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Abstract

A path scheme for a simple game is composed of a path, i.e., a sequence of coalitions
that is formed during the coalition formation process and a scheme, i.e., a payoff vector
for each coalition in the path. A path scheme is called population monotonic if a
player’s payoff does not decrease as the path coalition grows. In this study, we focus
on Shapley path schemes of simple games in which for every path coalition the Shapley
value of the associated subgame provides the allocation at hand. We show that a simple
game allows for population monotonic Shapley path schemes if and only if the game is
balanced. Moreover, the Shapley path scheme of a specific path is population monotonic
if and only if the first winning coalition that is formed along the path contains every
minimal winning coalition. Extensions of these results to other probabilistic values are
discussed.
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1 Introduction

In many real life contexts, ranging from the formation of pre/post-electoral coalitions of par-
ties to the formation of mergers and partnerships between firms, coalitions form through
a sequence of binding bilateral agreements. From among the numerous examples of such
coalition formation processes, we may single out the recent mergers between the banks and
between the consultancy firms that are observed in many countries and the Oslo agreements
between Israel and its neighbors. An important characteristic of such coalition formation
processes is the effect of the sequence of agreements on the future potential agreements.
For a coalition formed through bilateral agreements may grow larger because the syn-
ergy/commitment obtained by a coalition may create new agreement opportunities which
are profitable both for the members of the coalition and the agent which will join the coali-
tion. Hence, the determination of the sequences of binding bilateral agreements which will
result in the exploitation of the greatest possible amount of synergy is of both theoretical
and practical importance.

The coalition formation processes which end up with the formation of the grand coalition
deserve particular interest. Because, first of all, in many situations (e.g., situations of
increasing returns to size), the grand coalition is the unique efficient coalition structure.
Secondly, the formation of the grand coalition among agents which have common properties
(e.g., the formation of the grand coalition among leftist parties) has been the focal point of
many branches of social sciences.

In this study, we will focus on the formation of the grand coalition through binding
bilateral agreements in voting/government formation situations. We aim to address two
important questions in this context.

(i) Which voting situations allow for the formation of the grand coalition through binding
bilateral agreements?

(ii) In these situations, which agreement sequences must be followed to form the grand
coalition?

We will address these questions by modeling voting situations by simple transferable
utility cooperative games. In voting situations, the voters’ incentive to form coalitions
arises from their will to increase their power to affect the outcome of the voting process.
Modelling of these situations as simple transferable utility games allows us to predict the
voters’ power to affect the result of voting by using appropriate values for transferable
utility games. Many values have been offered for simple games as appropriate measures of
voting power and the two most widely used ones are the Shapley-Shubik (1954) and Banzhaf
(1965) power indices. If we assume that each voter’s voting power is predicted by such an
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appropriate index, then the sequences of binding bilateral agreements which result in the
formation of the grand coalition boils down to the notion of population monotonic path
schemes. Postponing a precise definition to the next section, a population monotonic path
scheme for a simple game is composed of a path, i.e., a sequence of coalitions that is formed
during the coalition formation process and a scheme, i.e., a power index vector for each
coalition in the path such that each player’s index does not decrease as the path coalition
grows. In this study, we focus on the Shapley-Shubik power index as an appropriate measure
of voting power. Hence, the two questions that we address can be rephrased as

(i) Which simple games allow for population monotonic Shapley path schemes?
(ii) In these simple games, which paths have a population monotonic Shapley path

scheme?
It turns out that existence of veto players, i.e., a subgroup of voters whose unanimous

agreement is necessary to pass a decision, is required for the existence of population mono-
tonic Shapley path schemes and vice versa. Moreover, a Shapley path scheme is population
monotonic if and only if the first winning coalition that is formed along the path contains
every minimal winning coalition of the game. We further show how to extend these results
to probabilistic values, generalizations of the Shapley value introduced by Weber (1988).

The notion of population monotonic (Shapley) path schemes is introduced by Cruijssen,
Borm, Fleuren and Hamers (2005). This study analyzes insinking (the antonym of outsourc-
ing) situations in logistics and the transportation sector. In these sectors, shippers often
outsource their transportation activities to a logistics service provider of their choice. Crui-
jssen et al. (2005) proposes an insinking procedure in which the logistics service provider
initiates the shift of logistics activities instead of waiting for the shippers to outsource their
activities. This procedure has the advantage that the logistics service provider can proac-
tively select a group of shippers with a strong synergy potential (like ordering dynamics,
locations etc.). Moreover, the gains resulting from this kind of cooperation can be allocated
to the participating shippers in a fair and sustainable way by means of customized tariffs.
Naturally, the attainment of gains in such situations requires the consent of the shippers.
Hence, to obtain the greatest possible amount of gains, the service provider has to find an
effective way of proposing offers to shippers through which it can acquire the involvement
of each shipper. At this point, Cruijssen et al.(2005) proposes a sequence of binding bilat-
eral agreements arguing that compared to the simultaneous comprehensive agreements, by
following an appropriate sequence of binding bilateral agreements, the service provider can
attract new customers to the project by using the level of synergy and commitment already
attained in the sequence.
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The notion of population monotonic path schemes (PMPS) shares the same spirit with
the notion of population monotonic allocation schemes (PMAS) introduced and character-
ized by Sprumont (1990). A PMAS is an efficient allocation scheme such that the payoff of
any player does not decrease as the coalition he belongs grows larger. Hence, if the gains
associated with coalition formation are allocated with respect to a PMAS, the formation of
the grand coalition is guaranteed. In fact, the existence of a PMPS is a weaker condition for
a TU-game than the existence of a PMAS since every path scheme of a PMAS is population
monotonic. Nevertheless, if the coalitions are formed through binding bilateral agreements,
the grand coalition may still form when the gains associated with coalition formation are
allocated with respect to an allocation scheme which has a PMPS.

Our study in particular provides an alternative prediction of what kind of coalitions
form in voting situations which differs from the mainstream prediction of Riker (1962).
Riker (1962) predicts that only minimal winning coalitions will form in equilibrium. This
idea has been the conclusion of many studies in the general coalition formation literature
based on the seminal noncooperative bargaining approach of Baron and Ferejohn (1989) and
also the studies which analyze coalition formation in voting situations that are modeled by
simple TU-games like Shenoy (1979). However, the emprical data on government/coalition
formation shows that among all coalitions formed after the second world war in European
democracies only a third of them is minimal winning (Laver and Schofield, 1990). Our
current study shows that a wide spectrum of coalitions including the minimal winning ones
can form as a result of binding bilateral agreements providing an alternative point of view
for the analysis and the explanation of the data.

In a companion paper (Çiftçi and Dimitrov, 2006), we study the stability of coalition
structures in hedonic coalition formation games in which players’ preferences over coalitions
are induced by the Shapley value of a simple game with veto control. It is shown that the
coalition structures which contain the union of minimal winning coalitions (or one of its
supersets) are strictly core stable in these hedonic coalition formation games. Hence, from
this aspect, the notion of population monotonic Shapley path schemes can be regarded as
a natural and decentralized coalition formation procedure which ensures the formation of a
stable coalition structure in simple games with veto control.

The outline of the paper is as follows. In Section 2, we will begin by introducing
the preliminaries about TU-games with particular attention to simple games and then we
will continue with a brief review of the seminal notion of the Shapley value. Section 2
also formally introduces population monotonic path schemes. Section 3 presents the main
results regarding the characterization of population monotonic Shapley path schemes of
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simple games. Section 4 discusses extensions of the results to other probabilistic values.

2 Preliminaries

Given a nonempty, finite set of players N , a transferable utility game (TU-game) with
player set N is a function v : 2N → R with v(∅) = 0. A coalition is a set of players S ⊂ N

and N is called the grand coalition. For any coalition S ⊂ N , v(S) is called the worth of
coalition S. We denote the set of TU-games with player set N by GN . A TU-game v ∈ GN

is monotonic if v(S) ≥ v(T ) for every S, T ∈ 2N with T ⊂ S. A player i ∈ N is a null player
in v if v(S ∪{i}) = v(S) for every S ⊂ N\{i}. Given v ∈ GN and S ∈ 2N , the restriction of
v to S (a subgame of v) is denoted by v|S and is defined by v|S(T ) = v(T ) for every T ⊂ S.
The core of a TU-game v ∈ GN is denoted by C(v) and is defined as the set of efficient
payoff vectors for which no coalition has an incentive to split off from the grand coalition,
i.e., C(v) = {x ∈ RN |

∑
i∈N xi = v(N) and

∑
i∈S xi ≥ v(S) for all S ∈ 2N}. A TU-game

which has a nonempty core is called a balanced game.
A function F : GN → RN is called a value. A value F is efficient if for all v ∈ GN ,∑

i∈N Fi(v) = v(N). Let Π(N) denote the set of permutations on the player set N . F is
called anonymous if for all v ∈ GN and for any permutation π ∈ Π(N), F (π(v)) = π(F (v)).
Here, with v ∈ GN and π ∈ Π(N), π(v) ∈ GN is defined by π(v)(S) = v(π(S)) for each
S ∈ 2N . F is said to satisfy the null player property if for any v ∈ GN and any null player
i ∈ N in v, Fi(v) = 0.

A TU-game v ∈ GN is called simple if v is monotonic, v(S) ∈ {0, 1} for every S ∈ 2N

and v(N) = 1. We denote the set of simple TU-games with player set N by SN . Given
v ∈ SN , a coalition S ∈ 2N is called a winning coalition if v(S) = 1 and is called a losing
coalition if v(S) = 0. A winning coalition S is called minimal winning if there does not
exist a coalition T ( S which is winning. Every simple game v is characterized by its set of
minimal winning coalitions, MWC(v). A player i ∈ N is a veto player in v ∈ SN if S ⊂ N ,
v(S) = 1 implies that i ∈ S. The set of veto players of v is denoted by veto(v). A simple
game v is balanced if and only if veto(v) 6= ∅ (Curiel, 1997, Theorem 1.10.6).

Voting or decision making situations in committees like parliaments can easily be mod-
eled into the framework of simple games by representing the coalitions which possesses the
necessary power to pass a decision as the winning coalitions of the game. This model en-
ables the employment of values for simple games to measure the parties’ power to effect the
outcome of the voting situations at hand. Many values have been offered for simple games
and studied in the literature as appropriate measures of decisional power, i.e., as power
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indices. We will shortly review the Shapley-Shubik (1954) power index that arises from the
Shapley value.

The Shapley value (Shapley, 1953) is one of the most important solution concepts in
cooperative game theory and has been studied extensively. Given v ∈ GN , the Shapley
value Φ assigns to player i ∈ N

Φi(v) =
∑

S⊂N\{i}

|S|!(|N | − |S| − 1)!
|N |!

(v(S ∪ {i})− v(S)) .

Shapley and Shubik (1954) proposed to use the Shapley value as a power index for
voting situations in committees. For a simple game v ∈ SN the Shapley-Shubik index for
i ∈ N boils down to

Φi(v) =
∑

{S⊂N\{i}|v(S)=0,v(S∪{i})=1}

|S|!(|N | − |S| − 1)!
|N |!

. (1)

The value assigned to each voter can be interpreted by using the sequential probabilistic
interpretation of the Shapley value which stems from a procedure to form the grand coalition
(which is described also by Shapley (1953)) that yields the Shapley value of the game as
an expected payoff of each player. In this procedure, the grand coalition N is formed by
introducing the players one by one and each player is assigned the marginal contribution
to the worth of the coalition formed when she joins the set of her predecessors. Hence,
the value assigned by Shapley-Shubik index is the probability of turning the coalition of
predecessors from losing to winning when the order of arrival of players is random and all
orders are equally likely. For further discussion of the importance of the Shapley value as an
estimator of political power and several examples of its applications, the reader is referred
to Straffin (1994) and Winter (2002).

We are now ready to introduce the notion of path schemes for TU-games.

Definition 2.1 Let v ∈ GN . A path consists of a sequence S = {S1, S2, ...S|N |} of coalitions
such that |Sk| = k for all k ∈ {1, ..., |N |} and Sm ⊂ Sm+1 for all m ∈ {1, ..., |N | − 1}. A
path scheme (S, (xS)S∈S) for v consists of a path S and an allocation vector xS ∈ RS for
every coalition S ∈ S.

A path scheme (S, (xS)S∈S) for v ∈ GN is called population monotonic if it satisfies the
following conditions:

• xS
i ≥ v({i}) for all S ∈ S and i ∈ S. (individual rationality)
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• xS
i ≥ xT

i for every S, T ∈ S such that T ⊂ S and i ∈ T . (monotonicity)

Naturally, every value for TU-games defines a path scheme where the allocation for
every path coalition is obtained by applying the value to the restriction of the game to the
path coalition. A path scheme in which the Shapley value is used as allocation vector is
called a Shapley path scheme.

We will illustrate the notion of Shapley path schemes and their properties in the follow-
ing example.

Example 2.1 Let N = {1, 2, 3} and v ∈ SN be such that MWC(v) = {{1, 2}, {2, 3}}.
The Shapley value of v and its subgames are provided in Table 1 below.

Coalition Player 1 Player 2 Player 3

{1} 0 - -
{2} - 0 -
{3} - - 0
{1,2} 1

2
1
2 -

{1,3} 0 - 0
{2,3} - 1

2
1
2

N 1
6

2
3

1
6

Table 1: The Shapley value of v and its subgames

It can easily be observed that this game has exactly two population monotonic Shapley
path schemes on paths {{1}, {1, 3}, N} and {{3}, {1, 3}, N}. �

3 Population Monotonic Shapley Path Schemes

We will begin with presenting a preliminary result which is useful in understanding the
structure of population monotonic Shapley path schemes of simple games.

Lemma 3.1 Given a simple game v ∈ SN , let S = {S1, S2, ..., S|N |} be a path of coalitions
such that Sm = {i1, ..., im} for every m ∈ {1, ..., |N |}. Assume that the first winning
coalition along the path S is Sk. If the Shapley path scheme of S is population monotonic,
then the following must hold:

(R1) Φim(v|Sp
) = 0, for all m ∈ {k + 1, ..., |N |} and for all p ∈ {m, ..., |N |}.

(R2) Φi(v|Sk
) = Φi(v|Sp

), for all p ∈ {k + 1, ..., |N |} and for all i ∈ Sk.
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(R1) and (R2) are direct consequences of the efficiency of the Shapley value and the
monotonicity property of the Shapley path scheme. Efficiency of the Shapley value implies
that the Shapley-Shubik power indices of the members of any winning coalition along a path
must add up to 1, the worth of the winning coalitions. Hence, once a winning coalition is
formed along a path, the population monotonicity requires two conditions to be met by the
Shapley path scheme. Firstly, the total decision power of one must continue to be shared
among the members of the first winning coalition, i.e., all the subsequent players must have
a zero Shapley-Shubik index at every coalition that they are involved along the path (R1).
Secondly, the composition of the power among the members of the first winning coalition
must stay constant along the rest of the path since an increase in one member’s power index
directly implies a decrease in one other member’s index (R2).

We are now ready to provide a characterization of the family of simple games which
allow population monotonic Shapley path schemes.

Theorem 3.1 Let v ∈ SN . Then v has a population monotonic Shapley path scheme if
and only if v is balanced.

Proof. Let v ∈ SN be a simple game which has a population monotonic Shapley path
scheme. Let (S, (Φ(v|S))S∈S) be a population monotonic Shapley path scheme for v such
that S = {S1, S2, ..., S|N |} and Sm = {i1, ..., im} for every m ∈ {1, ..., |N |}. Assume that the
first winning coalition along the path S is Sk; i.e., v(S1) = ... = v(Sk−1) = 0 and v(Sk) = 1.
Then, obviously ik ∈ veto(v|Sk

). Now, consider v|Sk
and v|Sk+1

. Since v is monotonic, for
every winning coalition S ⊂ Sk, S ∪ {ik+1} is also winning. Then, if for a losing coalition
S ⊂ Sk, S∪{ik+1} is winning, it can easily be observed that Φik+1

(v|Sk+1
) is strictly positive

which contradicts with (R1). Hence, ik is also a veto player in v|Sk+1
. Applying the same

reasoning recursively one finds that ik is a veto player of v, i.e., v is balanced.
Now, assume that v is balanced. Then, veto(v) 6= ∅. Let i ∈ veto(v). We will show

that the Shapley path scheme of any path S = {S1, S2, ..., S|N |} with S|N |−1 = N\{i} is
a population monotonic Shapley path scheme. We know that S|N |−1 = N\{i} is a losing
coalition. Then vN\{i} is a null game and hence Φj(v|St

) = 0 for all t ∈ {1, ..., |N | − 1} and
j ∈ St. Also, since v is monotonic, Φj(v) ≥ 0 for all j ∈ N which implies that the Shapley
path scheme of S is population monotonic. �

Theorem 3.1 reveals that, in the class of simple games, the existence of veto players
is a must for the existence of population monotonic Shapley path schemes and vice versa.
We can interpret this result as follows. When a winning coalition is formed through a

7



sequence of binding bilateral agreements, we know that the restriction of the TU-game to
this coalition has veto players, that is, in this winning coalition, there is a subgroup of
agents whose unanimous agreement/involvement is necessary to pass a decision. We also
know that the formation of the grand coalition starting from this winning coalition via
binding bilateral agreements requires the remaining players to be null players. But, this in
turn implies that the veto players of the winning coalition are in fact the veto players of
the whole game, i.e., the game is balanced.

The interpretation of Theorem 3.1 also brings out a useful hint for the characterization of
the paths of balanced simple games which has population monotonic Shapley path schemes.
If the veto players of the first winning coalition along a path which has a population mono-
tonic Shapley path scheme are in fact the veto players of the whole game and if all the
subsequent players have to be null players, then a path can have a population monotonic
Shapley path scheme only when the first winning coalition along this path includes all the
minimum winning coalitions of the game.

We will show in Theorem 3.2 that the hint stated above, i.e., the requirement that the
first winning coalition along a path has to include all the minimum winning coalitions of the
game is both necessary and sufficient for a path to have a population monotonic Shapley
path scheme.

Theorem 3.2 Let v ∈ SN be a balanced simple game. A path S has a population monotonic
Shapley path scheme if and only if the first winning coalition along S contains every minimal
winning coalition of v.

Proof. Let SM denote the union of minimal winning coalitions of v. Because v is balanced
we have that veto(v) 6= ∅.

We will first show the only if part. Let S be a path of coalitions with Sm = {i1, ..., im}
for every m ∈ {1, ..., |N |}. Assume that S has a population monotonic Shapley path scheme
and the first winning coalition along the path S is Sk (k ∈ {1, ..., |N |}). If k = |N |, obviously
SN = N contains every minimal winning coalition. So assume that k ∈ {1, ..., |N | − 1} and
suppose Sk 6⊃ SM . Then there exists m ∈ {k + 1, ..., |N |} such that Sm is the first path
coalition that contains SM . Now, on the one hand (R1) implies that Φim(v|Sm

) = 0. On
the other hand, im is a member of a minimal winning coalition S since Sm is the first
path coalition that contains SM . Then, S\{im} is a losing coalition, i.e., v(S) = 1 and
v(S\{im}) = 0 implying that Φim(v|Sm

) > 0, a contradiction. Thus, Sk ⊃ SM .
We will now prove the if part. Let S be a path of coalitions with Sm = {i1, ..., im}

for every m ∈ {1, ..., |N |}. Assume that the first winning coalition along the path S is Sk

8



(k ∈ {1, ..., |N |}) and SM ⊂ Sk. Now, Φj(v|St
) = 0 for all t ∈ {1, ..., k − 1} and j ∈ St

since Sk−1 is a losing coalition. Also, Φi(v|Sk
) ≥ 0 for all i ∈ Sk since v is monotonic.

Because each player im (m ∈ {k + 1, ..., |N |}) is a null player since SM ⊂ Sk, we know
that Φim(v|Sp

) = 0 for all m ∈ {k + 1, ..., |N |} and for all p ∈ {m, ..., |N |}. We will show
that Φi(v|Sk

) = Φi(v|Sm
) for all i ∈ Sk and for all m ∈ {k + 1, ..., |N |} to conclude that the

Shapley path scheme of the path S is population monotonic.
Pick i ∈ Sk and t ∈ {k, ..., |N | − 1}. We will show that Φi(v|St

) = Φi(v|St+1
).

Let A denote the collection {S ⊂ (St+1\{i})|v(S) = 0, v(S ∪ {i}) = 1}, let B denote the
set {S ∈ A|it+1 6∈ S} and let C denote the set {S ∈ A|it+1 ∈ S}. Obviously A = B ∪ C.
Moreover, notice that B = {S ⊂ (St\{i})|v(S) = 0, v(S∪{i}) = 1} and C = {S∪{it+1}|S ∈
B}. Then,

Φi(v|St+1
) =

∑
S∈A

|S|!(t− |S|)!
(t + 1)!

=
∑

S∈B∪C

| S |!(t− |S|)!
(t + 1)!

=
∑
S∈B

[
(
|S|!(t− |S|)!

(t + 1)!
) + (

(|S|+ 1)!(t− |S| − 1)!
(t + 1)!

)
]

=
∑
S∈B

|S|!(t− |S| − 1)!
t!

= Φi(v|St
)

where the first and the last equalities follow from (1). Hence, we can conclude that the
Shapley path scheme of the path S is population monotonic. �

In the light of Theorem 3.2, we can answer one other important question in this context:
For which simple games all Shapley path schemes are population monotonic?

Theorem 3.3 Let v ∈ SN be a simple game. All Shapley path schemes of v are population
monotonic if and only if the set of veto players of v is a winning coalition.

Proof. If veto(v) is a winning coalition, it is the unique minimum winning coalition
and clearly every path scheme’s first winning coalition contains SM = veto(v). Hence, by
Theorem 3.2 every Shapley path scheme is population monotonic. So, what remains to
prove is the only if part.

Assume that all Shapley path schemes of v are population monotonic but veto(v) is
losing. There exists a minimum winning coalition S = {i1, ..., im} with m ∈ {1, ..., |N |− 1}.
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We know that Φi(v|S) = 1
m for every i ∈ S since S is a minimal winning coalition. Pick

a path of coalitions S = {S1, S2, ..., S|N |} with Sm = S. The Shapley path scheme of S is
population monotonic by assumption. Consequently, Φi(v) = 1

m for every i ∈ S. Observe
that there exists i∗ ∈ S such that i∗ /∈ veto(v) since S is a minimal winning coalition and
veto(v) is losing. Then, there exists another minimal winning coalition T ( N such that
i∗ /∈ T . Pick a path of coalitions S′

= {S′
1, S

′
2, ..., S

′

|N |} with S
′

|T | = T . Now, the Shapley
path scheme of S′

is also population monotonic by assumption. Then, (R1) implies that
Φi∗(v) = 0 since i∗ /∈ T , a contradiction with Φi∗(v) = 1

m as derived earlier. �

4 Extensions of the Results to Probabilistic Values

Probabilistic values, introduced and characterized by Weber (1988), are generalizations of
the Shapley value for finite TU-games. These values keep one essential feature of the Shapley
value, they assign each player an average of his marginal contributions. They, however, fail
to satisfy either the efficiency or anonymity property. In fact, the Shapley value is the
unique probabilistic value satisfying both anonymity and efficiency. Probabilistic values
can be classified into two groups: Quasi-values which are efficient probabilistic values and
Semi-values, the probabilistic values which satisfy anonymity (see Weber (1988)). We refer
to Monderer and Samet (2002) for a detailed discussion of probabilistic values.

Probabilistic values are formally defined as follows. Given N and i ∈ N , let P i
N denote

the set of probability distributions on 2N\{i}, the family of coalitions not containing i. A
value F (defined on GN ) is called a probabilistic value (Weber, 1988) if for every v ∈ GN

and i ∈ N

Fi(v) =
∑

T⊂N\{i}

pi(T ) (v(T ∪ {i})− v(T )) , (2)

for some pi ∈ P i
N for all i ∈ N . Here pi ∈ P i

N can be interpreted as the player’s subjective
evaluation of the probability of joining different coalitions. For example, the probabilistic
value which is defined by pi(T ) = 1

|N |
(|N |−1

|T |
)−1

for all i ∈ N is the Shapley value.
In the following two subsections we will discuss the extensions of the results obtained

for the Shapley value on quasi-values and on semi-values, respectively.
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4.1 Population Monotonic Path Schemes of Quasi-values

Let P(Π(N)) denote the set of probability distributions on the set of permutations of the
player set N . Given S ⊂ N and i ∈ S, we will denote by ΠS,i(N) the set

{τ ∈ Π(N)|τ(j) < τ(i) if and only if j ∈ S}.

The following characterization of quasi-values is provided by Weber (1988).

Theorem 4.1 (Weber (1988)) Let F be a probabilistic value as given in (2) defined by
p = {pi}i∈N with pi ∈ P i

N for every i ∈ N . Then F is a quasi-value if and only if there
exists b ∈ P(Π(N)) such that

pi(S) =
∑

τ∈ΠS,i(N)

b(τ) (3)

for every i ∈ N and S ∈ 2N\{i}.

Observe that probabilistic values are originally defined for a fixed player set. However,
our analysis requires the values to be defined on every subset of the player set under consid-
eration. Because, for every simple game, we want to be able to compare the payoffs assigned
by a value to the players at every subgame of the game.We now extend quasi-values in such
a way that the players’ subjective evaluation of the probability of joining different coalitions
will be consistent in the sense defined below. For this aim we will define the restrictions of
a probabilistic value to subgames.

Let F : GN → RN be a probabilistic value defined by {pi
N}i∈N where pi

N ∈ P i
N for every

i ∈ N . For each S ⊂ N , the restriction of F to GS is denoted by FS and for each player
i ∈ S, his restricted evaluations pi

S ∈ P i
S are constructed by using the following consistency

condition.

pi
S(T ) =

∑
T ′⊂N\S

pi
N (T ∪ T ′), (4)

for all T ⊂ S\{i}.
We first illustrate the notion of restrictions of a quasi-value in the following example.

Example 4.1 Let F be a probabilistic value on N = {1, 2, 3}. Assume that F is defined
by the following subjective evaluations of players.

p1
N ({2, 3}) = 5

16 , p1
N ({2}) = 1

16 , p1
N ({3}) = 4

16 and p1
N (∅) = 6

16 .
p2

N ({1, 3}) = 8
16 , p2

N ({1}) = 2
16 , p2

N ({3}) = 4
16 and p2

N (∅) = 2
16 .

p3
N ({1, 2}) = 3

16 , p3
N ({1}) = 4

16 , p3
N ({2}) = 1

16 and p3
N (∅) = 8

16 .
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F satisfies (3) by taking the following probability distribution on the set of permutations
on the player set:

b(123) = 2
16 , b(132) = 4

16 , b(213) = 1
16 , b(231) = 1

16 , b(312) = 4
16 , and b(321) = 4

16 .

Hence F is a quasi-value.
Now consider S = {1, 2}. According to (4), the restriction FS is defined by:

p1
S({2}) = 3

8 = p1
N ({2}) + p1

N ({2, 3}) and p1
S(∅) = 5

8 = p1
N (∅) + p1

N ({3}).
p2

S({1}) = 5
8 = p2

N ({1}) + p2
N ({1, 3}) and p2

S(∅) = 3
8 = p2

N (∅) + p2
N ({3}).

Notice that FS can be described via (3) by taking:

b(12) = 5
8 and b(21) = 3

8 .

So also FS is a quasi-value on GS . �

In the previous example, we have shown that the specific restriction under consideration
is again a quasi-value. Indeed, every restriction of a quasi-value is a quasi-value for the
corresponding subgame as shown in the following proposition.

Proposition 4.1 Let F be a quasi-value defined by {pi
N}i∈N where pi

N ∈ P i
N for every

i ∈ N . Then, FS is a quasi-value for every S ⊂ N , S 6= ∅.

Proof. By Theorem 4.1 there exists b ∈ P(Π(N)) such that pi
N (T ) =

∑
τ∈ΠT,i(N) b(τ).

Take S ⊂ N,S 6= ∅. Given τ ∈ Π(N), τ|S denotes the restriction of τ to S, i.e., τ|S = π for
some π ∈ Π(S) with π(i) < π(j) if and only if τ(i) < τ(j), for all i, j ∈ S. We can induce
a probability distibution c on Π(S) from b as follows.

c(π) =
∑

τ∈Π(N):τ|S=π

b(τ), for all π ∈ Π(S). (5)

Let FS be defined by {pi
S}i∈S as determined by (4). Pick i ∈ S and T ⊂ S\{i}. Obviously,⋃

T ′⊂N\S

Π(T∪T ′),i(N) =
⋃

π∈ΠT,i(S)

{τ ∈ Π(N)|τ|S = π} (6)

Notice that

Π(T∪T ′),i(N) ∩Π(T∪T ′′),i(N) = ∅ for every T ′, T ′′ ⊂ N\S with T ′ 6= T ′′

and

{τ ∈ Π(N)|τ|S = π} ∩ {τ ∈ Π(N)|τ|S = π′} = ∅ for every π, π′ ∈ ΠT,i(S) with π 6= π′.

12



Then,

pi
S(T ) =

∑
T ′⊂N\S

pi
N (T ∪ T ′)

=
∑

T ′⊂N\S

∑
τ∈Π(T∪T ′),i(N)

b(τ)

=
∑

π∈ΠT,i(S)

∑
τ∈Π(N):τ|S=π

b(τ)

=
∑

π∈ΠT,i(S)

c(π)

where the first equality follows from (4) and the last but one equality follows from (6) and
the remarks below it. Then, Theorem 4.1 implies that FS is a quasi-value on GS . �

Having defined the restrictions of a quasi-value, we can now illustrate the path schemes
associated with these values in the following example.

Example 4.2 Consider the quasi-value F defined in Example 4.1 and let v ∈ SN with
N = {1, 2, 3} be defined by MWC(v) = {{1, 2}, {2, 3}}. From Table 2 it can easily be
observed that this balanced game has two population monotonic F -path schemes related to
the paths {{1},{1,3},N} and {{3},{1,3},N}. �

Coalition Player 1 Player 2 Player 3

{1} 0 - -
{2} - 0 -
{3} - - 0
{1,2} 3

8
5
8 -

{1,3} 0 - 0
{2,3} - 6

8
2
8

N 1
16

14
16

1
16

Table 2: The restrictions of F for v and its subgames in Example 4.2

The following theorem states that the results for population monotonic Shapley path
schemes in fact can be extended to quasi-values which are defined by strictly positive sub-
jective evaluations of joining different coalitions for each player.
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Theorem 4.2 Let F : GN → RN be a quasi-value defined by {pi
N}i∈N with pi

N > 0 for all
i ∈ N . Then

(1) A simple game v ∈ SN has a population monotonic F -path scheme if and only if v

is balanced.
(2) Let v be balanced. Then a path S of v has a population monotonic F -path scheme if

and only if the first winning coalition along S contains every minimal winning coalition of
v.

(3) All F -path schemes of v are population monotonic if and only if the set of veto
players of v is a winning coalition.

The proof of Theorem 4.1 is similar to the proofs of Theorems 3.1, 3.2 and 3.3, respec-
tively and is therefore omitted.

It is important at this point to observe that if for a quasi-value F , pi
N (S) = 0 for some

S ⊂ N , and i ∈ N\S, then an unbalanced simple game may have population monotonic
F -path schemes. This is illustrated in Example 4.3.

Example 4.3 Let N = {1, 2, 3}. Let F be the quasi-value determined by

p1
N (S) =

1
4

for all S ⊂ N\{1}; p2
N (S) =

1
4

for all S ⊂ N\{2} and

p3
N ({1, 2}) = p3

N (∅) =
1
2
, p3

N ({1}) = p3
N ({2}) = 0.

Consider v ∈ SN defined by MWC(v) = {{1, 2}, {1, 3}, {2, 3}}. Clearly veto(v) = ∅. Then v

has population monotonic F -path schemes on the paths {{1}, {1, 2}, N} and {{2}, {1, 2}, N}
as can be seen in Table 3. �

Coalition Player 1 Player 2 Player 3

{1} 0 - -
{2} - 0 -
{3} - - 0
{1,2} 1

2
1
2 -

{1,3} 1
2 - 1

2

{2,3} - 1
2

1
2

N 1
2

1
2 0

Table 3: The restrictions of F for v and its subgames in Example 4.3
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4.2 Population Monotonic Path Schemes of Semi-values

In this section, we will focus on one particular, well-known semi-value, the Banzhaf value
(Banzhaf, 1965). Given v ∈ GN , the Banzhaf value β assigns to player i ∈ N

βi(v) =
∑

S⊂N\{i}

1
2|N |−1

(v(S ∪ {i})− v(S)) .

It can easily be observed that the Banzhaf value is defined for every finite player set, and
in particular also for all subgames of a specific game. In fact, every semi-value is defined
for every finite player set, and hence for all subgames of a specific game. Moreover, the
restriction of a semi-value obtained by using the consistency condition (4) boils down to
the definition of the same semi-value for the corresponding subgame. This can be readily
verified from the characterization of semi-values on TU-games with finite support provided
by Dubey et al. (1981).

For population monotonic Banzhaf path schemes the situation essentially differs from
the population monotonic Shapley path schemes. This is illustrated in examples 4.4 and 4.5.

Example 4.4 Let N = {1, 2, 3} and v ∈ SN be defined by MWC(v) = {{1, 2}, {1, 3}, {2, 3}}.
The Banzhaf value of v and its subgames are provided in the table below.

Coalition Player 1 Player 2 Player 3

{1} 0 - -
{2} - 0 -
{3} - - 0
{1,2} 1

2
1
2 -

{1,3} 1
2 - 1

2

{2,3} - 1
2

1
2

N 1
2

1
2

1
2

Table 4: The Banzhaf value of v and its subgames in Example 4.4

Notice that v is not balanced since veto(v) = ∅ but that every Banzhaf path scheme of
v is population monotonic. �

Example 4.5 Let N = {1, 2, 3, 4} and consider the simple game v ∈ SN defined by
MWC(v) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. Clearly, v is balanced. The Banzhaf value of

15



v and its subgames are provided in Table 5. The Banzhaf values of the subgames corre-
sponding to losing coalitions are omitted. Then, every Banzhaf path scheme is population

Coalition Player 1 Player 2 Player 3 Player 4

{1,2,3} 1
4

1
4

1
4 -

{1,2,4} 1
4

1
4 - 1

4

{1,3,4} 1
4

1
4 - 1

4

N 1
2

1
4

1
4

1
4

Table 5: The Banzhaf value of v and its subgames in Example 4.5

monotonic although the set of veto players of v is a losing coalition. Secondly, there are
path schemes of v, like the one related to path {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}, which are
population monotonic but the first winning coalition along these paths does not contain the
union of minimal winning coalitions v. �

The results for population monotonic Shapley path schemes can be extended only partly
to the Banzhaf value. This is reflected in Theorem 4.3.

Theorem 4.3 Let v ∈ SN be balanced.
(1) If the first winning coalition along a path S contains every minimal winning coalition

of v, then the path scheme of S has a population monotonic Banzhaf-path scheme.
(2) If the set of veto players of v is a winning coalition, then all Banzhaf-path schemes

of v are population monotonic.

The proof of Theorem 4.3 is similar to the corresponding parts of the proofs of Theorems
3.2 and 3.3, respectively and is therefore omitted.

By making use of the characterization of semi-values provided by Dubey et al. (1981),
one can show that Theorem 4.3 can be extended to every semi-value.
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