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Abstract

We establish a discrete multivariate mean value theorem for the class of positive
maximum component sign preserving functions. A constructive and combinatorial
proof is given based upon a simplicial algorithm and vector labeling. Moreover, we
apply this theorem to a discrete nonlinear complementarity problem and an economic
equilibrium problem with indivisibilities and show the existence of solution in both
problems under certain mild conditions.
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1 Introduction

Fixed (or zero) point theorems are fundamental tools for establishing the existence of

solution to nonlinear problems in various fields including mathematics, economics and

engineering. The most well-known fixed point theorem is the Brouwer theorem, stating
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that any continuous function mapping from an n-dimensional unit ball to itself has a fixed

point. Among many extensions, Kakutani’s theorem generalizes the Brouwer theorem from

a single-value function to point-to-set mappings and together with the Brouwer theorem

has been widely used in the economic literature. Starting with Scarf (1967), simplicial

algorithms have been developed, which can effectively find an approximate fixed point

of any priori given accuracy in a finite number of steps, and lead to constructive proofs

to many fundamental fixed point theorems including Brouwer’s and Kakutani’s. More

importantly, these algorithms can be used to solve many practical problems that actually

require the location of a solution. Efficient simplicial algorithms can be found in Eaves

(1972), Eaves and Saigal (1972), Merrill (1972), van der Laan and Talman (1979, 1981),

Reiser (1981), Saigal (1983), Freund (1984), and Yamamoto (1984) among others. For a

background on the subject, one may consult with Allgower and Georg (1990), Todd (1976),

and Yang (1999).

This paper is concerned with the existence of an integral solution to the system of

nonlinear equations

f(x) = 0n,

where 0n is the n-vector of zeros, f is a nonlinear function from Zn to IRn, and Zn is the

set of integer vectors in the n-dimensional Euclidean space IRn. An integral solution x∗ is

called a discrete zero point of f and the problem is called the discrete zero point problem.

Obviously, this problem is equivalent to the discrete fixed point problem of the function

g(x) = f(x) + x. While many fixed point theorems such as Brouwer’s or Kakutani’s

concern continuous or upper semi-continuous mappings defined on a nonempty convex

and compact set, the current problem concerns functions whose domain is a discrete set

rather than a convex set and which do not possess any kind of continuity or upper semi-

continuity. The major motivation of studying the current discrete problem comes from

the recent studies on exchange economies with indivisible goods and broadly speaking on

models with discrete variables in the area of economics.

The study of the discrete zero point problem dates back to Tarski (1955). He shows

that a weakly increasing function mapping from a finite lattice into itself has at least one

fixed point. Somehow surprisingly, this result has long been the only prominent fixed

point theorem having a discrete nature, in contrast to the rich literature on fixed point

theorems of continuous nature. Recently, progress has been made toward relaxing the

monotonicity assumption in Tarski’s theorem, by Iimura, Murota and Tamura (2004),

Danilov and Koshevoy (2004) and Yang (2004a, b). They were all motivated by Iimura’s

(2003) discrete fixed point statement. In Iimura et al. (2004) a corrected version of Iimura’s

discrete fixed point theorem is established, while a similar theorem is given by Danilov and

Koshevoy (2004). Both these papers deal with the class of so-called direction preserving
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functions owing to Iimura (2003), which need not be monotonic. In Yang (2004a, b) a

number of more general discrete fixed (and zero) point theorems are established, which

contain the results of Iimura et al. (2004) and Danilov and Koshevoy (2004) as special

cases. The existence theorems of Yang concern the class of so-called locally gross direction

preserving mappings, which is substantially more general than the class of Iimura’s direction

preserving mappings. In addition to these existence results, Yang (2004a) also studies

discrete nonlinear complementarity problems and presents several sufficent conditions for

the existence of solution for this class of problems. All the results mentioned above are

proved using the machinery of topology such as the Brouwer fixed point theorem or Borsuk-

Ulam theorem. Such proofs are therefore nonconstructive and indirect. More recently, van

der Laan, Talman and Yang (2005a, 2005b, 2006) propose a constructive approach, namely,

simplicial algorithms to find a discrete fixed (or zero) point of direction preserving functions

and locally gross direction preserving functions under general conditions.

The objective of this paper is to establish a further general discrete zero or fixed point

theorem based upon the class of so-called positive maximum component sign preserving

functions. This class of functions generalizes substantially the class of direction preserving

functions but differs from the class of locally gross direction preserving functions. Further-

more, when applied to an economic context, this class of functions admits an economically

meaningful interpretation. Our discrete zero point theorem can be seen as a discrete ana-

logue of the well-known multivariate mean value theorem for continuous functions (see

Istratescu (1981) and Yang (1999)) and thus will be called a discrete multivariate mean

value theorem. A constructive and combinatorial proof for this theorem will be given. The

argument is based on the familiar idea of following a piecewise linear path of points in a

triangulation. More precisely, we adapt the so-called 2n-ray simplicial algorithm of van der

Laan and Talman (1981) and Reiser (1981), to the current discrete setting. This algorithm

was originally proposed to approximate a fixed point of a continuous function. In the

current discrete setting, the algorithm will operate on an integral triangulation of IRn un-

derlying the function f . Starting from any integral point in Zn, the algorithm generates a

finite sequence of adjacent simplices of varying dimension and terminates in a finite number

of steps with a simplex in which one of its vertices is a discrete zero point. As a result, this

yields a constructive and combinatorial proof for our discrete multivariate mean value the-

orem. Furthermore, we discuss two applications, the discrete nonlinear complementarity

problem and a discrete equilibrium existence problem with indivisibilities.

This paper is organized as follows. Section 2 presents basic concepts. Sections 3 estab-

lishes the discrete multi-variate mean value theorem. Section 4 discusses two applications

in complementarity theory and economic theory. Section 5 concludes.
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2 Basic concepts

We first give some general notation. For a given positive integer n, let N denote the set

{1, 2, . . . , n}. For x, y ∈ IRn, x · y stands for the inner product of x and y. For i ∈ N ,

e(i) denotes the ith unit vector of IRn. Given a set D ⊆ IRn, Co(D) and Bd(D) denote the

convex hull of D and the relative boundary of D, respectively.

For any integer t, 0 ≤ t ≤ n, the t-dimensional convex hull of t+1 affinely independent

points x1, . . . , xt+1 in IRn is called a t-simplex or simplex and will be denoted by σ or

σ(x1, . . . , xt+1). The extreme points x1, . . . , xt+1 of a t-simplex σ(x1, . . . , xt+1) are called

the vertices of σ. A k-simplex τ is called a face or k-face of a t-simplex σ(x1, · · · , xt+1) if all

vertices of τ are also vertices of σ. A k-face τ of a t-simplex σ is called a facet of σ if k = t−1,

i.e., if the number of vertices of τ is one less than the number of vertices of the simplex.

Two integral points x and y in Zn are said to be cell-connected if maxh∈N |xh − yh| ≤ 1,

i.e., their distance is less than or equal to one according to the maximum norm. A simplex

is said to be integral if all of its vertices are cell-connected and integral vectors, i.e., all

vertices are points in Zn. Two points x and y are simplicially connected if they are vertices

of a same simplex.

Given an m-dimensional convex set D, a collection T of m-dimensional simplices is a

triangulation or simplicial subdivision of the set D, if (i) D is the union of all simplices

in T , (ii) the intersection of any two simplices of T is either empty or a common face of

both, and (iii) any neighborhood of any point in D only meets a finite number of simplices

of T . A facet of a simplex of T either lies on the boundary of D and is not a facet of

any other simplex of T or is a facet of precisely one other simplex of T . A triangulation

is called integral if all its simplices are integral. One of the most well-known integral

triangulations of IRn is the K-triangulation with grid size 1, owing to Freudenthal (1942).

This triangulation is defined to be the collection of all n-dimensional simplices σ(x, π) with

vertices x1, · · · , xn+1, where x ∈ Zn, π = (π(1), · · · , π(n)) is a permutation of the elements

1, 2, · · · , n, and the vertices are given by x1 = x and xi+1 = xi + e(π(i)), i = 1, . . . , n.

We are now ready to introduce two new classes of discrete functions.

Definition 2.1 A function f : Zn → IRn is maximum positive component sign pre-

serving if for any cell-connected points x and y in Zn, fj(x) = maxh∈N fh(x) > 0 implies

fj(y) ≥ 0.

The maximum positive component sign preservation condition concerns only those com-

ponents of the function that have maximum positive value and requires that within a cell

a component of the function value vector should not jump from a positive maximum to a

negative value. This condition replaces continuity of a function in case the domain is not

discrete.
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It is useful to compare the new class of functions with the existing classes of functions

due to Iimura (2003) and Yang (2004a, b). From Iimura (2003) a function f : Zn → IRn is

direction preserving if for any two cell connected points x and y in Zn,

fj(x)fj(y) ≥ 0 for all j ∈ N ;

and from Yang (2004a, b) that a function f : Zn → IRn is locally gross direction preserving

if for any two cell connected points x and y in Zn,

f(x) · f(y) ≥ 0.

Clearly, the class of maximum positive component sign preserving functions is substantially

more general than the class of direction preserving functions and so is the class of locally

gross direction preserving functions. However, the following examples show that positive

maximum component sign preserving functions and locally gross direction preserving func-

tions are incomparable in the sense that they do not imply each other.

Example 1: Let f : Z2 → IR2 be defined by f(x) = (3, 2) for x = (0, 0), f(x) = (−1, 2)

for x = (1, 1), and f(x) = (0, 0) otherwise. Clearly, f is locally gross direction preserving

but not positive maximum component sign preserving.

Example 2: Let f : Z2 → IR2 be defined by f(x) = (3, 2) for x = (0, 0), f(x) = (1,−2)

for x = (1, 1), and f(x) = (0, 0) otherwise. Clearly, f is positive maximum component sign

preserving but not locally gross direction preserving.

Positive maximum component sign preservingness can be relaxed by imposing the con-

dition only on any two vertices of a same simplex in some integral triangulation of IRn.

Definition 2.2 A function f : Zn → IRn is simplicially positive maximum component

sign preserving with respect to an integral triangulation T of IRn, if for any simplicially

connected vertices x and y of T , fj(x) = maxh∈N fh(x) > 0 implies fj(y) ≥ 0.

It is easy to see that if a function is positive maximum component sign preserving, it must

be simplicially positive maximum component sign preserving with respect to any integral

triangulation of IRn. The next example shows that a simplicially positive maximum com-

ponent sign preserving function need not be positive maximum component sign preserving.

Example 3: Let f : Z2 → IR2 be defined by f(x) = (−2, 0) for x = (0, 0), f(x) = (−1, 0)

for x = (1, 1), f(x) = (−1,−1) for x = (1, 0), f(x) = (1, 2) for x = (0, 1), and f(x) = (0, 0)

otherwise. Clearly, f is simplicially positive maximum component sign preserving with

respect to the K-triangulation of IR2 but not positive maximum component sign preserv-

ing, because for the cell-connected points (0, 1) and (1, 0) it holds that f1(1, 0) = −1 and

f1(0, 1) = maxh fh(0, 1) = 2 > 0. However, these points are not vertices of any simplex of

the K-triangulation of IRn.
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3 A discrete multivariate mean value theorem

In this section we establish the following discrete multivariate mean value theorem and

give a constructive and combinatorial proof for the theorem.

Theorem 3.1 Let f : Zn → IRn be a simplicially positive maximum component sign

preserving function. If there exist l, u ∈ Zn with uh > lh +1 for every h such that for every

x ∈ Zn, xj = lj implies fj(x) ≤ 0 and xj = uj implies fj(x) ≥ 0, then f has a discrete zero

point x∗ ∈ Zn.

To prove the theorem, we adapt the 2n-ray algorithm of van der Laan and Talman (1981),

which was originally introduced to approximate a fixed point of a continuous function,

to the current discrete setting. Let f be a simplicially positive maximum component sign

preserving function with respect to the integral triangulation T of IRn. In case f is positive

maximum component sign preserving, we can take any integral triangulation of IRn. Let

v be any integral vector in Zn lying between the lower bound l and the upper bound u as

stated in the theorem, i.e., lh < vh < uh for all h ∈ N . The point v will be the starting

point of the algorithm. For a nonzero sign vector s ∈ {−1, 0, +1}n, the subset A(s) of IRn

is defined by

A(s) = {x ∈ IRn | x = v +
∑

h∈N

αhshe(h), αh ≥ 0, h ∈ N}.

Clearly, the set A(s) is a t-dimensional subset of IRn, where t is the number of nonzero

components of the sign vector s, i.e., t = |{i | si 6= 0}|. Since T is an integral triangulation

of IRn, it triangulates every set A(s) into t-dimensional integral simplices. For some s with

t nonzero components, denote {h1, · · · , hn−t} = {h | sh = 0} and let σ =< x1, · · · , xt+1 >

be a t-simplex of the triangulation in A(s). Following van der Laan and Talman (1981)

and Todd (1980), we say that σ is almost s-complete if there is an (n + 2)× (n + 1) matrix

W satisfying

 1 · · · 1 0 · · · 0 0

f(x1) · · · f(xt+1) −e(h1) · · · −e(hn−t) s


 W = I (3.1)

and having rows w1, · · · , wn+2 such that wh º 0 for 1 ≤ h ≤ t + 1, and wn+2 º wi and

wn+2 º −wi for t+1 < i ≤ n+1, and wn+2 º 0. Here I denotes the identity matrix of rank

n + 1. If wn+2
1 = 0, then we say that the simplex σ is complete. Further, let τ be a facet

of σ, and, without loss of generality, index the vertices of σ such that τ =< x1, · · · , xt >.

We say that τ is s-complete if there is an (n + 1)× (n + 1) matrix W satisfying

 1 · · · 1 0 · · · 0 0

f(x1) · · · f(xt) −e(h1) · · · −e(hn−t) s


 W = I (3.2)
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and having rows w1, · · · , wn+1 such that wh º 0 for 1 ≤ h ≤ t, and wn+1 º wi and

wn+1 º −wi for t + 1 ≤ i ≤ n, and wn+1 º 0. If wn+1
1 = 0, then we say that τ is complete.

The 0-dimensional simplex < v > is an s0-complete facet of a unique 1-simplex in

A(s0), where s0 is uniquely determined by the function value of f at v as follows. Let

α = maxh |fh(v)|. If fh(v) = −α for some h, then we let s0
k = 1 where k is the smallest

index h such that fh(v) = −α, and let s0
j = 0 for j 6= k. If fh(v) > −α for all h, then we

take s0
k = −1 where k is the largest index h such that fh(v) = α, and let s0

j = 0 for j 6= k.

Let σ0 =< v, x+ > be the unique simplex in A(s0) having < v > as its facet. Starting with

the point v, the algorithm proceeds by pivoting (1, f(x+)) into the system (3.1). Clearly,

σ0 is an almost s0-complete 1-simplex in A(s0).The general steps of the algorithm can be

described as follows. When for some nonzero sign vector s a t-simplex σ =< x1, · · · , xt+1 >

in A(s) is almost s-complete, the system (3.1) has two “basic solutions”. At each of these

solutions exactly one condition on the rows of the solution W is binding. If wn+2
1 = 0,

then σ is complete. If wh º 0 is binding for some h, 1 ≤ h ≤ t + 1, then the facet τ of σ

opposite the vertex xh is s-complete, and either (i) τ is the 0-dimensional simplex < v >,

or (ii) τ is a facet of precisely one other almost s-complete t-simplex σ′ of the triangulation

in A(s), or (iii) τ lies on the boundary of A(s) and is an almost s′-complete (t−1)-simplex

in A(s′) for some unique nonzero sign vector s′ with t− 1 nonzero elements differing from

s in only one element. If wn+2 º wi (wn+2 º −wi) is binding for some t + 1 < i ≤ n + 1, σ

is an s′-complete facet of precisely one almost s′-complete (t+1)-simplex in A(s′) for some

nonzero sign vector s′ differing from s in only the ith element, namely s′i = +1 (−1).

Starting with σ0 the 2n-ray algorithm generates a sequence of adjacent almost s-

complete simplices in A(s) with s-complete common facets for varying sign vectors s.

Moving from one s-complete facet of an almost s-complete simplex in A(s) to the next s′-

complete facet corresponds to making a lexicographic linear programming pivot step from

one of the two basic solutions of system (3.1) to another. The algorithm stops as soon as

it finds a complete simplex. We will show that in that case one of its vertices is a discrete

zero point of the function f .

Lemma 3.2 Suppose that f is a simplicially positive maximum component sign preserving

function. Then any complete simplex contains a discrete zero point of the function f .

Proof. Let x1, · · ·, xk+1 be the vertices of a complete simplex σ in A(s) and let t be the

number of nonzeros in s. Notice that k = t − 1 or k = t depending on whether σ is a

t-simplex in A(s) or a facet of a t-simplex in A(s). From the system (3.1) or (3.2) it follows

that there exists λ1 ≥ 0, · · ·, λk+1 ≥ 0 with sum equal to one such that
∑k+1

j=1 λjf(xj) = 0n.

Let L = {h ∈ N | λh > 0}. Clearly, L is not empty. Now we can rewrite
∑k+1

j=1 λjf(xj) = 0n
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as
∑

h∈L

λhf(xh) = 0n.

Suppose that f(xh) 6= 0n for all h ∈ L. Then there exist h∗ ∈ L and j∗ ∈ N such that

fj∗(x
h∗) = maxi∈N fi(x

h∗) > 0 . Since f is simplicially positive maximum component

sign preserving, we obtain fj∗(x
h) ≥ 0 for every h = 1, · · · , k + 1. Then it follows from

∑
h∈L λhfj∗(x

h) = 0 that fj∗(x
h∗) = 0, yielding a contradiction. So we must have f(xh) = 0n

for all h ∈ L, i.e., for h ∈ L the point xh is a discrete zero point of the function f . 2

Because the algorithm cannot cycle, it either terminates with a complete simplex yield-

ing a solution in a finite number of iterations or the sequence of simplices generated by

the algorithm goes to infinity. The next lemma shows that under the boundary condition

of the theorem, the latter case can be prevented from happening and thus ensures the

existence of a solution. Let Cn = {x ∈ IRn | l ≤ x ≤ u}.

Lemma 3.3 Under the condition of Theorem 3.1, the algorithm will find a complete sim-

plex in a finite number of steps.

Proof. We will show that the algorithm does not traverse the boundary of the set Cn.

By definition of integral triangulation, T triangulates the set Cn and also the set A(s)∩Cn

for any sign vector s into integral simplices.

For some nonzero sign vector s, let τ be an s-complete facet in A(s) with vertices

x1, · · · , xt, where t is the number of nonzeros in s. We first show that τ is complete if it

is on the boundary of Cn. From system (3.2) it follows that there exist λ1 ≥ 0, · · · , λt ≥ 0

with sum equal to one, β ≥ 0, and −β ≤ µi ≤ β for si = 0, such that f̄i(z) = −β

if si = 1, f̄i(z) = β if si = −1, and f̄i(z) = µi if si = 0, where z =
∑t

i=1 λix
i and

f̄(z) =
∑t

i=1 λif(xi), i.e., f̄ is the piecewise linear extension of f with respect to T . Since

τ lies on the boundary of Cn, there exists an index h such that either xj
h = lh for all j or

xj
h = uh for all j. In case xj

h = lh for all j, we have sh = −1 and therefore f̄h(z) = β.

Furthermore, by the Assumption, we have fh(x
j) ≤ 0 for all j and so f̄h(z) ≤ 0. On the

other hand f̄h(z) = β ≥ 0. Therefore f̄h(z) = 0 and also β = 0. Since wn+1
1 = β we

obtain that τ is complete. Similarly, we can show that the same results hold for the case

of xj
h = uh for all j.

Due to the lexicographic pivoting rule and the properties of a triangulation, the algo-

rithm will never visit any simplex more than once. So, because the number of simplices in

Cn is finite, the algorithm finds within a finite number of steps a complete simplex. Since

f is simplicially positive maximum component sign preserving, Lemma 3.2 shows that at

least one of the vertices of the complete simplex is a discrete zero point of the function f .

2
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As a consequence, we obtain a constructive and combinatorial proof for Theorem 3.1. As

an immediate corollary of Theorem 3.1, we have the following discrete fixed point theorem.

For any given l, u ∈ Zn with li < ui − 1 for all i ∈ N , let Dn = {x ∈ Zn | l ≤ x ≤ u}.

Theorem 3.4 Let f : Dn → Co(Dn) be a function such that the function g : Zn → IRn

given by g(x) = x − f(x) is simplicially positive maximum component sign preserving.

Then f has at least one fixed point.

4 Applications

Our first application concerns the complementarity problem. Given a function f : IRn
+ →

IRn, the problem is to find a point x∗ ∈ IRn
+ such that

f(x∗) ≥ 0n, x∗ · f(x∗) = 0.

This problem has long been one of the most important problems in the field of mathematical

programming and intensively studied for the case where f is continuous; see for example

Cottle, Pang and Stone (1992), Facchinei and Pang (2003) and Kojima, Megiddo, Noma

and Yoshise (1991). The discrete counterpart of this problem is to replace the domain IRn
+

by the discrete lattice Zn
+ and is called the discrete complementarity problem.

In the following we establish a theorem on the existence of solution to the discrete

complementarity problem. For any x ∈ Zn
+, define S+(x) = {h | xh > 0}.

Definition 4.1 A function f : Zn
+ → IRn is simplicially positive maximum component

sign preserving with respect to an integral triangulation T of IRn
+, if for any simplicially

connected vertices x, y of T , xk = 0 implies fk(x)fk(y) ≥ 0, and xk > 0 and fk(x) =

maxh∈S+(x) fh(x) > 0 imply fk(y) ≥ 0.

Now we present an existence theorem for the discrete nonlinear complementarity problem.

Theorem 4.2 Let f : Zn
+ → IRn be a simplicially positive maximum component sign

preserving function. If there exists a vector u ∈ Zn with uh > 1 for every h such that for

any x ∈ Zn
+ with x ≤ u, xk = uk implies fk(x) ≥ 0, then the discrete complementarity

problem has a solution.

We will give a constructive and combinatorial proof for this result by adapting the al-

gorithm described in Section 3 to the current problem. First, the origin 0n is taken as

the starting point v of the algorithm. Since 0n is on the boundary of IRn
+, the sets A(s)

and s-completeness are only defined for nonnegative nonzero sign vectors s. Notice that

A(s) = {x ∈ IRn
+ | xi = 0 whenever si = 0}.
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Next, we adapt the concepts of an almost s-complete simplex and an s-complete facet.

For some sign vector s with t > 0 positive components, denote {h1, . . . , hn−t} = {h | sh =

0} and let σ =< x1, · · · , xt+1 > be a t-simplex of the triangulation in A(s). Then σ is

almost s-complete if there is an (n + 2)× (n + 1) matrix W being a solution to system

 1 · · · 1 0 · · · 0 0

f(x1) · · · f(xt+1) −e(h1) · · · −e(hn−t) s


 W = I (4.3)

and having rows w1, · · · , wn+2 such that wh º 0 for 1 ≤ h ≤ t + 1, and wn+2 º −wi for

t + 1 < i ≤ n + 1, and wn+2 º 0. If wn+2
1 = 0, then we say that the simplex σ is complete.

For τ a facet of σ, without loss of generality, letting τ =< x1, · · · , xt >, τ is s-complete if

there is an (n + 1)× (n + 1) matrix W being a solution to system

 1 · · · 1 0 · · · 0 0

f(x1) · · · f(xt) −e(h1) · · · −e(hn−t) s


 W = I (4.4)

and having rows w1, · · · , wn+1 such that wh º 0 for 1 ≤ h ≤ t, and wn+1 º −wi for

t + 1 ≤ i ≤ n, and wn+1 º 0. If wn+1
1 = 0, then we say that τ is complete.

With respect to the starting point 0n, let α = minh fh(0
n) and let s0 be the sign vector

with s0
k = 1, where k is the smallest index h such that fh(0

n) = α, and s0
j = 0 for j 6= k.

To avoid triviality, we assume that f(0n) 6≥ 0n. Similarly as in Section 3, it can be shown

that the simplex < 0n > is an s0-complete facet of the unique 1-dimensional simplex σ0 in

A(s0) having < 0n > as one of its facets. Furthermore σ0 is almost s0-complete.

Let T be the integral triangulation of IRn
+ underlying the function f . Clearly, T sub-

divides the set A(s) ∩ Cn for every nonnegative sign vector s into t-dimensional integral

simplices. Starting with σ0, the algorithm now generates a unique sequence of adjacent

almost s-complete simplices in A(s) with s-complete common facets for varying nonnega-

tive nonzero sign vectors s. The algorithm stops when a complete simplex is found. Let

Cn = {x ∈ IRn
+ | x ≤ u}.

Lemma 4.3 Under the assumption of Theorem 4.2, the algorithm finds in a finite number

of steps a solution to the discrete nonlinear complementarity problem.

Proof. First, we prove that the algorithm cannot cross the boundary of Cn by showing

that if, for some nonnegative sign vector s, τ is an s-complete facet of a simplex in A(s)

lying on the upper boundary of the set Cn, then τ is complete. Let τ =< x1, · · · , xt >,

where t > 0 is the number of positive components of s. It follows from system (4.4) that

there exist λ1 ≥ 0, · · · , λt ≥ 0 with sum equal to one, β ≥ 0, and µi ≥ −β for si = 0, such

that f̄i(z) = −β when si = 1 and f̄i(z) = µi when si = 0, where z =
∑t

i=1 λix
i and f̄ is the

piecewise linear extension of f with respect to T . Since τ lies on the upper boundary of
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Cn, there exists an index h such that xj
h = uh for all j. But then xj

h > 0 and so we must

have sh = 1 and therefore f̄h(z) = −β ≤ 0. On the other hand, since xj
h = uh, we also have

fh(x
j) ≥ 0 for all j. Hence, we obtain f̄h(z) ≥ 0. Consequently, β = 0, i.e., τ is complete.

Due to the lexicographic pivoting rule and the properties of a triangulation, the algo-

rithm cannot visit a simplex more than once. So, because the number of simplices in Cn is

finite and we showed that the algorithm cannot cross the boundary of Cn, the algorithm

finds in a finite number of steps either a complete simplex or a complete facet of a simplex

in A(s) ∩ Cn for some nonnegative nonzero sign vector s.

Let σ =< x1, · · · , xh > be a complete simplex or a complete facet of a simplex in some

set A(s) ∩Cn with h = t or t + 1 for some nonnegative nonzero sign vector s, where t > 0

is the number of positive components of s. It follows from system (4.3) or (4.4) that there

exist λ1 ≥ 0, · · · , λh ≥ 0 with sum equal to one, and µi ≥ 0 for si = 0, such that f̄i(z) = 0

when si = 1 and f̄i(z) = µi when si = 0, where z =
∑h

i=1 λix
i. Since z ∈ A(s), we also

have zi = 0 if si = 0 and zi ≥ 0 if si = 1. So, f̄i(z) ≥ 0 if zi = 0 and f̄i(z) = 0 if

zi > 0, i.e., z solves the nonlinear complementarity problem with respect to f̄ . Without

loss of generality, let ρ =< x1, . . . , xk > be the unique face of σ containing z in its relative

interior. Hence, there exist unique positive numbers λ1, . . . , λk summing up to 1 such that

z =
∑k

j=1 λjx
j and f̄(z) =

∑k
j=1 λjf(xj). Take any j∗ between 1 and k. We will show that

xj∗ is a solution of the problem.

Suppose first that zi = 0 and f̄i(z) > 0 for some i. Clearly, xj
i = 0 for all j = 1, . . . , k.

Since f̄i(z) =
∑k

j=1 λjfi(x
j) there exists h such that fi(x

h) > 0. Since xh and xj∗ are

simplicially connected and xj∗
i = 0, we have that fi(x

h)fi(x
j∗) ≥ 0, and therefore xj∗

i = 0

and fi(x
j∗) ≥ 0. Suppose next that zi = 0 and f̄i(z) = 0 for some i. Again, xj

i = 0 for all

j = 1, . . . , k. Since f̄i(z) =
∑k

j=1 λjfi(x
j) and f̄i(z) = 0, we obtain

∑k
j=1 λjfi(x

j) = 0 and

therefore
∑k

j=1 λjfi(x
j)fi(x

j∗) = 0. Since for all j it holds that xj and xj∗ are simplicially

connected and xj∗
i = 0, we have fi(x

j)fi(x
j∗) ≥ 0, and so each term in the summation must

be zero. In particular, it holds that λj∗f
2
i (xj∗) = 0. Since λj∗ > 0, this implies fi(x

j∗) = 0.

Thus far we have shown that if zi = 0 then xj∗
i = 0 and fi(x

j∗) ≥ 0. We will now show

that if zi > 0 for some i then xj∗
i ≥ 0 and fi(x

j∗) = 0. Let i be such that zi > 0. Then

xj∗
i ≥ 0 and

∑k
j=1 λjfi(x

j) = f̄i(z) = 0. First, suppose xh
i = 0 for some h. Since xj and

xh are simplicially connected for all j and xh
i = 0, it holds that fi(x

j)fi(x
h) ≥ 0 for all j.

From
∑k

j=1 λjfi(x
j) = 0, it follows that

∑k
j=1 λjfi(x

j)fi(x
h) = 0, and so λjfi(x

j)fi(x
h) = 0

for all j = 1, . . . , k. In particular, λhf
2
i (xh) = 0. Since λh > 0, it follows that fi(x

h) = 0.

Consequently, fi(x
h) = 0 whenever xh

i = 0. In particular, if xj∗
i = 0, then fi(x

j∗) = 0.

Next, suppose xh
i > 0 and fi(x

h) > 0 for some h. Then there exists h∗ ∈ S+(xh) such

that fh∗(x
h) = maxj∈S+(xj∗ ) fj(x

h) > 0 and therefore fh∗(x
j) ≥ 0 for all j 6= h. Hence,

f̄h∗(z) =
∑k

j=1 λjfh∗(x
j) > 0. On the other hand, zh∗ =

∑k
j=1 λjx

j
h∗ > 0, which implies

11



f̄h∗(z) = 0, yielding a contradiction. Finally, suppose xh
i > 0 and fi(x

h) < 0 for some

h. Since xh
i > 0 implies zi =

∑k
j=1 λjx

j
i > 0, we must have

∑k
j=1 λjfi(x

j) = f̄i(z) = 0.

From above it follows that fi(x
j) = 0 whenever xj

i = 0. Therefore there exists h∗ such

that xh∗
i > 0 and fi(x

h∗) > 0, but we just showed that this is not possible. Therefore,

fi(x
j∗) = 0 whenever xj∗

i > 0. This completes the proof that any vertex of ρ solves the

discrete complementarity problem. 2

As a result, we have given a constructive and combinatorial proof for Theorem 4.2.

Our second application concerns the existence problem of equilibrium in a competitive

exchange economy with indivisible goods and money. For related economic models, we

refer to Kelso and Crawford (1982), Kaneko and Yamamoto (1986), Bevia, Quinzii and

Silva (1999), Gul and Stacchetti (1999), van der Laan, Talman and Yang (2002), Sun and

Yang (2006) among others. In the economy, there are a finite number, say, n, of indivisible

commodities like houses, cars and computers, and a finite number of agents, each of whom

initially owns a certain amount of indivisible goods and money. The price of money is equal

to one. Exchange of indivisible goods is carried out by their prices and via money. All

agents exchange their goods to achieve their maximal utility under their budget constraints.

This economy can be captured by the excess demand function z : Zn
+ → Zn, where zk(p)

denotes the aggregated excess demand of indivisible commodity k, k ∈ N , at discrete price

vector p ∈ Zn
+. A vector p∗ ∈ Zn

+ is called a discrete Walrasian equilibrium if z(p∗) = 0n.

That is, at equilibrium, the demand is equal to the supply for every indivisible good.

It is natural to assume that the desirability condition holds for every indivisible good,

i.e., pk = 0 implies zk(p) > 0. That is, if the price of an indivisible good is zero, then the

supply of that good cannot meet the demand for that good. It is also natural to assume

that the limited value condition holds for every indivisible good. That is, there exists some

M > 1 such that if pk ≥ M , then zk(p) < 0. In other words, if the price of an indivisible

good is too high, no agent will demand that good and thus the supply will exceed the

demand. The next assumption replaces continuity.

Assumption 4.4 An excess demand function z : Zn
+ → Zn is said to be minimum compo-

nent sign preserving with respect to an integral triangulation T of IRn
+, if for any simplicially

connected vertices p, q of T , zk(p) = minh∈N zh(p) < 0 implies zk(q) ≤ 0.

This assumption states that if at price vector p an indivisible good k is highest in excess

supply, the demand for that good will not exceed its supply as long as the prices deviate

from the price vector p at most one unit for each good.

The following equilibrium existence theorem follows immediately from Theorem 3.1 by

letting f = −z, l = 0n and uh = M for all h ∈ N .
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Theorem 4.5 The exchange economy has a discrete Walrasian equilibrium under the

conditions of desirability and limited value and Assumption 4.4.

5 Concluding remarks

In this paper we have demonstrated a discrete multivariate mean value theorem by using

the 2n-ray simplicial algorithm, which actually finds an exact discrete zero point. The

theorem holds for the class of positive maximum component sign preserving functions. In

addition, we have established an existence theorem for the discrete nonlinear complemen-

tarity problem and an equilibrium existence theorem for a discrete exchange economy. We

proved both results in a constructive manner. Other closely related algorithms include

those of Eaves (1972), Eaves and Saigal (1972), van der Laan and Talman (1979), Saigal

(1983), Freund (1984), and Yamamoto (1984). It will be interesting to know if these algo-

rithms can also find a discrete zero point of a positive maximum component sign preserving

function under conditions similar to those we have studied here.
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