

Tilburg University

Corpus-Induced Corpus Clean-up

Reynaert, M.W.C.

Published in:
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC-06)

Publication date:
2006

Document Version
Peer reviewed version

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Reynaert, M. W. C. (2006). Corpus-Induced Corpus Clean-up. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC-06) (pp. 87-92). ELRA.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/fbe2b9cd-3fd5-446a-ab72-b2cb2bfdb09c

Corpus-Induced Corpus Clean-up

Martin Reynaert

Induction of Linguistic Knowledge
Tilburg University
The Netherlands
reynaert@uvt.nl

Abstract
We explore the feasibility of using only unsupervised meansto identify non-words, i.e. typos, in a frequency list derived from a large
corpus of Dutch and to distinguish between these non-words and real-words in the language. We call the system we built andevaluate
in this paperCICCL, which stands for ‘Corpus-Induced Corpus Clean-up’. The algorithm on whichCICCL is primarily based is the
anagram-key hashing algorithm introduced by (Reynaert, 2004). The core correction mechanism is a simple and effectivemethod which
translates the actual characters which make up a word into a large natural number in such a way that all the anagrams, i.e. all the
words composed of precisely the same subset of characters, are allocated the same natural number. In effect, this constitutes a novel
approximate string matching algorithm for indexed text search. This is because by simple addition, subtraction or a combination of both,
all variants within reach of the range of numerical values defined in the alphabet are retrieved by iterating over the alphabet. CICCL’s
input consists primarily of corpus derived frequency lists, from which it derives valuable morphological and compounding information
by performing frequency counts over the substrings of the words. These counts are then used to perform decompounding, aswell as for
distinguishing between most likely correctly spelled words and typos.

1. Introduction

Visual inspection of a subset of the word unigram frequency
list derived from the Reuters Corpus Volume 1 orRCV1
(Lewis et al., 2004) (initial character lowercased word types
only) has taught us that over 21% of the word types in the
list are in fact typos, i.e. word types orthographically un-
acceptable by any convention in the English language com-
munity. We marked 33,000 typos in a word type list of
about 150,000 items. We have performed a comparable
study on a subset of the unigram frequency list of the Dutch
Twente Corpus, covering the year 2002, and identified over
13,000 typos.
On the basis of this material we conduct a study of unsu-
pervised ways to identify these unacceptable word forms on
the basis of the corpora themselves. To this end we employ
the core spelling correction strategy as described in (Rey-
naert, 2004). Text-Induced Spelling Correction orTISC has
been shown to be a viable alternative to existing approaches
in (Reynaert, 2005), for both languages Dutch and English.
Performance in terms of recall was shown to be comparable
to the state-of-the-art systems available today, but levels of
precision exceed those of the other systems evaluated by an
order of magnitude.
As part of the PhD-dissertation, we described Corpus In-
duced Corpus Clean-up orCICCL. An English-specific
module was built based on the core correction mechanism
employed inTISC which is meant to clean up the lexicons
used byTISC. In contrast to most spelling correction sys-
tems, the lexicon employed byTISC is not a ‘trusted’ dic-
tionary, but contains noise in the form of recurrent typos
found in any word type list derived from a large corpus of
text. CICCL starts off with the most frequent words in the
frequency list and systematically searches for typographi-
cal variants within the whole list. This it does within certain
bounds, it can be specified at run-time how many edits are
allowed to get from the input word to the variants retrieved.

In the rest of this paper we describe a new and simple ver-
sion ofCICCL and evaluate it on Dutch.

2. Unsupervised identification of non-words
in a corpus

The goal of this paper is to show that it is feasible to iden-
tify, in order to subsequently remove, the majority of or-
thographically unacceptable word forms present in a large
corpus of written text in a particular language using unsu-
pervised means only. The resources used to do this are cor-
pora of raw text in the particular language only: no use is
made of pre-existing resources such as validated word lists
or dictionaries. The assumption is that given a sufficiently
large corpus, all information necessary to perform the task
is present in the corpus. In this paper we focus on the iden-
tification of non-words only. Though in the vast majority
of cases these non-words will be retrieved by way of their
correct form, we do not aim at linking up correct forms
with their own misspellings only. As (Reynaert, 2005) has
shown, doing that in most cases requires the use of context.
So far, we here employ in-word context only, in the form
of ‘the other part’ of a compound word. Neither do we aim
at retrieving all possible non-words in the corpus. We natu-
rally hope to identify the bulk of the non-words present and
will assess to what extent we manage to do so, but we know
that the current implementation does not address all types
of possible non-words.
The motivation for this work is the finding that in a large
collection of written text, e.g. for English the ReutersRCV1
corpus, up to one fifth of the word types beginning in a low-
ercased character are in fact non-words in English. These
typos furthermore have a Zipfian distribution: some typos
occur with high frequency, most occur but a few times and
the majority only once. (Reynaert, 2005)
This work wishes to explore ways of providing an alterna-
tive to the established practice of hapaxing or employing

87

some form of frequency thresholding in language model-
ing, as we have shown that this removes far more correct
words than undesirable word forms, leading to increased
data sparseness, while still retaining the more frequent in-
correct word forms, leading to less reliable corpus counts
for the correct word forms.

3. The task
We believe retrieving the typographical variants for a par-
ticular word is only a first step. Many ways of doing so are
available, an expert overview of these is in (Navarro, 2001).
In the following we aim to show that a lot more factors in-
fluence the outcome of the endeavour.
In the following, we intend to retrieve those word forms that
lie within the bounds we set for word forms occurring in the
list we wish to examine with a frequency above that of the
average frequency for a word form of the particular length
in characters observed within a far larger background fre-
quency list. Of those retrieved, we will say they arevari-
antsof the word string we focus on: thefocus word.
The bounds set will be expressed in terms of the Leven-
shtein distance orLD (Levenshtein, 1965).
For all the variants retrieved, the task we address is deter-
mining whether the variant is in fact a perfectly acceptable
word in the language in its own right, whether or not this
is a perfectly acceptable morphological variant, a perfectly
acceptable orthographical variant – perhaps to another por-
tion of the language community, viz. English versus Amer-
ican usage – or whether the word variant retrieved con-
stitutes a word form unacceptable to any sizeable portion
of the language community. If the latter is the case, we
will call the word variant anon-word in that particular lan-
guage, ortypo for short.

4. The means
4.1. Anagram-based Spelling Correction

We employ the core-correction mechanism first introduced
in (Reynaert, 2004) and described in more depth in (Rey-
naert, 2005) which first uses bad hashing to identify all
word strings in the corpus at hand that consist of the same
subset of characters and assigns a large natural number to
them, to be used as an index. It then uses the index val-
ues derived in the same way for the alphabet used, which
can be single characters or combinations of two or more
characters, to perform simple addition, subtraction or addi-
tion and subtraction in combination to retrieve typographi-
cal near-neighbours for the word string under consideration
from the hash containing the word type list for the corpus.
For each word type in the word list under examination, we
obtain a numerical value, which will serve as its hash key.
The formula represents the mathematical function used to
do this, wheref is a particular numerical value assigned
to each character in the alphabet andc1 to c|w| the actual
characters in the input stringw.

Key(w) =

|w|∑

i=1

f(ci)
n

In practice, we use the ISO Latin-1 code value of each char-
acter in the string raised to a powern, wheren is currently:

L
E
X
I
C
O
N

H
A
S
H

+

+

−

−

Candidates

SORT & UPGRADE

For each TAV:

For each AAV:
ADD

SUBTRACT

candidates
correction
retrieved

Alphabet

Anagram Values

Anagram Values

Type−derived

TOP N

WORD
INPUT

ANAGRAM
VALUE

WORD
INPUT

Transposition

Substitution

Deletion

Insertion

Figure 1: The core-correction mechanism. The lexicon
built up from the input word list is queried for transposi-
tions on the basis of the Input word Anagram Value (IAV)
alone. EachAAV is added to theIAV to query for deletions.
EachTAV is subtracted to query for insertions. EachAAV is
added and eachTAV subtracted to query for substitutions.

5. In effect, all anagrams, words consisting of a particular
set of characters and present in the list, will be identified
through their common numerical value. As the collisions
produced by this function identify anagrams, we refer to
this as ananagram hashand to the numerical values ob-
tained as theanagram values, further abbreviated asAVs,
andanagram keys, when we discuss these in relation to
the hash.
Based on a word form’s anagram key it thus becomes possi-
ble to systematically query the list for any variants present,
be they morphological, typographical or orthographical.
The list of anagram values for the character(s) collected
from the input type we further refer to as theType-derived
Anagram Values, abbreviated:TAVs. Given e.g. the type
lolita we collect theAVs for the single characters. Then
we add a space front and back (the space is represented as
an underscore, here):lolita , derive theAVs for the char-
acter bigrams: l, lo, ol, li, it, ta, a and store these. So,
in all, we derive n unigram values and n+1 bigram values.
Given the number of charactersc|w| in the stringw we get
c|w| + (c|w| + 1).
The alphabets used in the present work containAVs repre-
senting single characters for the tests limited to single char-
acter edits. For the tests performed when allowing up to
two character edits, the alphabet contains theAVs for single
characters and all possible two-character combinations. We
further refer to theAVs in the alphabet as theAAV s.

Retrieval of typographical variants Figure 1 shows
a schematic representation of the core-correction mecha-
nism. The lexicon is a hash built up at run-time having the
AVs as keys and chained anagrams as values. We use the
AV for the focus word and the list ofTAVs and the longer
list of AAV s to query the lexicon for variants of the focus
word. These variants can all be seen as variations of the
usual error type taxonomy due to (Damerau, 1964):
transpositions These we get for free: they have the same

anagram key value, so when queried for the input word
AV , the lexicon returns the correct form and its ana-
grams (if any).

deletions We iterate over the alphabet and query the lexi-

88

con for the input word anagram value plus eachAAV .

insertions We iterate over theTAVs and query the lexicon
for the input word anagram value minus eachTAV .

substitutions We iterate over bothTAV and AAV lists
adding each value from theAAV s and subtracting each
value of theTAVs to the input word anagram value and
repeatedly query the lexicon.

By systematically querying the lexicon hash we retrieve all
possible variants that fall within reach. The actual reach is
defined by the alphabet used.
Secondly, for each variant retrieved, we use a separate sub-
routine which calculates theLD between the focus word and
the variant retrieved. This is required because even with the
LD limit imposed by the alphabet, variants of greatLD are
retrieved, e.g.goniometer for *goverment, with anLD of 6.
By discarding the variants retrieved that have anLD larger
than the limit we set at run-time, less plausible variants are
removed.

4.2. Corpus-Induced Corpus Clean-up: the algorithm

The resources made available toCICCL in its current ver-
sion are: an alphabet, lists of corpus-derivedword types and
their associated raw corpus frequencies for Dutch, English
and French and the Twente 2002 word types and associated
corpus frequencies list, in original, unannotated format.
We here discuss the algorithm informally; we envisage an
in-depth technical paper covering all the details at the end
of the current project, when the final version is due to be-
come available through the Dutch TST-Centrale1.
First the program reads in and studies the information
available in the background word frequency list of Dutch.
Studying amounts to tallying frequency counts for all the
substrings seen in the alphabetically sorted frequency list.
The topn, wheren is 200 in this work, are then stored and
made available to the rest of the process as a list of corpus-
derived prefixes and suffixes.
Next we handle each word in the list to be examined. For
each word, if its frequency is higher than the average fre-
quency for its length, and if the word has not been accepted
as a variant before, we let the core-correction module re-
trieve all its variants within the limit set.
For each of these variants, if theirLD does not exceed the
limit set and if the frequency of the focus word in the back-
ground Dutch frequency list is greater than that of the vari-
ant and if the background frequency of the variant is greater
than the average frequency for its word length, we discard
them. For all the variants not discarded, if their frequency
in the English or French background frequency lists are
greater than in the Dutch, we discard them. If they are re-
tained, we mark them as having been seen, to prevent them
from being retrieved time and again as variants for other
focus words.
On the basis of a split into two decompoundingparts, which
was effected when the list to be examined was studied, it
is then decided whether to discard the variant on the basis
of the fact that both compound parts’ background corpus

1 http://www.tst.inl.nl/

Corpus Lang. Mb Tokens Types

NYT AE 5,570 1,106,376,695 1,863,802
R-RCV1 IE 714 134,031,130 1,626,038
ILK D 1,748 314,051,047 2,747,341
TWC D 2,014 365,545,491 2,607,305
TWC2 D 510 92,793,519 914,026
ROUL F 273 52,722,253 422,682

Table 1: Corpora Statistics: Corpus, language (AE: Ameri-
can English, D: Dutch, F: French), size in Megabytes, num-
ber of word tokens, number of word types.

frequencies are higher than the average frequency for their
particular word lengths in the background frequency list.
For all the variants retained still, we check whether the fo-
cus word has, instead of the split, an extra linking ‘s’, or
‘n’ or dash. If they do, we retain these. We further check
whether when we subtract the one from the other starting
from the front of the word, whether the remaining ‘suffix’,
if it is no longer than 4 characters, appears in the corpus-
derived top 200 list of suffixes. If so, we discard the variant.
All variants retained are output linked to the focus word
which retrieved them.

4.3. Corpora used
4.3.1. Background Corpora
We here briefly describe the corpora used.

Dutch For Dutch we used both theILK Corpus2 and the
Twente Corpus3 (TWC). The ILK Corpus is a collection
of southern Dutch regional newspapers, expanded with 5
years of Dutch Roularta magazines. The Roularta mag-
azines constitute a series of Belgian Dutch weekly mag-
azines devoted to current affairs, industry, financial af-
fairs and leisure. TheTWC comprises a number of na-
tional Dutch newspapers, teletext subtitling and autocues
of broadcast news shows and news data downloaded from
theWWW.

English The American English corpus we used was the
New York Times (1994-2002) material available in theLDC

Gigaword Corpus (Graff, 2003). We further refer to this
corpus asNYT.

French For French we used 8 years (’91-’98) of Roularta
Magazines4. These constitute the Belgian French counter-
part of the Flemish Roularta magazines.
From each of the background corpora, after tokenization by
means of a rule-based tokenizer, a unigram frequency list
was derived. The lists of word types with their raw corpora
frequencies are then made available toCICCL, one list per
language. We present statistics regarding corpora sizes and
numbers of words in these corpora in Table 1.

4.3.2. Evaluation Corpus and test set
Evaluation Corpus We used the Twente Corpus 2002,
TWC2, which represents national Dutch newspapers from

2 http://ilk.uvt.nl/ilkcorpus/
3 http://wwwhome.cs.utwente.nl/∼druid/TwNC/TwNC-

main.html
4 http://www.roularta.be/en/products/

89

the year 2002 as the evaluation corpus. We proofread part
of the unigram frequency list derived from this corpus in
order to derive evaluation material forCICCL. Details about
the typos identified in this list are presented in Table 2. We
limited ourselves to the unigram word types beginning in
a lowercased character. For comparison purposes we also
supply the statistics obtained from a similar list for English,
obtained from the ReutersRCV1 Corpus. More in-depth
information on the English non-words and on how to obtain
these statistics on lists of pairs of correct words and typos
is to be found in (Reynaert, 2005).
Large sections of the Twente 2002 frequency list were an-
notated for non-words, foreign words, missing diacritics
and eye-dialect in an exhaustive fashion. The longest run-
ning stretch we annotated was from the wordi up to the
wordkroeg (pub), running for 41,955 word types. This part
we will here use as the evaluation set. Other parts of the list
were visited in a more random fashion, just by dipping into
and starting to annotate. When we encountered an error pat-
tern that looked likely to be productive, we searched for it
throughout the list and marked all its occurrences. Patterns
like this would be successions of three identical characters,
e.g. *zegggen forzeggen (to say), but would also include
highly productive misspellings such as *commisie forcom-
missie (commission).
In this way we annotated 13,151 items as being non-words.
The greater part of these, 9,152 items, were provided with
their correct form as dictated by the context they appeared
in. The typo and hapax *krijgsen, for instance, might have
to be resolved to eitherkrijgen (to get, receive) or tokri-
jsen (to screech), but on the basis of its context ‘verhullen
is niet het exclusieve voorrecht van krijgsen en villaheren’
(source: Algemeen Dagblad 2002-06-29) (to conceal is not
the exclusive right of war lords and manor lords) should be
corrected as ‘krijgs- en’.

Discussion of non-words in English and Dutch In their
essence, the two tables of statistics on non-words in two
non-trivial corpora – one English, the other Dutch – have
a very similar story to tell. In both corpora deletions occur
most often, followed by insertions. While we see that in En-
glish substitutions and transpositions are on a par, in Dutch
we observe far less transpositions. We surmise that this is
the result of more careful proofreading: the Dutch corpus
consists mainly of published newspaper stories, the English
exclusively of raw newswire stories. In Dutch we see some
heavier manglings of words. Upon examination we found
that these occur in the teletext subpart of theTWC2. The
capturing of teletexts from the TV-signal is apparently sub-
ject to transmission errors due to synchronisation problems.
This may produce character strings that are beyond spelling
correction: one can only try to guess what the word may
have been meant to be.
What we think is more important, is that both tables show
that typos have a Zipfian distribution (Zipf, 1935). Not only
do we see that the smaller phenomena, i.e. typos having
LD 1, occur very frequently and the larger phenomena, i.e.
typos havingLD 4 and more) very rarely. We also see that
there seems to be a power law governing these occurrences,
which is particularly finely drawn for the top three typo cat-
egories: deletion, insertion and substitution. This means

that if you see 1,000LD 1 typos, you will likely see about
100LD 2 typos and about 10LD 3 typos.
If one were able to fully automatically identify and replace
the typos of onlyLD 1 and 2, one would remove 97,58% of
the typos in the Dutch text and 98,69% of the typos in the
English corpus. In the evaluations we will see how well we
fare on these two categories and what the consequences are
of trying to recover typos of greaterLD.

Run-ons and split words The vast majority of run-ons
involve concatenations of words with highly frequent short
words such as articles, prepositions and verbs. Split words,
on the other hand, seem to involve primarily longer words
and are in this corpus no doubt the result of infelicitous
preprocessing of the texts. The texts as delivered by the
various newspaper publishers come in various formats and
are subsequently converted to a uniform format. Things
clearly go wrong in this process, among other things the
handling of hyphenation. In some cases, hyphens seem to
be converted to spaces, resulting in elevated numbers of
split words, the splits sometimes running up to 4 or more
for a single word, resulting in scores of loose ‘syllables’ in
the frequency list. These then typically have no single res-
olution. We found splits ofafschuwelijk (hideous) into ‘af’
(ready, off) ‘schuwe’ (shy) and ‘lijk’ (corpse),mogelijkhe-
den into ‘moge’ (may, as in: ‘May this never happen!’),
‘lijk’ (corpse) en ‘heden’ (today). The translations show
that these splits may very well, though not necessarily, re-
sult in existing words, thereby constituting a great source
of confusables. Their frequency counts are of course tallied
with those of the valid uses of the words. They furthermore
affect the present study in two ways: first, they clutter the
frequency list with short word strings, which confound the
search for proper misspellings of valid short words. Sec-
ond, in the approach taken here, they will be linked to the
wrong correct word. The recurrent split ‘*gesigna leerd’
provides two Dutch non-words. The first does not seem to
fall within LD 1 of any valid word form. The second will
most likely be linked to the wordleed (noun: sorrow or verb
as in ‘zij leed’ (she suffered)).
While clearly important problems to be addressed eventu-
ally, we do not here attempt to resolve run-ons and split
words. As it stands, we actually think that these two types
should be the first to be addressed if one were to perform a
complete and fully automatic clean-up of a large corpus.

Compound-confusables Another fertile source of con-
fusables was found to lie in compounding. In Dutch, in con-
trast to English where most often compounds are written as
separate words, compounds are written as single words, as
in German. A single insertion or deletion may then very
well affect the meaning of the compound, turning it in a
different word altogether. This is a very productive phe-
nomenon, in cases leading to hilarious results. Good ex-
amples here are ‘vakbonen’ (trade beans) forvakbonden
(trade unions) and medewekers (co-soakers) formedewerk-
ers (co-workers). The fact that compounds in Dutch can be
formed at will as required or desired, implies that no dic-
tionary of Dutch can ever be complete. This simple but im-
portant observation is one of the motivations for us to want
derive the lexicons we use from corpora, so as to at least

90

Category LD 1 LD 2 LD 3 LD 4 LD 5 LD 6 Total %

deletion 3,288 331 30 24 3,673 40.13
insertion 2,441 198 33 8 2,680 29.28
substitution 964 81 8 1,053 11.51
transposition 440 2 442 4.83
multiple 240 74 18 5 2 339 3.70
space deletion 785 785 8.58
multisingle 76 66 14 3 1 160 1.75
capitalisation 16 1 17 0.19
dash to space 3 3 0.03
total 7,573 1,357 159 55 6 2 9,152
% 82.75 14.83 1.74 0.60 0.07 0.02 100

Table 2: Dutch:TWC2: Statistics of the error categories in the 9,152 typo/correction list.

Category LD 1 LD 2 LD 3 LD 4 LD 5 LD 6 Total %

deletion 4,026 239 9 2 4,276 35.36
insertion 3,370 196 17 2 3,585 29.64
transposition 1,566 5 1,571 12.99
substitution 1,447 91 4 1 1 1,544 12.77
multiple 398 89 11 498 4.12
run-on 314 314 2.60
capitalization 168 2 1 171 1.41
multisingle 52 15 2 69 0.57
split word 51 51 0.42
dash to space 15 15 0.12
total 9,391 2,544 134 24 1 0 12,094
% 77.65 21.04 1.11 0.20 0.01 0 100

Table 3: English: ReutersRCV 1: Statistics of the error categories in the 12,094 typo/correction list.

have a more informed idea of what is in fact being pro-
duced and productive in the language. Compound confus-
ables cannot be detected on orthographical grounds alone:
their composing parts are valid words and may very well
be highly productive and frequent. They can be detected
on the basis of orthographical neighbourhood to a proba-
bly far more frequently occurring compound. We found
that all the compound confusables we identified are atLD

1 from their intended compounds. What is furthermore
the case is that what at first sight appears to be a com-
pound confusable, may very well been intended, perhaps
as a pun, by the author. We came across a great many of
these, it turned out the corpus contains a lengthy article on
the Dutch translation of James Joyce’s ‘Finnegan’s wake’,
containing lengthy passages of both original and translated
versions. So we came across ‘hinderdaad’ (literally: hinder
deed, in contrast toinderdaad (indeed)) for Joyce’s origi-
nal ’as a marrer of fact’. Further we find ’zonderzoeker’
(unsearcher) foronderzoeker (researcher) in this article, but
also ’wonderzoeker’ (wonder searcher) in an altogether dif-
ferent article.
It is one thing to retrieve typographical near-neighbours,it
is quite another thing to decide, using nothing but unsuper-
vised techniques and in the absence of validated word-lists,
whether the near-neighbours retrieved are in fact other real-
words or typos. In the next section we examine how well
CICCL manages both tasks.

5. Evaluation
5.1. How we evaluate

We use as the evaluation set the section of theTWC2 fre-
quency list stretching between the wordsi andkroeg. The
section comprises 41,948 word types, 2,160 of which con-
stitute typos.
We evaluate in terms of recall and precision, resulting in the
combined F-score (van Rijsbergen, 1975). These metrics
are derived from the numbers of True Positive orTPs, False
Positives orFPs and false negatives orFNs returned by the
system.

• Recall =R = TP

TP+FN

• Precision =P = TP

TP+FP

The harmonic mean ofR andP, the simplified F measure,
F, is given by:

• F = 2PR
R+P

On the basis of the evaluation set we determine recall: to
what extent hasCICCL been able to identify the typos in
the list? Precision then expresses to what extentCICCL has
been able to discern between valid and invalid word forms.
In other words, we desire the list returned byCICCL to con-
tain as many as possible of the typos in the list and as few

91

as possible of the correct words. In fully-automatic mode
we would take the list as returned and discard all items in it
from the lexicon we provide toTISC. This would require
very high precision as we would otherwise throw away
scores of valid words. Barring a sufficiently high level of
precision, we might opt to visually inspect the list, remove
valid words and then proceed to clean our lexicon or cor-
pus. In this case we would still like to have reasonable lev-
els of recall and precision, otherwise we might as well opt
to visually inspect the full corpus-derived frequency list.
True Positiveshere are of course those typos present (and
marked as such) in the evaluation set and retrieved as vari-
ants for focus words byCICCL. False Positivescome in two
kinds: first there are those focus words which happen to be
marked as typos in the evaluation set. Second, there the
valid words in the evaluation set which are incorrectly re-
turned as variants by the system.False negativesare those
items in the list of invalid words that are absent from the
list of variants returned.

5.2. Evaluation results

The scores obtained byCICCL on Dutch are: recall: 0.464,
precision: 0.463, F-score: 0.464, when run with the limit
set atLD = 1. With the limit set atLD 2, we obtain: recall:
0.560, precision: 0.344, F-score: 0.426. We thus gain re-
call, but lose precision using higher retrieval bounds. The
results obtained here are very much in line with the re-
sults we achieved by means of fully-fledged spelling cor-
rection of Dutch with Test-Induced Spelling Correction or
TISC (Reynaert, 2005). However, the present results were
achieved with far simpler means, after next to no opti-
malisation. TISC relies heavily on a lexicon which apart
from single word forms as used here, also contains word
bigrams, combinations of two words as derived from the
corpora. We believe that extending the current version of
CICCL with that information will eventually allow us to in-
crease its performance. While low, we believe these scores
are nevertheless valuable. The object of evaluating systems,
apart from having objective scores by means of which one
may compare systems addressing the same task(s), is to
have a valid measure of a particular system’s achievement
in order to be able to gauge the impact on achievement ex-
tensions or changes have.
Recall is lower than was perhaps expected. Examination of
why this should be so showed us that the system still loses
highly recurrent typos. We see, e.g. that while the vari-
ants forcommission include the highly frequent typo *com-
misie, this is validated on the basis of its frequency being
higher than the threshold set by the Zipf filter, i.e. here
the average frequency per particular word length observed
in the Dutch background frequency list. Nevertheless, sev-
eral of the typo’s occurrences as part of compounds are cor-
rectly retained: their frequency is not so high. This suggests
an obvious, recursive way of recovering highly frequent ty-
pos: on the basis of the retained compounds we should be
able to determine that the first part of the compound is typo-
graphically correct and that therefore the second is incorrect
and is to be added to the list of typos returned.
Precision tells us a different story: on examining the False
Positives we have to conclude that it is exceedingly hard to

build a consistent evaluation set of the type used here for
a language such as Dutch. Dutch has a history of spelling
changes enforced by law. The official word list of Dutch
(Taal, 1954) in its version of 1954 lists three allowable vari-
ations for the compoundcultuurprodukt (i.e. product of cul-
ture, civilisation): i.e.cultuurproduct andkultuurprodukt.
The interchangeability ofc andk has since officially been
restricted, but the fact remains that probably any corpus
of Dutch to-date contains examples of all possible allow-
able variants. We have not even attempted to annotate this,
which means that any such allowable (whether currently or
previously allowed or not) variant returned by our system
may be considered as a false positive in our evaluation. A
solution to this problem lies in modelling for these kinds of
systematic typographical variations, as with did in the ear-
lier version ofCICCL we described in (Reynaert, 2005). We
there modeled for instance the systematic variations in the
suffixes-ise/-ize and -isation/-ization in English. We did
none of that here, but modeling for these language-specific
variations seems warranted.

5.3. Conclusions

Using very simple means, unsupervised identification of
non-words in Dutch is possible to the extent shown. We
have now identified ways in which to proceed in order to
make the process more effective. In future work we will
draw on the lessons learnt here.

Acknowledgments This work was undertaken in the frame-
work of D-CoI (Dutch Language Corpus Initiative), a projectin
theSTEVIN programme of the Dutch Language Union.

6. References
Fred J. Damerau. 1964. A technique for computer detec-

tion and correction of spelling errors.Communications
of the ACM, Volume 7, Issue 3 (March 1964):171–176.

David Graff. 2003. The New York Times Newswire Ser-
vice. English Gigaword LDC-2003T05.

V.I. Levenshtein. 1965. Binary codes capable of correcting
deletions, insertions, and reversals. InCybernetics and
Control Theory, volume 10(8), pages 707–710. Original
in: Doklady Nauk SSSR 163(4): 845–848 (1965).

D. Lewis, Y. Yang, T.G. Rose, and F. Li. 2004. RCV1:
A new benchmark collection for text categorization re-
search.Journal of Machine Learning Research, 5:361–
397.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching.ACM Computing Surveys, 33(1):31–88.

Martin Reynaert. 2004. Text Induced Spelling Correction.
In Proceedings COLING 2004, Geneva.

Martin Reynaert. 2005.Text-Induced Spelling Correction.
Ph.D. thesis, Tilburg University.

Woordenlijst Nederlandse Taal. 1954.Samengesteld in op-
dracht van de Nederlandse en de Belgische regering.
SDU Uitgevers, Den Haag.

C. J. van Rijsbergen. 1975.Information Retrieval. Butter-
worths, London.

George Kingsley Zipf. 1935.The psycho-biology of lan-
guage: an introduction to dynamic philology. The M.I.T.
Press, Cambridge, MA, 2 edition.

92

