearlythere their, andthey’reare hard to predict for the generic word predictor
(even though it does improve with more training materiabilevit is quite capable of
distinguishing between them in isolation.

Table 4 presents the experimental results obtained on mintisible sets when
training and testing on Reuters material. The nine setsanteopthe sets studied in
(Golding and Roth, 1999). The third column lists the accysores of the generic
word prediction system (without muting) at the maximalriag set size of 30 million
labeled examples; this is the percentage of cases thattleeigprediction system has
to predict one of the words in the confusible pair or tripled actually predicts it cor-
rectly. The third and the fourth columns list the accuraeigsgined by the confusible
expert for the particular confusible pair or triple, measuat 30 million training ex-
amples, from which each particular confusible expert'seples are extracted. The
amount of examples varies for the selected confusibleagtsin be seen in the second
column.

Scores attained by the generic word predictor on these wargsrom below 10%
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Figure 8. Learning curves in terms of word prediction accuracy on daxj between
the confusible paithere their, andthey’re by IGTREE trained onReutergdata, and
tested OIMESTREUTERS TESTALICE, and TESTBROWN, without muting. The top
graphs are accuracies attained by the confusible expemd@ on confusible exam-
ples only; the bottom graphs are attained by the generic wietlictor trained on
TRAIN-REUTERSuUNtil 130 million examples, and orrRAIN-NYT beyond (marked by
the vertical bar)

Accuracy (%) by

Number of | generic word| confusible
Confusible set examples prediction expert
cite—site—sight 2,286 0.0 100.0
accept-except 3,833 46.2 76.9
affect— effect 4,640 7.7 87.9
fewer—less 6,503 4.7 95.2
among- between 27,025 18.9 96.7
| —me 28,835 55.9 98.0
than—then 31,478 59.4 97.2
there—their —they're 58,081 23.1 96.8
to—too—two 553,453 60.6 93.4

Table 4. Disambiguation scores on nine confusible set, attainechbygeneric word

prediction classifier trained on 30 million examplestéfaIN-REUTERS and by con-

fusible experts on the same training set. The second colusplagls the number of
examples of each confusible set in the 30-million word tregrset; the list is ordered
on this column
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Accuracy on test set (%)
Confusible set TESTREUTERS | TESTALICE | TESFFBROWN
cite — site—sight 100.0 100.0 69.0
accept except 84.6 100.0 97.0
affect— effect 92.3 100.0 89.5
fewer—less 90.5 100.0 97.2
among- between 94.4 77.8 74.4
| —me 99.0 98.3 98.3
than—then 97.2 92.9 95.8
there—their —they’re 98.1 97.8 97.3
to—too—two 94.3 93.4 92.9

Table 5. Disambiguation scores on nine confusible set, attainedojusible experts
trained on examples extracted from 1 billion words of textrfTRAIN-REUTERSpIUS
TRAIN-NYT, on the three test sets

for relatively low-frequent words to around 60% for the misegjuent confusibles; the
latter numbers are higher than the overall accuracy of ffstem ONTEST-REUTERS
Nevertheless they are considerably lower than the scotaismed by the confusible
disambiguation classifiers. While the generic word predit trained on all 30 mil-
lion examples, each confusible classifier is trained onljtt@subset of examples
labeled with one of their particular confusible words. Mokthe confusible disam-
biguation classifiers attain accuracies of well above 90%.

When the learning curves are continued beyoRAIN-REUTERSINt0 TRAIN-
NYT, about a thousand times as many training examples can bergeths training
data for the confusible experts. Table 5 displays the nimusible expert's scores
after being trained on examples extracted from a total oflmhien words of text,
measured on all three test sets. Apart from a few outlierstsupres are above 90%,
and more importantly, the scores DBSTALICE and TEST-BROWN do not seriously
lag behind those ONEST-REUTERS Some are even better — for instance, the four least
frequent confusibles are predicted perfectly correctlyasALICE.

5. Related work

As remarked in the cases reported in the literature direethted to the current
article, discrete, classification-based word predictsoa core task to natural language
processing, and one of the few that takes no morpho-syatacsemantic annota-
tion layer to provide data for supervised machine learnmdy@robabilistic modeling
(Golding and Roth, 1999; Even-Zohar and Roth, 2000; BankbBxill, 2001). It is
almost puzzling why it is not a focus in current natural laage processing research,
as it has been, albeit in a probabilistic interpretatioaimguage modeling for auto-
matic speech recognition (Jelinek, 1998) - it may have begrobfocus due to the
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prohibitively large feature and class spaces; exactlyleaf this reason it is an ideal
task to consider as a case in scaling studies.

Given that scaling issues are becoming increasingly inapoih natural language
processing research, our view is that word prediction may b&tural language pro-
cessing what language modeling is to speech processingedask that, when per-
formed well, paves the way for dealing with low-frequencyrdsand errors in text in
further processing steps such as syntactic and semansimgapotentially surpass-
ing the need for intermediate abstraction levels diredbigve the word level such as
part-of-speech tagging (Van den Bosch and Buchholz, 20023. latter goal of pro-
viding alternative, implicit ways of learning about theustture of language from the
bottom up, is an echo of classical ideas of Zellig Harris (4ad957; Harris, 1968),
via which the work reported here inherits a link to currentkio grammar induction
(Adriaanset al., 2004).

More directly, the work of Even-Zohar and Roth remains tlusebt nearest neigh-
bor of this article (Even-Zohar and Roth, 2000). Two of thaiguments deviate
from ours. First, inspired by analogous work in probabkisanguage modeling
(Chelba and Jelinek, 1998), they argue that syntacticfeatare necessary for generic
classification-based word prediction. Although we havematle the comparison di-
rectly (we may do this in future work), we have set out to shbat tvord prediction
can be learned on the basis of examples that represent noerratigxts of word and
punctuation tokens - arguably, given enough examples,swead take over the role of
part-of-speech tags implicitly, as we argued and showdikear (Van den Bosch and
Buchholz, 2002). Second, Even-Zohar and Roth argue trexté@dessaryo focus the
attention of the classifier to limited sets of confusiblebjch we see as aoptional
specialization that for practical reasons (given the eurcapacity of our computers)
still performs better than generic word prediction. Thepenment on pairs of verbs
from the Wall Street Journal Penn Treebank corpus that aretagually likely based
on their frequency of occurrence and part-of-speech (a@akdsell), which deviates
from our more practically-driven definition of confusible @so used by (Golding and
Roth, 1999; Banko and Brill, 2001). Even-Zohar and Roth nsallkamounts of train-
ing and test data (together less than 100,000 examplesyepod: word error rates
of close to 10% (90% word accuracy), counter to about 65% weordr rate (35%
word accuracy) when training and testing on all verbs siamdbusly (Even-Zohar
and Roth, 2000).

The papers by Golding and Roth, and Banko and Brill on cobfasiorrection fo-
cus on the more common typetbfan'thenconfusion that occurs a lot in the process of
text production. Both pairs of authors use the confusibleemtion task to illustrate
scaling issues, as we have. Golding and Roth illustrate rthatiplicative weight-
updating algorithms such as Winnow (Littlestone, 1988)daal with immense input
feature spaces, where for each single classification ormyadl sumber of features is
actually relevant (Golding and Roth, 1999). With |&HE we have an arguably com-
petitive efficient, but one-shot learning algorithm; |&8E does not need an iterative
procedure to set weights, and can also handle a large fesptace. Instead of viewing
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all positional features as containers of thousands of atevard features, it treats the
positional features as the basic tests, branching on theé vadues in the tree. Banko
and Brill, on their part, use the confusible task as a “fryit task to illustrate the
log-linear growth effect in accuracy, when the number ohireg examples is expo-
nentially grown. Their point is to show that a lot may chang@érformances when
instead of the seemingly high number of a million exampldsi¢tv still is the upper
bound for a lot of work in machine learning applied to natlsabuage processing) a
multiple amount of examples becomes available (Banko aiilj Bd01). The paper
provides no exact information on the confusibles that ataadly tested; they also
present learning curve graphs with a logarithmic x-axisapre billion instances,
assumedly to indicate that they sampled from a corpus of améobillion tokens to
create smaller confusible example subsets.

More generally, as a precursor to the above-mentioned veafusible disam-
biguation has been investigated in a string of papers disogishe application of var-
ious machine learning algorithms to the task (Yarowsky4t @plding, 1995; Mangu
and Brill, 1997; Huang and Powers, 2001). As a side note,usillie correction is
often referred to as context-sensitive spelling correc{i@olding and Roth, 1999),
while it is obvious that non-word spelling correction (icerrection of typos that lead
to non-existing words) can greatly benefit from context all (fikich, 1992; Rey-
naert, 2004; Reynaert, 2005).

6. Discussion

In this article we explored the scaling abilities of I&HE, a simple decision-tree
algorithm with favorable asymptotic complexities with pest to multi-label classifi-
cation tasks. IGREE s applied to word prediction, a task for which virtually im}
ited amounts of training examples are available, with vargé amounts of predictable
class labels; and confusible disambiguation, a spectaizaf word prediction fo-
cusing on small sets of confusible words. Best results ar2%4Zorrectly predicted
tokens (words and punctuation markers) when training astihtgon data from the
Reutersnewswire corpus; and confusible disambiguation accusacfevell above
90%.

Analysing the results of the learning curve experimentfwitreasing amounts
of training examples, we observe that better word prediciccuracy can be attained
simply by adding more training examples, and that the pisjireaccuracy proceeds
at a log-linear rate. The best rate we observed was an 8%aiseia performance
every tenfold multiplication of the number of training exales, when training and
testing on the same data.

In addition, we observed that muting (discarding low-frexecy words from the
training data) does notimprove word prediction resultsablevel 10 (ignoring words
below that frequency of occurrence) it yields the same awtes with smaller deci-
sion trees. This is an indication that the performancesefitbrd prediction systems
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are largely based on their ability to predict high-frequentds, i.e. function words,
correctly at certain points.

Also, we observed that predicting words solely on the baklefbcontext does
lead to lower word prediction accuracies as compared todhamt in which left and
right contexts are available. However, the learning cuimgbe “left-context-only”
condition are as log-linear and steep as the learning cob&sved in the experiments
with left and right context available; the lack of right cert can be compensated by
training on more “left-context-only” examples.

Storing the trees is favorably linear in the number of trainéxamples, at a rate
lower thanl : 1, and close to one node for every two training examples in thiestv
case (without muting). We also measured classificationdspesnd noted that with
more training examples and linearly growing decision tretssification speeds de-
crease, with an increasingly slower rate of decrease; tveest measured speed of a
trained word prediction classifier is still over one hundnextds per second.

Accuracies on test data different from the training matgetfiee full text of Alice’s
Adventures in Wonderlantbvel and the Brown corpus part of the Penn Treebank, are
markedly lower than those on test data from Reuters. Scorebfi@rent texts peak
at 15.8% word prediction accuracy, indicating that the ligbres oITESTREUTERS
are due to the large amount of overlap in phraseRentersnewswire articles over
time. A likely explanation for the large difference is thaétoverlap in content words
in the training and test data from tieuterscorpus is much higher than the overlap
betweermrRAIN-REUTERSON the one hand, amEST-ALICE andTEST-BROWN on the
other hand. The 12-16% word prediction accuracies on therltst data are likely
to stem from the correct identification of certain more frequtokens, i.e. function
words and punctuation markers, while the gap between tlresesand the 43% on
TEST-REUTERSIS likely to be due to correctly predicted relatively lowfeequency
tokens, i.e. newswire-specific content words.

We have studied a deliberately simple method, K&E, which performs lossless
trie compression (Knuth, 1973), and which operates on el@snphich represent
mere sequences of words. A severe weakness ofREETS its inability to match
an unseen example at several lower-importance features svfesature with a larger
estimated importance mismatches. Its decision-treeeglyatictates that it matches
features in a strict order of importance, returning a besisguas soon as it cannot
find a match on its next feature-value test. The sooner it tiasake a guess, the
weaker the guess (Daelemans, Van den Bosch, and Zavrel).198@ire work may
focus on softening the search strategies more in the directi k-nearest neighbor
classification (Daelemans, Van den Bosch, and Zavrel, 19@dkvever this will lead
to speed loss. In future work we intend to investigate a peiztion of the tree
construction process on multi-processor hardware, e.gamsllelizing tree induction
through treating every second-level node as a root node.

The implications of this study are twofold. On the one handjoad prediction
system based on the method proposed here could be a higlthgrtfand valuable
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module in authoring environments in which new documentdikeelder documents.
The module could play a role in suggesting words or compgihrases, or in spelling
or grammar checking. On the other hand, the quality of ptegtibreaks down easily
when applied to diverging types of text. The present stufigrebnly slim indications

that the proposed method would perform reasonably well vépmiied to diverging

types of text when trained on (a lot) more training material.

However, as an alternative to generic word prediction,&vie is shown (echoing
demonstrations in earlier work) that particular confus#nf relatively high frequency
can in fact be disambiguated by “confusible experts”, fecLdassifiers trained exclu-
sively on examples of confusible pairs or triples, whichlddee used for correction
purposes in text processing environments (and thus havealimited applicability
than generic word prediction systems). The disambiguatémuracies on test data of
these experts are mostly above 90%, regardless of the tyestafet, and are already
attained at relatively low amounts (e.g. thousands) ofiingi examples.

To generalize the confusible task, we intend to focus somgduvork on the
development and software engineering of an automatiggherated ensemble of
confusible experts, in the line of (Huang and Powers, 20€13t would form a
proofing tool plugin for a word processor, where the sets afesibles are automat-
ically detected in a language-independent fashion, andevtie full ensemble of
confusible experts represents an optimal trade-off in migrasage, speed, and word
prediction accuracy.
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