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THE NON- AND SEMIPARAMETRIC ANALYSISOF MSMODELS: SOME
APPLICATIONS*

YOUWEI LIT, BAS DONKERS, AND BERTRAND MELENBERG

ABSTRACT. This paper illustrates how to compare different microscepmulation
(MS) models and how to compare a MS model with real data in Hzsearame-
ters of interest are estimated non- or semiparametricélly.examples we investi-
gate the marginal single-period probability density fumtiof stock returns, and the
corresponding spectral density function and memory patensie We illustrate the
methodology by the MS models developed by Levy, Levy, Solorf2900) and the
market fraction model developed by He and Li (2005a, b), andront the resulting
return data with the S&P 500 stock index data.

JEL classificationC14, G12

Keywords Microscopic simulation models; Probability density ftino; Spectral
density function; Memory parameters

1. INTRODUCTION

Many of the classical models in finance are based upon thengsiguns of investor
homogeneity and expected utility theory, including, fostance, the Capital Asset
Pricing Model (CAPM), see, for example, Cochrane (2001). éijh recent research
reveals that these assumptions are hard to maintain (3eestance, Barberist al,
2001, and Haliassos and Hassapis, 2001, for recent disos3sihey are still used
because of their analytical tractability. The developra@ficomputational power pro-
vide the possibility to relax these assumptions throughueof Microscopic Simu-
lation (MS) techniques. The idea is to study financial markst representing each
of the investors individually (on a computer) and by simulgtthe behavior of the
entire market, keeping track of all of the investors andrth@eractions over time.
Throughout the simulation, the variables that are of irggnacluding, for example,
asset prices or asset returns, can be recorded, and thamgysican be investigated.
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metrics and O. R. Tilburg University, P.O. Box 90153, 5000 Titburg, The Netherlands, email:
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2 Li, Donkers and Melenberg

The MS models of financial markets that result from the irdoa of heteroge-
neous agents, having different attitudes towards risk differeint expectations about
future asset returns, have been studied intensively initdrature, see, for example,
Chiarella and He (2003), Hommes (2005), LeBaron (2000, 2@y et al. (2000),
and Lux (1998). So far, research has mainly focused on iigatstg whether a sin-
gle or some ‘representative’ simulation runs of an MS mod#eras some important
characteristics found in actual financial markets, theated stylized facts, such as
short-term momentum, excess volatility, heavy tradingiu@, a positive correlation
between volume and contemporaneous absolute returnsgemolas market crashes,
etc., see Hommes (2005), for instance. Although these waodkgde various ways to
explain the stylized facts, to our knowledge, systematoredures to investigate the
differences between two MS models or to judge whether a MSaisdealistic or not
have not yet been developed.

The work of Liet al. (2005) is a first attempt along this line. In &t al. (2005), we
study how to compare different microscopic simulation (M&)dels and how to com-
pare a MS model with actual data. Essentially, we investitfad comparison of some
given features of the distribution of the outcome seriestdrest (like asset returns)
by applying econometric techniques. In the current papeapmy this methodol-
ogy to some particular relevant features of the distributibasset returns, namely the
marginal one-period probability density function, the &p& density function, and
particular memory parameters. The marginal one-periotiahitity density function
gives insights into the distribution of the return proceBsis is linked directly to one
of the stylized facts of high frequency financial data, nanieptokurtosis, in which
case the return process exhibits high peaks around the mddraa fat tails. The spec-
tral density function measures the global cyclical behavidhe return process, and as
such contains much information about the dynamics of themgirocess of financial
markets. In fact, in the macroeconomics literature (seeinstance, Dieboldt al,
1998), the comparison of the spectral density functionsseadard way to compare
the dynamics of model generated data with actual data. liziaalmemory parameters
we take the order of fractional integration in an ARFIMA presgwhich measures the
speed of decay of autocorrelations. In this way we can inyest the presence of long
range dependence in, for instance, squared or absolutesetu

We shall make the assumption of (strict) stationarity. 8inwe are dealing with re-
turn data, this seems to be an acceptable approximationd&thestimators and tests
are then available for the marginal one-period probabdgysity function, the spec-
tral density function, and the memory parameters that weiden and can be applied
straightforwardly. For instance, when making a comparisaierms of the marginal
one-period probability density function or the spectraigity function, nonparametric
kernel estimators and tests based upon these can be apgfiieithe memory parame-
ter we shall make use of available semiparametric techeigneluding the estimators
of the fractional differencing parameter proposed by Gexsakd Poter-Hudak (1983)
and Robinson and Henry (1999).
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A special feature of MS models is that its outcome series @onlserved along
two dimensions, namely, we can observe the outcome serieaéh run of the sim-
ulation, and we can run the MS model independently many tirGesmsequently, the
parameters of interest might be estimated in different welyes shall exploit this pos-
sibility heavily in this paper when applying the non- and ggmametric techniques,
particularly, when comparing actual data with outcomes &f idodels.

The remainder of the paper is organized as follows. In Se@&jave introduce how
to compare two different MS models, and how to compare a MSaieith actual data
in terms of the marginal probability density function, theestral density function,
and memory parameters. In Section 3 we illustrate the msthgdhe MS models
developed by Levy, Levy, Solomon (see Legyal, 2000), and the market fraction
model developed by He and Li (2005a, b), where we use in batbscthe Standard
& Poor 500 index (hereafter S&P 500) to represent the realdvdiVe conclude in
Section 4.

2. ECONOMETRIC METHODS

Given the outcomes of interest of MS models, for instance stiocks returns, we
are interested in how to assess the differences between Svonbtlels and that be-
tween an MS model and actual data in terms of specific chaistate of the stock
return distribution. As characteristics we shall consiihethis section the marginal
single-period probability density function, the specttahsity function, and memory
parameters. We shall make the assumption of (strict) siatity, which seems to be
an acceptable approximation, since we are dealing withrredata. When dealing
with asymptotic results, we shall also assume ‘asymptatiependence’ in the form
of appropriate mixing conditions, cf., for example, Bieré2804).

2.1. Themarginal one-period probability density function. With observationgz,}7,,
the marginal one-period probability density functiprevaluated at € (a,b) can be
estimated consistently (under appropriate regularityddanms, see, for example, Pa-
gan and Ullah, 1999) by the Nadaraya-Watson kernel estimato

T — Tt
)

o) = 7 RO

for eachx in the interval(a, b), whereK is anrth order kernel function andl is the
smoothing parameter.

Under some regularity conditions (see Pagan and Ullah, ,1fa®9nstance), this
nonparametric estimator has an asymptotic normal distobuwhenTh — oo, T —
oo, andh — 0

VTR(f(@) — s(z)) — N <0, I / KZ(u)du) a<mz<b, 2)

where K is an appropriate kernel function, and where the asymphoéis vanishes
whenv/Thh? — oo. On the basis of this limit distribution, one can easily dounst

(1)
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pointwise confidence intervals. However, rather than ngjyan the asymptotic limit
distribution, we apply the bootstrap (see, for instanceaohiiz 2001, 2003, for gen-
eral discussions) to construct such pointwise confidentvials, where we follow
Hall (1992). As discussed by Hall (1992), there are two wayddal with the as-
ymptotic bias. One is the method of explicit bias removag, dkher method is under-
smoothing, which relies on choosing the bandwido small that the asymptotic bias
becomes negligible. Hall (1992) compares these two metimagsms of the errors in
the coverage probabilities of bootstrap confidence intervehe conclusion seems to
be that undersmoothing is the better method for handlingsigenptotic bias, when the
aim is to minimize the differences between the true and nahmgjection and cover-
age probabilities of the bootstrap-based confidence ialerifo get this result a fourth
order kernel, such a& (z) = (15/32)(7z* — 1022 + 3) if |2| < 1, andK(z) = 0
otherwise, needs to be used. Accordingly, this kernel arltsk$aiggestion on under-
smoothing will be used for the bias removal in our study.

Obviously, a set of1 — «) pointwise confidence intervals constructed for a dis-
cretized finite interval will not achievel — «) joint coverage probability. So, we also
consider a uniform confidence band. Hall (1993) suggestsosstvap procedure to
construct a simultaneous confidence bands which we willrusari study. Hall (1993)
suggests to remove the asymptotic bias by the so-calleitéxpkethod, because it is
difficult to determine the appropriate amount of undersiimgt. Hall (1993) uses
the standard normal kernel to estimdtevhile the second order approximation of the
bias is estimated by estimating the second order derivafiye appearing in the bias
approximation, by using the second derivative of the stahdarmal kernel. We will
follow these suggestions in our study.

When the aim is to compare two MS models, we are dealing withtinve series
{z;} and{y,} associated with the marginal probability density functjoaf one MS
model andg of an other MS model, respectively, and we are interestedsting the
null hypothesisH, : f(z) = g(z) against the alternativél; : f(xz) # g(x). We
shall test these hypotheses by applylng a test proposed @M9B6), which is based
onl = [(f — §)*dx. After rewriting, I can be expressed as

I=1 +2%?)+0( b (3)
where
a —Yj Yi — T Ti — Yj
M ZJJ () + KOG - KO - K .
Li (1996) shows that undefl,, whenh — 0, andTh — oo,

\/I1d

o1

Jr = (0,1), (4)
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2= 2SS [ (B (T [
L= r2p 4 h h h '

i=1 j=1

To use this result to compare the marginal probability dgrignctions of two MS
models, we define the averaged, over simulations, estiroétbe probability density
function f(x) as

fi(a) = 5 S I), ©)

where the superscripfi indicates that this estimator is obtained from the average
over independent simulationg™ is the kernel estimator of the probability density
function f based upon the-th realization of the MS model, gbgl is the average of the
kernel estimators over independent simulations. The estinfi(z) is a consistent
estimator off (x) for T' — oo with

VTh(f%(z) — f(z)) = N (0, % /KQ(u)du) ,a<x<b, (6)

whenTh — oo, h — 0, andT — oo. WhenT goes to infinity and, sequentially, also
N goes to infinity, we have

VENH(P(0) = ) N (0,100) [ £20)0). @)

whenTNh — oo, h — 0, T — oo and N — oo (and the asymptotic bias vanishes
whenv/TNhh?* — 0). In other words, we can tesf, : f(z) = g(z) based upon the
estimatorsfS? and ' using all the data in one test. The correspondifigppearing
in Li's test can be computed by using all of th&l" observations

Finally, we turn to the problem of comparing the probabitignsity function of a
MS model with that of the real world. So, I¢{z) andg(x) be the probability density
functions of the real world and a MS model, respectively, &@adire again interested in
testing the null hypothesiH, : f(z) = g(z) against the alternativl; : f(x) # g(z).
f(x) can be estimated by the kernel estimafar;), using the time series observations;
g(z) can be estimated by” using the time series observations over many simulation
runs. Obviouslyj®* converges much faster thafl(w), if we also exploit the simulation
limit N — oo in addition (and sequential) t6 — oo. This means, when testing
equality of f(x) andg(z), that we can ignore the estimation/simulation inaccuracy i
¢°%. Testing equality off (x) andg(x) can be done, for instance, by simply checking
whetherjsi lies in the confidence bound arourfidz), where the confidence bound is
solely based on the estimation inaccuracy 6f).

2.2. The spectral density function. A standard way of investigating the dynamics
commonly used in the macroeconomics literature is baseleosytectral density func-
tion (see, for instance, Dieboldt al, 1998). The spectral analysis treats the time
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series globally and focuses on analyzing the series as aewtletomposing it into
its periodic components corresponding to different frepies. This is in contrast
to comparing only a limited number of variances and covaearof the time series.
As a consequence, this method yields a complete second-aragarison of the dy-
namic properties of model and data, providing a completensairy of the time series
dynamics.
We start with reviewing some basic concepts. For a timesérig, lety(k) denote

its autocovariance at lag Then its spectral density function is defined as

1 K
s(w) = by Z e~k (k) = )+ 227 ) cos(wk) (8)
k=—0o0

Suppose we have observatians x,, ..., z7. Let L denote the largest integer less
than or equal td'/2, i.e., L = [T/2], and letw,, be the frequency given b¥rk /T,
—L <k<L.Let
2

1]z
:? Zxkelkw ) =W T (9)
k=1

be the periodogram of the sample, then the spectral densittibns(w) can be esti-
mated by

$(w, h) Th Z K= L(wy), —m <w <. (10)
Because the precision of the sample analogue(éj decreases as the ldgin-
creases, this estimation consists of a weighting proceahrieh gives less weight to
the values of the autocovariance function at higher lagsioMa weighting functions
(kernel functions) can be used to estimate the spectrumns$tance, the Blackman-

Tukey weight (see Chatfield, 2004, for more detailed discunssn these issues).

Under some regularity conditions (see Priestly, 1981, ristance), the above non-
parametric estimator of the spectral density function maasymptotic normal distri-
bution. We have

VTh(3(w) — s(w)) = N (0, $2(w) / K2(u)du> O<w<m (11)

whenTh — oo, T — oo, andh — 0, whereK is a kernel function satisfying the
assumptions in Priestly (1981). On the basis of this linstritbution, one can easily
construct point wise confidence intervals. However, sintdahe case of the marginal
one-period probability density function, we shall constipoint wise confidence inter-
vals based on the procedure of bootstrapping kernel estimat the spectral density
function. A way to do this is proposed by Franke anértHe (1992). We shall follow
this approach in our application.

For the uniform confidence band, similar to that of Hall (1p&8 the probability
density function and Swanepoel and van Wyk (1986) for thetsaledensity function
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but with parametric estimation, we discuss in the appendix potentially such a
uniform confidence band might be constructed. We shall usepthtential uniform
confidence band in addition to the point wise version. Notiwsvever, that the formal
theory behind this construction still needs to be developed

In our situation, we can run a MS model for many time periods iadependently
many times. In order to use all of the available informatie, define, similar to the
case of the marginal one-period probability density funttihe estimator

, 1
5% (w) = N ; §"(w), (12)
wheres™ is the estimated spectral density based upomtherealization of the MS
model, and thed®’ is the average of estimated spectral density over indep¢sia-
ulation. So,5°" is a consistent estimator effor 7 — oo with

VTh(3%(w) — s(w)) = N (0, SQJ(V“’) / K?(u)du) L 0<w<m.  (13)

When, sequentially, alsty goes to infinity, we gét

TN (W) — s(w)) = N (0,52(w) /Kz(u)du) ,O0<w<m.  (14)

So, similar to the case of the probability density functithe spectral density func-
tion estimator in case of the actual data will have rate ovecgencey/Th, while in
case of the simulation based case, it will have rate of cgarerey/TNh. So, again,
when sequentially td” — oo alsoN — oo, the simulation based estimator will have
a much higher rate of convergence, and may be considereshédf asymptotically) to
be known, when compared with the actual data based estimator

2.3. Semiparametric estimation of memory parameters. There are several possible
definitions of the property of “long memory”. Following Baél(1996), given a series
x, t = 0, £1..., with autocorrelation functiop; at lag j, we say that the process
possesses long memorypif decays “slowly”, i.e., if the quantity

Jj=n
lim > p)| (15)

is nonfinite. Equivalently, the spectral densityw) will be unbounded at low frequen-
cies. We semiparametrically model long memory in a covaaastationary series;,
t=0,+1, .., by

s(w) =~ Gw™, w— 0T, (16)
where0) < G < oo, ands(w) is the spectral density af,. Under (16),s(w) has a
pole atw = 0 for 0 < d < 1/2 (when there is long memory in;), whiled > 1/2

INotice that if 7" is fixed and onlyN goes to infinity, in general, it is impossible to get a corsist
estimator for the spectral density function unless we hpeific restrictions ony(k), for instance,
~v(k)=0fork > T.



8 Li, Donkers and Melenberg

implies the process is not covariance stationafys) is positive and finite forl = 0;

for —1/2 < d < 0, we have short memory, negative dependence, or antipErsest
Geweke and Poter-Hudak (1983), henceforth GPH, suggestechiparametric es-

timator of the fractional differencing parameter, that is based on a regression of

the ordinates of the log spectral density. The estimatologspthe theory of linear

filters to write the procesél — L)%y, = u;, whereu; ~ 1(0), i.e., the proces$u, }

is stationary. Les,(w) ands,(w) be the spectral densities gf andu,, respectively.

Then

—iw|—2d
sy(w) =[1— ™| ™ su(w). (17)
This can be expressed as
log s, (w) = log(4sin®(w/2)) ™% + log s, (w). (18)
Given spectral ordinates; , w-, ..., w,,, this becomes

log s,(w;) = log 5,(0) — dlog(4sin®(w;/2)) + log(s.(w;)/s.(0)). (19)

GPH suggest estimatingfrom a regression of the ordinates from the periodogram of
yy, thatis,(w;). Hence, forj = 1,2, ....m,

log I,(w;) = ¢ — dlog(4sin®*(w;/2)) + vj, (20)

where

vj = log(su(w;)/su(0)) (21)
andv; is assumed to be i.i.d. with zero mean and variant. Whenu, is white
noise, then the above regression should provide a goodatstioid. Whenu, is au-
tocorrelated, GPH show that the above regression holdexzippately for frequencies
in the neighborhood of zero. If this neighborhood shrinkaraappropriate rate with
the sample size, then the GPH procedure should realize sstamsestimator ofl. If
the number of ordinates: is chosen such that. = ¢(7"), whereg(7T') is such that
limr .o g(T) = o0, limr_.o g(T)/T = 0, limz_(log(T)?)/g(T) = 0, then the
OLS estimator of/ based on (20) will have the limiting distribution

2

Vin(depn —d) % N (0, 37) (22)

Robinson (1995) provided the formal proof ferl/2 < d < 1/2, Velasco (1998)
proved the consistency of.py in the casd /2 < d < 1 and its asymptotic normality
in the casel /2 < d < 3/4. The variance of this estimator can be obtained from the
usual OLS regression formula. It is clear from this resuwdt the GPH estimator is not
T'/? consistent and will converge at a slower rate.

Another most often used estimatordi developed by Robinson and Henry (1999),
henceforth RH. They suggest a semiparametric Gaussianagstohithe memory pa-
rameterd, by considering

dpy = arg min R(d), (23)
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whereR(d) is

1 — d ~—
Ru)zmg{EEZQ?u@g}—ZEE:mg%, (24)
j=1 j=1

in whichm € (0,[T'/2]) andw; = 27j/T. They proved that whem < [T'/2] such
that, asl” — oo,

1 m
—+ = 25
— 40, (25)
and under some further conditions (see Robinson and Her®9)1@e have
A 1
vm(dry — d) — N(0, Z) (26)

asT — oo. . X .
In case of the simulation models we can constrijét= -+ fozl dy, with dp the
estimator ofd in simulation rum, andb € {GPH, RH}. We have

2

Ai d T
Vv Nm(ngH - d) - N(0> ﬂ%

and
e 1
\mm@fwﬂN@ﬂ

So, in case of the actual data the estimators will have ratemfergence/m, while
in case of the simulation based case, it will have rate of emyencey Nm. So,
again as in the previous cases, when sequentially/dlse oo, the simulation based
estimator will have a much higher rate of convergence, andoe@onsidered (at least,
asymptotically) to be known, when comparing it with the attlata based estimator.

3. APPLICATIONS

The MS literature attempts to explain various types of maokéavior, and to repli-
cate the well documented empirical findings of actual finantiarkets, the stylized
facts. The recent literature has demonstrated the abditgxplain various stylized
facts, see, for instance the recent survey papers Homme@S)(28d LeBaron (2005).
But to our knowledge, most of the MS models match some styliaets only to a
limited extent; on the other hand, systematic procedur@s/estigate the differences
between two MS models or to judge whether a MS model is r@atishot have not yet
been developed. Hence, our applications here are madé&draltive purposes, in the
hope that they will gain a better understanding of the MS riso@ender consideration)
and that they might be of help in developing even more réald& models.

In this section, we will study two MS models. Firstly, we iistgate the model by
Levy et al. (2000), to which we shall refer to as the LLS model. Seconalystudy
the market fraction (MF) model proposed by He and Li (2003a, b
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3.1. Investigating the LLS model. We use the LLS model as a representation of MS
models. Because the LLS model is calibrated to quarterlyugaqy, we use the quar-
terly data of the S&P 500 from Datastream as representafitreaeal life situation,
starting in 1965 and running to the first quarter of 2003.

For the method of comparison of two different MS models, wégren a sensitivity
analysis of the initial conditions and parameter settimgthe LLS-economy to illus-
trate the method to compare two different MS models. Wetilias the sensitivity
analysis in terms of the initial price. The subsequent $eitgianalysis in terms of
initial dividend, the risk aversion parameter, the averdigelend growth rate, and ini-
tial wealth is performed in a similar way. To analyze the gefity to the initial price,
we first simulate the benchmark model. In the benchmark LL8ehave choose, fol-
lowing Levy et al. (2000), the initial pricel P = 20.94, the initial dividend/ D = 0.5,
the risk aversion parametétA = 1.5, the maximal one period dividend decreases
MDD = —0.07, and the initial wealth W/ = 1000. Next, we keep all the conditions
and parameters the same, except for the initial price. Twvditiadal simulations are
performed, one with an initial priceP = 26 that is higher than the benchmark price,
and an other one with a lower initial price, namély = 16. Then we look at the im-
pact of these different initial prices on the output pararstin particular, the probabil-
ity density function, and see whether these parametergiseyntly deviate from those
of the benchmark model. Next, we do the same exercises irstefitine initial divi-
dend (with/D € {0.4,0.6}), the risk aversion parameter (wifRA € {1.45,1.55}),
the maximal one period dividend decreases (Wit D € {—0.08, —0.06}), and the
initial wealth. In the latter case we consider two variasiolm the first case (unif.), the
initial wealth is uniformly distributed over [500, 1500]hile in the second case (50%)
half of the investors have an initial wealth of 500 and thesotalf have of 1500. In
this study, for each set of parameter, we ran 5,000 indepeistaulations over 1,000
time periods, and for each run of the model we use the last bS@r@ations to match
the sample size of the S&P 500 that we use.

Probability density function: In Table 1, we report the results of the sensitivity
analysis in terms of Li (1996)'s test/{). We find that the changes considered do not
have a serious impact, with one exceptidiD D has a significant impact. The reason
for this seems to be that the dividend process is the drivanggefin the LLS-economy,
and changing/ D D means changing the dividend distribution. These testteant
quite similar to those in Let al. (2005), where a sensitivity analysis is performed in
terms of parametrically estimated output parameters.

TABLE 1. Sensitivity analysis in terms of probability density étion

1P 1D RA MDD w
16 26 0.4 0.6 1.45 1.55 -0.08 -0.06 Unif. 50%
Jr 17237 18158 1.7436 1.8845 18150 1.7028 17.0767 10.9783699 1.8100

Besides the comparison of two different economies, we nexipeoe the bench-
mark LLS model with the real world, which is represented by 8&P 500. We plot
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the probability density functions of the LLS model, the S&F05and that of a normal
distribution with mean and variance equal to that of S&P $0Bigure %. In addition,
we also plot a 95%-point wise confidence interval in Figur@) Bnd a 95% uniform
confidence band in Figure 1(b) around the S&P 500 densitsnagti. The normal den-
sity fits in both the point wise and uniform confidence intésybut the LLS-model
based average density does not so fully in the point wise dendie interval, while
it almost fits in the uniform confidence band. Thus, the aatetirn distribution as
a whole can be reproduced by the LLS-model according to thédence band, but
at some particular return outputs the LLS model has diffycutfitting the S&P 500
distribution. This applies particularly to returns closezero.

0 L L L L L L L L L L 0 (ul N L L L L L L L
-025 -02 -015 -01 -005 0 005 01 015 02 -025 -02 -015 -01 -005 0 005 01 015 02
@ (b)

FIGURE 1. The estimated probability density functions of the LLS
model (dash-dot line), normal distribution (dot line), amfdthe S&P
500 with confidence intervals (a) and confidence band (b)

Spectral density function: First, we implement the sensitivity analysis in terms of
the spectral density function. Although we do not apply atalrtest, we base our sen-
sitivity analysis on a comparison of the confidence intexyvidllowing here Diebold
et al. (1998). We present the estimated spectral density furefionthe benchmark
LLS model, for the LLS model with pricé P = 16, and that with pricd P = 26 and
their corresponding 95% pointwise confidence intervalsigufe 2. Similarly, we do
the same exercise in terms of initial dividend, the risk anar parameter, the maximal
one period dividend decrease, and initial wealth; thesdaltseare presented in Figure
3. We find that the LLS model is quite robust in terms of the spédensity func-
tion with respect to the chosen initial parameters, excaggdjn, for the maximal one
period dividend decreas@/ DD, indicating that the dividend process also seriously
influences the shape of the spectral density function.

The estimated density functions of the S&P 500 are sligtiffg@nt in (a) and (b), this is because we
follow Hall (1992, 1993) and use different kernels.
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FIGURE 2. The spectral density functions with its 95% pointwise-con
fidence intervals of benchmark LLS model (solid line), andsth of
LLS model with/P = 16 (dash-dot line), and of LLS model with
1P = 26 (line with cross).

0.10

0.05} | 0.05

o 1.57 3.14 [0} 1.57 3.14

0.10

0.05

o 1.57 3.14

FIGURE 3. The spectral density functions with its 95% pointwise-con
fidence intervals of the benchmark LLS model, and those ot il
model in terms of different initial dividend (a), differerisk aversion
parameter (b), different/ D D (c), and different initial wealth (d)

Next, we present the estimated spectral density functiorthi® quarterly returns
of the S&P 500, and its corresponding 95% confidence interwvaFigure 4. We
also estimate the spectral density function for each siiaumaf the benchmark LLS
model. Again, for the purpose of comparison, we only usedbe152 periods of the
simulated time series for estimation, which matches thgtlenf the S&P 500 data
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that we use. In Figure 4(a) we plot the averaged spectraitgdnaction over 5,000
simulations, and in Figure 4(b) we do the same for the unifoomfidence band. We
find that, except for a few rather small frequencies, the baSed spectral densities
lies outside of the 95% confidence bands of the spectral tyeiusiction of the S&P
500. When we compare the frequencies corresponding to tHes péahe spectra,
which describe the cycles that dominate the cyclical bedrafithe dynamics, we see
that they are not at the same pace. Thus, there seems to lgealifierence when
we assess the second order moments between the LLS gersatdexhd the real life
data.

An obvious approach to obtain a better fit of the actual dadanseo be calibration.
Taking into account that changes in the dividend processantle both the marginal
one-period probability density function and the specteaigity function, it seems to
make sense to perform a calibration in terms of the parasiefeéhe current dividend
process of the LLS model, or, alternatively, in terms of taegneters of some adapted,
more flexibly specified dividend process.

o 1.57 3.14a o 1.57 3.14a
> >

FIGURE 4. The spectral density functions with its 95% confidence in-
tervals (a) and uniform confidence band (b) of the S&P 500 &ed t
LLS model

3.2. Investigation the Market Fraction model. As another example, this section
provides an analysis on the market fraction model proposeHd and Li (2005a,
b), and a calibrated version, calibrated to actual data ssrited in Liet al. (2005),
where the calibration is based on minimizing a distance betwactual and model
based autocorrelations of various orders of both the retuhe squared returns, and
the absolute returns. The real world is represented by thHe =X stock market index.
The market fraction model is calibrated to daily frequescigsing the daily closing
price index of the S&P 500. There are altogether 5,306 ohsiens from Oct 20, 1982
to Oct 27, 2003. Denotg; as the price index for S&P 500 at timét = 0, ..., 5305)
and log returns; are defined as; = Inp; — Inp;_1. In case of the market fraction
model we are particularly interested in the study of the loramory properties of the
market fraction model, since this model aims at giving anlaxgtion of long range
dependence in stock returns.
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In this study, for each set of parameters, we ran 1,000 ircbbgoe simulations over
6,306 time periods and discard the first 1,000 time periodgih out the initial noise
effect. Thus, for each run of the model we have 5,306 obsengtwhich matches the
sample size of the S&P 500 that we use.

Memory parameters. A well known empirical feature of high frequency (daily)
financial time series is that the returns themselves cofitdenserial correlation, but
the squared returns and absolute returns have a signifioaiiive serial correlation
over long lags, see, for instance, Diegal. (1993). We first report the estimation
results for the S&P 500, and then we analyze the market éraatiodel. We notice that
a major issue in the application of the GPH and the RH estirmagdhe choice ofn,
due to the fact that some limited knowledge is now availableerning this issue (see,
Geweke, 1998, for instance), it is a wise precaution to regherestimated results for

a range of bandwidths. For instance, Lobato and Savin (1888). = 30, 40, 50, 60,

70, and80 for S&P 500 data from 1973 to 1994, in the comment by Gewek8§),9
the experiments results seem to suggest langeand Robinson (1998) suggests to
report the results for larger valuesmafgiven the sample size and the fact ttiag only
m!/2-consistent. So in our study, for both the GPH and the RH esitmaf d, we
report the corresponding estimates for= 50, 100,150,200, and250, respectively.

TABLE 2. The GPH and RH estimation af for the S&P 500 with
m = 50, 100, 150, 200, 250

daopy t p-value 95% CI dry t p-value 95% CI

ry 0.0819 0.795 0.427 [-0.1201, 0.2838p.0602 0.852 0.394 [-0.0784, 0.1988]
0.0907 1.307 0.191 [-0.0454,0.2269p.0358 0.715 0.475 [-0.0622,0.1338]
0.0532 0.957 0.338 [-0.0558,0.1622p.0167 0.408 0.683 [-0.0634, 0.0967]
0.0365 0.766 0.444 [-0.0569, 0.1298p.0070 0.199 0.842 [-0.0623,0.0763]
0.0102 0.242 0.809 [-0.0727,0.0932p.0001 0.003 0.997 [-0.0619,0.0621]

r? 0.2386 2.316 0.021 [0.0367, 0.4406]0.2553 3.610 0.000 [0.1167,0.3939]
0.2175 3.132 0.002 [0.0814,0.353[(]0.2452 4.904 0.000 [0.1472,0.3432]
0.1651 2.969 0.003 [0.0561,0.274[]0.1921 4.705 0.000 [0.1121, 0.2721]
0.1452 3.048 0.002 [0.0518,0.238(%]0.1737 4.913 0.000 [0.1044, 0.2430]
0.1387 3.277 0.001 [0.0557,0.2216$]0.1715 5.422 0.000 [0.1095, 0.2334]

|r,] 0.6492 6.301 0.000 [0.4473,0.851P2]0.6249 8.837 0.000 [0.4863, 0.7635]
0.6366 9.166 0.000 [0.5005,0.772f]0.6241 12.48 0.000 [0.5261, 0.7221]
0.5606 10.08 0.000 [0.4516, 0.669($]0.5323 13.04 0.000 [0.4523, 0.6124]
0.4940 10.35 0.000 [0.4004, 0.587($]0.5021 14.20 0.000 [0.4328,0.5714]
0.4564 10.78 0.000 [0.3734,0.5394]0.4843 15.31 0.000 [0.4223,0.5463]

Table 2 report the GPH and the RH estimationl &6r returns, squared returns, and
absolute returns, respectively. For instance, in the pafnelin Table 2, the first row
reports the results from the GPH and the RH estimation with 50, the second row
reports the results of the GPH and the RH estimation with- 100, and so on. This
also holds for the panels of and|r;|, and for other tables in this section. The reported
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t statistic is that compared with We see that all of the estimatédor the returns
are not significant at all conventional significance levelslevthose for the squared
returns, and the absolute returns are significant. Thush&8&P 500, there is clear
evidence of long memory for the squared and the absolutensgtwherel is positive.

Next, we examine the market fraction model. Table 3 and Tabkport the GPH
and RH estimation of the memory parameterwith corresponding-value andp-
value, averaged over the 1000 simulations. The Tables alst@io the 95% confi-
dence interval, representing the simulation inaccurd&eynumber of times thetests
indicates a significant value df as well as the test results for testing equality between
the d parameter according to the market fraction model, and takdata (column
‘Wald’), using here the Wald test taking into account onlg #stimation inaccuracy in
the estimated according to the real data.

TABLE 3. GPH estimation of for the market fraction model withh =
50, 100, 150, 200, 250

d t p-value 95% CI Sig% Wald
r, -0.0079 -0.0768 0.4731 [-0.0143,-0.0015] 9 0.760
-0.0115 -0.1651 0.4626 [-0.0158,-0.0072] 9 2.162
-0.0175 -0.3140 0.4406 [-0.0209,-0.0140] 11 1.617
-0.0252 -0.5287 0.4098 [-0.0281,-0.0222] 15 1.680
-0.0344 -0.8128 0.3751 [-0.0370,-0.0318] 21 1.112
r? 0.7502 7.2816 0.0000 [0.7439,0.7566] 100 24.67
0.5816 8.3744 0.0000 [0.5773,0.5859] 100 27.45
0.4791 8.6157 0.0000 [0.4757,0.4826] 100 31.89
0.4100 8.6065 0.0000 [0.4071,0.4130] 100 30.95
0.3631 8.5821 0.0000 [0.3605,0.3657] 100 28.14
lr,/ 0.8738 8.4810 0.0000 [0.8674,0.8802] 100 4.755
0.7060 10.165 0.0000 [0.7017,0.7103] 100 0.997
0.5942 10.685 0.0000 [0.5908,0.5977] 100 0.365
0.5138 10.785 0.0000 [0.5108,0.5168] 100 0.173
0.4572 10.805 0.0000 [0.4546,0.4598] 100 0.000

We see from Table 3 and Table 4 that both of the GPH and the Rra&stn ofd
for the returns are in most if not all of the simulations ngsiicant while those for
the squared returns, and the absolute returns are all sigmifi Thus, the estimated
ds for the absolute returns and the squared returns seemvil@rmear evidence of
long memory in the market fraction model for both the squared absolute returns.
Moreover, the Wald tests (notice that the critical valueghwignificance levels 5%
and 1% are 3.842 and 6.635, respectively) indicate thatttatedds for the returns
following from the market fraction model match with thosetloé S&P 500, the esti-
matedds for the squared returns are difficult to match with eachrpdred most of the
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TABLE 4. RH estimation of] for the market fraction model with =
50, 100, 150, 200, 250

=

d t p-value 95% CI Sig% Wald
ry -0.0188 -0.2659 0.3971 [-0.0232,-0.0144] 17 1.249
-0.0157 -0.3139 0.3924 [-0.0188,-0.0126] 15 1.061
-0.0206 -0.5047 0.3728 [-0.0231,-0.0181] 18 0.836
-0.0279 -0.7890 0.3478 [-0.0301,-0.0257] 23 0.972
-0.0363 -1.1485 0.2963 [-0.0383,-0.0344] 31 1.327
r? 0.7386 10.445 0.0000 [0.7342,0.7430] 100 46.73
0.5948 11.897 0.0000 [0.5917,0.5979] 100 48.89
0.5149 12.613 0.0000 [0.5124,0.5174] 100 62.60
0.4621 13.070 0.0000 [0.4599,0.4643] 100 66.37
0.4256 13.459 0.0000 [0.4236,0.4276] 100 64.66
|r,/ 0.8557 12.101 0.0000 [0.8513,0.8601] 100 10.66
0.7133 14.265 0.0000 [0.7102,0.7164] 100 3.183
0.6267 15.350 0.0000 [0.6241,0.6292] 100 5.353
0.5678 16.060 0.0000 [0.5656,0.5700] 100 3.445
0.5262 16.641 0.0000 [0.5243,0.5282] 100 1.758

estimated/s for the absolute returns match with each other at least aig@tficance
level with only one significant difference for the RH estimate

So, the conclusion seems to be that the calibrated MF modehiséo be able to
reproduce the presence of long memory patterns in the S&Pa®@ugh not at the
right magnitudes for the squared returns. Since the modéidady calibrated to actual
data, the lesson seems to be that the model needs to be irdpvaven the aim is to
describe actual data.

4. CONCLUSION

Microscopic Simulation (MS-)models are a promising way tiedy financial mar-
kets, since they allow for the possibility to include all &of realistic and complex
behavior of interacting economic agents, without havingvtwry about analytical
tractability. However, in many cases judgements of the@utes of MS models seem
to be based solely on visual inference.

Following the methodology in Let al. (2005), we investigate in this paper the
time series characteristics of Microscopic Simulation jv®dels using the probabil-
ity density function, the spectral density function, andtipalar memory parameters.
Econometric techniques can be used to study the impact ofgelsain the parame-
ters and the initial conditions on the simulated time sebelavior of the relevant
guantities of interest. We also present the method to coengsal life data with data
generated by MS economies. Here, we exploit our control th@mumber of sim-
ulations, creating one additional dimension for the asytiptproperties of the test
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statistics. This allows us to ignore the estimation unoafggpresent in the simula-
tions. Hence, we only need to account for the estimationmaicgy of the features of
the actual data.

We illustrate the use of the statistical and econometrigrtepies by studying one of
the earlier MS models, the economy considered by Levy, Lang, Solomon (LLS),
and the market fraction model developed in He and Li (200%a, b

For the LLS model, we perform a sensitivity analysis in teohthe marginal one-
period probability density function and the spectral dgnsind we find that the LLS
model is robust with respect to the changes we investigateéde initial prices, the
initial dividend, the risk aversion parameter, and theahivealth. However, a change
in the one period maximal decrease of dividend has a senopadt, likely, because
this changes the whole distribution of the dividend procasd the dividend process is
the driving force in the LLS-model. We also illustrate howctampare the LLS gener-
ated data with the actual data. We find that both the marginglesperiod probability
density function and the second order characteristicseof tt5 model are not fully in
line with real data. Taking into account the sensitivity lte dividend process, a nat-
ural way to proceed seems to be to calibrate the LLS-modelisi&ing, in particular,
on a parametrization of the dividend process.

For the market fraction model, we find that the model is ablentmic the long
memory phenomena of real financial market, although not tyétearight magnitude
for the squared returns. This suggests that the model negdisvement in case the
goal is being able to describe actual data.

REFERENCES

[1] Baillie, R. T. (1996), Long Memory processes and Frawtidntegration in Econometrics, Journal
of Econometrics, 73, 5-59.

[2] Barberis, N., M. Huang and T. Santos (2001), Prospecbmhand Asset Prices, Quarterly Journal
of Economics, 116, 1-54.

[3] Bierens, H. J. (2004), Introduction to the Mathematigatl Statistical Foundations of Economet-
rics, Cambridge University Press.

[4] Chatfield C. (2004), The Analysis of Time Series: Theangd &ractice, 6th ed. Chapman and Hall,
CRC Press Company.

[5] Chiarella, C., and X. He (2003), Dynamics of Beliefs anghkning undety;-processes - Hetero-
geneous Case, Journal of Economic Dynamics & Control, 23-531.

[6] Cochrane, J.H. (2001), Asset Pricing, Princeton UrsitgrPress, Princeton.

[7] Diebold, F. X., L. E. Ohanian, and J. Berkwitz (1998), Rynic Equilibrium Economies: A
Framework for Comparing Models and Data, Review of Econddticlies, 65, 433-452.

[8] Ding, Z., C. Granger, and R. Engle (1993), A Long Memorpgarty of Stock market Returns
and a New Model, Journal of Empirical Finance, 1, 83-106.

[9] Franke, J., and W. dfdle (1992), On Bootstrapping kernel spectral estimalég, Annals of
Statistics, 20, No. 1, 121-145.

[10] Geweke, J. (1998), Comment on Real and Spurious Long dfAgrmroperties of Stock-market
Data (by Lobato, I., and N. Savin), Journal of Business & Exoit Statistics, 16, 269-271.
[11] Geweke, J., and S. Poter-Hudak (1983), The EstimatiohAgpplication of Long Memory Time

Series Models, Journal of Time Series Analysis, 4, 221-238.



18 Li, Donkers and Melenberg

[12] Haliassos, M., and C. Hassapis (2001), Non-expectdlitySaving and Portfolios, The Eco-
nomic Journal, 111, 69-102.

[13] Hall, P. (1992), Effect of Bias Estimation on Converagecuracy of Bootstrap Confidence Inter-
vals for a Probability Density, The Annals of Statistics, R@. 2, 675-694.

[14] Hall, P. (1993), On Edgeworth Expansion and Bootstramfidlence Bands in Nonparametric
Curve Estimation, J. R. Statist. Soc. B, 55, No. 1, 291-304.

[15] Hardle W., J. Horowitz, and J. -P. Kreiss (2003), Bootstraphdds for Time Series, International
Statistical Review, 71, 435-459.

[16] He X., and Y. Li (2005a), Heterogeneity, Profitabilignd Autocorrelations, Research Paper 147,
Quantitative Finance Research Center, University of Teldgy Sydney.

[17] He X., and Y. Li (2005b), Long Memory, Heterogeneitydafrend Chasing, Research Paper 148,
Quantitative Finance Research Center, University of Teldgy Sydney.

[18] Hommes, C. (2005), Heterogeneous Agent Models in Eedo®and Finance, Handbook of Com-
putational Economics, Volume 2, Edited by K.L. Judd and Lsfasion, Elsevier Science, 2005,
to appear.

[19] Horowitz, J. (2001), The Bootstrap, Handbook of Ecoetnigs, Vol. 5, J.J. Heckman and E.E.
Leamer, eds., Elsevier Science B.V., Ch. 52, pp. 3159-3228.

[20] Horowitz, J. (2003), Bootstrap Methods for Markov Peeses, Econometrica, 71, 1049-1082.

[21] LeBaron, B. (2000), Agent-based Computational FiranSuggested Readings and Early Re-
search, Journal of Economic Dynamics & Control, 24, 679:702

[22] LeBaron, B. (2005), Agent-based Computational Firahtandbook of Computational Econom-
ics, Volume 2, Edited by K.L. Judd and L. Tesfatsion, Elseeience, 2005, to appear.

[23] Levy, M., H. Levy, and S. Solomon (2000), Microscopiartilation of Financial Markets, Acad-
emic Press, New York.

[24] Li, Q. (1996), Nonparametric Testing of Closeness lsam/Two Unknown Distribution Functions,
Econometric Reviews, 15, 261-274.

[25] Li, VY., B. Donkers and B. Melenberg (2005), Econometiicalysis of Microscopic Simulation
Models, Manuscript, Tilburg University.

[26] Lobato, I., and N. Savin (1998), Real and Spurious LongmMry Properties of Stock-market
Data, Journal of Business & Economic Statistics, 16, 263.-26

[27] Lux, T. (1998), The Social-economic Dynamics of Spative Markets: Interacting Agents,
Chaos, and the Fat Tails of Return Distributions, Journ&cefnomic Behavior & Organization,
Vol. 33, 143-165.

[28] Pagan, A., and A. Ullah (1999), Nonparametric Econaitgt Cambridge University Press.

[29] Priestly, M. B. (1981), Spectral Analysis and Time &sriVolume 1, Academic Press.

[30] Robinson, P. M. (1995), Log-periodgram Regression iafiel Series with Long Range Depen-
dence, Annals of Statistics, 23, 1048-1072.

[31] Robinson, P. M. (1998), Comment on Real and SpuriouglMemory Properties of Stock-market
Data (by Lobato, I., and N. Savin), Journal of Business & Exoit Statistics, 16, 276-279.

[32] Robinson, P. M., and M. Henry (1999), Long and Short Megmonditional Heteroscedasticity
in Estimating the Memory Parameters of Levels, Econom@&tneory, 15, 229-236.

[33] Swanepoel J. W. H., and J. W. J. van Wyk (1986), The BompsApplied to Power Spectral Density
Function Estimation, Biometrika, 73, 1, 135-141.

[34] Velasco C. (1999), Non-stationary Log-periodgram iRegion, Journal of Econometrics, 91, 325-
371.



The Non- and Semiparametric Analysis of MS Models: Some Applications

APPENDIXA. ‘UNIFORM CONFIDENCE BANDS FOR THE SPECTRAL DENSITY
FUNCTIONS

To construct theotential confidence band, we need to find andc;, such that

_mw{sq>{ﬁﬁ@@ﬂ%“w»}§@}: _a 27)

—r<wsn s(w)

and

Prob{ inf {\/ﬁ(g(”’m — S(“’))} > CL} —1-Z (28)

—n<w<T S(w)
then a(1 — «) uniform confidence band faris

[anm1+qhﬁ%ygwmu+QMWﬂﬂ. (29)

A bootstrap method to estimate them is as follows. Firstpeefi

A {\/T_h<§*(w’ h.9) _é(“’g»}, k=1,.. K. (30)

—m<w<T ‘§(w7 g)

K

Then let say;;, be theK (1 — «)th order statistics o{c;}k}k . The upper band of
=1

the (1 — «) uniform confidence band is then

(1 +cp/VTh)3(w, g). (31)
Similarly, we can find the lower band as
(1+¢;/VTh)s(w,g). (32)

In practice, there are many options on the choice of the kéunetion, here we use
the Bartlett-Priestley kernel

3M |1 _ (M6)?2
K() = 2 [1 ( ™ ) } 0] < m/M
0 0| > /M,
where M is the truncation point. This kernel satisfies the assumptio Franke and
Hardle (1992). We also note that Chatfield (2004) gives theiogiship between the

bandwidth and truncation point equal ko= 87 /3M, the choice of bandwidths is
based on the suggestion of Franke arédie.
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