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Abstract

To analyze the intertemporal interaction between the stock and bond market returns, we

assume that the conditional covariance matrix follows a multivariate GARCH process.

We allow for asymmetric effects in conditional variances and covariances. Using daily

data, we find strong evidence of conditional heteroskedasticity in the covariance between

stock and bond market returns. The results indicate that not only variances, but also

covariances respond asymmetrically to return shocks. Bad news in the stock and bond

market is typically followed by a higher conditional covariance than good news. Cross

asymmetries, i.e. asymmetries followed from shocks of opposite signs, appear to be

important as well. Covariances between stock and bond returns tend to be relatively

low after bad news in the stock market and good news in the bond market. A finan-

cial application of our model shows that optimal portfolio shares can be substantially

affected by asymmetries in covariances. Moreover, our results show sizable gains due to

asymmetric volatility timing.

keywords: Multivariate GARCH, Volatility Transmission, Asymmetric Effects

JEL classification codes: G12, C22.
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The development of multivariate GARCH models represented a major step forward

in the modeling of volatility. These models allow for time-varying conditional vari-

ances as well as covariances. Conditional variances and covariances of asset returns

are of considerable importance for the pricing of financial securities, and (co)variances

are key inputs to asset allocation and risk management in financial institutions. Con-

sequently, accurate models and forecasts of conditional variances and covariances are

crucial. However, while there is a vast amount of literature on modeling returns and

volatility, these are often restricted as they either examine the stock market or the bond

market separately.1 Little attention has been paid to the interaction between the two

markets. Only since the last decade financial economists have begun to model these

temporal dependencies. For example, Breen, Glosten and Jagannathan (1989) show

that there is a negative relation between short term interest rates and future stock

index returns, and Schwert (1989) documents that U.S. stock and bond returns and

volatilities move together. A recent study by Fleming, Kirby and Ostdiek (1998) exam-

ines volatility interaction of stock, bond and money markets using a stochastic volatility

model. Although they find a strong link in volatility between the three markets, they

do not consider the conditional covariance between the stock and bond market returns.

Studies that explicitly consider time-varying conditional covariances, using multivariate

GARCH models, include Bollerslev, Engle and Wooldridge (1988), Ng (1991), Karolyi

(1995) and Kroner and Ng (1998). However, these studies do not explicitly examine the

interactions between the stock and bond market. Only Bollerslev, Engle and Wooldridge

(1988) consider the stock and bond market. However, they concentrate on testing the

CAPM and their model does not allow for leverage effects.

The purpose of our study is to analyze the intertemporal interactions of stock and

bond returns. To this end we allow the conditional covariance matrix of stock and bond

market returns to vary over time, according to a multivariate GARCH model. We ex-

tend the model by allowing for asymmetric effects of return shocks on the conditional
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covariance between stock and bond returns. Because these effects on covariances be-

tween stock and bond returns in a multivariate GARCH model appear to be neglected

in the literature, this paper is a first step towards filling this gap. To model the asym-

metric effects on conditional covariances we develop a new approach by extending the

Glosten, Jagannathan and Runkle (1993) specification to a multivariate setting. The

resulting model is able to capture asymmetries within and between stock and bond

markets which allows us to find novel results that cannot be obtained from standard

symmetric covariance models. We use daily data from 1982 to 2001 to examine the

intertemporal interaction between the returns on the Standard and Poor’s 500 index,

the NASDAQ Composite index, and the returns on a short and long term bond. Finally,

we apply our model to tactical asset allocation showing the importance of our model

in financial applications. We show how the asymmetry introduced in the covariances

affect optimal portfolio shares.

Although it is often recognized that variances and covariances of returns change

over time (see, e.g., French, Schwert and Stambaugh, 1987, and Schwert, 1989) their

determinants are not yet well identified. Among the econometric volatility models, the

family of GARCH models, as introduced by Engle (1982) and generalized by Bollerslev

(1986), seems to be the most fruitful. For an extensive literature overview we refer to

Bollerslev, Chou and Kroner (1992) and Bollerslev, Engle and Nelson (1994). GARCH

models are able to capture the phenomenon that volatilities of asset returns are clustered

over time. Univariate GARCH models have appeared to be quite successful in predicting

volatility. A drawback of standard GARCH models is that the arrival of “good” and

“bad” news in the market (unexpected positive and negative returns, respectively) are

assumed to have a symmetric impact on volatility, while typically unexpected decreases

in prices tend to rise the predictable volatility more than unexpected increases of similar

magnitude. This asymmetric effect of shocks in the second moment of stock returns is

a well-known phenomenon in financial modeling. This effect is more pronounced during
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stock market crashes. For example the 20% drop on October 19, 1987 led to a huge

increase in volatility. On the other hand, good news does not cause a sharp decrease

in volatility. Recent studies have shown that more accurate volatility predictions can

be obtained when asymmetric responses of volatility to news are taken into account.

While many different extensions of the model have been suggested (for an excellent

overview see Engle and Ng, 1993, or Bollerslev, Engle and Nelson, 1994), particularly

nice extensions are the exponential GARCH, introduced by Nelson (1991), and the

Glosten, Jagannathan and Runkle (1993) model. Empirical studies show that these

models, which allow for the possibility that positive and negative shocks in returns

affect volatility differently, work very well in practice.

While there is a large body of literature on asymmetric volatility in univariate ARCH

models, there exists only few studies on the asymmetric effects in multivariate models.

For an excellent overview of recent multivariate GARCH models and their properties,

we recommend Bauwens, Laurent and Rombouts (2003). They present a comprehensive

state-of-the-art survey. Surprisingly little attention has been paid to the asymmetric

effects in the covariance between stock and bond market returns. As a portfolio man-

ager’s optimal portfolio depends on the predicted covariance between assets, relaxing

the symmetric specification may lead to superior investment choices. Other examples

of applications in finance can be found in the field of risk management and derivative

pricing. One of the few examples that imposes asymmetric effects in multivariate mod-

els is Kroner and Ng (1998). They use data on large and small firms to compare four

popular multivariate GARCH models. Their model is very general, but it does not allow

for covariance asymmetries due to shocks of opposite signs. Another example is Braun,

Nelson and Sunier (1995), who estimate a bivariate exponential GARCH model with

asymmetries in stock return betas for different sectors. Their study does not explic-

itly consider asymmetries in covariances. Moreover, in order to examine asymmetries

between different asset classes, their method is not very suitable.
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The remainder of this paper is organized as follows. In Section 1 we describe the

multivariate model which enables us to analyze time-varying covariances. Section 2

describes the data used in our analysis and presents empirical results based on estimating

the time-varying covariance models. To show the importance of our extended model, we

also present a financial application in the field of tactical asset allocation. This section

concludes with comparing the results of this study with previous studies. Conclusions

are offered in the final section.

1 Modeling Time-Varying Asymmetric Covariances

In this section we present the conditional volatility equation. To obtain a measure of

risk in the multivariate case, we need to model the conditional covariances. We do this

by modeling the volatility by a multivariate GARCH process. This way we can easily

examine the conditional covariance structure and interactions between the stock and

bond market.

Following, e.g., Karolyi (1995) and Kroner and Ng (1998), we assume that the mean

equation follows a V AR(p) process (for i = 1, ..., N):

rei,t+1 = µi +

pX
l=0

NX
j=1

ψjr
e
j,t−l + εi,t+1, (1)

where rei,t+1 denotes the return on asset i in excess of the riskfree return. The excess

return on asset i depends on a constant, µi, and p lags of return on asset i as well as

p lags of the other assets (rj ; j = 1, ..., N). Finally, εi,t+1 represents the unexpected

excess return on asset i, i.e. rei,t+1 − Et{rei,t+1}. Thus εi,t+1 represents the “news”

corresponding to asset i that is arrived in the corresponding market. Model (1) enables

us to test the importance of the influence of past returns on current levels of returns.

Next, we describe how the conditional covariances evolve over time.

We model the time-varying covariances by a multivariate GARCH process. While

the GARCH specification does not follow from any economic theory, it provides a good
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approximation to the heteroskedasticity typically found in financial time-series data.

The univariate GARCH(1,1) can be generalized to a multivariate setting2 (see, e.g.,

Bollerslev, Engle and Wooldridge, 1988). The matrix Σt+1, containing the conditional

covariances, is assumed to follow a simple multivariate GARCH(1,1) model, which can

be compactly written in vector form as:

vech(Σt+1) = c+B∗vech(Σt) +A∗vech(εtε0t), (2)

where vech denotes the operator which stacks columns of the lower triangle (those

elements on and below the main diagonal) of a N ×N symmetric matrix as an N(N +

1)/2× 1 vector.3 Further, εt denotes the vector of error terms at time t. The vector c

has dimension N(N +1)/2× 1, and matrices A∗ and B∗ have dimension N(N +1)/2 ×

N(N + 1)/2. While this model is a natural extension of the univariate GARCH model

and is easy to understand, there are two major problems in estimating this model.

The first problem concerns the number of parameters to be estimated and the second

problem concerns the positive-definiteness constraints to be imposed on the conditional

covariance matrix.

Obviously a disadvantage of the multivariate approach is that the number of para-

meters to be estimated in the GARCH equation increases rapidly (for example, with

N = 4 there are 210 parameters to be estimated), which limits the number of assets

that can be included. In order to reduce the number of parameters to be estimated, it is

advisable to impose some restrictions on A∗ and B∗, without lowering the explanatory

power of the model significantly. Following Bollerslev, Engle and Wooldridge (1988),

we assume that matrices A∗ and B∗ are diagonal. Thus, (2) can be written, after

conveniently rearranging the parameter indices, as:

σij,t+1 = γij + βijσij,t + αijεi,tεj,t, i, j = 1, ..., N, (3)

with σij,t+1 = Covt{rj,t+1, ri,t+1}. For N = 4 this reduces the number of parameters to

30. Despite the fact that this number is reduced substantially, this specification is only
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useful for a limited number of asset classes as typically used by pension funds. Recently,

Engle (2002) proposed a new class of multivariate GARCH models in which the number

of parameters grows linearly with the number of assets. Therefore his model is relatively

parsimonious and, in contrast to our specification, suitable for a large set of assets.

Model (3) is called the diagonal VECH model. By diagonalizing the model we con-

strain the dynamic dependence and may introduce biases in the estimates of the other

parameters. For instance, only shocks in asset i can influence the conditional variance

of asset i. This assumption is quite restrictive and is obviously a disadvantage of the

diagonal VECH model. However we expect the potential biases to be small as models

allowing for such spillover effects, such as the BEKK model (see Engle and Kroner,

1995) show that these effects are typically small. Moreover, a recent study by Ferreira

and Lopez (2004) shows that among the most popular multivariate models the diagonal

VECH seems to provide the best out-of-sample (co)variance forecasts for interest rates.

Moreover, Bollerslev, Engle and Wooldridge (1988) use the diagonal VECH model to

estimate the trade-off in variance among three assets: a stock index, a bond and a

Treasury bill. To guarantee that the conditional covariance matrix is positive definite

we estimate the model using constrained maximum likelihood.4

Since the conditional variance is a function of the magnitudes of the lagged error

terms and not their signs, GARCH models are not capable to capture the so-called

leverage effect . This asymmetric volatility phenomenon, first noted by Black (1976),

refers to the tendency that good and bad news in returns have a different impact on

conditional volatility in stock markets. More specifically, bad news is followed by larger

volatility than good news. The rationale of this phenomenon, according to Black (1976),

is that a lower stock price increases the debt-equity ratio of a company (i.e. the financial

leverage of the firm increases) and this again increases the risk of holding stocks of this

company. Because firms have many fixed costs, a price decrease has a larger impact on

volatility than a price increase of the same magnitude. It is however not likely that the
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large response of stock volatility can be explained by leverage alone (see Black, 1976).

Several recent papers put forward alternative explanations. Campbell and Hentschel

(1992) and Bekaert and Wu (2000), e.g., use a volatility feedback approach. This im-

plies that changes in volatility affect the level of required stock returns. Campbell and

Hentschel show that volatility feedback explanation is able to explain the asymmetries

in volatilities. An alternative interpretation is provided by a psychological explanation:

the following-the-herd effect. That is, during a stock market crash, investors might pay

less attention to the fundamentals, and sell their stocks when (they think that) other

investors are selling stocks. This leads to a relatively high volatility when bad news

arrives in the market. This idea is very similar to Veronesi (1999), who shows, using a

rational equilibrium asset pricing model where the drift of fundamentals shifts between

two unobservable states, that stock prices overreact to bad news in good times and

underreact to good news in bad times. Veronesi (1999) shows that this model is able to

explain the asymmetric effect in stock returns.

Among financial economists there is no consensus yet about the explanation of the

asymmetric volatility phenomenon, and the rationale of the asymmetry is a hot topic

nowadays in financial economics. While the leverage argument can only partly explain

the asymmetric nature of the volatility response to return shocks, in this paper we use

the leverage effect as a synonymous for the asymmetric effect in (co)variances. We do not

concentrate on the rationale behind this phenomenon. Instead we focus on estimating

the importance of asymmetric effects in conditional covariances.

Numerous studies have shown that introducing a certain asymmetry in GARCH

models to capture the leverage effects in conditional volatility, can substantially im-

prove univariate models. These models are often referred to as leverage or asymmetric

volatility models. One of the most successful asymmetric specification in univariate mod-

els is Nelson’s (1991) EGARCH (which stands for Exponential GARCH), in which a

logarithmic transformation is applied. This guarantees that variances are non-negative.
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A generalization of EGARCH is however inconvenient in a multivariate setting, be-

cause this would imply that all covariances between returns are positive. Nevertheless,

Braun, Nelson and Sunier (1992) use a bivariate EGARCH model estimate the variances

of the market portfolio and a second asset. To estimate the conditional beta between

the market portfolio and a second asset they use a different specification without loga-

rithms. This specification, which is not a very natural extension, seems less appropriate

to model asymmetric covariances. Instead we generalize the Glosten Jagannathan and

Runkle (1993) (GJR henceforth) specification. We show that asymmetries in covariances

are likely to exist if there is asymmetry in variances (see Appendix A). The generalized

GJR model becomes5:

σij,t+1 = γij + βijσij,t + α1ijεi,tεj,t + α2ijIεi,tεi,tIεj,tεj,t

+α3ijIεi,tεi,t(1− Iεj,t)εj,t + α4ij(1− Iεi,t)εi,tIεj,tεj,t (4)

i, j = 1, ..., N. The indicator variable Iεk,t is equal to 1 if εk,t < 0 (and zero otherwise),

k = i, j, such that the space can be partitioned into four quadrants6 in the {εi,εj}

plain. Let us partition this plane into: Q(+,+), Q(+,−), Q(−,+), and Q(−,−),

denoting the quadrant, corresponding to the signs of (εi,εj): a “+” for a positive and

a “−” for a negative shock. In (4), Iεi,tεi,tIεj,tεj,t is nonzero for pairs of εi,t and εj,t

in Q(−,−). This term assigns an asymmetric covariance effect on shocks in the same

direction (Q(+,+) vs. Q(−,−)). On the other hand, Iεi,tεi,t(1− Iεj,t)εj,t is nonzero for

pairs in Q(−,+), while (1−Iεi,t)εi,tIεj,tεj,t is nonzero for pairs in Q(+,−). These terms

assigns an asymmetric covariance effect on shocks in the opposite direction (Q(+,−)

vs. Q(−,+)). We will refer to these latter effects as cross-asymmetry effects or simply

cross effects. Kroner and Ng (1998) present an asymmetric covariance model without

these effects. However when modeling the covariance between stock and bond returns

these cross effects should not be neglected, as shocks of opposite signs are more common

(see data section). Our model provides a generalization of the asymmetric GJR model
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by allowing explicitly for asymmetric conditional covariance terms. We will refer this

model as the asymmetric diagonal VECH model.

In order to discuss the properties of the model we rewrite the model in matrix no-

tation. Ding and Engle (2001), e.g., show that the diagonal VECH model of Bollerslev,

Engle and Wooldridge (1988) can be written in matrix notation as

Σt+1 = C +B ¯Σt +A¯ εtε
0
t, (5)

where Σt is the conditional covariance matrix at time t, C, A and B are all (N × N)

parameter matrices and ¯ denotes the Hadamard product (element by element matrix

multiplication). Since Σt+1 must be symmetric, so must be the parameter matrices

and only the lower portions of these matrices need to be parameterized and estimated.

Silberberg and Pafka (2001), for example, prove that a sufficient condition to assure the

positive definiteness of the covariance matrix Σt+1 in (5) is that the constant term C, is

positive definite and all the other coefficient matrices, A and B, are positive semidefinite.

Now consider the asymmetric diagonal VECH model. In matrix notation, the model

can be written as

Σt+1 = C +B ¯Σt +A1 ¯ εtε
0
t +A2 ¯ (ε−t ε−

0
t )

+A3 ¯ T (ε−t ε+
0

t ) +A4 ¯ T (ε+t ε−
0

t ), (6)

where C, B, A1, A2, A3 and A4 are (N ×N) parameter matrices, T is the operator that

permutes rows of a square matrix, in such a way that the lower triangular part of the

matrix is substituted by the upper triangular part of the matrix (see He and Teräsvirta,

2002) and ε−t = [Iε1,tε1,t, ..., IεN,tεN,t]0 and ε+t = [(1− Iε1,t)ε1,t, ..., (1− IεN,t)εN,t]0.

In order to derive sufficient conditions to assure positive definiteness of the covari-

ance matrix Σt+1 in (6), we have to show that the individual matrices in (6) are positive

semidefinite as symmetry and positive semi definiteness are preserved by matrix addition

(see, e.g., Silberberg and Pafka, 2001). Ding and Engle (2001) show that A2 ¯ (ε−t ε−
0

t )
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is positive semidefinite if and only if A2 is positive semidefinite. Moreover, they show

that if two matrices are positive semi-definite matrices, then their Hadamard product is

positive semidefinite as well. Therefore, if we can show that T (ε−t ε+
0

t ) and T (ε+t ε−
0

t ) are

both positive semidefinite, then to guarantee positive semidefiniteness of the Hadamard

product, both A3 and A4 have to positive semidefinite. It is easy to show that the ma-

trices T (ε−t ε+
0

t ) and T (ε+t ε−
0

t ) are indefinite. It appears impossible to derive sufficient

conditions to guarantee that the asymmetric diagonal VECH model provides positive

definite conditional covariance matrices. Consequently, we impose no a-priori restric-

tions on the parameters, such that we do not employ restrictions that might violate

the data. However, during estimation we impose that the coefficients behave in such

a way that the one-step ahead forecast of the conditional covariance matrix is positive

definite. A drawback of this approach is that it does not guarantee that multiple-step

ahead forecasts for the conditional covariance matrices are positive definite. We argue

however, that in practice, the asymmetric diagonal VECH model generates positive

definite covariance matrices. Simulations, forecasting up to eight months in the future,

showed that the resulting covariance matrices in our application are positive definite.

The stationarity condition for Σt can be directly obtained from (6). However we need

the additional assumption that errors are distributed equally around zero, i.e. there are

the same number of observations left and right from zero. Then it is straightforward

to show that for the univariate GJR model the conditional variance is stationair if

α1 +
1
2α2 + β is less than 1. Likewise, assuming that errors are equally distributed

around zero for the quadrants, the asymmetric diagonal VECH model in (6) is weakly

stationary if the eigenvalues of A1 + 1
2A2 +

1
4A3 +

1
4A4 +B are less than 1 in modulus.

This would imply that for all assets the unconditional covariance matrix exists. Note

that the condition for the univariate GJR model is nested. In the next section we will

check these conditions and examine whether the model is able to explain the variance

and covariance between a short term bond the long term bond return and the return
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on the S&P 500 and NASDAQ index.

2 Empirical Results

2.1 Data

In order to examine the asymmetric volatility in the stock and bond market, our data

include the daily excess returns on two stock market indices and two bonds. More

specifically, the return on a short term bond implied by the 1 year Treasury bond (de-

noted by r1,t), the return on a long term (10 year) Treasury bond (denoted by r2,t), the

return on the Standard and Poor’s 500 index (denoted by r3,t) and the return on the

NASDAQ index (denoted by r4,t). For reasons of convenience, we will refer to these

asset returns as the short bond returns, the long bond returns, and the S&P 500 and

NASDAQ returns. All returns were converted to excess returns (denoted by re1,t, r
e
2,t,

re3,t and r
e
4,t respectively) using the riskfree rate approximated by the 3 month Treasury

bill rate. We adjust for weekends and holidays in the daily returns calculations (Ap-

pendix B provides details on the calculations). The bond market data were obtained

from the federal reserve bank in Chicago, while the data on the S&P 500 and the NAS-

DAQ indices were provided by Datastream and the National Association of Securities

Dealers Inc. respectively. The data cover the period January 4, 1982 - August 31, 2001

(4908 observations), such that we can examine some volatile periods (1987-1988, 1990

and 1998) and less volatile periods (1991-1995). Table 1 provides a summary of the

descriptive statistics at the daily frequency.7 A stylized fact of asset returns is excess

kurtosis, which indicates that its empirical distribution has fatter tails than a normal

distribution. Moreover, financial asset returns exhibit volatility clustering. In Figure 1

we see that large returns tend to be followed by large returns (of either sign). The at-

tractiveness and empirical success of GARCH models is that they are able to explain to

a large extent the volatility clustering behavior and the excess kurtosis of the empirical

distribution of returns.

13



[Table 1 about here]

[Figure 1 about here]

To obtain some idea of the number of observations in the quadrants Q(+,+),

Q(+,−), Q(−,+), and Q(−,−), Figure 2 presents return shocks for all asset combina-

tions, obtained from estimating the mean equations. We see from this figure that com-

bined shocks between stock and bonds have many observations in the cross-asymmetric

quadrants Q(+,−) and Q(−,+). Thus there is a considerable amount of return shocks

with opposite signs in our sample.

[Figure 2 about here]

Table 2 presents first-order autocorrelation and cross-autocorrelation for the four

assets. The table shows that the correlation between lagged bond returns and current

stock returns is always much higher than the correlation between lagged stock returns

and current bond returns. For instance, the correlation between lagged return on the

1 year Treasury bond, re1,t−1, and the return on the S&P 500, re3t, is 0.821 while the

correlation between lagged return on the S&P 500, re3,t−1, and the 1 year Treasury

bond, re1t, is only -0.004, and not statistically significant at the 5% level. Higher order

autocorrelation and cross-autocorrelations (not reported here) also showed statistically

significant correlations, although generally smaller. Whereas Lo and MacKinlay (1990)

document an asymmetry in the weekly cross-autocorrelation between big firms and small

firms, we find a similar effect for daily stock and bond returns. Lagged returns on bonds

are correlated with current returns on stocks, but not vice versa. Thus, based on these

statistics a VAR model to describe the first moments seems appropriate.

[Table 2 about here]
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Because shocks of the mean equation are the main actors in the multivariate model,

it is important that the mean equation is not misspecified. We have estimated VAR

models up to six lags and tested the individual and joint significance of the coefficients.

Appropriate model selection criteria are the Akaike Information Criterion (AIC) and

the Schwarz Information Criterion (SIC); see Table 3. We choose the value of p that

minimizes the AIC and the SIC. The AIC selects p = 5, whereas the SIC selects p = 1.

It is well known that the SIC penalizes additional parameters more heavily than the

AIC, as the SIC prefers more parsimonious models. Based on the selection criteria and

the results of the statistical tests, we choose the VAR(5) specification. This specification

was also employed in Karolyi (1995). On the basis of the AIC, Karolyi (1995) finds the

VAR(5) as preferred mean specification using daily returns on the S&P 500 and TSE

300. Finally, note that Kroner and Ng (1998) include ten lags in the VAR specification

without testing for the optimal number of lags.

[Table 3 about here]

2.2 Results

In this section the estimation results of the temporal interaction between U.S. stock

and bond markets are presented. Moreover, we examine the economic significance of

asymmetric responses of conditional covariances to return shocks. The covariance equa-

tions are estimated by maximum likelihood.9. In order to use maximum likelihood we

need to make distributional assumptions about the error terms. If we assume that

εt+1|It ∼ N(0,Σt+1), the loglikelihood function (for the sample 1, ..., T ) is given by

`(θ) = −1
2
TN log 2π − 1

2

TX
t=1

log detΣt(θ)−
1

2

TX
t=1

ε
0
t(θ)Σ

−1
t (θ)εt(θ), (7)

where θ denotes the vector of unknown parameters, the N × 1 vector εt(θ) contains

the error elements εi,t(θ) = rei,t − µi −
PN
j=1 ψjr

e
j,t−1, i = 1, ..., N, and Σt(θ) contains

the covariance terms σij,t(θ), as defined in (4). The conditions under which the maxi-
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mum likelihood is consistent and asymptotically normal are derived by Bollerslev and

Wooldridge (1988).

The estimates are obtained by numerical methods using the Berndt, Hall, Hall and

Haussman (1974) (BHHH) optimization algorithm, which approximates the Hessian

with the first derivatives. Without any restrictions, the multivariate VECH model is

likely to produce nonpositive definite matrices, so that the maximum likelihood method

fails to compute an optimum. To guarantee positive definiteness of the conditional co-

variance matrix, we use the constrained maximum likelihood optimization procedure of

GAUSS and impose that the smallest eigenvalue of each covariance matrix has to be

positive during estimation. The existing literature generally puts additional structure

on the parameters to ensure that matrices are positive definite (see, e.g., Engle and

Kroner, 1995 and Bollerslev, 1990). While it can be useful to impose sensible restric-

tions for forecasting purposes, there is also the danger of employing a priori restrictions

that violate the data. We therefore prefer our less restrictive approach, at the price of a

higher computational cost. Note that estimation of multivariate GARCH with a lot of

parameters is typically demanding in computer time. In order to improve convergence,

a sensible choice of starting values is important. We use starting values based on un-

conditional sample statistics and preliminary estimates of univariate GARCH models.

A range of starting values was used to ensure that the estimation procedure converged

to a global maximum. We repeated the estimations with random re-starts of the start-

ing values, conditioned to the range of two times the standard error of the univariate

estimates. None of the estimation results indicated any local maximum. The results

also seem robust to alternating convergence criterions and optimizing methods. Conse-

quently, we are confident that we have found a global maximum.

In order to help building some intuition on the multivariate model parameters, we

also present the estimates of the univariate asymmetric model specification as introduced

by Glosten, Jagannathan and Runkle (1993). The estimation results of the volatility
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models are given in Table 49 . The first column in this table presents the results from

estimating the Glosten, Jagannathan and Runkle (1993) model. This corresponds to

model (4) when i = j. The second column refers to the diagonal VECH specification, i.e.

model (4) without asymmetric terms in the (co)variance equations. The third column of

Table 4 presents the results of the asymmetric Diagonal VECH model. The stationary

conditions for the asymmetric diagonal VECH model are met as the eigenvalues of

A1 +
1
2A2 +

1
4A3 +

1
4A4 + B range between 0.954 and 0.992. This implies that for all

assets the unconditional covariance matrix exists. The resulting conditional covariance

was positive definite and simulations, forecasting up to eight months in the future, shows

that the resulting covariance matrices are positive definite matrices.

[Table 4 about here]

As the diagonal VECH model is nested in the asymmetric diagonal VECH model,

we can easily test one against the other using the likelihood ratio test. The results

clearly suggest that asymmetric effects are important when modeling the conditional

covariances between stock and bond market returns. The likelihood ratio test statistic

is 140.66, and with the degrees of freedom being equal to 22, the null hypothesis is

soundly rejected at conventional significance levels. This means that the model specifi-

cation with asymmetric effects in covariances is superior to the diagonal VECH model.

Consequently, economic interpretations are mainly concentrated upon the asymmetric

specification. We also estimated a version of the asymmetric diagonal VECH model in

which the cross-asymmetry terms are set to zero.10 The likelihood ratio test statistic

corresponding to the hypothesis that all the parameters of the cross-asymmetry terms

are equal to zero is 28.68.11 Consequently the null hypothesis is easily rejected at con-

ventional significance levels. Thus cross asymmetries in stock and bond market returns

are important.

There are a number of compelling observations to be made concerning the estimation
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results, and subsequently we schedule our comments in the following order: first, the

dynamics in the covariance structure (Subsection 2.2.1), second, the asymmetric effects

in the variances (Subsection 2.2.2), and finally, the asymmetric effects in the covariances

(Subsection 2.2.3).

2.2.1 Dynamics in Volatility

In this section we consider the estimation results of the parameters that govern the

dynamics in the variances and covariances. It appears that covariances change substan-

tially over time, as most of the corresponding estimated parameters are statistically

significant at the five percent level. Hence, the constant covariance hypothesis can be

rejected. This result is consistent with the findings of Bollerslev, Engle and Wooldridge

(1988), Harvey (1989) and Bodurtha and Mark (1991), who also document strong evi-

dence in favor of heteroskedastic covariances.

The estimates for the coefficients on the product of the return shocks (i.e. the

εiεj ’s) in asymmetric diagonal VECH specification range from 0.044 to 0.068 for the

variances, and from 0.012 to 0.050 for the covariances. The estimates for the variance

are close to -and not significantly different from- the univariate GJR estimates. A

positive estimate for the ARCH term in the covariance equation means that two shocks

of the same sign affect the conditional covariance between the corresponding assets

positively, while two shocks of opposite signs have a negative effect on the forecasted

covariance. Apparently, two negative (or positive) shocks lead to a significant increase

in next period’s covariance. However, this interpretation only holds if we neglect the

asymmetries in covariance. We will see below that the introduction of these asymmetric

effects lead to more complex relationships. Finally, the estimates for the coefficients

on lagged volatility (i.e. the σij,t’s) are statistically significant and range from 0.893 to

0.934 for the variances and from 0.910 to 0.960 for the lagged conditional covariances.

Obviously, not only variances, but also covariances tend to cluster over time. Note that
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the estimates for the coefficients on lagged variance are very similar to the univariate

estimates. The results suggest that when comparing stock and bond volatility, past

shocks seem to explanatory power is somewhat stronger for stock returns. Similarly,

past volatility seems to have a greater explanatory power for bond return volatility.

Figure 3 and 4 present the plots of the conditional variance and covariance forecasts

over time, based on the estimation results of the asymmetric diagonal VECHmodel. The

figures show that the conditional variances and covariances are not constant over time

and are especially volatile during the periods 1987-1988 (the October 1987 crash), 1990-

1991 (recession and Gulf war), and 1998-2000 (the Millennium crash). Like Schwert

(1989) we find that U.S. stock and bond return volatilities tend to move together.12

Furthermore, the figures suggest that in general covariances between assets are higher

(lower) in times of high (low) volatility. Looking at Figure 4, we see that the conditional

covariance between bond returns, between stock returns and between bond and stock

returns are highly clustered over time.

[Figures 3 and 4 about here]

To examine whether the time-variability in covariances is solely due to the variation

in variances, we consider the conditional correlation coefficients. Let ρij,t+1 denote the

conditional correlation coefficient between return i and j at time t+ 1:

ρij,t+1 =
Covt{ri,t+1, rj,t+1}p

V art{ri,t+1}
p
V art{rj,t+1}

. (8)

If ρij,t+1 is constant over time, the variability in covariances is solely due to variation in

variances. In that case, modeling of time-varying covariances is not very interesting, as

all the dynamics are captured in variances. Figure 5 presents the estimated correlation

coefficients, and shows that correlation coefficients vary considerably over time. This is

in line with Tse (2000), who rejects for various countries that conditional correlations are

constant over time. Tests of constancy of our correlation coefficients (not reported), by
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performing regression of the correlation coefficients on a constant and lagged correlation

coefficients, clearly show that the correlation coefficients are not constant over time.

Consequently, the variability in covariances is not solely due to time-varying variances,

and modeling time-varying covariances is important.

[Figure 5 about here]

2.2.2 Asymmetric Effects in Variances

In this subsection, we address the degree of importance of the asymmetric effects in the

variances (i.e. (Iεi,tεi,t)
2, i = 1, 2, 3). The results in Table 4 indicate that these effects are

especially pronounced in the variance of the stock indices. For example, the estimated

coefficient of the variable that captures the negative shocks in the S&P 500 return is

equal to 0.066, which means that negative return shocks in the S&P 500 are followed

by a relatively high conditional variance. Both the univariate and multivariate results

show that the asymmetric effects are only statistically significant in the stock market.

Given existing results in the literature (see, e.g., Glosten, Jagannathan and Runkle,

1993, and Engle and Ng, 1993), it is not surprisingly that we find this asymmetric

effect in the variance of the stock index. A drop in stock prices lead to an increase in

leverage, making stocks riskier. The news impact curves for the four assets using the

estimates from Table 4 are given in Figure 6. The solid lines represent the symmetric

impacts on volatility of shocks in the asset returns, calculated using the diagonal VECH

specification. The dashed lines represent the asymmetric impact on volatility, which

are calculated using the estimates of the asymmetric diagonal VECH model. The figure

illustrates that the model predicts that a negative return shock is followed by a higher

subsequent volatility than a positive return shock of the same magnitude. While this

effect is small and insignificant for the bonds, it is substantial for the S&P 500 and

NASDAQ returns.

[Figure 6 about here]
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2.2.3 Asymmetric Effects in Covariances

Next, we focus on the asymmetries in covariances. The results in Table 4 show that not

only variances, but also covariances exhibit significant leverage effects. The asymmetric

effects for shocks with the same sign (i.e. Iεi,tεi,tIεj,tεj,t, i 6= j) seem to be important,

as the corresponding estimated coefficients are statistically significant for four out of six

cases. While the asymmetric effects in the covariances involving the short bond return

are statistically negligible, the leverage effect in the covariance between the other assets

are statistically significant. A positive sign of the coefficients indicates that next day’s

conditional covariance between returns is higher when there are two negative shocks

rather than two positive shocks. Below, interpretations will be given using estimated

news impact curves and surfaces. The cross effects in the asymmetry, i.e. when shocks

in the two assets are of opposite signs (i.e. Iεi,tεi,t(1− Iεj,t)εj,t and (1− Iεi,t)εi,tIεj,tεj,t

i 6= j), also appear to be important. An estimated negative sign of the parameters

of Iεi,tεi,t(1 − Iεj,t)εj,t for example indicates that the conditional covariance between

returns is higher when there is a negative shock in i and a positive shock in j rather

than a positive shock in i and a negative shock in j of the same magnitude.

[Figure 7 about here]

The estimated news impact surfaces imposing symmetry, based on the diagonal

VECH estimation results, are shown in Figure 7, while Figure 8 presents estimated news

impact surfaces which allow for asymmetries, obtained from the asymmetric diagonal

VECH model. The interpretation of these surfaces is more difficult than the news

impact curves, as there are two shocks instead of one. The symmetric news impact

surface for short and long bonds in Figure 7 shows that the conditional covariance is high

after shocks of the same sign, while shocks in opposite direction lower the conditional

covariances. This is because bond returns are positively correlated (see Figure 5). As

these assets move together, shocks in the same direction involves a higher risk than
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shocks in opposite direction. This makes sense, as it is riskier to invest in two assets

that are highly positively correlated than to invest in two assets that are less correlated.

[Figure 8 about here]

Figure 7 shows very clearly that, when one uses a symmetric model, shocks of the

same magnitude (in absolute value) in both assets, e.g. 3% or −3%, imply an identical

impact on the conditional covariance. Figure 8 presents the news impact surfaces,

allowing for asymmetries. Most surfaces show that the covariance is higher for shocks

in Q(−,−) than for shocks in Q(+,+) of the same magnitude. The cross effects in

asymmetries appear to be important as well. The first plot, for example, contains

the asymmetric news impact surface for the short and long bond returns. The slope

of the covariances in Q(−,+) is not downward anymore in most cases. A negative

(positive) shock to the short bond return, combined with a positive (negative) shock in

the long bond return, results in a relatively high conditional covariance. Apparently, a

negative shock in the short bond is followed by a relatively high degree of risk in the

bond market. This finding is to be expected because of the convexity in the relation

between the price of a bond and the yield. A decrease in interest rates has a bigger

impact on the price than an increase of the same size. Our model captures this bond

market property, while this result cannot be found using standard symmetric covariance

models. Figure 8 further uncovers that there are (cross) asymmetries in the conditional

covariance between bond and stock returns. We see that the covariances between stocks

and bonds tend to be relatively low after bad news in the stock market and good news

in the bond market. Thus, we find evidence that the cross-asymmetry is important

when modeling covariances between stock and bond returns.

2.3 Specification Tests

When modeling the conditional covariance, it is important whether the specification is

a statistically adequate representation of the data. In particularly, it must be the case
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that the standardized residuals, ε̌ = Σ̂−1/2t ε̂t ∼ i.i.d.(0, I). In Table 5 we present the

test statistics for the (normalized) covariance for the four assets combinations. The

tests to evaluate the adequacy of the model are based on the standardized residuals

and the standardized products of residuals from the asymmetric covariance model. We

consider the mean, standard deviation, skewness and kurtosis. In addition we present

the Ljung-Box tests for serial correlation in the normalized cross-product of residuals.

[Table 5 about here]

The t-statistics in Table 5 indicate that the mean standardized residuals are not

significantly different from zero. In addition, the mean squared standardized residuals

and the mean product of standardized residuals are not significantly different from one.

As these results satisfy the Bollerslev and Wooldridge (1992) moment conditions we can

be confident that the QML estimates are consistent. Note that the skewness and excess

kurtosis of the standardized residuals are lower than the ones for the excess returns

series (see Table 1). This implies that much of the excess kurtosis in daily returns

is attributable to conditional heteroskedasticity. The remaining excess kurtosis is not

due to the October 1987 crash, as excluding the extreme returns around this period,

resulted in only slightly smaller excess kurtoses. Since we use QML estimation, non-

normality is not crucial, since standard errors are adjusted to take into account possible

non-normality.

Next, we test for serial correlation in the standardized residuals, their squares and

standardized products of residuals. The Ljung-Box (1978) test is a popular diagnostic

for models with time-varying conditional second moments because it addresses whether

the model has adequately captured the serial correlation in the second moments. These

statistics for 6, 12, 18 and 24 lags are reported. These reveal that there remains almost

no autocorrelation in the model. However, for some lags there is still some significant

autocorrelation. It would be unreasonable to expect an empirical model to completely
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account for the higher moments, since we use daily returns that are highly leptokurtic.

Moreover, using daily return data one sometimes finds autocorrelation at rather long

lags. We find almost no serial correlation in the standardized squared residuals and only

for the standardized cross-product of the short bond return and the S&P 500 returns,

we find evidence of serial correlation. Overall, the results suggest that residuals from the

estimated model are well-behaved and that the model provides adequate descriptions of

the daily stock and bond returns.

2.4 Tactical Asset Allocation

Multivariate GARCH models can be applied to, e.g., futures hedging, asset pricing

modeling, Value-at-Risk, volatility transmitting and asset allocation. In this section we

will concentrate on the latter. Note that asset allocation is only relevant if conditional

correlations vary over time. In Section 2.2.1 we found that conditional correlations are

not constant over time. In addition, Figure 9 below shows that the conditional corre-

lation between bond and stock returns exhibit asymmetries. Thus it seems a relevant

question what impact these asymmetries have on asset allocation.

[Figure 9 about here]

The results from the previous sections do not necessarily imply economically useful

implications for forecasting volatility. Studies that explicitly examines the economic

significance of volatility timing are, for example, Fleming, Kirby and Ostdiek (2001),

Marquering and Verbeek (2004) and Patton (2004). None of these studies examine the

economic significance of asymmetric volatility timing. The article by Patton (2004)

studies the statistical and economic importance of two other symmetries: the skewness

in stock returns and the asymmetry that stock returns are more dependent during

market downturns than during market upturns. Patton (2004) finds that investors with

knowledge of such asymmetries might end up with greater economically gains. In a
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recent study by Detemple, Garcia and Rindisbacher (2003), dynamic optimal portfolio

shares are computed, using the same four asset classes as in this study. Detemple, Garcia

and Rindisbacher (2003) show that their calculation of optimal portfolios offers great

flexibility and can be adapted to many asset allocation problems. Without resorting to

such an elaborate dynamic portfolio, we evaluate in this section the performance of the

model by determining the economic value of a trading rule exploiting the model forecasts

of the conditional covariance matrices. To examine the economic gains of constructing

a portfolio using the asymmetric model we compare it with one using the restricted

symmetric model.

We partly follow the approach by Fleming, Kirby and Ostdiek (2001) by evaluating

the impact of volatility timing on the economic performance of a dynamic asset alloca-

tion strategy13. This approach has the advantage that is relatively simple, tailor made

for volatility timing and the optimal portfolios do not involve extreme weights (in con-

trast to e.g. standard mean-variance portfolios). Fleming, Kirby and Ostdiek (2001) use

a utility-based measure to determine the economic value of a dynamic strategy based

on volatility timing (of daily returns) relative to a passive strategy. Their approach can

also be applied to compare two dynamic strategies (see, e.g., Marquering and Verbeek,

2004). We consider an investor who minimizes his portfolio variance subject to a par-

ticular target expected rate of return (µp). This optimization problem can be written

as:

min
wt+1

w0t+1Σ
−1
t+1wt+1, (9)

s.t. w0t+1µ+ (1− w0t+1ι)rf,t+1 = µp,

where µ = E{rt+1} and wt+1 is the vector of portfolio weights on the risky assets. The

proportion invested in the riskfree asset is w0,t+1 = 1−w0t+1ι. Solving (9) for wt+1 gives

us the optimal weights:

w∗t+1 =
(µp − rf,t+1)Σ−1t+1(µ− rf,t+1ι)
(µ− rf,t+1ι)0Σ−1t+1(µ− rf,t+1ι)

. (10)
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To calculate the portfolio weights of the optimal portfolio, we need the conditional

forecasts of the covariance matrix. We employ a symmetric time-varying, and an asym-

metric time-varying covariance matrix. The investor determines the optimal mix of five

assets: the riskfree asset, the S&P 500 index, the NASDAQ index, a 1 year Treasury

bond, and a 10 year Treasury bond. Ideally, out-of-sample forecasts, generated by the

model, are used to evaluate the performance. However, this means that for each ob-

servation the model has to be re-estimated, which is computationally very demanding.

Therefore we re-estimated the model on a sample of the first 19 years of data and using

these estimates we generate out-of-sample one-day ahead forecasts for the conditional

covariance matrix for the last part of the sample (January, 2001 - August 2001).

We compare the dynamic strategy which entails the asymmetric effects with the

dynamic strategy that only considers the symmetric covariances. If the asymmetric

extension has no economic value, the ex-post performance of the two strategies should

be the same. Making this comparison requires a performance measure that captures

the trade-off between risk and return.

Assume that the investor’s realized utility in period t+ 1 can be written as:

U(Wt+1) =Wtrp,t+1 −
a

2
(Wtrp,t+1)

2, (11)

where Wt+1 is the investor’s wealth at period t+ 1, a is his absolute risk aversion, and

rp,t+1 = w
∗0
t+1rt+1 + (1− w∗0t+1ι)rf,t+1

is the period t+1 return on his portfolio p. We hold aWt constant, which is equivalent

to setting the investor’s relative risk aversion, γt = aWt/(1− aWt) equal to some fixed

value γ. With relative risk aversion held constant, we can use the average realized utility

to consistently estimate the expected utility generated by a given level of initial wealth

(normalized to 1). In particular we have

Ûp(γ) =
1

T

T−1X
t=0

∙
rp,t+1 −

γ

2(1 + γ)
r2p,t+1

¸
. (12)
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The above approach enables us to compare alternative investment strategies by calcu-

lating the associated average utility levels.

First we look at the time series of portfolio weights resulting from the portfolio

decisions made using the asymmetric model. To consider the impact of the introduced

asymmetries we also present a figure with the impact of the asymmetries in the optimal

portfolio shares. Figure 10 shows the time series of portfolio weights for the four asset

classes for investors with a relative risk aversion coefficient of 10. On average, the

investor takes a short position in the 10 year bond and S&P 500, and a long position in

the 1 year bond and NASDAQ. Further note that most of the time, the optimal weight

for the 1 year bond is relatively high. Finally, due to an increasing volatility in NASDAQ

returns, the weights in this asset class decrease over the second half of the 1990’s and

the beginning of the new millennium. Figure 11 illustrates how the asymmetry induced

in the covariances affect the optimal portfolio shares. The mean change in portfolio

weights is positive for 10 year bond and S&P 500 and negative for the 1 year bond

and NASDAQ. This shows that there is substantial volatility transmission in stock and

bond markets. Differences in portfolio weights are only economically interesting if they

lead to differences in portfolio performance. We proceed to examine this below.

[Figures 10 and 11 about here]

For different values of the relative risk aversion coefficient and the target return,

Table 6 presents the average realized utility values per month over an in-sample period

(January, 1982 — December, 2000) and an out-of-sample period (January, 2001 - August,

2001). For example, an investor with γ = 1 and target return of 10, the utility increases

by 2.2% in-sample (2.1% out-of-sample) if he switches from using a symmetric to an

asymmetric volatility model. Likewise, for an investor with γ = 10 and target return

of 15%, the utility increases by 5.7% in-sample (5.9% out-of-sample) if he switches

to an asymmetric model. These numbers indicate sizeable gains due to asymmetric
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volatility timing. While these gains are lower for low target-return investors, all of the

asymmetric dynamic strategies clearly outperforms the symmetric ones. This finding

corresponds to Patton (2004), who finds statistically and economically gains for investors

using “asymmetric dependence”; that is, returns are mode dependent during market

downturns than during market upturns.

[Table 6 about here]

2.5 Comparison with Previous Studies

After having analyzed the asymmetric volatility for the U.S. stock and bond market,

we shall now compare our results with other related studies. As mentioned in the intro-

duction, little attention has been paid to the interaction between the stock market or

the bond market. Moreover, most multivariate GARCH models do not allow for asym-

metries. Consequently, this study contributes to several aspects of financial economics.

Table 7 summarizes the main contributions of this study. As shown by the example

in the previous section, these findings have important implications for, e.g., portfolio

managers applying tactical asset allocation and risk management.

[Table 7 about here]

3 Conclusions

In this paper we analyzed the bond and stock market interactions by modeling the time-

varying covariances between stock and bond market returns. The main contribution of

this paper is that it extends the multivariate model by allowing for asymmetric effects

in covariances between stock and bond returns. We showed that asymmetric effects

are present in the covariances between stock returns and returns on a second asset.

To model the asymmetric effects on conditional covariances we have developed a novel

approach by generalizing the Glosten, Jagannathan and Runkle (1993) specification
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towards a multivariate setting. The model is estimated using daily returns on the S&P

500 index, NASDAQ Composite index, and a short and long Treasury bond.

The main empirical findings can be summarized as follows. As the conditional

covariances change substantially over time, the constant covariance hypothesis should

be rejected. With respect to asymmetric effects in variances, we find that daily returns

on the S&P 500 index and the NASDAQ index exhibit significant leverage effects. Not

only variances, but also covariances between stock and bond returns exhibit significant

asymmetries. Overall, our findings imply that a symmetric specification is too restrictive

to model the conditional covariances. Especially bad news in the stock market is followed

by a much higher conditional covariance than good news in the stock market. This

holds irrespectively the sign of the bond market shock. The cross effects in asymmetries

appear to be important as well. Covariances between stock and bond returns tend to

be relatively low after bad news in the stock market and good news in the bond market.

Thus, we find evidence that the cross-asymmetry terms are important when modeling

covariances between asset returns. Overall, the results indicate that the performance of

the asymmetric diagonal VECH model of conditional second moments is quite well.

Asymmetries in covariances have important implications for portfolio managers.

From modern portfolio theory we know that investors should diversify between different

asset classes. We have shown that investors can benefit from tactical asset allocation

when asymmetric leverage effects in covariances are taken into account. Optimal port-

folio shares can be substantially affected by asymmetries in covariances. Finally, our

results show that there are sizable gains due to asymmetric volatility timing. For ex-

ample, an investor with a relative risk aversion coefficient of ten percent and a target

return of fifteen percent, the utility increases by six percent if he switches from using a

symmetric to an asymmetric volatility model.
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Appendix A

This appendix shows that if both stock and bond returns exhibit leverage effects, the

conditional covariance between these assets responses asymmetrically to shocks, in such

a way that the covariance will be relatively higher after two negative shocks. If there

are asymmetric effects in conditional covariances, we must have that

Cov{ri,t+1, rj,t+1|It; ε∗i,t, ε∗j,t} 6= Cov{ri,t+1, rj,t+1|It;−ε∗i,t,−ε∗j,t}

and/or

Cov{ri,t+1, rj,t+1|It;−ε∗i,t, ε∗j,t} 6= Cov{ri,t+1, rj,t+1|It; ε∗i,t,−ε∗j,t}.

where ε∗i,t denotes a given positive shock in asset i at time t, i.e. in the interval (0,∞).

We can show mathematically that if leverage effects in volatility exist, they also affect

covariances. If leverage effects exists in the variance of asset i we have that

V ar{ri,t+1|It;−ε∗i,t}− V ar{ri,t+1|It; ε∗i,t} = δi,t > 0. (13)

Using the definition of the squared correlation coefficient:

ρ2ij,t+1 =
Cov2t {ri,t+1, rj,t+1}

V art{ri,t+1}V art{rj,t+1}
, (14)

we can write14

Cov2{ri,t+1, rj,t+1|It;−ε∗i,t,−ε∗j,t}− Cov2{ri,t+1, rj,t+1|It; ε∗i,t, ε∗j,t} =

ρ2ij,t+1V ar{ri,t+1|It; ε∗i,t}δj,t − ρ2ij,t+1V ar{rj,t+1|It; ε∗j,t}δi,t + ρ2ij,t+1δi,tδj,t, (15)

where ε∗i,t, ε
∗
j,t > 0, and ρ

2
ij,t+1 > 0. If index i denotes the stock index and index j a bond

index, then δj,t corresponds to the leverage effect in bond returns. As this effect has not

been documented before, we expect δj,t to be (close to) zero. It follows from (13) that,

in general, the right hand side of (15) will not be equal to zero. If δj,t equals zero, the

right hand side of (15) reduces to ρ2ij,t+1V ar{rj,t+1|It; ε∗j,t}δi,t, which will be a positive
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number. As the conditional covariances between stock and bond returns are mostly

positive numbers (see Figure 4), it follows from (15) that the conditional covariance

between two assets given two negative shocks will be larger than given two positive

shocks. More generally, if both stock and bond returns exhibit leverage effects, (15)

implies that the conditional covariance between these assets responses asymmetrically

to shocks, in such a way that the covariance will be relatively higher after two negative

shocks.

Appendix B

In this appendix the calculations of the bond returns are given. We obtained the “daily

constant maturity interest rate series” from the federal reserve bank in Chicago. To cal-

culate the bond returns we have followed the method in Jones, Lamont and Lumsdaine

(1998)15. The U.S. Treasury bonds have semi-annual coupon payments, and the coupon

on the hypothetical bonds is half the stated coupon yield. Hence, the price of the bond

at the beginning of the holding period is equal to its face value. We have calculated an

end-of-period price on this bond using the next day’s yield augmented with the accrued

interest rate:

Pn−#hd,t+1 =
2n−1X
i=1

1
2ynt

(1 + 1
2yn,t+1)

i
+

1 + 1
2ynt

(1 + 1
2yn,t+1)

2n
+
# holding days

365
ynt, (16)

where Pn−#hd,t+1 is the end-of-period price of the bond, n is the number of years the

bond is referring to, t is the time and ynt is the yield of an n-period bond at time t.

The #hd−return, is calculated as

rt+1 = Pn−#hd,t+1 − 1. (17)

Finally, the excess returns are calculated using the 3-month interest rate as the risk free

rate that accrues over the holding period, which varies from one to five days due to

weekends and holidays.
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ret+1 = rt+1 −
# holding days

365
y3mo,t.

The S&P 500 index data are obtained from Datastream, while the NASDAQ index

data are obtained from the National Association of Security Dealers. The returns on

the S&P 500 index and the NASDAQ index are calculated as

rindex,t+1 =
Pindex,t+1 − Pindex,t

Pindex,t
. (18)

Excess returns are calculated by substracting the risk free rate that accrues over the

holding period

reindex,t+1 = rindex,t+1 −
# holding days

365
y3mo,t. (19)
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Notes

1. Some well-known examples of stock market studies include Breen, Glosten and Ja-

gannathan (1989), Campbell and Hentschel (1992), Engle and Ng (1993), Glosten,

Jagannathan and Runkle (1993) and Kroner and Ng (1998). Literature on the

modeling of bond returns include Engle, Lilien and Robins (1987), Engle, Ng and

Rothschild (1990), Fama and French (1995) and Duffie and Singleton (1997).

2. While the majority of the GARCH literature focuses on the univariate properties,

there now appears a vast amount of literature that considers multivariate exten-

sions. Some examples include Harvey (1989), Bollerslev (1990), Bodurtha and

Mark (1991), Ng (1991), Ng, Engle and Rothschild (1992), Braun, Nelson and

Sunier (1995), Engle and Kroner (1995), Nijman and Sentana (1996) and Kroner

and Ng (1998).

3. The multivariate model in (2) is called the VECH model.

4. We impose that the smallest eigenvalue of each covariance matrix has to be positive

during estimation.

5. Note that the univariate GJR model is obtained when i = j.

6. Strictly, we should not talk about quadrants in this setting, but octants.

7. The data is available from the authors upon request.

8. See Bouwens, Laurent and Rombouts (2003) and Brooks, Burke and Persand

(2003) for a detailed discussion on issues in estimating multivariate GARCH mod-

els.
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9. Experiments with a covariance term in the mean equation showed that the relation

between the expected market risk premium and the conditional market covariance

is not statistically significant at the usual significance levels. Thus, our results

suggest that, at the daily frequency, the expected returns are independent of the

time-varying reward to risk.

10. Results can be obtained from the authors upon request.

11. The test statistic in this case is 2× (3, 663.29− 3, 648.95) = 28.68, and there are

twelve degrees of freedom.

12. Moreover, Engle, Ng and Rothschild (1990) uncover that changes in U.S. bond

volatility are closely linked across maturities.

13. Note that Fleming, Kirby and Ostdiek (2001) use a simple univariate ‘rolling

window’ to estimate conditional volatility.

14. For simplicity, we assume symmetric time-varying correlations.

15. We thank Charles Jones, Owen Lamont and Charlotte Christiansen for their help

with the program to construct the data.
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Tables

Table 1: Descriptive Statistics for Stock and Bond Excess Returns

1 yr bond 10 yr bond S&P 500 NASDAQ

Mean 0.0038 0.0196 0.0377 0.0286
Std. Dev. 0.0751 0.4763 1.0400 1.3061
Minimum −0.9306 −2.7149 −20.460 −11.405
Maximum 0.7905 4.8037 9.0979 14.158
Skewness 0.5626 0.1724 −1.6416 −0.1049
Kurtosis 20.854 7.5832 37.623 15.097
Jarque-Bera 65,448 4,320 26,171 29,935

Notes: This table gives descriptive statistics for the excess return on the S&P
500 index, the NASDAQ index, the 1 year Treasury bond and the 10 year
Treasury bond for the period January 4, 1982 - August 31, 2001. All returns
are daily returns in percentages.
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Table 2: Autocorrelations and Cross Autocorrelations

re1t re2t re3t re4t

re1,t−1
0.0881
(3.1435)

0.5890
(4.4786)

0.8209
(2.5090)

0.7702
(2.3631)

re2,t−1
0.0089
(3.0045)

0.0740
(4.5411)

0.1228
(2.5133)

0.1636
(3.1353)

re3,t−1
−0.0040
(−1.3353)

0.0014
(0.0698)

0.0224
(0.6084)

0.1825
(4.9173)

re4,t−1
−0.0026
(−1.9458)

0.0015
(0.1654)

−0.0017
(−0.0722)

0.0798
(2.3102)

Notes: Autocorrelations on diagonals and cross-autocorrelations on
off-diagonals. White heteroskedasticity-consistent t-statistics between
brackets.
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Table 3: Akaike and Schwarz Information Criteria

p AIC SIC

1 3.5576 3.5841∗

2 3.5546 3.6023
3 3.5509 3.6199
4 3.5489 3.6392
5 3.5394∗ 3.6509
6 3.5413 3.6741

Notes: p denotes the lag in V AR(p),while a ‘∗’ denotes the
minimum value of the information criteria.
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Table 4: Estimation Results

Explanatory Univ. GARCH Diagonal VECH Asym. Diag. VECH
Variables Estimate Std. Error Estimate Std. Error Estimate Std. Error

Const11 0.0032∗ (0.0009) 0.0041∗ (0.0005) 0.0037∗ (0.0004)
Const21 . . 0.0306∗ (0.0031) 0.0265∗ (0.0028)
Const22 0.4642∗ (0.0120) 0.4289∗ (0.0037) 0.3839∗ (0.0390)
Const31 . . 0.0153∗ (0.0019) 0.0116∗ (0.0035)
Const32 . . 0.2273∗ (0.0285) 0.1848∗ (0.0334)
Const33 1.8532∗ (0.4421) 1.0488∗ (0.1488) 1.0718∗ (0.1103)
Const41 . . 0.0162∗ (0.0019) 0.0156∗ (0.0043)
Const42 . . 0.2471∗ (0.0275) 0.2185∗ (0.0400)
Const43 . . 0.8678∗ (0.1061) 0.7820∗ (0.0856)
Const44 2.1810∗ (0.4716) 1.0297∗ (0.1202) 0.9420∗ (0.1052)

σ21,t 0.9402∗ (0.0094) 0.9351∗ (0.0044) 0.9355∗ (0.0026)
σ12,t . . 0.9414∗ (0.0032) 0.9417∗ (0.0028)
σ22,t 0.9330∗ (0.0106) 0.9317∗ (0.0034) 0.9330∗ (0.0037)
σ13,t . . 0.9625∗ (0.0026) 0.9599∗ (0.0046)
σ23,t . . 0.9495∗ (0.0033) 0.9499∗ (0.0038)
σ23,t 0.9077∗ (0.0162) 0.9164∗ (0.0079) 0.9146∗ (0.0031)
σ14,t . . 0.9519∗ (0.0030) 0.9511∗ 0.0055)
σ24,t . . 0.9366∗ (0.0037) 0.9367∗ (0.0053)
σ34,t . . 0.9128∗ (0.0069) 0.9095∗ (0.0035)
σ24,t 0.8474∗ (0.0143) 0.8950∗ (0.0076) 0.8927∗ (0.0045)

Notes: This table reports the maximum likelihood estimation results of model (4) using data from
January 4, 1982 to August 31, 2001 (T = 4, 908). Index i = 1 refers to the short term bond, i = 2
to the long term bond, i = 3 to the S&P 500 index, and i = 4 to the NASDAQ index. Robust
Bollerslev Wooldridge standard errors are reported in parentheses, while a ‘∗’ denotes statistical
significance at the 5% level.
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Table 4: Estimation Results (Continued)

Explanatory Univ. GARCH Diagonal VECH Asym. Diag. VECH
Variables Estimate Std. Error Estimate Std. Error Estimate Std. Error

ε21,t 0.0492∗ (0.0114) 0.0551∗ (0.0041) 0.0543∗ (0.0031)
ε1,tε2,t . . 0.0440∗ (0.0027) 0.0413∗ (0.0030)
ε22,t 0.0412∗ (0.0097) 0.0486∗ (0.0028) 0.0449∗ (0.0035)
ε1,tε3,t . . 0.0193∗ (0.0017) 0.0153∗ (0.0038)
ε2,tε3,t . . 0.0308∗ (0.0021) 0.0199∗ (0.0034)
ε23,t 0.0261∗ (0.0097) 0.0757∗ (0.0084) 0.0436∗ (0.0044)
ε1,tε4,t . . 0.0215∗ (0.0019) 0.0122∗ (0.0044)
ε2,tε4,t . . 0.0325∗ (0.0022) 0.0182∗ (0.0045)
ε3,tε4,t . . 0.0764∗ (0.0069) 0.0495∗ (0.0044)
ε24,t 0.0904∗ (0.0167) 0.0971∗ (0.0077) 0.0679∗ (0.0054)

(Iε1,tε1,t)
2 0.0074 (0.0125) . . 0.0025 (0.0039)

Iε1,tε1,tIε2,tε2,t . . . . 0.0053 (0.0035)
(Iε2,tε2,t)

2 0.0097 (0.0161) . . 0.0069 (0.0042)
Iε1,tε1,tIε3,tε3,t . . . . 0.0103∗ (0.0052)
Iε2,tε2,tIε3,tε3,t . . . . 0.0216∗ (0.0050)
(Iε3,tε3,t)

2 0.1010∗ (0.0303) . . 0.0661∗ (0.0053)
Iε1,tε1,tIε4,tε4,t . . . . 0.0100 (0.0066)
Iε2,tε2,tIε4,tε4,t . . . . 0.0244∗ (0.0065)
Iε3,tε3,tIε4,tε4,t . . . . 0.0620∗ (0.0055)
(Iε4,tε4,t)

2 0.0931∗ (0.0301) . . 0.0712∗ (0.0067)

Iε2,tε2,t(1− Iε1,t)ε1,t . . . . −0.0499∗ (0.0145)
Iε3,tε3,t(1− Iε1,t)ε1,t . . . . −0.0134∗ (0.0059)
Iε3,tε3,t(1− Iε2,t)ε2,t . . . . −0.0112 (0.0066)
Iε4,tε4,t(1− Iε1,t)ε1,t . . . . −0.0076 (0.0060)
Iε4,tε4,t(1− Iε2,t)ε2,t . . . . −0.0047 (0.0069)
Iε4,tε4,t(1− Iε3,t)ε3,t . . . . −0.0399∗ (0.0130)

(1− Iε2,t)ε2,tIε1,tε1,t . . . . −0.0288∗ (0.0137)
(1− Iε3,t)ε3,tIε1,tε1,t . . . . 0.0078 (0.0047)
(1− Iε3,t)ε3,tIε2,tε2,t . . . . 0.0131∗ (0.0054)
(1− Iε4,t)ε4,tIε1,tε1,t . . . . 0.0105 (0.0059)
(1− Iε4,t)ε4,tIε2,tε2,t . . . . 0.0152∗ (0.0061)
(1− Iε4,t)ε4,tIε3,tε3,t . . . . −0.0605∗ (0.0202)

Log Likelihood −3,719.28 −3,648.95
Notes: See the first part of the table.
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Table 5: Diagnostic Tests of the Generalized Residuals using the Asymmetric
Diagonal VECH Model

ε̌1 ε̌2 ε̌3 ε̌4 ε̌21 ε̌22 ε̌23

Mean 0.019 0.015 0.006 0.010 1.014 1.008 1.011
Std. Dev. 1.007 1.004 1.006 1.005 2.481 2.105 2.504
Skewness 0.077 −0.017 −0.470 −0.521 7.927 8.663 17.16
Excess Kurtosis 3.982 2.364 4.148 2.502 93.64 162.6 4981.8
t-stat. for H0 : ε̌i,t = 0 1.3265 1.032 0.402 0.665 . . .
t-stat. for H0 : ε̌i,tε̌i,t = 1 . . . . 0.397 0.266 0.303
Ljung-Box Statistics
Q(6) 3.725 2.813 3.254 0.465 3.432 11.18 2.078
Q(12) 14.74 13.06 10.99 8.230 6.416 15.68 6.540
Q(18) 35.09∗ 25.98 21.68 14.71 17.65 19.95 9.219
Q(24) 47.99∗ 29.55 29.62 37.76∗ 36.93∗ 31.84 12.78

ε̌24 ε̌2ε̌1 ε̌3ε̌1 ε̌3ε̌2 ε̌4ε̌1 ε̌4ε̌2 ε̌4ε̌3

Mean 1.011 1.028 0.618 2.219 -3.240 0.278 1.031
Std. Dev. 2.140 2.655 66.42 111.2 251.4 65.31 2.752
Skewness 9.211 9.795 −34.03 52.28 −59.87 −33.30 13.32
Excess Kurtosis 144.0 187.1 2048 3366 3886 1774 299.2
t-stat. for H0 : ε̌i,tε̌i,t = 1 0.352 0.737 −0.403 0.768 −1.181 −0.774 0.801
Ljung-Box Statistics
Q(6) 7.037 6.893 18.10∗ 3.349 0.303 8.981 1.379
Q(12) 12.57 8.708 32.27∗ 3.396 2.762 12.04 5.084
Q(18) 20.06 16.57 40.51∗ 8.801 2.778 12.36 9.325
Q(24) 27.32 28.57 47.03∗ 9.095 2.894 16.74 14.27

Notes: This table reports summary statistics and Ljung-Box statistics for standardized residuals and
standardized products of residuals. Q(r) denotes the Ljung-Box test statistic for rth order serial
correlation in the standardized cross-product of residuals. The 95% critical values for Q(6), Q(12),
Q(18) and Q(24) are 12.6, 21.0, 28.9 and 36.4, respectively. ‘∗’ indicates statistical significance at
the 5% level.
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Table 6: Economic Evaluation Results

Target Incremental
Return Gamma Without asymmetry With Asymmetry utility

In-sample
10 1 0.03113 0.03181 2.2%
15 1 0.03338 0.03502 4.9%

10 10 0.02960 0.03027 2.2%
15 10 0.02721 0.02877 5.7%

Out-of-sample
10 1 0.00910 0.00929 2.1%
15 1 −0.01661 −0.01525 8.2%

10 10 0.00733 0.00752 2.7%
15 10 −0.02722 −0.02561 5.9%

Notes: The average realized utilities, obtained using formula (12). Target returns are 10 and 15
percent, and relative risk aversions are 1 and 10. The table presents in-sample results (January,
1982 — December, 2000) and out-of-sample results (January, 2001 - August, 2001).
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Table 7: Overview of Contribution

Existing results This study

Many studies consider the conditional volatil-
ity in stock markets and bond markets sepa-
rately (e.g. Breen, Glosten and Jagannathan,
1989 and Engle, Lilien and Roberts, 1987).

Only few studies consider the conditional co-
variance between stock and bond returns.

Leverage effect in variance of stock returns
(Black, 1976).

Leverage effect in covariances between stock
and bond returns.

A constant correlation model is able to de-
scribe the conditional covariances (Bollerslev,
1990).

Modeling covariances and correlations as a
time-varying structure provides some inter-
esting results that are not obtained from
constant-correlation models.

Diagonal VECH model to describes condi-
tional covariances between stock and bond
returns (Bollerslev, Engle and Wooldridge,
1988).

An asymmetric diagonal VECH model
outperforms the diagonal counterpart
statistically.

Kroner and Ng (1998) find asymmetries in
the covariance between portfolios of small cap
and large cap firms.

This study allows for another source of asym-
metry: asymmetry due to shocks of opposite
signs.

The use of volatility timing, using a simple
(symmetric) measure, can be economically
useful (Fleming, Kirby and Ostdiek, 2001).

Asymmetric volatility timing economically
outperforms symmetric volatility timing.
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Figures

Figure 1: Excess Returns on the 1 and 10 year Treasury Bonds and on the S&P 500
and NASDAQ Index
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Figure 2: Return Shocks Within and Between Stock and Bond Markets
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Figure 3: Conditional Variances
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Figure 4: Conditional Covariances
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Figure 5: Conditional Correlations
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Figure 6: Estimated News Impact Curves With and Without Imposing Sym-
metry
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Figure 7: Estimated News Impact Surfaces from Diagonal VECH Model
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Figure 8: Estimated News Impact Surfaces from the Asymmetric Diagonal VECHModel
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Figure 9: Estimated Correlation Impact Surfaces from the Asymmetric Diagonal VECH
Model
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Figure 10: Optimal Portfolio Weights for Investors with Relative Risk Aversion of 10,
using the Asymmetric Diagonal VECH Model
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Figure 11: Changes in Optimal Portfolio Weights for Investors with Relative Risk Aver-
sion of 10, using the Asymmetric instead of the Symmetric Diagonal VECH Model
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