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Abstract

The spectral radius of a graph (i.e., the largest eigenvalue of its corresponding adjacency matrix) plays
an important role in modeling virus propagation in networks. In fact, the smaller the spectral radius,
the larger the robustness of a network against the spread of viruses. Among all connected graphs
on n nodes the path P, has minimal spectral radius. However, its diameter D, i.e., the maximum
number of hops between any pair of nodes in the graph, is the largest possible, namely D = n — 1.
In general, communication networks are designed such that the diameter is small, because the larger
the number of nodes traversed on a connection, the lower the quality of the service running over the
network. This leads us to state the following problem: which connected graph on n nodes and a given
diameter D has minimal spectral radius? In this paper we solve this problem explicitly for graphs
with diameter D € {1,2,[%]|,n — 3,n — 2,n — 1}. Moreover, we solve the problem for almost all
graphs on at most 20 nodes by a computer search.

1 Introduction

The theory of the spectra of graphs contains many beautiful results that relate physical properties of a
network, such as for instance robustness, diameter, and connectivity, to eigenvalues of matrices associated
with the graph, see e.g. [4], [13]. Recently it has been shown, see [14], that the spectral radius of a graph
(i.e., the largest eigenvalue of its corresponding adjacency matrix) plays an important role in modeling
virus propagation in networks. In fact, in [14] the Susceptible-Infected-Susceptible (SIS) infection model
is considered. The SIS model assumes that a node in the network is in one of two states: Infected
and therefore infectuous, or healthy and therefore susceptible to infection. The SIS model assumes
instantaneous state transitions. Thus, as soon as a node becomes infected, it becomes infectious and
likewise, as soon as a node is cured it is susceptible to re-infection. Epidemiological theory, see for
instance [5], predicts the existence of an epidemic threshold 7. If it is assumed that the infection rate
along each link is 8 while the cure rate for each node is ¢ then the effective spreading rate of the virus can
be defined as §/6. The epidemic threshold can be defined as follows: for effective spreading rates below
7 the virus contamination in the network dies out, while for effective spreading rates above 7 the virus
is prevalent, i.e., a persisting fraction of nodes remains infected. It was shown in [14] that 7 = 1/p(A)
where p(A) denotes the spectral radius of the adjacency matrix A of the graph. If follows from this result
that the smaller the spectral radius, the larger the robustness of a network against the spread of viruses.

This naturally leads to the following problem statement: which connected graph on n nodes has
minimal spectral radius? It can be found for instance in [4] that the path P, has minimal spectral radius;
see also Lemma 1 below.

Although the path P, has the largest possible epidemic threshold, its diameter D, i.e. the maximum
number of hops between any pair of nodes in the graph, is also the largest possible, namely D = n — 1.
In general, communication networks are designed such that the diameter is small, because the larger
the number of nodes traversed on a connection, the lower the quality of the service running over the
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network. For this reason, we adjust the problem statement above, also taking into account the impact of
the diameter of the graph: which graph on n nodes and a given diameter D has minimal spectral radius?

As far as we know, the relation between the spectral radius and diameter has so far been investigated
by few others: Guo and Shao [7] determined the trees with largest spectral radius among trees of given
number of nodes and diameter, while Cioaba, Gregory, and Nikiforov [3] gave an upper bound on the
spectral radius in terms of the number of nodes, number of links, maximum degree, and diameter. The
problem of determining the graphs with maximal spectral radius among the graphs with given diameter
is completely solved in [6].

This paper is further organized as follows. In Section 2 we will consider graphs with a large diameter,
ie, De{n—3n—2n—1}. In Section 3 we will look at graphs with diameter two and give an explicit
expression for the minimal spectral radius of such graphs. In Section 4 we determine the minimal spectral
radius of graphs on at most 20 nodes, by using brute computational force. We finish the paper with some
concluding remarks in Section 5.

2 Graphs with large diameter

In this section we will explore the relation between the diameter of a connected graph and the minimal
spectral radius, in case of a large diameter, i.e., D € {n—3,n—2,n—1}. Starting points are the following
two well-known results; see for instance [4, p. 21]:

Lemma 1. Of all connected graphs on n nodes, the path P, has minimal spectral radius; p(P,) =

2cos(;7)-

Lemma 2. Of all connected graphs on n nodes, the complete graph K, has mazimal spectral radius;
p(K,)=n-—1.

Among the connected graphs on n nodes the path P, has the largest diameter (D = n — 1) while the
complete graph K, has minimal diameter (D = 1). It is clear that the complete graph is also the graph
on n nodes with minimal spectral radius and diameter D = 1. We will next determine the graphs on n
nodes with minimal spectral radius and diameter D =n —2 and D =n — 3.

Let us first define P12 ™t as a path of p nodes (0 ~ 1~ 2~ .- ~p—1) with pendant paths of
n; links at nodes m;, for : =1,2,...,t. Then we define the graph D,, through Dn:Pllynfl; see Figure 1.

Note that D,, is a graph on n nodes with spectral radius p(D,,) = 2 cos(57—), cf. [4, p. 77].

Figure 1: The graph D,

Theorem 3. Of all connected graphs on n nodes (n > 4) and diameter D = n — 2, the graph D,, has the
mianimal spectral radius; p(Dy) = 2 cos(57—).

For the proof of Theorem 3 we need a classical result by Smith [12]:

Lemma 4. The only connected graphs on n nodes with spectral radius smaller than 2 are the path Py,
the graph D,, and the graphs Eg (n=16), Ez (n="7T), and Eg (n =8) depicted in Figure 2.
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Figure 2: The graphs Eg, E7, Fs

Proof of Theorem 3: For the cases n € {4,5,9,10,..} the theorem follows immediately from Lemma
4. For the cases n € {6, 7,8} we have to determine which of the graphs D,, and E,, has minimal spectral
radius. Let C(G,\) denote the characteristic polynomial of the adjacency matrix of the graph G, i.e.,
C(G,\) = det(A] — A(GQ)). Let’s first consider the case n = 6. A straightforward calculation shows
that C(Dg,\) = A — 5M* + 5)2, while C(Eg, \) = A — 50* + 5)\2 — 1. It follows that C(Dg,\) =
C(Eg, ) +1 > C(Eg, A) for all A, hence p(Dg) < p(Es). The case n = 7 can be proved in a similar way
by using that C(D7,A) = A7 — 6% +9A3 — 2X and C(E7,\) = A7 — 65 + 923 — 3\, which implies that
C(D7,\) = C(E7,A\) + X > C(E7,\) for all A > 0, hence p(D7) < p(E7). Finally for the case n = 8
we use C(Dg,A) = A& — 7AS + 14X\* — 7)\2 and CO(Es, \) = A8 — 7A6 + 14)* — 8)A2 4 1, implying that
C(Ds,\) = C(Es,\) + A2 —1 > C(Eg, \) for all A > 1, hence p(Dg) < p(Es). O

Next we define the graph D, through D, = 11)’17 ;El; see Figure 3. Note that D, is a graph on n + 1
nodes.

Figure 3: The graph D,

Theorem 5. Among all connected graphs on n nodes (n > 5) and diameter D = n — 3, the minimal
spectral radius equals p = 2. For n > 8, the minimal spectral radius only occurs for the graph Dy_1.
For n = 5, the minimal spectral radius occurs both for the cycle graph Cs and the star with four leaves
Ki4= Dy. Forn =6, the minimal spectral radius occurs both for the cycle graph Cs and the graph Ds.
For n =17, the minimal spectral radius occurs both for the graph Dg and the graph Eg depicted in Figure

4.
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Figure 4: The graphs Es, Er, Ex

For the proof of Theorem 5 we again need results from Smith [12]:

Lemma 6. The only connected graphs on n nodes with spectral radius equal to 2 are the cycle graph C,,
the graph D,,_1 depicted in Figure 8 and the graphs Eg (n=17), E7 (n=8), and Eg (n =9) depicted in
Figure 4.

Theorem 5 follows directly from Lemma 4 and Lemma 6, as does the following theorem.

Theorem 7. Among all connected graphs on n nodes (n > 5) and diameter D = |% |, the minimal
spectral radius equals p = 2. For n > 7, the minimal spectral radius only occurs for the cycle graph C,.
For n = 5, the minimal spectral radius occurs both for the cycle graph Cs and the star with four leaves
Ki,= D,. Forn =6, the minimal spectral radius occurs both for the cycle graph Cg and the graph Ds.



Based on the results so far, namely that certain trees minimize the spectral radius for graphs on n nodes
and diameter D, for D > n — 3, and the computational results of Section 4, we conjecture the following;:

Lt n—e—T552
L5t T4 Tn—etl
on n nodes and diameter D =n — e, for n large enough.

Conjecture 8. For fized e, the graph P has minimal spectral radius among the graphs

We finish this section with a qualitative result on the minimal spectral radius for connected graphs on n
nodes as a function of the diameter.

Theorem 9. For connected graphs onn nodes (n > 9), the minimal spectral radius is not a monotonically
decreasing function of the diameter of the graph.

Proof: The diameters of the graphs C, and D,_; are L%J and n — 3, respectively, while p(C},) =

p(f)n_l) = 2. For n > 9 there is at least one integer m satisfying L%J < m < n—3. The minimal spectral
radius for connected graphs on n nodes and diameter m must be larger than 2, because for all graphs

mentioned in Lemmas 4 and 6, the diameter D satisfies D = L%J or D>n-—3. O

3 Graphs with diameter two

From the previous section it follows that we know the minimal spectral radius of connected graphs on n
nodes and diameter D € {1,[5|,n —3,n —2,n — 1}. In this section we consider the case of connected
graphs on n nodes with diameter two. In fact, we shall prove that for these graphs v/n — 1 is the minimal
spectral radius.

Theorem 10. For the spectral radius p of a graph with diameter two on n nodes we have p > v/n — 1 with
equality only for the stars K1 n—1, the cycle graph Cs, the Petersen graph Peio, the Hoffman-Singleton
graph Hso, and putative 57-regular graphs on 3250 nodes.

Figure 5: The Petersen graph

For the proof of Theorem 10 we need two lemmas.

Lemma 11. Let G be a graph with diameter two on node set N of n nodes, with degrees d,,, v € N.
Thenn—1< % D veN d? with equality only if G is a star K11, the cycle graph Cs, the Petersen graph
Peyg, the Hoffman-Singleton graph Hsy, or a putative 57-regular graph on 3250 nodes.

Proof. We count induced paths of two links (on three nodes) in two different ways. First, since the
diameter of the graph is two and hence each pair of nodes that is not linked is contained in at least

one such induced path, the number of induced paths of length two is at least @ — e, where e is the

dy(dy—1)
2

number of links in the graph. Second, each node v can be the middle node of at most induced

paths of two links, hence there are at most ) W

now follows.

such induced paths. The claimed inequality



Equality is possible only if the graph contains no triangles, and any two non-adjacent nodes have a
unique common neighbour, and this is only the case in the stated graphs. Indeed, consider in such a graph
two non-adjacent nodes. These nodes must have the same number of neighbours, since any neighbour
of one of them is either also a neighbour of the other, or adjacent to one neighbour of the other. Thus
the graph is regular or its complement is disconnected. In the latter case it is a star K ,—1; in the first
case, the graph is a (regular) Moore graph of diameter two. For such Moore graphs, i.e., k-regular graphs
(hence having spectral radius k) on k% 4+ 1 nodes with diameter two, it was already shown in 1960 [8]
that k € {2,3,7,57}. The case k = 2 is realized by the cycle graph Cs, the case k = 3 is realized by
the Petersen graph Pejg; see Figure 5, and the case k = 7 by the Hoffman-Singleton graph Hsg; see [8].
For a nice graphical representation of the Hoffman-Singleton graph we refer to [15]. Whether or not a
57-regular graph with diameter two consisting of 3250 nodes exists is a famous open problem. [J

The following lemma is a result by Hofmeister [9]:

Lemma 12. Let G be a graph on node set N of n nodes, with degrees d,,, v € N, and spectral radius p.
Then p? > %ZUGN d?. If G is connected, then equality holds if and only if G is regular or bipartite with
constant degrees on each of the two parts.

Theorem 10 now follows directly from Lemma 11 and Lemma 12.

4 Graphs on at most 20 nodes

By computer we determined the minimal spectral radius for graphs on n nodes and diameter D, for almost
all D and n < 20. The results are given in Tables 1 and 2. (The names of the graphs are explained
below.)

AN &P

Figure 6: Graphs with minimal spectral radius and diameter 3; n = 10,11,12,13

W W W

Figure 7: Graphs with minimal spectral radius and diameter 3; n = 14, 15,16

For given n and given number of links e, we first generated all connected graphs on n nodes and
with e links using nauty [10]. We then determined the graphs among those that minimize the spectral
radius for each possible D; and then compared the results over all possible e. This comparison was done
by increasing e; for the following reason. If for some combination of n and D the minimal p found by
searching among the connected graphs with at most e links satisfied p < 2(e 4+ 1)/n then this p was the
definite minimum, and e did not have to be increased further. Indeed, because of the general bound



p > 2e/n (the average degree) we would only find graphs with spectral radius larger than the minimum
so far.

For almost all cases the search was limited to e being increased to at most n + 2. Exceptions were
the cases [D = 3,n > 12], [D = 4,n > 16], and all cases with n = 20.

In the cases n = 20 we let e increase only till n + 1 = 21 for computational (capacity) reasons. This
gave the minimal spectral radius for D > 7, and upper bounds for D = 4,5,6. The upper bound for
D = 3 is attained by an extremal 3-regular graph constructed by Alegre, Fiol, and Yebra [1]. It would
not surprise us if this gives the minimal spectral radius in this case.

For [D = 3,n = 12], also the graphs with e = 15 were considered, and for [D = 3,n = 13], the
ones with e = 16 and 17 were checked. For [D = 3,n = 14], also the graphs with e = 17 and 18 were
considered. Moreover, here also the graphs with e = 19 and maximal degree 4 were taken into account.
The latter restriction can be made by using the inequality in Lemma 12: a node of degree at least 5
implies that p > /8. Similarly, for [D = 3,n = 15], also the graphs with e = 18 and 19 were checked,
and the graphs with e = 20 and node degrees only 2 and 3. For [D = 3,n = 16], also the graphs with
e = 19, with e = 20 and node degrees at most 7, with e = 21 and node degrees at most 6, and with
e = 22 and node degrees at most 5 were checked. From Lemma 12 it follows that it was not necessary
to check the graphs with e = 23. For these cases with D = 3 we used a special routine to generate
graphs with diameter 3, written by Kris Coolsaet [private communication]. It was also used to check the
graphs with [D = 3,n = 17] with e = 24 and node degrees at most 5. This gave the upper bound in this
case. In the case [D = 3,n = 18] the upper bound is attained by a 3-regular graph, cf. [11]. In the case
[D = 3,n = 19] the upper bound is attained by the graph obtained by contraction of one of the links in
the 3-regular graph on 20 nodes.

For [D = 4,n = 16], also the graphs with e = 19 were considered, while for [D = 4,n = 17], the
graphs with e = 20, and the ones with e = 21 and node degrees 2 and 3 were also checked. For the
remaining cases we obtained only upper bounds.

PRSI a

Figure 8: Graphs with minimal spectral radius and diameter 4; n = 13,14,15,16,17

To explain Table 2, we need to define the following graphs. The graph Qy, n,,...n, consists of two
nodes connected by ¢ disjoint paths of ny,ng, ..., n; links. The graph C1>™¢ is defined as a cycle of m
nodes (0 ~ 1 ~ 2~ ---~m—1~ 0) with pendant links at nodes my, ..., m;. Also, let C;}* be an m-cycle
with a pendant path of ¢ links. For even m, let C;1%"* be a cycle of mnodes (0 ~ 1~ 2~ - ~m—1~0)
with a pendant path of ¢ links at node 0, and a pendant path of s links at node m/2. The tree Ty(1,1,1)
is as defined by Woo and Neumaier [16]; it consist of a node which is adjacent to three other nodes, which
each in turn is adjacent to two endnodes. The Double Star DSj3 3 is a tree consisting of two adjacent
nodes which each are adjacent to three endnodes.

A

Figure 9: Graphs with minimal spectral radius and diameter 5; n = 16,17 (2x), 18,19

An interesting feature of Table 1 is that, as far as our computations show, for fixed diameter D > 3



Figure 10: Graph with minimal spectral radius and diameter 6; n = 19

the minimal spectral radius p for n = D + 3 + ¢ is the same as for n = 2D — 4, for: = 0,1,..., D — 3. For
1 = 0 this clearly follows from the results in Section 2; however we have no general explanation.

Besides Conjecture 8, we could make some other guesses on which graphs minimize the spectral radius
for particular values of n and D. From Table 2 it for example seems that the graph C9, , minimizes
the spectral radius for n = 2D — 1, D > 5. It also seems that the graph p p p+1 is the optimal graph
for n = 3D, and similar graphs are optimal for slightly smaller n. Notice also the pattern for n = 3D + 1
from Figures 8, 9, and 10.

Note further that Brouwer and Neumaier [2] classified all graphs with spectral radius between 2 and

24+ /5 &~ 2.0582. All these graphs have diameter D = n — 2 or D = n — 3, and from the results in
Section 2 it thus follows that none of them has minimal spectral radius given the diameter and number
of nodes.
Woo and Neumaier [16] show that a graph with spectral radius between 2 and 2/2 ~ 2.1312 is either
a tree with maximum degree 3 such that all nodes of degree 3 lie on a path; or is a connected graph of
maximum degree 3 such that all nodes of degree 3 lie on a cycle, and this is the only cycle in the graph;
or it consists of a path one of whose endnodes has 3 pendant links. Indeed, we encounter some of these
graphs in Table 2.

5 Conclusions

In this paper we have tackled the following problem: which graph on n nodes and a given diameter D
has minimal spectral radius? This problem was inspired by the fact that the smaller the spectral radius
of a graph, the larger the robustness of the network against the spread of viruses.

We have solved the problem stated above explicitly for graphs with diameter D € {1,2, |3 |,n—3,n—
2,n — 1}. In addition, for almost all graphs on at most 20 nodes we have founds the graphs minimizing
the spectral radius by a computer search.

Interesting issues for further research include the following items:

e determine the graphs with minimal spectral radius for the cases: [D = 3,17 <n < 20], [D = 4,18 <
n < 20], [D = 5,n =20], [D = 6,n = 20];

e prove Conjecture 8; probably a good starting point is the case e = 4, for which the conjecture
becomes: for n > 9 the graph Pllﬁgfgfg has minimal spectral radius among the graphs on n nodes
and diameter D =n — 4;

e show that the graph CY,,_, minimizes the spectral radius for n = 2D — 1, D > 5, that the graph
Qp,p,p+1 is the optimal graph for n = 3D, D > 3, etc;

e prove that for fixed diameter D > 3 the minimal spectral radius p for n = D + 3 + 7 is the same as
forn=2D — i, fori=0,1,...,D — 3;

e can sharp lower and upper bounds be formulated for the minimal spectral radius for diameter
D > 37 A good starting point is the case D = 3; an idea is to use the Moore bound to obtain a
lower bound for the minimal spectral radius.



D\ n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 1.4142 1.7321 2 2.2361 2.4495 2.6458  2.8284 3 3.1623  3.3166  3.4641 3.6056  3.7417  3.8730 4 4.1231 4.2426  4.3589
3 1.6180 1.8478 2 2 2.3028  2.2784  2.4728  2.4860  2.5616 2.6970  2.7817  2.7321 2.8779 < 2.9755 <3 < 3.0742 <3
4 1.7321 1.9021 2 2 2 2.2361 2.2361 2.2230 2.3686  2.3778  2.3989 2.4303 2.5335 < 2.7024 < 2.7498 < 2.7913
5 1.8019 1.9319 2 2.0840 2 2 2.1701 2.2105  2.1987  2.1907  2.3028 2.3167  2.3228 2.3536 < 2.5417
6 1.8478 1.9499 2 2.0743  2.0743 2 2 2.1463  2.1940 2.1829  2.1753 2.1701 2.2688 < 2.3329
7 1.8794 1.9616 2 2.0684  2.1067  2.0684 2 2 2.1285  2.1693  2.1723 2.1649 2.1598
8 1.9021 1.9696 2 2.0647  2.1010 2.1010  2.0647 2 2 2.1149  2.1505 2.1649
9 1.9190 1.9754 2 2.0623  2.0912  2.1149  2.0912  2.0623 2 2 2.1056
10 1.9319 1.9796 2 2.0608 2.0840 2.1120 2.1120 2.0840  2.0608 2
11 1.9419 1.9829 2 2.0598 2.0785  2.1054 2.1183  2.1054  2.0785
12 1.9499 1.9854 2 2.0592 2.0743  2.1010 2.1169  2.1169
13 1.9563 1.9874 2 2.0588 2.0710  2.0981 2.1111
14 1.9616 1.9890 2 2.0586 2.0684  2.0962
15 1.9659 1.9904 2 2.0584  2.0664
16 1.9696 1.9915 2 2.0583
17 1.9727 1.9924 2
18 1.9754 1.9932
19 1.9777

Table 1: Minimal spectral radius among graphs on n nodes with diameter D



n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D
1| Py = K2 K3 Ky Ks K¢ K7 Kg Kg K10 K11 K12 K13 K14 Kis Kie K17 Ki1g Kig K20
2 Py =Ky Dy =Ky 3 Dyg=Ky14 K15 K16 K17 Kig K19 Kijgno K111 Kijiz2 K1z Kijna Kijgs Kijie  Kijar Kiis Ki,19
Cs Pe1o
3 Py Dy Ds C7 Q3,33 Q3,34 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 7 Fig. 7 Fig. 7 ? ? ? ?
Cg DS3 3
4 Py Dg Dg Cg Cy T4(1,1,1) Q44,4 Qa,4,5 Fig. 8 Fig. 8 Fig. 8 Fig. 8 Fig. 8 ? ? ?
Eg
= 0,3,6 . . . .
5 Pg Dy Dy IC% Cio C11 Cg Q45,5 Q5,55 Q5,56 Fig. 9 Fig. 9 Fig. 9 Fig. 9 ?
, *
Prl2e (2%)
~ 0 0,4,8 .
6 Pr7 Dg Dg P§,7 Cio C12 C13 01177 Qa6 @566 66,6 6,6,7 Fig. 10 ?
1,4
Pil2,7
= 1, 1,4 0 0,4,8 ,0,3,5,8
7 Pg Do Dy Pilyg Plﬁés Cla  Cua Cis5 O137 O3 Qs77 Q7T QT
10
= 1,6 1,5 0,6 0,5,10 ~0,3,6,9
8 Pg Dio Dio Pyl39 P12,’?l,3,9 Cl+é2 094 Ci6 Ci7 (ST Cig Q5,8,8
Pyl20  Ci2
Plg
= 1,7 2,7 1,5 0,7 0 0,6,12
9 P10 D11 D11 Pyly 19 Pil2i0 14,1 C1i Cle C18 C19 Cr7
C12
= 1,8 2,8 1,6 +3 0,8 0
10 P11 D1z Diz Prliyqq Py P12,’47,11 %4+2 C16 CTg Ca0
Py3,11 C1a’
1,9 1251311 2,8 1,6 +1,42 0,9
11 Pig Di3 D1z Prlyi12 Pal212 P23 12 Pl,’iép Cie’ 18
C1a
= 1,10 2,10 2,9 6 +4
12 P13 Dia Dia Prloig Pylriz Palsas 116,713 EC
P15.13 Cig '
2,8 ot2+2
2,4,13 16
3,9
3,3,13
~ 1,11 2,11 2,10 3,10
13 Piy Dis Di1s 12,14 2214 P2)3)14 33,14
1,12 2,12 2,11
14 P15 Die D16 1,215 T272715  T2)315
= 1,13 2,13
15 Pig D17 D17 12,16 T2)2.16
~ 1,14
16 Py7 Dis Dis 12,17
17 P1g Dig Dig
18 P1g D2o
19 P2o

Table 2: Graphs with minimal spectral radius on n nodes with diameter D
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