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Compromise solutions based on bankruptcy

Marieke Quant1,2 Peter Borm2 Ruud Hendrickx2

Peter Zwikker

Abstract

A new family of compromise solutions is introduced for the class
of compromise admissible games. These solutions extend bankruptcy
rules. It is shown that the compromise extension of the run-to-the-
bank rule coincides with the average of the extreme points of the core
cover (taking multiplicities into account) and that this solution is char-
acterised by means of a recursive formula.

Keywords: Bankruptcy, run to the bank rule, compromise admissible
games.

JEL Classification Number: C71.

1 Introduction

The model of bankruptcy situations as introduced by O’Neill (1982) is a
general framework for various kinds of simple allocation problems. In a
bankruptcy problem, there is an estate to be divided and each player has a
single claim on the estate. The total of the claims is larger than the estate
available, so one has to find criteria on the basis of which the estate is to be
divided. In this context, many rules have been proposed to come to a fair
allocation of the estate. For a recent overview of such rules, the reader is
referred to Thomson (2003).

A bankruptcy situation can be seen as the most basic form of an allo-
cation problem. As a consequence, many bankruptcy rules have a straight-
forward interpretation and appropriate properties of such rules are easily
formulated. In a transferable utility game, the allocation problem is of a

1Corresponding author. Email: quant@uvt.nl.
2Department of Econometrics & OR and CentER, Tilburg University, P.O. Box 90153,

5000 LE, Tilburg, The Netherlands.
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more complicated nature: instead of each player having a single claim, each
coalition of players has a worth which has to be taken into account. Our
aim is to extend bankruptcy rules to the class of transferable utility games
in such a way that both the interpretation and the appealing properties are
maintained.

In this paper, we provide such an extension to the class of compromise
admissible (or quasi-balanced) games (cf. Tijs and Lipperts (1982)). Quant
et al. (2003) study the compromise extension of the Talmud rule for the
class of games for which the core coincides with the core cover. They prove
that for this class of games the compromise extension of the Talmud rule
coincides with the nucleolus. González-Dı́az et al. (2003) introduce the
compromise extension of the adjusted proportional rule and show that this
solution coincides with the barycentre of the edges of the core cover. In the
current paper, we look at the problem of extending bankruptcy rules from
a more general viewpoint.

An important concept in the bankruptcy literature is duality (cf. Au-
mann and Maschler (1985)). We use this notion to define for each rule a
dual compromise extension and show that this solution coincides with the
compromise extension of the dual rule.

We pay particular attention to one specific solution: the compromise
extension of the run-to-the-bank-rule. We show that this solution is the
average of the extreme points of the core cover (taking multiplicities into
account) and characterise it by a recursive formula.

This paper is organised as follows. In section 2 we present some basic
definitions concerning transferable utility games and bankruptcy situations.
In section 3, we define the concept of compromise extension and analyse the
dual extension. Section 4 deals with the run-to-the-bank rule and shows
that this solution is the average of the extreme points of the core cover.
Finally, in section 5 we provide a recursive formula for the extension of the
run-to-the-bank rule.

2 Preliminaries

For two sets A,B we denote A ⊂ B if for all i ∈ A we have i ∈ B. For finite
A and two vectors x, y ∈ RA we write x ≤ y if xi ≤ yi for all i ∈ A.

A transferable utility game (in short TU game) is a pair (N, v), where
N denotes a finite set of players and v : 2N → R is a function assigning to
each coalition S ∈ 2N a worth v(S). By convention v(∅) = 0. The set of
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all TU games with player set N is denoted by TUN . Where no confusion
arises, we write v rather than (N, v).

Let v ∈ TUN . The utopia demand of a player i ∈ N , Mi(v) is defined
by

Mi(v) = v(N)− v(N\{i}).
The minimum right of a player i ∈ N , mi(v), is the minimum value this
player can achieve by satisfying all other players in a coalition by giving
them their utopia demands:

mi(v) = max
S:i∈S

{
v(S)−

∑

j∈S\{i}
Mj(v)

}
.

The core cover of a game v ∈ TUN , CC(v), consists of all efficient
allocation vectors, such that no player receives more than his utopia payoff
or less than his minimum right:

CC(v) =
{

x ∈ RN |
∑

i∈N

xi = v(N), m(v) ≤ x ≤ M(v)
}

.

A game is called compromise admissible if it has a nonempty core cover. The
class of all compromise admissible games with player set N is denoted by
CAN . From the definition of the core cover it immediately follows that v ∈
CAN if and only if m(v) ≤ M(v) and

∑
i∈N mi(v) ≤ v(N) ≤ ∑

i∈N Mi(v).
The core cover is a polytope with at most |N |! extreme points. These

so-called larginal vectors are introduced in Quant et al. (2003) and have
been extensively studied in González-Dı́az et al. (2003).

An order on N is a bijective function σ : {1, . . . , |N |} → N . The player
at position k in the order σ is denoted by σ(k). The set of all orders on N
is denoted by Π(N). For σ ∈ Π(N), the larginal `σ(v) is the efficient payoff
vector giving the first players in σ their utopia demands as long as it is still
possible to satisfy the remaining players with their minimum rights.

Let v ∈ CAN and σ ∈ Π(N). The larginal vector `σ(v) is defined by

`σ
σ(k)(v) =





Mσ(k)(v) if
k∑

r=1

Mσ(r)(v) +
|N |∑

r=k+1

mσ(r)(v) ≤ v(N),

mσ(k)(v) if
k−1∑

r=1

Mσ(r)(v) +
|N |∑

r=k

mσ(r)(v) ≥ v(N),

v(N)−
k−1∑

r=1

Mσ(r)(v)−
|N |∑

r=k+1

mσ(r)(v) otherwise
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for every k ∈ {1, . . . , |N |}.
It is readily seen that the core cover equals the convex hull of all larginals

CC(v) = conv
{
`σ(v) | σ ∈ Π(N)

}
.

An (one point) solution f on a subclass A ⊂ TUN is a function f : A → RN

assigning to each game v ∈ A a payoff vector f(v) ∈ RN . This paper intro-
duces a new type of allocation rule on CAN based on bankruptcy situations.

A bankruptcy situation is a triple (N, E, d), often abbreviated to (E, d).
N is a finite set of players, E ≥ 0 is the estate which has to be divided
among the players and d ∈ RN

+ is a vector of claims, where for i ∈ N , di

represents player i’s claim on the estate. It is assumed that the estate is not
large enough to satisfy all claims, so E ≤ ∑

i∈N di. We denote the class of
all bankruptcy situations with player set N by BRN .

A bankruptcy rule f is a function f : BRN → RN
+ assigning to each

bankruptcy situation (E, d) ∈ BRN a payoff vector f(E, d) ∈ RN
+ , such that∑

i∈N fi(E, d) = E and f(E, d) ≤ d.
One can associate a bankruptcy game vE,d ∈ TUN with a bankruptcy

problem (E, d) ∈ BRN . The worth of a coalition S is determined by the
amount of E that is not claimed by N\S, so for all S ⊂ N ,

vE,d(S) = max
{

0, E −
∑

i∈N\S
di

}
.

This class of games is a proper subset of the class of compromise admissible
games.

3 Compromise solutions based on bankruptcy

This sections introduces a new class of solutions for compromise admissible
games based on bankruptcy rules. Furthermore, we take a dual approach
and show that for solutions based on self-dual bankruptcy rules, the two
approaches coincide.

Bankruptcy rules can be extended to solutions on the class of compromise
admissible games in the following way. Let f : BRN → RN be a bankruptcy
rule. Then the compromise extension of f , f∗, is defined by

f∗(v) = m(v) + f
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)

for all v ∈ CAN . Note that because v ∈ CAN , the bankruptcy situation to
which f is applied is well-defined. Generally, if f is a bankruptcy rule and
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f∗ is its compromise extension, then f∗ will be efficient (
∑

i∈N f∗i (v) = v(N)
for all v ∈ CAN ). The following lemma shows that if f is homogeneous of
degree 1, then f∗ is relatively invariant with respect to strategic equivalence,
ie, f∗(kv + a) = kf∗(v) + a for all v ∈ CAN , k > 0 and a ∈ RN .

Lemma 3.1 If f(kE, kd) = k · f(E, d) for all k > 0 and all (E, d) ∈ BRN ,
then f∗ is relatively invariant with respect to strategic equivalence.

Proof: Let v ∈ CAN , k > 0 and a ∈ RN . Define v̂ = kv + a. Then
v̂ ∈ CAN , M(v̂) = kM(v) + a and m(v̂) = km(v) + a. From this, we have

f∗(v̂) = m(v̂) + f(v̂(N)−
∑

i∈N

mi(v̂),M(v̂)−m(v̂))

= km(v) + a + f(k(v(N)−
∑

i∈N

mi(v)), k(M(v)−m(v)))

= k(m(v) + f(v(N)−
∑

i∈N

mi(v),M(v)−m(v))) + a

= kf∗(v) + a

Hence, f∗ is relatively invariant with respect to strategic equivalence. ¤
It is immediately clear that the compromise value (or τ value) introduced

by Tijs (1981) is the compromise extension of the proportional rule, since τ is
the efficient convex combination of the vectors M(v) and m(v). Quant et al.
(2003) consider the compromise extension of the Talmud rule (cf. Aumann
and Maschler (1985)) for games for which the core cover coincides with
the core. They prove that for this specific class of games the compromise
extension of the Talmud rule equals the nucleolus. González-Dı́az et al.
(2003) study the compromise extension of the adjusted proportional rule
(cf. Curiel et al. (1988)) and show that it coincides with the barycentre of
the edges of the core cover.

Another way to extend a bankruptcy rule to an allocation rule on CAN

is to take a dual approach. Instead of first giving each player his minimum
right and then dividing what is left, one could first give each player his utopia
demand and take back the excess amount using f . This dual extension of a
bankruptcy rule f , fF, is defined by

fF(v) = M(v)− f
( ∑

i∈N

Mi(v)− v(N),M(v)−m(v)
)

for all v ∈ CAN .
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The dual of a bankruptcy rule f (cf. Aumann and Maschler (1985)), f̄
is defined by

f̄(E, d) = d− f(
∑

i∈N

di − E, d)

and a rule is called self-dual if f = f̄ .
As is stated in the following proposition, first taking the dual of f and

then extending this rule yields the same solution as taking the dual extension
of f .

Proposition 3.1 Let f : BRN → RN be a bankruptcy rule and let v ∈
CAN . Then f̄∗(v) = fF(v).

Proof: Applying the definitions yields

f̄∗(v) = m(v) + f̄

(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)

)

= m(v) + M(v)−m(v)−

f

(∑

i∈N

Mi(v)−
∑

i∈N

mi(v)− (v(N)−
∑

i∈N

mi(v)),M(v)−m(v)

)

= M(v)− f

(∑

i∈N

Mi(v)− v(N),M(v)−m(v)

)

= fF(v).

¤
As a corollary, we obtain that if f is self-dual, then fF = f∗.

4 Run-to-the-bank rule

In this section we consider the compromise extension of the run-to-the-bank
rule. We provide an interpretation in terms of larginals.

Let (E, d) ∈ BRN . Then the run-to-the-bank rule (RTB) is for all i ∈ N
defined by

RTB(E, d) =
1
|N |!

∑

σ∈Π(N)

rσ(E, d),

where for σ ∈ Π(N), k ∈ {1, . . . , |N |},

rσ
σ(k)(E, d) = max

{
min{dσ(k), E −

k−1∑

r=1

dσ(r)}, 0
}

.
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Example 4.1 Let v ∈ CAN with N = {1, 2, 3} be the game defined by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 3 2 4 6

Then M(v) = (2, 4, 3) and m(v) = (0, 1, 0). The larginals are given in the
table below.

σ 123 132 213 231 312 321
`σ(v) (2, 4, 0) (2, 1, 3) (2, 4, 0) (0, 4, 2) (2, 1, 3) (0, 3, 3)

The RTB∗ solution equals

RTB∗(v) = (0, 1, 0) + RTB(5, (2, 3, 3))

= (0, 1, 0) +
1
6
(8, 11, 11) = (

8
6
,
17
6

,
11
6

).

Note that the RTB∗ solution coincides with the average of the larginals. /

The RTB∗ solution is similar to the Shapley value in the sense that it is
the average of all larginals (rather than marginals)1. This is shown in the
following theorem.

Theorem 4.1 Let v ∈ CAN . Then RTB∗(v) = 1
|N |!

∑
σ∈Π(N) `σ(v).

Proof: Consider the game w defined by w(S) = v(S) − ∑
i∈S mi(v) for

all S ⊂ N . Then w ∈ CAN and `σ(w) = `σ(v) − m(v) for all σ ∈ Π(N),
m(w) = 0 and M(w) = M(v)−m(v). Next, it is readily seen that `σ(w) =
rσ

(
w(N),M(w)

)
for all σ ∈ Π(N) and hence,

RTB∗(w) = RTB
(
w(N),M(w)

)

=
1
|N |!

∑

σ∈Π(N)

rσ
(
w(N),M(w)

)
=

1
|N |!

∑

σ∈Π(N)

`σ(w).

As a result of Lemma 3.1, RTB∗ is relatively invariant with respect to strate-
gic equivalence and hence,

RTB∗(v) = m(v) + RTB∗(w) = m(v) +
1
|N |!

∑

σ∈Π(N)

`σ(w)

= m(v) +
1
|N |!

∑

σ∈Π(N)

[`σ(v)−m(v)] =
1
|N |!

∑

σ∈Π(N)

`σ(v).

¤
1Note however that larginals do not satisfy additivity, since the minimum right vector

m is not additive.
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5 A recursive formula of RTB∗

In this section we give a characterisation of RTB∗ by means of a recursive
formula, which is based on O’Neill’s consistency property.

The RTB rule is the unique bankruptcy rule satisfying the following
property (cf. O’Neill (1982)):

fi(E, d) =
1
|N |

(
min{di, E}+

∑

j∈N\{i}
fi(N\{j}, E −min{dj , E}, dN\{j})

)

for all (E, d) ∈ BRN and all i ∈ N .2

To extend this recursive expression to our framework of compromise
admissible games, we have to define a subclass which is closed with respect to
“sending one player away with his claim”. For this, we need a nonnegativity
condition (which is harmless as a result of relative invariance with respect
to strategic equivalence) and a weak version of superadditivity. The class
AN ⊂ CAN consists of all TU games v ∈ CAN such that for all S ⊂ N ,

(i) v(S) ≥ 0,

(ii) v(S) +
∑

k∈N\S mk(v) ≤ v(N).

We denote A =
⋃

N AN .
We are going to characterise RTB∗ on A using the following extension

of O’Neill’s consistency property to a solution f on A: for all N , all v ∈ AN

and all i ∈ N we have

fi(v) =
1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

1
|N |

∑

j∈N\{i}

(
mi(v) + fi(vj)

)
, (1)

where the game vj ∈ TUN\{j} is defined by

vj(S) = max{v(S ∪ {j})−
∑

k∈S

mk(v)−Mj(v), 0}

for all S ⊂ N\{j}, j ∈ N\{i}.
The game vj is again an element of A, as is shown in the following

lemma.
2O’Neill calls this property consistency, which is not to be confused with various other

notions of consistency.
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Lemma 5.1 Let v ∈ AN and j ∈ N . Then vj ∈ AN\{j}.

Proof: It is immediately clear from the definition of vj(S) that vj(S) ≥ 0
for all S ⊂ N\{j}, so vj satisfies (i). We first show that we can restrict
ourselves to the case that vj(N\{j}) > 0.

It follows from condition (ii) applied to (N, v) that for all S ⊂ N\{j}
we have

v(S ∪ {j})−
∑

i∈S

mi(v)−Mj(v) ≤ v(N)−
∑

i∈N\{j}
mi(v)−Mj(v),

from which it easily follows that

vj(S) ≤ vj(N\{j}). (2)

Hence, if vj(N\{j} = 0, then vj(S) = 0 for all S ⊂ N\{j} and vj ∈ AN\{j}

follows trivially. So, assume that vj(N\{j}) > 0. It remains to prove that
vj satisfies condition (ii) and that vj ∈ CAN\{j}.
Step 1: In order to show that vj satisfies (ii), we calculate M(vj) and m(vj).
Let i ∈ N . If vj(N\{i, j}) = 0, then Mi(vj) = vj(N\{j}). Otherwise,

Mi(vj) = vj(N\{j})− vj(N\{i, j})
= v(N)− v(N\{i})−mi(v) = Mi(v)−mi(v).

Combining the two cases, we obtain

Mi(vj) = min
{
Mi(v)−mi(v), vj(N\{j})}.

We next show that mi(vj) = 0. To do so, we prove that for each S ⊂
N\{j} and i ∈ S we have

ρS
i ≤ 0, (3)

where ρS
i = vj(S) − ∑

k∈S\{i}Mk(vj). Since mi(vj) ≥ vj({i}) ≥ 0 this
proves that mi(vj) = 0.

Let S ⊂ N\{j}, i ∈ S. If vj(S) = 0, then (3) follows from the fact that
Mk(vj) ≥ 0 for all k ∈ N\{j}. Assume that vj(S) > 0. We consider two
cases.
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Case 1: Mk(vj) = Mk(v)−mk(v) for all k ∈ S\{i}. Then

ρS
i = vj(S)−

∑

k∈S\{i}

(
Mk(v)−mk(v)

)

= v(S ∪ {j})−
∑

k∈S

mk(v)−Mj(v)−
∑

k∈S\{i}

(
Mk(v)−mk(v)

)

= v(S ∪ {j})−
∑

k∈S∪{j}\{i}
Mk(v)−mi(v) ≤ 0,

where the inequality follows from the definition of mi(v).

Case 2: There exists a k ∈ S\{i} with Mk(vj) = vj(N\{j}). Then

ρS
i = vj(S)− vj(N\{j})−

∑

`∈S\{i,k}
M`(vj) ≤ 0,

because of (2) and M`(vj) ≥ 0 for all ` ∈ N\{j}.

Hence, ρS
i ≤ 0 for all S ⊂ N\{j}, i ∈ S and m(vj) = 0. Condition (ii)

then directly follows from (2).

Step 2: We next show that vj ∈ CAN . We already have m(vj) = 0 ≤ M(vj)
and

∑
i∈N\{j}mi(vj) = 0 ≤ vj(N\{j}). Furthermore, for k ∈ N\{j} we

have

vj(N\{j})−
∑

i∈N\{j}
Mi(vj) = vj(N\{j})−

∑

i∈N\{j,k}
Mi(vj)−Mk(vj)

= ρ
N\{j}
k −Mk(vj) ≤ 0.

Hence, vj ∈ CAN\{j}.

Because vj also satisfy (i) and (ii), we have vj ∈ AN\{j}. ¤
The following theorem characterises RTB∗ on A.

Theorem 5.1 RTB∗ is the unique solution on A satisfying (1).

Proof: Let f be a solution on A satisfying (1). Then this uniquely deter-
mines the outcome of f for all one-player games and, by induction, for all
games in A. Therefore, there can only be one rule that satisfies (1) on A.
Hence, it suffices to show that RTB∗ satisfies (1) on A.
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Let v ∈ AN . From (O’Neill) consistency of RTB it follows that for all
i ∈ N we have

RTB∗
i (v) = mi(v) + RTBi

(
N, v(N)−

∑

j∈N

mj(v),M(v)−m(v)
)

= mi(v) +
1
|N |

[
min{Mi(v)−mi(v), v(N)−

∑

j∈N

mj(v)}+

∑

j∈N\{i}
RTBi(N\{j}, E−j , d−j)

]

with E−j = v(N)−∑
j∈N mj(v)−min{Mj(v)−mj(v), v(N)−∑

j∈N mj(v)}
and d−j = M−j−m−j = (Mk(v)−mk(v))k∈N\{j}. Note that by construction
E−j = vj(N\{j}). Then,

RTB∗
i (v) =

1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

1
|N |

∑

j∈N\{i}

(
mi(v) + RTBi

(
N\{j}, vj(N\{j}),M−j −m−j

))
.

Since (M−j − m−j)k ≥ min{vj(N\{j}),M−j − m−j)} = Mk(vj) for all
k ∈ N\{j}, the truncation property (ie, for all (E, d) ∈ BRN , RTB(E, d) =
RTB(E, d′) with d′i = min{E, di} for all i ∈ N) gives

RTB∗
i (v) =

1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

1
|N |

∑

j∈N\{i}

(
mi(v) + RTBi

(
N\{j}, vj(N\{j}),M(vj)

))

=
1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

1
|N |

∑

j∈N\{i}

(
mi(v) + RTB∗

i (vj)
)
,

where the last equality is true, because m(vj) = 0 for all j ∈ N . Hence,
RTB∗ satisfies (1). ¤
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