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Share Opportunity Sets and Cooperative
Games

E. Caprari 1, F. Patrone 2, L. Pusillo 3, S. Tijs 4, A. Torre5

Abstract
In many share problems there is a priori given a natural set of possible divi-
sions to solve the sharing problem. Cooperative games related to such share
sets are introduced, which may be helpful in solving share problems. Relations
between properties of share sets and properties of games are investigated. The
average lexicographic value for share sets and for cooperative games is studied.

KEYWORDS: Cooperative games, bankruptcy games, average lexico-
graphic value, opportunity sets.

JEL code C71

1 Introduction

Inspiration for this work came from the bankruptcy literature (Thomson [T])
on bankruptcy problems and games. In their famous paper [AM] Aumann
and Maschler considered the bankruptcy situations described in the Talmud,
where the proposals for dividing the estate were for centuries a mystery. For
understanding the Talmudic rule, the cooperative games related to share
opportunity sets of the bankruptcy problems are helpful. Surprisingly the
nucleolus of the cooperative bankruptcy games was the key for understanding
the Talmudic examples.

Share opportunity sets can arise from many other practical situations,
such as taxation problem or the airport landing fee problem, where coopera-
tive games which may be helpful in giving a reasonable solution for the share
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problems can be also constructed.
In this paper we make a systematic study of the interaction between share
opportunity sets and related cooperative games. The average lexicographic
vector for share sets and the average lexicographic value for balanced co-
operative games [Ti] will also play a role. It turns out that the average
lexicographic vector for bankruptcy share opportunity sets, coincides with
the run to the bank rule discussed in O’Neill [O’N].

The outline of the paper is as follows. Section 2 is devoted to preliminaries
and notations. In section 3, share opportunity sets are introduced and exam-
ples of situations from which such share opportunity sets naturally arise are
given. Furthermore continuity properties of the average lexicographic vector
are studied. In section 4, we introduce operators which associate to share
opportunity sets cooperative games. Special attention is paid to perfect op-
portunity sets which coincide with the core of related minimum right games.
In section 5 we tackle the question which properties of share opportunity sets
guarantee that the corresponding minimum right game is of a special type
e.g. convex, big boss, simplex or dual simplex game. In section 6 we propose
a method to extend classical concepts of solutions for TU-games to balanced
partially defined games.

2 Preliminaries and notations

An n-person cooperative game ([O]) 〈N, v〉 with player set N = {1, 2, ..., n}
is a map v : 2N −→ R with v(∅) = 0, where 2N is the collection of subsets of
N . Let us denote with GN the set of all n-person cooperative games.

Given the game 〈N, v〉, its dual 〈N, v∗〉 is the game defined by v∗ (S) =
v (N)−v (N\S) , S ⊆ N. Let F ⊆ 2N such that ∅ ∈ F , {i} ∈ F for all i ∈ N
and N ∈ F .

An n-person F -partially defined game (or simply partially defined game)
〈N, v,F〉 is a map v : F −→ R with v(∅) = 0. If v is a partially defined
game, the partial core CF(v) is the bounded polyhedral set

CF(v) = {x ∈ Rn | x(N) = v(N), x(S) ≥ v(S) for each S ∈ F},

where x(S) = Σi∈Sxi. If v is a game, C2N (v) = C(v) is the core of v. Games
with non empty core are called balanced games, while partially defined games
with nonempty partial core are called partially balanced games. The dual
core of 〈N, v〉 is the set C∗ (v) = {x ∈ Rn | x(N) = v(N), x(S) ≤
v(S) for each S ∈ 2N}.
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The imputation set of 〈N, v〉 is the set

I (v) =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

xi = v (N) , xi ≥ v ({i})∀i ∈ N

}
,

and the dual imputation set is

I∗ (v) =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

xi = v (N) , xi ≤ v∗ ({i})∀i ∈ N

}
.

Note that

C (v∗) = C∗ (v) .

Given x ∈ Rn, we denote with x−j the vector belonging to Rn−1 obtained
from x by deleting its j − th coordinate.

A game 〈N, v〉 is called:

• a monotonic game if v(S) ≤ v(T ) for all S ⊆ T ;

• a convex game if v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ) for all
S ⊆ T ⊆ N \ {i};

• a simplex game if I(v) = C(v);

• a dual simplex game if I∗(v) = C(v);

• a big boss game (BBG for short) with big boss 1 if:
1) v(S) = 0 if 1 6∈ S;
2) v is monotonic;
3) v(N)− v(N \ S) ≥ Σi∈S(v(N)− v(N \ {i})) if 1 6∈ S.

• an exact game if the core C(v) of 〈N, v〉 is nonempty and for every
S ⊆ N there exists x ∈ C(v) such that x(S) = v(S) (see [S]).

Given a balanced game 〈N, v〉, its exactification is the game 〈N, v̄〉 with
v̄(S) = minx∈C(v) x(S) for each S ∈ 2N .

Given an ordering σ = (σ(1), σ(2), ..., σ(n)) in N and a compact subset
A of Rn, the Lexicographic maximum of A with respect to σ is the vector
Lσ(A) ∈ A such that:
- (Lσ(A))σ(1) = max{xσ(1) | x ∈ A},
- (Lσ(A))σ(2) = max{xσ(2) | x ∈ A , xσ(1) = (Lσ(A))σ(1)},
.
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.

.
- (Lσ(A))σ(n) = max{xσ(n) | x ∈ A , (xσ(1), ..xσ(n−1)) =

= ((Lσ(A))σ(1), ..(L
σ(A))σ(n−1))}.

The Average Lexicographic maximum AL(A) of A is the average
over all Lσ(A) i.e. AL(A) = 1

n!
Σσ∈Π(N)L

σ(A), where Π(N) denotes the set
of all possible orderings in N . Given a balanced game 〈N, v〉, we denote by
AL(v) the vector AL(C(v)) (see Tijs in [Ti]).

3 Share opportunity sets and share problems

Let α ∈ R and Hα = {x ∈ Rn | x(N) = α}. Let Kn
α the family of all

compact subsets of Hα and

Kn = ∪α∈RKn
α.

Definition 1 We call each D ∈ Kn share opportunity set (SOS) .

For each D ∈ Kn
α, the corresponding share problem is the problem of

dividing α among 1, 2, ..., n, where D is the set of all possible allocations.

Definition 2 Let F ⊆ 2N be such that ∅ ∈ F , {i} ∈ F for every i ∈ N and
N ∈ F . We say that D ⊆ Hα has a perfect structure if for all S ∈ F
there exists βS ∈ R such that

D =
⋂
S∈F

{x ∈ Rn | x (S) ≥ βS}.

Remark 1 If D has a perfect structure, then it belongs to Kn and

D =
⋂

S∈2N

{x ∈ Rn | x (S) ≥ βS},

where βS = min{x(S) | x ∈ D} if S 6∈ F .

Let

Pn
α= {D ∈ Kn

α | D has a perfect structure}
and

Pn = ∪α∈RPn
α .

Here we describe some examples of share opportunity sets related to well-
known problems and games .
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Example 1 (Bankruptcy Problem) ([AM]) Consider

N = {1, 2, ..., n}, d ∈ Rn
+ , E ∈ R+ s.t. 0 ≤ E ≤

∑
i∈N

di;

the bankruptcy problem associated to (N, d,E) is the problem of finding a
point in the share set D = {x ∈ Rn | 0 ≤ xi ≤ di ∀i ∈ N, Σi∈Nxi = E}.
In this case D represents the set of all possible agreements among 1, 2, ...n.

Example 2 (Airport landing strip Problem) ([LT]) Let N = {1, 2, 3}
and consider the airport problem such that the costs of parts of the landing
strip are as follows:

s s s s
P Q R Sc1 c2 c3

and where the first player needs the part PQ of the landing strip, the second
one needs the part PR of the landing strip and the third one needs the whole
landing strip PS. Then the share set is

D = {x ∈ Rn | 0 ≤ x1 ≤ c1, 0 ≤ x2 ≤ c1 + c2,

0 ≤ x1 + x2 ≤ c1 + c2, x1 + x2 + x3 = c1 + c2 + c3},

that represents the set of all possible agreements among 1, 2, 3 in order to
divide the cost of the landing strip.

Example 3 Let N = {1, 2, 3}. D = {(2, 0, 1), (1, 2, 0), (0, 1, 2)} is a share
set with α = 3. In this case also the smallest convex set containing D is a
share set.

Example 4 Given a balanced game 〈N, v〉, we can consider the share prob-
lem related to the core of 〈N, v〉.

Here D = C(v) and α = v(N).

Example 5 Given a partially balanced game 〈N, v,F〉 we can consider the
share problem related to CF(v).

Here D = CF(v) and α = v(N).

A solution φ for share problems with share α is a rule that associates to
every D ∈ Kn

α a point φ(D) ∈ Hα. Here φ(D) represents the chosen share
division of the share α. Let us consider the following solutions:
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• Lσ : Kn → Rn that associates to each D ∈ Kn the vector Lσ(D) ∈ D.
This is a natural solution if there is a fixed ordering σ of the players;

• AL : Kn → Rn that associates to each D ∈ Kn the vector AL(D).
This is a natural solution if we want to avoid discrimination among
1, 2, ..., n. AL(D) ∈ D whenever D is convex.

We endow Kn with the Hausdorff topology ([KT]) in order to study continuity
properties of Lσ and AL on Kn. Let A ∈ Kn. We denote with arg max(A)
the arg max{xσ(1) | x ∈ A}. The following lemma is an easy consequence of
Berge’s theorem (see [B] pag. 122).

Lemma 1 The multifunction arg max : Kn ⇒ Rn that associates to each
A ∈ Kn the set arg max(A) is upper semicontinuous.

In spite of its upper semicontinuity, arg max is not continuous on Kn and
Lσ and AL are not continuous either, as it is shown in the folowing remark.
On the other hand, we have continuity on Pn: see Theorem 1.

Remark 2 Lσ and AL are not continuous on Kn w.r.t. the Hausdorff topol-
ogy, as we illustrate in the following. Let σ = (1, 2, 3), A = co{(1

2
, 1

2
, 0), (1

2
, 0, 1

2
)}

and Ak = co{(1
2
, 1

2
, 0), (1

2
+ 1

k
, 0, 1

2
− 1

k
)}, for

k ∈ N. The sequence {Ak}k∈N converges to A w.r.t. the Hausdorff topology,
but limk→∞ Lσ(Ak) = limk→∞(1

2
+ 1

k
, 0, 1

2
− 1

k
) = (1

2
, 0, 1

2
) 6= (1

2
, 1

2
, 0) = Lσ(A)

and limk→∞AL(Ak) = limk→∞(1
2

+ 2
3k
, 1

6
, 1

3
− 2

3k
) = (1

2
, 1

6
, 1

3
) 6= (1

2
, 1

4
, 1

4
) =

AL(A).

To prove continuity of Lσ and AL on Pn, we use the following lemma:

Lemma 2 The multifunction arg max : Pn ⇒ Rn is lower semicontinuous
on Pn.

Proof The lower semicontinuity of arg max on Pn follows directly from The-
orem 4.3.5 pag 70 of [BGKKT]. It is enough to notice that linear functions
belong to the class of “weakly analytic” functions, as defined in [BGKKT].
2

Theorem 1 Lσ and AL are continuous on Pn.

Proof In lemma 1 and 2 we noticed that arg max is upper and lower semi-
continuous in Pn, so it is continuous. If A ∈ Pn, then the set

Aσ(1) =
{
x−σ(1) |x ∈ arg max(A)

}
belongs to Pn−1. By lemma 1 and 2 , the multifunction arg maxσ(2) : Pn−1 ⇒
Rn−1 that associates to Aσ(1) the arg max{xσ(2) | x ∈ arg max(Aσ(1))} is
continuous on Pn−1. Repeating these arguments we prove continuity of Lσ.
As AL(A) is the average of all Lσ(A), also AL is continuous on Pn. 2
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4 Operators from share opportunity sets to

cooperative games

Let us consider the operators m, u : Kn → GN , defined by

m(D)(S) = min{x (S) | x ∈ D},

u(D)(S) = max{x (S) | x ∈ D},
for each D ∈ Kn, S ⊆ N , N = {1, 2, ..., n}.

Definition 3 We call the game 〈N,m(D)〉 the minimal right game re-
lated to D.

Definition 4 We call the game 〈N, u(D)〉 the utopia game related to D.

Note that m(D) = (u(D))∗ and C(m(D)) = C∗ (u(D)) .

Remark 3 The game m(D) is superadditive and the game u(D) is subad-
ditive since, if S ∩ T = ∅, then by definition m(D)(S ∪ T ) ≥ m(D)(S) +
m(D)(T ), while u(D)(S ∪ T ) ≤ u(D)(S) + u(D)(T ).

Theorem 2 Suppose D ∈ Kn. The following conditions are equivalent:
a) D is the core of a partially defined game;
b) D ∈ Pn;
c) D = C(m(D)).

Proof It is obvious that c =⇒ a =⇒ b. Then it is sufficient to prove that
b =⇒ c. Suppose D ∈ Pn. Note that x ∈ D if and only if for every S ⊆ N ,
we have x (S) ≥ min{x (S) | x ∈ D} = m(D)(S) and x(N) = m(D)(N). 2

Definition 5 Let D ∈ Kn
α. The perfect closure pc(D) of D is the set

pc(D) = ∩T∈Pn
α
{T | T ⊇ D}.

Note that for each D ∈ Kn
α there is at least one E ∈ Pn

α with E ⊇ D.

Theorem 3 Let D ∈ Kn
α. Then

a) pc(D) = C(m(D));
b) pc(D) is the smallest set in Pn that contains D.

Proof a) pc(D) = ∩T∈Pn
α
{T | T ⊇ D} = ∩{C(m(T )) | T ⊇ D} =

C(m(D)) where the second equality follows from theorem 2.
b) Note that b) follows from the facts that pc(D) ⊇ D and pc(D) = C(m(D)) ∈
Pn

α . 2
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Theorem 4 The game m(D) is an exact game.

Remark 4 If D has a perfect structure then m(D) is the unique exact game
such that C (m(D)) = D.

Remark 5 In general m is not injective even if we consider only convex
sets. For example, take D convex such that C(m(D)) ) D. In this case
m(D) = m(C(m(D))).

Proposition 1 The restriction of m to Pn, i.e. m : Pn → GN , is injective.

Proof Take D1, D2 ∈ Pn with D1 6= D2. Suppose by contradiction that
m (D1) = m (D2). Then C (m(D1)) = C (m(D2)). By theorem 2, C (m(Dj)) =
Dj. This implies D1 = D2. 2

Proposition 2 m is continuous on Kn.

Proof We must prove that Dk
H→ D implies m (Dk) (S) → m (D) (S) for all

S ⊂ N , where
H→ means convergence with respect to the Hausdorff topology.

This is a consequence of Berge’s maximum theorem (see [B], pag 122). 2

Remark 6 Remark 5 and propositions 1 and 2 hold also for the operator u.

Remark 7 The function pc : Kn −→ Pn that associates to each D ∈
Kn

α the perfect closure pc(D) = C(m(D)) is continuous with respect to the
Hausdorff topology. In fact, it is a composition of continuous functions (see
proposition 2 and [LPTT]). The functions φ, ψ : Kn 7−→ R defined as φ(D) =
AL((m(D)) and ψ(D) = Lσ(m(D)) are also continuous for each D ∈ Kn

α.

Remark 8 In general AL(D) 6= AL(m(D)). For example, D = {(x, y, z) |
x + y + z = 1, x, y, z ≥ 0, y − z ≤ 0} has not a perfect structure and
AL(D) = (2

6
, 1

6
, 3

6
) 6= ( 5

12
, 1

6
, 5

12
) = AL(m(D)).

Kn is a convex cone with respect to the Minkowski sum and the scalar
product. On Kn are also defined intersection, union and inclusion. We are
interested in the behavior of m and u with respect to these operations.

Proposition 3 Let D1 ∈ Kn
α and D2 ∈ Kn

β and λ ∈ R+ ∪ {0} . Then:
a) D1 + D2 ∈ Kn

α+β and m(D1 +D2) = m(D1) + m(D2), u(D1 +D2) =
u(D1) + u(D2);
b) λD1 ∈ Kn

λα and m(λD1) = λm(D1), u(λD1) = λu(D1);
c) −D1 ∈ Kn

−α and m(−D1) = −u(D1).

8



Let us set m(D1)∧m(D2) = min {m(D1),m(D2)} and m(D1)∨m(D2) =
max {m(D1),m(D2)} .

Proposition 4 Let D1, D2 ∈ Kn
α. Then

a) m(D1 ∪D2) = m(D1) ∧m(D2), u(D1 ∪D2) = u(D1) ∨ u(D2);
b) m(D1 ∩D2) ≥ m(D1) ∨m(D2), u(D1 ∩D2) ≤ u(D1) ∧ u(D2).

Remark 9 Observe that even if D1, D2 ∈ Pn not necessarily m(D1 ∩D2) =
m(D1) ∨ m(D2). For example take D1 = co{(1, 0, 0), (0, 1, 0)} and D2 =
co{(0, 0, 1), (0, 1, 0)}. In this case m(D1 ∩D2)({2}) = 1 > m(D1)({2}) =
m(D2)({2}) = 0

5 Properties of share opportunity sets and

related games

Now we study relationships between properties of share sets D and those of
the games m(D), and u(D). From now on we consider D ∈ Kn.

5.1 Monotonic games

Proposition 5 m(D) is monotonic if and only if for all i ∈ N

minx∈Dxi ≥ 0. (1)

Proof If (1) holds then m(D) (T ) ≥ m(D) (S) when S ⊂ T, because we add
nonnegative elements to x (S) in calculating m(D) (T ) . Suppose that m(D)
is monotonic and suppose that there exists i s.t.

minx∈Dxi < 0. (2)

Then we have that

m(D) (∅) = 0 > m(D)
(
i
)
> 0

which implies that the game is not monotonic. 2

5.2 Simplex and dual simplex games

Let us set

ai = (ai
1, a

i
2, ..., a

i
n),

bi = (bi1, b
i
2, ..., b

i
n),
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where

ai
j = min{xj | x ∈ D}, j ∈ N \ {i},
ai

i = α− Σk∈N\{i}a
i
k,

bij = α−min{Σk∈N\{j}xk | x ∈ D}, j ∈ N \ {i},
bii = α− Σk∈N\{i}b

i
k.

• We say that property P i(D) is satisfied if ai ∈ D;

• We say that property Qi(D) is satisfied if bi ∈ D.

Theorem 5 Given i ∈ N , we have that ai ∈ C(m(D)) if and only if ai ∈ D
and bi ∈ C(m(D)) if and only if bi ∈ D.

Proof We present the proof only for ai. (⇐=) holds because D ⊆ C(m(D)).
Now we prove (=⇒).

Note that ai is the unique point in I(m(D)) where x(N \ {i}) is minimal.
As ai ∈ C(m(D)) it is also unique in C(m(D)).

Further, m(D)(N \ {i}) = Σj∈N\{i}a
i
j because m(D) is exact and so there

exists x̂ ∈ D ⊆ C(m(D)) such that x̂(N \ {i}) = Σj∈N\{i}a
i
j. Due to the

uniqueness of this minimal point in C(m(D)) we have that x̂ = ai, so ai ∈ D.
2

Now we give conditions on D in order to have that m(D) is a simplex
game.

Theorem 6 The game m(D) is a simplex game if and only if the property
P i(D) holds for each i ∈ N .

Proof We must prove that I (m(D)) ⊂ C (m(D)) ⇐⇒ ∀i ∈ N , P i(D) holds.
Suppose that for all i ∈ N , P i(D) holds. Take x̂ ∈ I (m(D)) . We must

prove that x̂ ∈ C (m(D)) , i.e. for all S ⊂ N ,
∑

j∈S x̂j ≥ m(D) (S) =

min
{∑

j∈S xj |x ∈ D
}
. If S = N the equality holds because

∑n
j=1 x̂j =

m(D) (S) = α. Consider then a coalition S ( N and let us take ai ∈ D with
i /∈ S. Then, by definition, ai ∈ C (m(D)) because

∑
j∈S a

i
j = m(D) (S) =

min
{∑

j∈S xj |x ∈ D
}
. As x̂j ≥ ai

j for all j ∈ S, it must be
∑

j∈S x̂j ≥
m(D) (S) , that is x̂ ∈ C (m(D)) . As property P i(D) holds for all i ∈ N,
then I (m(D)) ⊂ C (m(D)).

Suppose now that I (m(D)) = C (m(D)) . By definition, ai belongs to
I(m(D)) and then also to C(m(D)). Then ai ∈ D by theorem 5, and so
property P i(D) holds for all i ∈ N . 2

The following theorem can be proved using arguments similar to the ones
of the previous theorem.
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Theorem 7 m(D) is a dual simplex game if and only if for each i ∈ N
Qi(D) holds.

5.3 Big boss games

Let us consider now a characterization of big boss games. Let us consider the
family MGN of all n-person monotonic games. Given v ∈MGN , in [MNPT]
Muto et al. defined the set

H (v) = {x ∈ Rn | x(N) = v(N), 0 ≤ xi ≤Mi, for all i = 2, ..., n} ,

where Mi = v(N)− v(N \ {i}), and then they proved the following theorem.

Theorem 8 If v belongs to MGN , then v is a big boss game with big boss 1
if and only if

H(v) = C(v).

For share opportunity sets the following theorem holds.

Theorem 9 Let D ∈ Kn satisfying

minx∈Dxi = 0 for every i 6= 1. (3)

Then H(m(D)) = C(m(D)) if and only if

a1 = (α, 0, 0, ...0) ∈ D,
b1 = (α− (M2 + ...+Mn),M2, ...,Mn) ∈ D.

Proof Suppose that H(m(D)) = C(m(D)). By definition of H(m(D)),
a1, b1 ∈ H(m(D)) = C(m(D)) and then , by theorem 5, a1, b1 ∈ D.
Now suppose that a1, b1 ∈ D ⊆ C(m(D)). We must prove that H(m(D)) =
C(m(D)). Let x ∈ H(m(D)). If we take a coalition S such that 1 /∈ S, then
a1 ∈ D implies m(D)(S) ≤ 0 , while (3) implies m(D)(S) ≥ 0 and then
m(D)(S) = 0. This means x(S) ≥ m(D)(S). If we take a coalition S such
that 1 ∈ S, as b1 ∈ D, we have that

m(D)(S) ≤ α− Σi∈N\SMi. (4)

As x ∈ H(m(D)), Σi∈N\Sxi ≤ Σi∈N\SMi, and then α = Σi∈Nxi ≤ Σi∈Sxi +
Σi∈N\SMi. By (4) Σi∈Sxi ≥ α − Σi∈N\SMi ≥ m(D)(S). So, x ∈ C(m(D)).
Suppose now x ∈ C(m(D)). If i 6= 1, then by (3) we have xi ≥ m(D)({i}) =
0, and as m(D)(N\{i}) ≤ Σj 6=ixj, we have xi = α−Σj 6=ixj ≤ α−m(N\{i}) =
Mi, that is x ∈ H(m(D)). 2

For share opportunity sets and related big boss games we have the fol-
lowing characterization.

11



Theorem 10 Let D ∈ Kn satisfy condition (3). Then m(D) is a big boss
game with big boss 1 if and only if P 1 (D) and Q1 (D) hold.

Proof Theorem 5 and condition (3) assure that m(D) is monotonic and so
it is possible to use theorem 8. If P 1 (D) and Q1 (D) hold, then a1, b1 ∈ D
and m(D) is a big boss game by theorems 9 and 8. Suppose now that
m(D) is a big boss game with 1 as big boss. Then, by theorems 8 and 9,
H(m(D)) = C(m(D)) and a1, b1 must belong toD, that is P 1 (D) and Q1 (D)
hold. 2

5.4 Convex games

Let σ = (σ(1), ..., σ(n)) be an ordering inN and let σ̄ = (σ(n), σ(n− 1), ..., σ(1))
be the reverse ordering of σ. GivenD ∈ Kn, we define rσ (D) = (rσ(1), ..., rσ(n))
by

rσ(k) =


min

{
xσ(1) |x ∈ D

}
k = 1

min
{∑k

j=1 xσ(j) |x ∈ D
}
−min

{∑k−1
j=1 xσ(j) |x ∈ D

}
k = 2, ...n

Remark 10 Note that

rσ (D) ∈ arg min
{
xσ(1) |x ∈ D

}
,

rσ (D) ∈ arg min
{
xσ(1) + xσ(2) |x ∈ D

}
,

.

.

.

rσ (D) ∈ arg min
{
xσ(1) + xσ(2)...+ xσ(n) |x ∈ D

}
.

• We say that property Rσ (D) is satisfied if rσ (D) ∈ D.

Theorem 11 If for all σ ∈ Π (N) property Rσ (D) is satisfied, then m(D)
is convex.

Proof Suppose that rσ (D) ∈ D for all σ ∈ Π (N). Then, we must prove
that m(D) is convex, i.e for all S ⊂ T ⊂ N r {i}

m(D) (T ∪ {i})−m(D) (T ) ≥ m(D) (S ∪ {i})−m(D) (S) .

12



Choose an ordering σ of the form (S, T r S, i,N r (T ∪ {i})) , which
means that players in S enter first, then the players in T \ S followed by
player i. Then rσ (D) = x̂ ∈ D and

min

 ∑
j∈T∪{i}

xj |x ∈ D

−min

{∑
j∈T

xj |x ∈ D

}
=

∑
j∈T∪{i}

x̂j −
∑
j∈T

x̂j = x̂i,

and if we choose an ordering σ′ of the form (S, {i}, T r S,N r (T ∪ {i})) ,
then rσ′ (D) = x̂′ ∈ D and

min

 ∑
j∈S∪{i}

xj |x ∈ D

−min

{∑
j∈S

xj |x ∈ D

}
=

∑
j∈S∪{i}

x̂′j −
∑
j∈S

x̂′j = x̂′i

with x̂′i ≤ x̂i. 2

The converse doesn’t hold as we can see in the following example.

Example 6 Let D = {(2, 1, 0), (0, 2, 1), (1, 0, 2)}. In this case, m(D) ({1, 2, 3}) =
3,m(D) ({1, 2}) = m(D) ({2, 3}) = m(D) ({1, 3}) = 1,m(D) ({1}) = m(D) ({2}) =
m(D) ({3}) = 0. m(D) is convex but r(1,2,3)(D) = (0, 1, 2) 6∈ D.

Theorem 12 Let D ∈ Pn be such that m(D) is a convex game. Then Rσ (D)
holds for all σ ∈ Π (N).

Proof As in this case C(m(D)) = D, we have

rσ (D) = Lσ (C (m(D))) ∈ C(m(D)) = D.

2

Corollary 1 Suppose that D ∈ Pn. Then m(D) is convex if and only if for
all σ ∈ Π (N), Rσ (D) holds.

6 Partially defined games

Consider a partially balanced game 〈N, v,F〉. The partial core CF(v) of this
partially balanced game is a set with a perfect structure and it is possible
to define the minimum right game associated to CF(v) as m(CF(v)). Hence,
if γ is a solution defined for cooperative games, we can extend this solution
to partially balanced games as follows. If 〈N, v,F〉 is a partially balanced
game, then γ(〈N, v,F〉) = γ(m(CF(v))). In particular, if we consider the
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definition of Lσ and AL given by Tijs in [Ti], we can extend such definitions
to partially balanced games. In section 3 we gave the definition of AL and
Lσ also for subsets of Rn and we proved their continuity with respect to the
Hausdorff topology on Pn.

Like any partially balanced game 〈N, v,F〉, CF(v) is a set with a perfect
structure, then AL and Lσ are continuous. More precisely, the following
theorems hold.

Theorem 13 Let BGN be the set of balanced n-person games. Let 〈N, vk〉,
k = 1, 2, ... be a sequence of games converging to 〈N, v〉 (i.e. vk(S) converges
to v(S) for every S ∈ 2N). Then Lσ(〈N, vk〉) converges to Lσ(〈N, v〉) and
AL(〈N, vk〉) converges to AL(〈N, v〉).

Theorem 14 Let BGN
F be the set of partially balanced n-person games. Let

〈N, vk,F〉 k = 1, 2, ... be a sequence of partially balanced games converg-
ing to 〈N, v,F〉. (i.e. vk(S) converges to v(S) for every S ∈ F). Then
Lσ(〈N, vk,F〉) converges to Lσ(〈N, v,F〉) and AL(〈N, vk,F〉) converges to
AL(〈N, v,F〉).

7 Concluding remarks

Each share opportunity set gives rise to a minimum right game and a utopia
game. For the subclass of perfect share opportunity sets (i.e. opportunity
sets with a perfect structure) the relation between share opportunity sets
and the corresponding games is a continuous relation and also the lattice
structures on share opportunity sets and on games fit nicely.

For bankruptcy games the minimum right games are convex games and
the utopia games are concave games. Further the average lexicographic value
coincides with with run to the bank rule and the Shapley value.

For airport games, the corresponding games are concave and convex re-
spectively. Further the average lexicographic value coincides with the Shapley
value of the airport game.

Acknowledgement. We thank Rodica Branzei for her detailed and insight-
ful comments on a previous version of the paper.
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