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THE NON- AND SEMIPARAMETRIC ANALYSIS OF MS MODELS: SOME
APPLICATIONS∗

YOUWEI LI†, BAS DONKERS‡, AND BERTRAND MELENBERG§

ABSTRACT. This paper illustrates how to compare different microscopic simulation
(MS) models and how to compare a MS model with real data in casethe parame-
ters of interest are estimated non- or semiparametrically.As examples we investi-
gate the marginal single-period probability density function of stock returns, and the
corresponding spectral density function and memory parameters. We illustrate the
methodology by the MS models developed by Levy, Levy, Solomon (2000) and the
market fraction model developed by He and Li (2005a, b), and confront the resulting
return data with the S&P 500 stock index data.

JEL classification: C14, G12

Keywords: Microscopic simulation models; Probability density function; Spectral
density function; Memory parameters

1. INTRODUCTION

Many of the classical models in finance are based upon the assumptions of investor
homogeneity and expected utility theory, including, for instance, the Capital Asset
Pricing Model (CAPM), see, for example, Cochrane (2001). Although recent research
reveals that these assumptions are hard to maintain (see, for instance, Barberiset al.,
2001, and Haliassos and Hassapis, 2001, for recent discussions), they are still used
because of their analytical tractability. The developments of computational power pro-
vide the possibility to relax these assumptions through theuse of Microscopic Simu-
lation (MS) techniques. The idea is to study financial markets by representing each
of the investors individually (on a computer) and by simulating the behavior of the
entire market, keeping track of all of the investors and their interactions over time.
Throughout the simulation, the variables that are of interest, including, for example,
asset prices or asset returns, can be recorded, and their dynamics can be investigated.
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The MS models of financial markets that result from the interaction of heteroge-
neous agents, having different attitudes towards risk and different expectations about
future asset returns, have been studied intensively in the literature, see, for example,
Chiarella and He (2003), Hommes (2005), LeBaron (2000, 2005),Levy et al. (2000),
and Lux (1998). So far, research has mainly focused on investigating whether a sin-
gle or some ‘representative’ simulation runs of an MS model shares some important
characteristics found in actual financial markets, the so-called stylized facts, such as
short-term momentum, excess volatility, heavy trading volume, a positive correlation
between volume and contemporaneous absolute returns, endogenous market crashes,
etc., see Hommes (2005), for instance. Although these worksprovide various ways to
explain the stylized facts, to our knowledge, systematic procedures to investigate the
differences between two MS models or to judge whether a MS model is realistic or not
have not yet been developed.

The work of Li et al. (2005) is a first attempt along this line. In Liet al. (2005), we
study how to compare different microscopic simulation (MS)models and how to com-
pare a MS model with actual data. Essentially, we investigate the comparison of some
given features of the distribution of the outcome series of interest (like asset returns)
by applying econometric techniques. In the current paper weapply this methodol-
ogy to some particular relevant features of the distribution of asset returns, namely the
marginal one-period probability density function, the spectral density function, and
particular memory parameters. The marginal one-period probability density function
gives insights into the distribution of the return process.This is linked directly to one
of the stylized facts of high frequency financial data, namely leptokurtosis, in which
case the return process exhibits high peaks around the mean and has fat tails. The spec-
tral density function measures the global cyclical behavior of the return process, and as
such contains much information about the dynamics of the return process of financial
markets. In fact, in the macroeconomics literature (see, for instance, Dieboldet al.,
1998), the comparison of the spectral density functions is astandard way to compare
the dynamics of model generated data with actual data. Finally, as memory parameters
we take the order of fractional integration in an ARFIMA process, which measures the
speed of decay of autocorrelations. In this way we can investigate the presence of long
range dependence in, for instance, squared or absolute returns.

We shall make the assumption of (strict) stationarity. Since we are dealing with re-
turn data, this seems to be an acceptable approximation. Standard estimators and tests
are then available for the marginal one-period probabilitydensity function, the spec-
tral density function, and the memory parameters that we consider, and can be applied
straightforwardly. For instance, when making a comparisonin terms of the marginal
one-period probability density function or the spectral density function, nonparametric
kernel estimators and tests based upon these can be applied.For the memory parame-
ter we shall make use of available semiparametric techniques, including the estimators
of the fractional differencing parameter proposed by Geweke and Poter-Hudak (1983)
and Robinson and Henry (1999).
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A special feature of MS models is that its outcome series can be observed along
two dimensions, namely, we can observe the outcome series for each run of the sim-
ulation, and we can run the MS model independently many times. Consequently, the
parameters of interest might be estimated in different ways. We shall exploit this pos-
sibility heavily in this paper when applying the non- and semiparametric techniques,
particularly, when comparing actual data with outcomes of MS models.

The remainder of the paper is organized as follows. In Section 2, we introduce how
to compare two different MS models, and how to compare a MS model with actual data
in terms of the marginal probability density function, the spectral density function,
and memory parameters. In Section 3 we illustrate the methods by the MS models
developed by Levy, Levy, Solomon (see Levyet al., 2000), and the market fraction
model developed by He and Li (2005a, b), where we use in both cases the Standard
& Poor 500 index (hereafter S&P 500) to represent the real world. We conclude in
Section 4.

2. ECONOMETRIC METHODS

Given the outcomes of interest of MS models, for instance, the stocks returns, we
are interested in how to assess the differences between two MS models and that be-
tween an MS model and actual data in terms of specific characteristics of the stock
return distribution. As characteristics we shall considerin this section the marginal
single-period probability density function, the spectraldensity function, and memory
parameters. We shall make the assumption of (strict) stationarity, which seems to be
an acceptable approximation, since we are dealing with return data. When dealing
with asymptotic results, we shall also assume ‘asymptotic independence’ in the form
of appropriate mixing conditions, cf., for example, Bierens(2004).

2.1. The marginal one-period probability density function. With observations{xt}T
t=1,

the marginal one-period probability density functionf evaluated atx ∈ (a, b) can be
estimated consistently (under appropriate regularity conditions, see, for example, Pa-
gan and Ullah, 1999) by the Nadaraya-Watson kernel estimator

f̂(x) =
1

Th

∑

t

K(
x − xt

h
) (1)

for eachx in the interval(a, b), whereK is anrth order kernel function andh is the
smoothing parameter.

Under some regularity conditions (see Pagan and Ullah, 1999, for instance), this
nonparametric estimator has an asymptotic normal distribution, whenTh → ∞, T →
∞, andh → 0

√
Th(f̂(x) − s(x)) → N

(

0, f(x)

∫

K2(u)du

)

, a < x < b, (2)

whereK is an appropriate kernel function, and where the asymptoticbias vanishes
when

√
Thh2 → ∞. On the basis of this limit distribution, one can easily construct
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pointwise confidence intervals. However, rather than relying on the asymptotic limit
distribution, we apply the bootstrap (see, for instance, Horowitz 2001, 2003, for gen-
eral discussions) to construct such pointwise confidence intervals, where we follow
Hall (1992). As discussed by Hall (1992), there are two ways to deal with the as-
ymptotic bias. One is the method of explicit bias removal, the other method is under-
smoothing, which relies on choosing the bandwidthh so small that the asymptotic bias
becomes negligible. Hall (1992) compares these two methodsin terms of the errors in
the coverage probabilities of bootstrap confidence intervals. The conclusion seems to
be that undersmoothing is the better method for handling theasymptotic bias, when the
aim is to minimize the differences between the true and nominal rejection and cover-
age probabilities of the bootstrap-based confidence intervals. To get this result a fourth
order kernel, such asK(z) = (15/32)(7z4 − 10z2 + 3) if |z| < 1, andK(z) = 0
otherwise, needs to be used. Accordingly, this kernel and Hall’s suggestion on under-
smoothing will be used for the bias removal in our study.

Obviously, a set of(1 − α) pointwise confidence intervals constructed for a dis-
cretized finite interval will not achieve(1 − α) joint coverage probability. So, we also
consider a uniform confidence band. Hall (1993) suggests a bootstrap procedure to
construct a simultaneous confidence bands which we will use in our study. Hall (1993)
suggests to remove the asymptotic bias by the so-called explicit method, because it is
difficult to determine the appropriate amount of undersmoothing. Hall (1993) uses
the standard normal kernel to estimatef , while the second order approximation of the
bias is estimated by estimating the second order derivativeof f , appearing in the bias
approximation, by using the second derivative of the standard normal kernel. We will
follow these suggestions in our study.

When the aim is to compare two MS models, we are dealing with twotime series
{xt} and{yt} associated with the marginal probability density functionf of one MS
model andg of an other MS model, respectively, and we are interested in testing the
null hypothesisH0 : f(x) = g(x) against the alternativeH1 : f(x) 6= g(x). We
shall test these hypotheses by applying a test proposed by Li(1996), which is based
on Î =

∫

(f̂ − ĝ)2dx. After rewriting, Î can be expressed as

Î = Î1 + 2
K(0)

Th
+ Op(T

−1) (3)

where

Î1 =
1

T 2h

T
∑

i=1

T
∑

j=i,j 6=i

[

K(
xi − xj

h
) +K(

yi − yj

h
) −K(

yi − xj

h
) −K(

xi − yj

h
)

]

.

Li (1996) shows that underH0, whenh → 0, andTh → ∞,

JT :=

√
ThÎ1

σ̂1

d→ N (0, 1), (4)
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where

σ̂2
1 =

2

T 2h

T
∑

i=1

T
∑

j=1

[

K(
xi − xj

h
) +K(

yi − yj

h
) + 2K(

xi − yj

h
)

]
∫

K2(ψ)dψ.

To use this result to compare the marginal probability density functions of two MS
models, we define the averaged, over simulations, estimatorof the probability density
functionf(x) as

f̂Si(x) :=
1

N

∑

n

f̂n(x), (5)

where the superscriptSi indicates that this estimator is obtained from the average
over independent simulations;̂fn is the kernel estimator of the probability density
functionf based upon then-th realization of the MS model, sôfSi is the average of the
kernel estimators over independent simulations. The estimator f̂Si(x) is a consistent
estimator off(x) for T → ∞ with

√
Th(f̂Si(x) − f(x)) → N

(

0,
f(x)

N

∫

K2(u)du

)

, a < x < b, (6)

whenTh → ∞, h → 0, andT → ∞. WhenT goes to infinity and, sequentially, also
N goes to infinity, we have

√
TNh(f̂Si(x) − f(x))

d→ N
(

0, f(x)

∫

K2(v)dv

)

, (7)

whenTNh → ∞, h → 0, T → ∞ andN → ∞ (and the asymptotic bias vanishes
when

√
TNhh2 → 0). In other words, we can testH0 : f(x) = g(x) based upon the

estimatorsf̂Si andĝSi using all the data in one test. The correspondingσ̂2
1 appearing

in Li’s test can be computed by using all of theNT observations
Finally, we turn to the problem of comparing the probabilitydensity function of a

MS model with that of the real world. So, letf(x) andg(x) be the probability density
functions of the real world and a MS model, respectively, andwe are again interested in
testing the null hypothesisH0 : f(x) = g(x) against the alternativeH1 : f(x) 6= g(x).
f(x) can be estimated by the kernel estimator,f̂(x), using the time series observations;
g(x) can be estimated bŷgSi using the time series observations over many simulation
runs. Obviously,̂gSi converges much faster than̂f(x), if we also exploit the simulation
limit N → ∞ in addition (and sequential) toT → ∞. This means, when testing
equality off(x) andg(x), that we can ignore the estimation/simulation inaccuracy in
ĝSi. Testing equality off(x) andg(x) can be done, for instance, by simply checking
whetherĝSi lies in the confidence bound around̂f(x), where the confidence bound is
solely based on the estimation inaccuracy off̂(x).

2.2. The spectral density function. A standard way of investigating the dynamics
commonly used in the macroeconomics literature is based on the spectral density func-
tion (see, for instance, Dieboldet al., 1998). The spectral analysis treats the time
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series globally and focuses on analyzing the series as a whole, decomposing it into
its periodic components corresponding to different frequencies. This is in contrast
to comparing only a limited number of variances and covariances of the time series.
As a consequence, this method yields a complete second-order comparison of the dy-
namic properties of model and data, providing a complete summary of the time series
dynamics.

We start with reviewing some basic concepts. For a time series{xt}, letγ(k) denote
its autocovariance at lagk. Then its spectral density function is defined as

s(ω) =
1

2π

+∞
∑

k=−∞

e−ikωγ(k) =
1

π

[

γ(0) + 2
+∞
∑

k=1

γ(k) cos(ωk)

]

. (8)

Suppose we have observationsx1, x2, ..., xT . Let L denote the largest integer less
than or equal toT/2, i.e., L = [T/2], and letωk be the frequency given by2πk/T ,
−L ≤ k ≤ L. Let

IT (ω) =
1

T

∣

∣

∣

∣

∣

T
∑

k=1

xke
ikω

∣

∣

∣

∣

∣

2

, −π ≤ ω ≤ π, (9)

be the periodogram of the sample, then the spectral density functions(ω) can be esti-
mated by

ŝ(ω, h) =
1

Th

L
∑

k=−L

K(
ω − ωk

h
)IT (ωk), −π ≤ ω ≤ π. (10)

Because the precision of the sample analogue ofγ(k) decreases as the lagk in-
creases, this estimation consists of a weighting procedure, which gives less weight to
the values of the autocovariance function at higher lags. Various weighting functions
(kernel functions) can be used to estimate the spectrum, forinstance, the Blackman-
Tukey weight (see Chatfield, 2004, for more detailed discussion on these issues).

Under some regularity conditions (see Priestly, 1981, for instance), the above non-
parametric estimator of the spectral density function has an asymptotic normal distri-
bution. We have

√
Th(ŝ(ω) − s(ω)) → N

(

0, s2(ω)

∫

K2(u)du

)

, 0 < ω < π (11)

whenTh → ∞, T → ∞, andh → 0, whereK is a kernel function satisfying the
assumptions in Priestly (1981). On the basis of this limit distribution, one can easily
construct point wise confidence intervals. However, similar to the case of the marginal
one-period probability density function, we shall construct point wise confidence inter-
vals based on the procedure of bootstrapping kernel estimation of the spectral density
function. A way to do this is proposed by Franke and Härdle (1992). We shall follow
this approach in our application.

For the uniform confidence band, similar to that of Hall (1993) for the probability
density function and Swanepoel and van Wyk (1986) for the spectral density function
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but with parametric estimation, we discuss in the appendix how potentially such a
uniform confidence band might be constructed. We shall use this potential uniform
confidence band in addition to the point wise version. Notice, however, that the formal
theory behind this construction still needs to be developed.

In our situation, we can run a MS model for many time periods and independently
many times. In order to use all of the available information,we define, similar to the
case of the marginal one-period probability density function, the estimator

ŝSi(ω) :=
1

N

∑

n

ŝn(ω), (12)

whereŝn is the estimated spectral density based upon thenth realization of the MS
model, and then̂sSi is the average of estimated spectral density over independent sim-
ulation. So,̂sSi is a consistent estimator ofs for T → ∞ with

√
Th(ŝSi(ω) − s(ω)) → N

(

0,
s2(ω)

N

∫

K2(u)du

)

, 0 < ω < π. (13)

When, sequentially, alsoN goes to infinity, we get1

√
TNh(ŝSi(ω) − s(ω)) → N

(

0, s2(ω)

∫

K2(u)du

)

, 0 < ω < π. (14)

So, similar to the case of the probability density function,the spectral density func-
tion estimator in case of the actual data will have rate of convergence

√
Th, while in

case of the simulation based case, it will have rate of convergence
√

TNh. So, again,
when sequentially toT → ∞ alsoN → ∞, the simulation based estimator will have
a much higher rate of convergence, and may be considered (at least, asymptotically) to
be known, when compared with the actual data based estimator.

2.3. Semiparametric estimation of memory parameters. There are several possible
definitions of the property of “long memory”. Following Baillie (1996), given a series
xt, t = 0, ±1..., with autocorrelation functionρj at lag j, we say that the process
possesses long memory ifρj decays “slowly”, i.e., if the quantity

lim
n→∞

j=n
∑

j=−n

|ρj| (15)

is nonfinite. Equivalently, the spectral densitys(ω) will be unbounded at low frequen-
cies. We semiparametrically model long memory in a covariance stationary seriesxt,
t = 0, ±1, ..., by

s(ω) ≈ Gω−2d, ω → 0+, (16)
where0 < G < ∞, ands(ω) is the spectral density ofxt. Under (16),s(ω) has a
pole atω = 0 for 0 < d < 1/2 (when there is long memory inxt), while d ≥ 1/2

1Notice that ifT is fixed and onlyN goes to infinity, in general, it is impossible to get a consistent
estimator for the spectral density function unless we have specific restrictions onγ(k), for instance,
γ(k) = 0 for k > T .
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implies the process is not covariance stationary;s(ω) is positive and finite ford = 0;
for −1/2 < d < 0, we have short memory, negative dependence, or antipersistence.

Geweke and Poter-Hudak (1983), henceforth GPH, suggested asemiparametric es-
timator of the fractional differencing parameter,d, that is based on a regression of
the ordinates of the log spectral density. The estimator exploits the theory of linear
filters to write the process(1 − L)dyt = ut, whereut ∼ I(0), i.e., the process{ut}
is stationary. Letsy(ω) andsu(ω) be the spectral densities ofyt andut, respectively.
Then

sy(ω) =
∣

∣1 − e−iω
∣

∣

−2d
su(ω). (17)

This can be expressed as

log sy(ω) = log(4 sin2(ω/2))−d + log su(ω). (18)

Given spectral ordinatesω1, ω2, ..., ωm, this becomes

log sy(ωj) = log su(0) − d log(4 sin2(ωj/2)) + log(su(ωj)/su(0)). (19)

GPH suggest estimatingd from a regression of the ordinates from the periodogram of
yt, that isIy(ωj). Hence, forj = 1, 2, ...,m,

log Iy(ωj) = c − d log(4 sin2(ωj/2)) + vj, (20)

where
vj = log(su(ωj)/su(0)) (21)

andvj is assumed to be i.i.d. with zero mean and varianceπ2/6. Whenut is white
noise, then the above regression should provide a good estimate ofd. Whenut is au-
tocorrelated, GPH show that the above regression holds approximately for frequencies
in the neighborhood of zero. If this neighborhood shrinks atan appropriate rate with
the sample size, then the GPH procedure should realize a consistent estimator ofd. If
the number of ordinatesm is chosen such thatm = g(T ), whereg(T ) is such that
limT→∞ g(T ) = ∞, limT→∞ g(T )/T = 0, limT→∞(log(T )2)/g(T ) = 0, then the
OLS estimator ofd based on (20) will have the limiting distribution

√
m(d̂GPH − d)

d→ N (0,
π2

24
) (22)

Robinson (1995) provided the formal proof for−1/2 < d < 1/2, Velasco (1998)
proved the consistency of̂dGPH in the case1/2 ≤ d < 1 and its asymptotic normality
in the case1/2 ≤ d < 3/4. The variance of this estimator can be obtained from the
usual OLS regression formula. It is clear from this result that the GPH estimator is not
T 1/2 consistent and will converge at a slower rate.

Another most often used estimator ofd is developed by Robinson and Henry (1999),
henceforth RH. They suggest a semiparametric Gaussian estimate of the memory pa-
rameterd, by considering

d̂RH = arg min
d

R(d), (23)
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whereR(d) is

R(d) = log

{

1

m

m
∑

j=1

ω2d
j I(ωj)

}

− 2
d

m

m
∑

j=1

log ωj, (24)

in which m ∈ (0, [T/2]) andωj = 2πj/T . They proved that whenm < [T/2] such
that, asT → ∞,

1

m
+

m

T
→ 0, (25)

and under some further conditions (see Robinson and Henry, 1999), we have

√
m(d̂RH − d) → N (0,

1

4
) (26)

asT → ∞.
In case of the simulation models we can constructd̂Si

b = 1

N

∑N
n=1

d̂n
b , with d̂n

b the
estimator ofd in simulation runn, andb ∈ {GPH,RH}. We have

√
Nm(d̂Si

GPH − d)
d→ N (0,

π2

24
),

and
√

Nm(d̂Si
RH − d)

d→ N (0,
1

4
).

So, in case of the actual data the estimators will have rate ofconvergence
√

m, while
in case of the simulation based case, it will have rate of convergence

√
Nm. So,

again as in the previous cases, when sequentially alsoN → ∞, the simulation based
estimator will have a much higher rate of convergence, and may be considered (at least,
asymptotically) to be known, when comparing it with the actual data based estimator.

3. APPLICATIONS

The MS literature attempts to explain various types of market behavior, and to repli-
cate the well documented empirical findings of actual financial markets, the stylized
facts. The recent literature has demonstrated the ability to explain various stylized
facts, see, for instance the recent survey papers Hommes (2005) and LeBaron (2005).
But to our knowledge, most of the MS models match some stylizedfacts only to a
limited extent; on the other hand, systematic procedures toinvestigate the differences
between two MS models or to judge whether a MS model is realistic or not have not yet
been developed. Hence, our applications here are made for illustrative purposes, in the
hope that they will gain a better understanding of the MS models (under consideration)
and that they might be of help in developing even more realistic MS models.

In this section, we will study two MS models. Firstly, we investigate the model by
Levy et al. (2000), to which we shall refer to as the LLS model. Secondly,we study
the market fraction (MF) model proposed by He and Li (2005a, b).
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3.1. Investigating the LLS model. We use the LLS model as a representation of MS
models. Because the LLS model is calibrated to quarterly frequency, we use the quar-
terly data of the S&P 500 from Datastream as representation of the real life situation,
starting in 1965 and running to the first quarter of 2003.

For the method of comparison of two different MS models, we perform a sensitivity
analysis of the initial conditions and parameter settings in the LLS-economy to illus-
trate the method to compare two different MS models. We illustrate the sensitivity
analysis in terms of the initial price. The subsequent sensitivity analysis in terms of
initial dividend, the risk aversion parameter, the averagedividend growth rate, and ini-
tial wealth is performed in a similar way. To analyze the sensitivity to the initial price,
we first simulate the benchmark model. In the benchmark LLS model, we choose, fol-
lowing Levyet al. (2000), the initial priceIP = 20.94, the initial dividendID = 0.5,
the risk aversion parameterRA = 1.5, the maximal one period dividend decreases
MDD = −0.07, and the initial wealthIW = 1000. Next, we keep all the conditions
and parameters the same, except for the initial price. Two additional simulations are
performed, one with an initial priceIP = 26 that is higher than the benchmark price,
and an other one with a lower initial price, namelyIP = 16. Then we look at the im-
pact of these different initial prices on the output parameters, in particular, the probabil-
ity density function, and see whether these parameters significantly deviate from those
of the benchmark model. Next, we do the same exercises in terms of the initial divi-
dend (withID ∈ {0.4, 0.6}), the risk aversion parameter (withRA ∈ {1.45, 1.55}),
the maximal one period dividend decreases (withMDD ∈ {−0.08,−0.06}), and the
initial wealth. In the latter case we consider two variations: In the first case (unif.), the
initial wealth is uniformly distributed over [500, 1500], while in the second case (50%)
half of the investors have an initial wealth of 500 and the other half have of 1500. In
this study, for each set of parameter, we ran 5,000 independent simulations over 1,000
time periods, and for each run of the model we use the last 152 observations to match
the sample size of the S&P 500 that we use.

Probability density function: In Table 1, we report the results of the sensitivity
analysis in terms of Li (1996)’s test (JT ). We find that the changes considered do not
have a serious impact, with one exception:MDD has a significant impact. The reason
for this seems to be that the dividend process is the driving force in the LLS-economy,
and changingMDD means changing the dividend distribution. These test results are
quite similar to those in Liet al. (2005), where a sensitivity analysis is performed in
terms of parametrically estimated output parameters.

TABLE 1. Sensitivity analysis in terms of probability density function

IP ID RA MDD IW

16 26 0.4 0.6 1.45 1.55 -0.08 -0.06 Unif. 50%
JT 1.7237 1.8158 1.7436 1.8845 1.8150 1.7028 17.0767 10.9783 1.7699 1.8100

Besides the comparison of two different economies, we next compare the bench-
mark LLS model with the real world, which is represented by the S&P 500. We plot
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the probability density functions of the LLS model, the S&P 500, and that of a normal
distribution with mean and variance equal to that of S&P 500 in Figure 12. In addition,
we also plot a 95%-point wise confidence interval in Figure 1(a) and a 95% uniform
confidence band in Figure 1(b) around the S&P 500 density estimate. The normal den-
sity fits in both the point wise and uniform confidence intervals, but the LLS-model
based average density does not so fully in the point wise confidence interval, while
it almost fits in the uniform confidence band. Thus, the actualreturn distribution as
a whole can be reproduced by the LLS-model according to the confidence band, but
at some particular return outputs the LLS model has difficulty in fitting the S&P 500
distribution. This applies particularly to returns close to zero.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

(a)
−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

1

2

3

4

5

6

7

(b)

FIGURE 1. The estimated probability density functions of the LLS
model (dash-dot line), normal distribution (dot line), andof the S&P
500 with confidence intervals (a) and confidence band (b)

Spectral density function: First, we implement the sensitivity analysis in terms of
the spectral density function. Although we do not apply a formal test, we base our sen-
sitivity analysis on a comparison of the confidence intervals, following here Diebold
et al. (1998). We present the estimated spectral density functions for the benchmark
LLS model, for the LLS model with priceIP = 16, and that with priceIP = 26 and
their corresponding 95% pointwise confidence intervals in Figure 2. Similarly, we do
the same exercise in terms of initial dividend, the risk aversion parameter, the maximal
one period dividend decrease, and initial wealth; these results are presented in Figure
3. We find that the LLS model is quite robust in terms of the spectral density func-
tion with respect to the chosen initial parameters, except,again, for the maximal one
period dividend decrease,MDD, indicating that the dividend process also seriously
influences the shape of the spectral density function.

2The estimated density functions of the S&P 500 are slightly different in (a) and (b), this is because we
follow Hall (1992, 1993) and use different kernels.
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FIGURE 2. The spectral density functions with its 95% pointwise con-
fidence intervals of benchmark LLS model (solid line), and those of
LLS model with IP = 16 (dash-dot line), and of LLS model with
IP = 26 (line with cross).
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FIGURE 3. The spectral density functions with its 95% pointwise con-
fidence intervals of the benchmark LLS model, and those of theLLS
model in terms of different initial dividend (a), differentrisk aversion
parameter (b), differentMDD (c), and different initial wealth (d)

Next, we present the estimated spectral density function for the quarterly returns
of the S&P 500, and its corresponding 95% confidence intervals in Figure 4. We
also estimate the spectral density function for each simulation of the benchmark LLS
model. Again, for the purpose of comparison, we only use the last 152 periods of the
simulated time series for estimation, which matches the length of the S&P 500 data
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that we use. In Figure 4(a) we plot the averaged spectral density function over 5,000
simulations, and in Figure 4(b) we do the same for the uniformconfidence band. We
find that, except for a few rather small frequencies, the LLS-based spectral densities
lies outside of the 95% confidence bands of the spectral density function of the S&P
500. When we compare the frequencies corresponding to the peaks of the spectra,
which describe the cycles that dominate the cyclical behavior of the dynamics, we see
that they are not at the same pace. Thus, there seems to be a large difference when
we assess the second order moments between the LLS generateddata and the real life
data.

An obvious approach to obtain a better fit of the actual data seems to be calibration.
Taking into account that changes in the dividend process influence both the marginal
one-period probability density function and the spectral density function, it seems to
make sense to perform a calibration in terms of the parameters of the current dividend
process of the LLS model, or, alternatively, in terms of the parameters of some adapted,
more flexibly specified dividend process.
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S&P 500 
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FIGURE 4. The spectral density functions with its 95% confidence in-
tervals (a) and uniform confidence band (b) of the S&P 500 and the
LLS model

3.2. Investigation the Market Fraction model. As another example, this section
provides an analysis on the market fraction model proposed by He and Li (2005a,
b), and a calibrated version, calibrated to actual data as described in Liet al. (2005),
where the calibration is based on minimizing a distance between actual and model
based autocorrelations of various orders of both the returns, the squared returns, and
the absolute returns. The real world is represented by the S&P 500 stock market index.
The market fraction model is calibrated to daily frequencies, using the daily closing
price index of the S&P 500. There are altogether 5,306 observations from Oct 20, 1982
to Oct 27, 2003. Denotept as the price index for S&P 500 at timet (t = 0, ..., 5305)
and log returnsrt are defined asrt = ln pt − ln pt−1. In case of the market fraction
model we are particularly interested in the study of the longmemory properties of the
market fraction model, since this model aims at giving an explanation of long range
dependence in stock returns.
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In this study, for each set of parameters, we ran 1,000 independent simulations over
6,306 time periods and discard the first 1,000 time periods towash out the initial noise
effect. Thus, for each run of the model we have 5,306 observations, which matches the
sample size of the S&P 500 that we use.

Memory parameters: A well known empirical feature of high frequency (daily)
financial time series is that the returns themselves containlittle serial correlation, but
the squared returns and absolute returns have a significant positive serial correlation
over long lags, see, for instance, Dinget al. (1993). We first report the estimation
results for the S&P 500, and then we analyze the market fraction model. We notice that
a major issue in the application of the GPH and the RH estimators is the choice ofm,
due to the fact that some limited knowledge is now available concerning this issue (see,
Geweke, 1998, for instance), it is a wise precaution to report the estimated results for
a range of bandwidths. For instance, Lobato and Savin (1998)usem = 30, 40, 50, 60,
70, and80 for S&P 500 data from 1973 to 1994, in the comment by Geweke (1998),
the experiments results seem to suggest largerm, and Robinson (1998) suggests to
report the results for larger values ofm given the sample size and the fact thatd̂ is only
m1/2-consistent. So in our study, for both the GPH and the RH estimation of d, we
report the corresponding estimates form = 50, 100,150,200, and250, respectively.

TABLE 2. The GPH and RH estimation ofd for the S&P 500 with
m = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt 0.0819 0.795 0.427 [-0.1201, 0.2838]0.0602 0.852 0.394 [-0.0784, 0.1988]

0.0907 1.307 0.191 [-0.0454, 0.2269]0.0358 0.715 0.475 [-0.0622, 0.1338]
0.0532 0.957 0.338 [-0.0558, 0.1622]0.0167 0.408 0.683 [-0.0634, 0.0967]
0.0365 0.766 0.444 [-0.0569, 0.1298]0.0070 0.199 0.842 [-0.0623, 0.0763]
0.0102 0.242 0.809 [-0.0727, 0.0932]0.0001 0.003 0.997 [-0.0619, 0.0621]

r2t 0.2386 2.316 0.021 [0.0367, 0.4406]0.2553 3.610 0.000 [0.1167, 0.3939]
0.2175 3.132 0.002 [0.0814, 0.3537]0.2452 4.904 0.000 [0.1472, 0.3432]
0.1651 2.969 0.003 [0.0561, 0.2741]0.1921 4.705 0.000 [0.1121, 0.2721]
0.1452 3.048 0.002 [0.0518, 0.2386]0.1737 4.913 0.000 [0.1044, 0.2430]
0.1387 3.277 0.001 [0.0557, 0.2216]0.1715 5.422 0.000 [0.1095, 0.2334]

|rt| 0.6492 6.301 0.000 [0.4473, 0.8512]0.6249 8.837 0.000 [0.4863, 0.7635]
0.6366 9.166 0.000 [0.5005, 0.7727]0.6241 12.48 0.000 [0.5261, 0.7221]
0.5606 10.08 0.000 [0.4516, 0.6696]0.5323 13.04 0.000 [0.4523, 0.6124]
0.4940 10.35 0.000 [0.4004, 0.5876]0.5021 14.20 0.000 [0.4328, 0.5714]
0.4564 10.78 0.000 [0.3734, 0.5394]0.4843 15.31 0.000 [0.4223, 0.5463]

Table 2 report the GPH and the RH estimation ofd for returns, squared returns, and
absolute returns, respectively. For instance, in the panelof rt in Table 2, the first row
reports the results from the GPH and the RH estimation withm = 50, the second row
reports the results of the GPH and the RH estimation withm = 100, and so on. This
also holds for the panels ofr2

t and|rt|, and for other tables in this section. The reported
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t statistic is that compared with0. We see that all of the estimatedd for the returns
are not significant at all conventional significance levels while those for the squared
returns, and the absolute returns are significant. Thus, forthe S&P 500, there is clear
evidence of long memory for the squared and the absolute returns, whered is positive.

Next, we examine the market fraction model. Table 3 and Table4 report the GPH
and RH estimation of the memory parameterd, with correspondingt-value andp-
value, averaged over the 1000 simulations. The Tables also contain the 95% confi-
dence interval, representing the simulation inaccuracy, the number of times thet-tests
indicates a significant value ofd, as well as the test results for testing equality between
the d parameter according to the market fraction model, and the real data (column
‘Wald’), using here the Wald test taking into account only the estimation inaccuracy in
the estimatedd according to the real data.

TABLE 3. GPH estimation ofd for the market fraction model withm =
50, 100, 150, 200, 250

d̂ t p-value 95% CI Sig% Wald
rt -0.0079 -0.0768 0.4731 [-0.0143, -0.0015] 9 0.760

-0.0115 -0.1651 0.4626 [-0.0158, -0.0072] 9 2.162
-0.0175 -0.3140 0.4406 [-0.0209, -0.0140] 11 1.617
-0.0252 -0.5287 0.4098 [-0.0281, -0.0222] 15 1.680
-0.0344 -0.8128 0.3751 [-0.0370, -0.0318] 21 1.112

r2
t 0.7502 7.2816 0.0000 [0.7439, 0.7566] 100 24.67

0.5816 8.3744 0.0000 [0.5773, 0.5859] 100 27.45
0.4791 8.6157 0.0000 [0.4757, 0.4826] 100 31.89
0.4100 8.6065 0.0000 [0.4071, 0.4130] 100 30.95
0.3631 8.5821 0.0000 [0.3605, 0.3657] 100 28.14

|rt| 0.8738 8.4810 0.0000 [0.8674, 0.8802] 100 4.755
0.7060 10.165 0.0000 [0.7017, 0.7103] 100 0.997
0.5942 10.685 0.0000 [0.5908, 0.5977] 100 0.365
0.5138 10.785 0.0000 [0.5108, 0.5168] 100 0.173
0.4572 10.805 0.0000 [0.4546, 0.4598] 100 0.000

We see from Table 3 and Table 4 that both of the GPH and the RH estimation ofd
for the returns are in most if not all of the simulations not significant while those for
the squared returns, and the absolute returns are all significant. Thus, the estimated
ds for the absolute returns and the squared returns seem to provide clear evidence of
long memory in the market fraction model for both the squaredand absolute returns.
Moreover, the Wald tests (notice that the critical values with significance levels 5%
and 1% are 3.842 and 6.635, respectively) indicate that the estimatedds for the returns
following from the market fraction model match with those ofthe S&P 500, the esti-
matedds for the squared returns are difficult to match with each other, and most of the
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TABLE 4. RH estimation ofd for the market fraction model withm =
50, 100, 150, 200, 250

d̂ t p-value 95% CI Sig% Wald
rt -0.0188 -0.2659 0.3971 [-0.0232, -0.0144] 17 1.249

-0.0157 -0.3139 0.3924 [-0.0188, -0.0126] 15 1.061
-0.0206 -0.5047 0.3728 [-0.0231, -0.0181] 18 0.836
-0.0279 -0.7890 0.3478 [-0.0301, -0.0257] 23 0.972
-0.0363 -1.1485 0.2963 [-0.0383, -0.0344] 31 1.327

r2
t 0.7386 10.445 0.0000 [0.7342, 0.7430] 100 46.73

0.5948 11.897 0.0000 [0.5917, 0.5979] 100 48.89
0.5149 12.613 0.0000 [0.5124, 0.5174] 100 62.60
0.4621 13.070 0.0000 [0.4599, 0.4643] 100 66.37
0.4256 13.459 0.0000 [0.4236, 0.4276] 100 64.66

|rt| 0.8557 12.101 0.0000 [0.8513, 0.8601] 100 10.66
0.7133 14.265 0.0000 [0.7102, 0.7164] 100 3.183
0.6267 15.350 0.0000 [0.6241, 0.6292] 100 5.353
0.5678 16.060 0.0000 [0.5656, 0.5700] 100 3.445
0.5262 16.641 0.0000 [0.5243, 0.5282] 100 1.758

estimatedds for the absolute returns match with each other at least at 1%significance
level with only one significant difference for the RH estimate.

So, the conclusion seems to be that the calibrated MF model seems to be able to
reproduce the presence of long memory patterns in the S&P 500, although not at the
right magnitudes for the squared returns. Since the model isalready calibrated to actual
data, the lesson seems to be that the model needs to be improved, when the aim is to
describe actual data.

4. CONCLUSION

Microscopic Simulation (MS-)models are a promising way to study financial mar-
kets, since they allow for the possibility to include all kinds of realistic and complex
behavior of interacting economic agents, without having toworry about analytical
tractability. However, in many cases judgements of the outcomes of MS models seem
to be based solely on visual inference.

Following the methodology in Liet al. (2005), we investigate in this paper the
time series characteristics of Microscopic Simulation (MS) models using the probabil-
ity density function, the spectral density function, and particular memory parameters.
Econometric techniques can be used to study the impact of changes in the parame-
ters and the initial conditions on the simulated time seriesbehavior of the relevant
quantities of interest. We also present the method to compare real life data with data
generated by MS economies. Here, we exploit our control overthe number of sim-
ulations, creating one additional dimension for the asymptotic properties of the test
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statistics. This allows us to ignore the estimation uncertainty present in the simula-
tions. Hence, we only need to account for the estimation uncertainty of the features of
the actual data.

We illustrate the use of the statistical and econometric techniques by studying one of
the earlier MS models, the economy considered by Levy, Levy,and Solomon (LLS),
and the market fraction model developed in He and Li (2005a, b).

For the LLS model, we perform a sensitivity analysis in termsof the marginal one-
period probability density function and the spectral density, and we find that the LLS
model is robust with respect to the changes we investigated in the initial prices, the
initial dividend, the risk aversion parameter, and the initial wealth. However, a change
in the one period maximal decrease of dividend has a serious impact, likely, because
this changes the whole distribution of the dividend process, and the dividend process is
the driving force in the LLS-model. We also illustrate how tocompare the LLS gener-
ated data with the actual data. We find that both the marginal single-period probability
density function and the second order characteristics of the LLS model are not fully in
line with real data. Taking into account the sensitivity to the dividend process, a nat-
ural way to proceed seems to be to calibrate the LLS-model, focussing, in particular,
on a parametrization of the dividend process.

For the market fraction model, we find that the model is able tomimic the long
memory phenomena of real financial market, although not yet at the right magnitude
for the squared returns. This suggests that the model needs improvement in case the
goal is being able to describe actual data.
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[9] Franke, J., and W. Ḧardle (1992), On Bootstrapping kernel spectral estimates,The Annals of

Statistics, 20, No. 1, 121-145.
[10] Geweke, J. (1998), Comment on Real and Spurious Long Memory Properties of Stock-market

Data (by Lobato, I., and N. Savin), Journal of Business & Economic Statistics, 16, 269-271.
[11] Geweke, J., and S. Poter-Hudak (1983), The Estimation and Application of Long Memory Time

Series Models, Journal of Time Series Analysis, 4, 221-238.



18 Li, Donkers and Melenberg

[12] Haliassos, M., and C. Hassapis (2001), Non-expected Utility, Saving and Portfolios, The Eco-
nomic Journal, 111, 69-102.

[13] Hall, P. (1992), Effect of Bias Estimation on ConverageAccuracy of Bootstrap Confidence Inter-
vals for a Probability Density, The Annals of Statistics, 20, No. 2, 675-694.

[14] Hall, P. (1993), On Edgeworth Expansion and Bootstrap Confidence Bands in Nonparametric
Curve Estimation, J. R. Statist. Soc. B, 55, No. 1, 291-304.
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APPENDIX A. ‘U NIFORM CONFIDENCE BANDS’ FOR THE SPECTRAL DENSITY

FUNCTIONS

To construct thepotential confidence band, we need to findcU andcL such that

Prob

{

sup
−π≤ω≤π

{√
Th

(ŝ(ω, h) − s(ω))

s(ω)

}

≤ cU

}

= 1 − α

2
, (27)

and

Prob

{

inf
−π≤ω≤π

{√
Th

(ŝ(ω, h) − s(ω))

s(ω)

}

≥ cL

}

= 1 − α

2
, (28)

then a(1 − α) uniform confidence band for̂s is
[

ŝ(·, h)(1 + cL/
√

Th), ŝ(·, h)(1 + cU/
√

Th)
]

. (29)

A bootstrap method to estimate them is as follows. First, define

c∗,kU = sup
−π≤ω≤π

{√
Th

(ŝ∗(ω, h, g) − ŝ(ω, g))

ŝ(ω, g)

}

, k = 1, ..., K. (30)

Then let sayc∗U , be theK(1 − α)th order statistics of
{

c∗,kU

}K

k=1

. The upper band of

the(1 − α) uniform confidence band is then

(1 + c∗U/
√

Th)ŝ(ω, g). (31)

Similarly, we can find the lower band as

(1 + c∗L/
√

Th)ŝ(ω, g). (32)

In practice, there are many options on the choice of the kernel function, here we use
the Bartlett-Priestley kernel

K(θ) =

{

3M
2

[

1 −
(

Mθ
π

)2
]

|θ| ≤ π/M

0 |θ| > π/M,

whereM is the truncation point. This kernel satisfies the assumptions in Franke and
Härdle (1992). We also note that Chatfield (2004) gives the relationship between the
bandwidth and truncation point equal toh = 8π/3M , the choice of bandwidths is
based on the suggestion of Franke and Härdle.


