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THE ECONOMETRIC ANALYSIS OF MICROSCOPIC SIMULATION
MODELS

YOUWEI LI†, BAS DONKERS‡, AND BERTRAND MELENBERG§

ABSTRACT. Microscopic simulation models are often evaluated based on visual in-

spection of the results. This paper presents formal econometric techniques to compare

microscopic simulation (MS) models with real-life data. A related result is a method-

ology to compare different MS models with each other. For this purpose, possible

parameters of interest, such as mean returns, or autocorrelation patterns, are classified

and characterized. For each class of characteristics, the appropriate techniques are

presented. We illustrate the methodology by comparing the MS model developed by

Levy, Levy, and Solomon (2000) and the market fraction modeldeveloped by He and

Li (2005a, b) with actual data.

JEL classification: C10, G12

Keywords: Microscopic simulation models; Econometric analysis

1. INTRODUCTION

In financial markets, the observable quantities are usuallythe consequences of ag-

gregated individual movements at the macro level, but the determinants lie at the micro

level. In general, it might be very difficult to describe the individual behavior (decision

making under risk and uncertainty), and the implied aggregated phenomena explicitly:
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economics, including financial markets, is a complex system. Very often, it is very

difficult, if not impossible, to find analytical solutions for such systems. In order to

get some insight into it, a possible approach is to apply Microscopic Simulation (MS).

The idea is to study complex systems by representing each of the microscopic elements

individually (on a computer) and by simulating the behaviorof the entire system, keep-

ing track of all of the individual elements and their interactions over time. Throughout

the simulation, the macroscopic variables that are of interest can be recorded, and their

dynamics can be investigated.

The growing literature of MS in finance has resulted in various competing micro-

scopic simulation models to explain observed phenomena in real-life financial markets.

The works of Arthuret al. (1997), Brock and Hommes (1997, 1998), Chiarella and

He (2003), Chiarellaet al. (2005), Levyet al. (2000), Lux (1998), Lux and March-

esi (1999, 2001), Manzan and Westerhoff (2005), Westerhoff(2004), Westerhoff and

Dieci (2005), among others, provide good examples of various MS models. So far,

research has mainly focused on investigating whether a model shares some important

characteristics of the actual financial markets, the stylized facts, such as short-term

momentum, excess volatility, heavy trading volume, a positive correlation between

volume and contemporaneous absolute returns, endogenous market crashes, etc. The

typical way to do this is by running a single or at most a few (‘representative’) realiza-

tions of the MS model under consideration, and to analyze whether the outcomes of

the variables of interest, like stock returns, share more orless the same patterns as can

be found in the actual data. Although much work has already been done along these

lines (see, for instance, Chenet al., 2001, Hommes, 2005, LeBaron, 2000, 2005, Lux,

2004, and references therein), to our knowledge,systematic procedures to investigate

the difference between two MS models, and to judge whether a MS model is realistic

or not have not yet been developed.
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The relevance of such systematic procedures is clear: First, when comparing dif-

ferent microscopic simulation models, important factors that drive MS economies can

be detected and investigated. Second, when the comparison of a MS model with real

life data leads to rejection of the MS model, factors might beidentified that need to be

adapted or integrated to create models that better fit the empirical findings on financial

markets. Third, the procedures to compare different MS models can be used to check

the sensitivity of the outcomes of a MS model with respect to its initial conditions and

parameter settings. In this way we might gain a better understanding of the underlying

mechanism of MS models and, in particular, we can find out which parameter values

or initial settings are most useful when calibrating a MS model. Note also that con-

fronting a MS model with real life data is not only a way to check the “realism” of

the model, which might enhance our knowledge of financial markets, but it is also an

essential step from a practical point of view. For example, when MS models are used

to evaluate the impact of government policies, or to forecast, we need to explicitly link

the MS models with real life data.

The aim of this paper is to develop and applyeconometric techniques to compare

different microscopic simulation models, and, more importantly, to compare data gen-

erated by a MS model with real life data. We shall study such comparisons in terms

of distribution functions of the variables of interest, focussing on distributional char-

acteristics that are considered to be relevant. The distributional characteristics of an

MS economy can be retrieved with an arbitrary level of precision, since we can run

the MS model independently as many times as we want. In particular, this possibility

of independent runs of a MS model allows us to quantify the simulation inaccuracy in

a straightforward way, making comparisons between different MS models a standard

exercise in econometrics.
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When comparing a MS model with actual data the sampling inaccuracy of the actual

data has to be taken into account. The quantification of this sampling inaccuracy usu-

ally takes place via time series asymptotics. Exploiting the extra simulation dimension

available in MS models, the combined sampling and simulation inaccuracy in the MS

outcomes can be made negligibly small, when compared with the actual outcomes, by

having the number of simulations sufficiently large. This means that we only have to

quantify the estimation inaccuracy of the actual data, making also the comparison of a

given MS model with actual data a straightforward exercise in econometrics.

However, usually we do not have available a single MS model, but a whole class,

where each MS model in the class corresponds to different parameter values, initial

conditions, and so on. Preferably, we would like to be able toestimate the appropri-

ate MS model in this model class. Generally, however, this seems to be infeasible,

due to the complexity of the microscopic simulation models,which makes verification

of identification rather difficult, and thus proving consistency of estimation trouble-

some. Moreover, in case consistent estimation is possible,the likely heavily nonlinear

relationship between observables and unknown parameters to be estimated might se-

riously complicate estimation. Therefore, in this paper, we only considercalibration

of a model in a model class, by choosing some model in the modelclass that mini-

mizes a distance between particular actual data based parameters and MS model based

parameters, restricting attention to a subset of MS models.

To illustrate the methodology, we consider two applications. The first one is the

Levy et al. (2000) microscopic simulation model, and the second one is the He and

Li (2005a, b) Market Fraction model. In the first application, we focus on a single

model, the LLS-model, and test its sensitivity to changes inthe input variables as well

as designed mechanism, and we confront this single model with actual data. In the
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second application, we consider a whole model class, and select one model by means

of calibration, before confronting it to actual data.

The remainder of this paper is organized as follows. In the next section, we present

the econometric methodology, focussing particularly on the case of stationary data.

Then we discuss the two applications, the Levyet al. (2000) microscopic simulation

model in Section 3, and the He and Li (2005a, b) Market Fraction model in Section 4.

The final section concludes.

2. ECONOMETRIC BACKGROUND

In this section we present some econometric background. First, we discuss the

general set up. Then we specialize to the stationary case, distinguishing between short

range and long range dependent distributional characteristics.

2.1. Set up. A microscopic model will be denoted bym. A class of microscopic

models will be denoted byM. Generally speaking, a microscopic simulation model

consists of a designed mechanism of the system, inputs, and outputs. The designed

mechanism describes the functioning of the system, and how the dynamics evolve

over time; inputs include parameters, initial conditions,and also noise; the outputs

are the observations of variables like−in our case− stock prices and returns. Usu-

ally, models in the same model class will differ in terms of inputs, but not in terms of

the designed mechanism. For instance, the Levy, Levy, Solomon (LLS) model class,

MLLS, (see Levyet al., 2000) consists of models aimed to study the behavior of in-

dividual investors. According to the designed mechanism, these investors make their

decision by maximizing a standard expected utility function and they interact via a

market mechanism consisting of buying and selling stocks and bonds within a tem-

porary Walrasian equilibrium mechanism. Different input values, like the number of

investors, the number of shares, the (parameters of the) utility functions, the initial
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dividend value, and the standard deviation of the random noise affecting the investors’

decisions, etc., result in different modelsm in the model classMLLS.

These MS models generate as output observations on variables, including, in our

case, stock prices and stock returns, but possibly also other interesting variables, like

the subdivision of total wealth among groups of investors, etc. One of the main aims

of microscopic simulation models is to be able to give a description of actual data.

However, before making this comparison with actual data, itmight also be relevant to

compare different microscopic modelsm in the same model classM, for instance, to

find out the sensitivity of the output variables with respectto the input values. Both

comparisons can be quantified using econometric techniques.

Let the actual data consist ofT time period observations on ak-dimensional vector

of variablesXa
t ∈ R

k, t = 1, ..., T , where the superscripta refers toactual. The actual

data is then described by the distribution functionda,T , i.e., (Xa
1 , ..., X

a
T ) ∼ da,T . We

haveda,T ∈ DT , whereDT is a set of distribution functions. Given a microscopic

model classM, we assume a transformationdT , that assigns to eachm ∈ M the

corresponding distribution functiondT (m), where we assume thatdT (m) ∈ DT , thus,

dT : M 7→ DT . The set of all distribution functions that can be generatedby the

microscopic model classM is denoted bydT (M). Notice that the setDT is assumed

to be so large that it includes bothda,T anddT (M). Givenm, we can generateN

simulations, which we assume to be independent from one another. Each simulation

run results inT observations on thek variables, one observation for each time period.

We denote the observations for microscopic modelm in simulation runj for time

periodt by the vectorXm,j
t ∈ R

k. We then have
(
Xm,j

1 , ..., Xm,j
T

) i.i.d.∼ dT (m), for

j = 1, ..., N .
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In order to compare distributions, we shall make use ofdistribution characteristics,

like the mean, other moments, density functions, etc. The set in which these character-

istics take their value is denoted byE . To work with distributional characteristics, we

assume, givenDT , the presence of a transformationψT , that assigns to eachδT ∈ DT

the corresponding characteristicsϕT = ψT (δT ) ∈ E .1 Defineϕm,T = ψT (dT (m)),

the distribution characteristics of microscopic modelm. The actual distribution char-

acteristics are given byϕa,T = ψT (da,T ).

Given the above formalization, our aim is to comparedT (m) for different micro-

scopic modelsm in M, and to confrontdT (m) with da,T , for some or allm ∈ M. This

will be achieved by using the distribution characteristicsof the microscopic model(s)

m ∈ M under consideration,ϕm,T , and the corresponding actual distribution char-

acteristicsϕa,T . To proceed, notice that we can estimatedT (m) by the empirical

distribution function based onN i.i.d.-simulations. Denote this empirical distribution

function by d̂m,T,N . Using this empirical distribution function we can estimate ϕm,T

by ϕ̂m,T,N = ψT

(
d̂m,T,N

)
. Under appropriate regularity conditions, this estimator

will be consistent forN → ∞, and, moreover, we will be able to quantify its estima-

tion and simulation inaccuracy. So, using standard econometric estimation and testing

1The transformationψT might be defined explicitly or implicitly. In case we consider means, other mo-
ments, or density functions of some or all marginal distributions, the transformationψT can be defined
explicitly. But in many cases one works with an econometric model class to describe the data, which
generally will result in an implicitly definedψT . An econometric model class consists of a setMe of
econometric models and a transformationde

T : Me 7→ DT , that assigns to each econometric model
me the corresponding induced distributionde

T (me) ∈ DT . In addition, there will be a transformation
χT : de

T (Me) 7→ E (the estimation procedure) that assigns to each distribution in the setde
T (Me),

the set of distribution functions described by the econometric model classMe, the corresponding dis-
tributional characteristicϕT ∈ E . Assuming that the econometric model class is identified, wehave
thatde

T is injective. The model classMe is exactly identified in casede
T is also one-to-one, in which

caseψT is immediately determined byχT : ψT = χT . But, generally, we are dealing with the case
of overidentification, whende

T is not one-to-one, meaning thatde
T (Me) is a strict subset ofDT , and

we have to take into account the possibility of misspecification, i.e.,da,T /∈ de
T (Me). In this case the

setDT has to be partitioned into equivalence classes such that each δT ∈ DT belongs to an equiva-
lence class fully described by a uniquede

T (me) ∈ de
T (Me), andψT : DT 7→ E is then defined by

ψT (δT ) = χ(de
T (m)) in caseδT belongs to the equivalence class ofde

T (me). Usually, the partitioning
of DT into the equivalence classes follows implicitly from the estimation method employed.
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techniques, we will then be able in a straightforward way to make a comparison be-

tweendT (m1) anddT (m2) by means of comparingϕm1,T andϕm2,T , on the basis of

the corresponding estimatorŝϕm1,T,N andϕ̂m2,T,N .

However, for the actual data we only have one realization(Xa
1 , ..., X

a
T ) drawn from

da,T , so that, without further assumptions, we will be limited inour possibilities to con-

front ϕm,T with ϕa,T . In order to be able to make a comparison betweendT (m) and

da,T , we shall consider the limiting caseT → ∞, together with appropriate regularity

conditions to ensure thatϕa,∞ ≡ limT→∞ ϕa,T is well defined, and̂ϕa,T = ψT

(
d̂a,T

)

is a consistent estimator forϕa,∞, whose estimation inaccuracy can be quantified as-

ymptotically (asT → ∞). Then it becomes possible to confrontϕm,∞ with ϕa,∞ (as

approximations ofϕm,T with ϕa,T , respectively), using their respective estimatesϕ̂a,T

andϕ̂m,T,N . Notice that now we might have two limits to take into account: the time

dimension limitT → ∞ and the simulation limitN → ∞.

We shall make the various comparisons under the assumption of (strict) stationarity

of (Xa
1 , ..., X

a
T ) and

(
Xm,j

1 , ..., Xm,j
T

)
(for eachj). Such a stationarity assumption

might become more or less realistic after appropriate data transformations, like, for

instance, transforming stock prices into returns, or bond prices into yields. We shall

distinguish between short range distributional characteristics, like the mean at some

time t, and long range distributional characteristics, like a long memory parameter.

In the former case a comparison between two microscopic models using econometric

techniques is possible for finiteT , i.e., onlyN → ∞-asymptotics suffices. In the latter

case we shall needT → ∞, also when comparing two microscopic models.

2.2. Stationarity with short range distributional characteristics. Due to the (strict)

stationarity assumption, the distribution ofXa
t+k1

, ..., Xa
t+kℓ

does not depend ont, i.e.,

we can write
(
Xa

t+k1
, ..., Xa

t+kℓ

)
∼ da,(k1,...,kℓ),
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with da,(k1,...,kℓ) the distribution function of
(
Xa

t+k1
, ..., Xa

t+kℓ

)
, the same for eacht,

and, similarly, we have

(
Xm,j

t+k1
, ..., Xm,j

t+kℓ

)
∼ d(k1,...,kℓ) (m) ,

with d(k1,...,kℓ) (m) the distribution function of
(
Xm,j

t+k1
, ..., Xm,j

t+kℓ

)
, also the same for

eacht. We denote the set of induced(k × ℓ)-dimensional distribution functions to

which da,(k1,...,kℓ) andd(k1,...,kℓ) (m) belong byD(k1,...,kℓ), and the subset generated by

the model classM by d(k1,...,kℓ) (M).

Short range dependent distribution characteristics are transformations of distribution

functions inD(k1,...,kℓ) for sufficiently large but finitekℓ. Thus, letψ : D(k1,...,kℓ) 7→ E
be such a transformation, that assigns to each distributionδ(k1,...,kℓ) ∈ D(k1,...,kℓ) the

corresponding distribution characteristics of interest in E . Then we have as actual

distribution characteristics

ϕa,(k1,...,kℓ) = ψ
(
da,(k1,...,kℓ)

)
∈ E

and as distribution characteristics of the corresponding microscopic modelm

ϕm,(k1,...,kℓ) = ψ
(
d(k1,...,kℓ) (m)

)
∈ E .

Estimators and their limit distributions—Assuming asymptotic independence,2

in addition to stationarity, we can estimate the characteristics of the actual data DGP

ϕa,(k1,...,kℓ) = ψ
(
da,(k1,...,kℓ)

)
consistently by

ϕ̂a,(k1,...,kℓ),T = ψ
(
d̂a,(k1,...,kℓ),T

)
,

2Asymptotic independence corresponds to ergodicity and/ormixing conditions. See, for instance,
Billingsley (1968), or, more recently, Bierens (2004).
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for T → ∞, assuming additional smoothness conditions onψ. Hered̂a,(k1,...,kℓ),T de-

notes the empirical distribution function ofda,(k1,...,kℓ), using the time series(Xa
1 , ..., X

a
T ).

Moreover, under appropriate additional regularity conditions we will be able to quan-

tify the (asymptotic) estimation inaccuracy ofϕ̂a,(k1,...,kℓ),T . Indeed, the limit distribu-

tion of ϕ̂a,(k1,...,kℓ),T for T → ∞ can easily be found by linearization of the transforma-

tionψ : D(k1,...,kℓ) 7→ E (assuming that it is smooth enough so that it can be linearized),

combined with an appropriate limit distribution3.

Similarly, and under the same smoothness assumptions regarding ψ, we can esti-

mateϕm,(k1,...,kℓ) = ψ
(
d(k1,...,kℓ) (m)

)
consistently, but here we have various alternative

ways to estimateϕm,(k1,...,kℓ), due to the extra simulation dimensionN .

a) We can estimateϕm,(k1,...,kℓ) consistently bŷϕj

m,(k1,...,kℓ),T
= ψ

(
d̂j

m,(k1,...,kℓ),T

)
,

for T → ∞, where d̂j

m,(k1,...,kℓ),T
is the empirical distribution function of

d(k1,...,kℓ) (m), using the time series of thej-th simulation
(
Xm,j

1 , ..., Xm,j
T

)
.

This is comparable to the way we estimateϕa,(k1,...,kℓ), and is based on ex-

ploiting the asymptotic independence assumption in addition to the stationarity

assumption.

b) We can estimateϕm,(k1,...,kℓ) consistently bŷϕt
m,(k1,...,kℓ),N

= ψ
(
d̂t

m,(k1,...,kℓ),N

)
,

for N → ∞, where d̂t
m,(k1,...,kℓ),N

is the empirical distribution function of

d(k1,...,kℓ) (m), using theN simulations
(
Xm,1

t+k1
, ..., Xm,N

t+kℓ

)
for some givent

(with 1 ≤ t + k1, ..., t + kℓ ≤ T ). Obviously, this estimator does not require

stationarity and an asymptotic independence assumption toyield a consistent

estimator for the distribution of
(
X1

t+km,1
, ..., Xm,N

t+kℓ

)
, for the givent, but only

the i.i.d.-assumption over theN simulations.

3Essentially, in the general case this means combining Donsker’s theorem for dependent sequences (see,
for instance, Billingsley (1968), or, more recently, Andrews and Pollard (1994), also for the required
regularity conditions), to find the limiting distribution of d̂a,(k1,...,kℓ),T for T → ∞, and the functional
delta method (see, for instance, van der Vaart, 1998), applied to the transformationϕ : D(k1,...,kℓ) 7→ E ,
assuming that it is smooth enough to be Hadamard differentiable.
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c) We can estimateϕm,(k1,...,kℓ) consistently by averaginĝϕj

m,(k1,...,kℓ),T
over theN

simulations:ϕN
m,(k1,...,kℓ),T

= 1
N

∑N

j=1 ϕ̂
j

m,(k1,...,kℓ),T
is a consistent estimator, at

least, if we take the sequential limitT → ∞, possibly followed byN → ∞.

d) We can estimateϕm,(k1,...,kℓ) consistently by averaginĝϕt
m,(k1,...,kℓ),N

over time:

ϕT
m,(k1,...,kℓ),N

= 1
T

∑T

t=1 ϕ̂
t
m,(k1,...,kℓ),N

is a consistent estimator, at least, if we

take the sequential limitN → ∞, possibly followed byT → ∞.

e) We can estimateϕm,(k1,...,kℓ) consistently bŷϕm,(k1,...,kℓ),N,T = ψ
(
d̂m,(k1,...,kℓ),N,T

)
,

for N, T → ∞, whered̂m,(k1,...,kℓ),N,T is the empirical distribution function of

d(k1,...,kℓ) (m) using all observationsXm,j
t , t = 1, ..., T , j = 1, ..., N , taking the

limit NT → ∞.

Under appropriate additional regularity conditions we areable to quantify the (asymp-

totic) estimation/simulation inaccuracy and to characterize the asymptotic distribution

of the estimator in each of these cases. In particular, the limit distributions of cases

c)-e), when both limitsN → ∞ andT → ∞ are taken (in appropriate orders) satisfy

(with any of the three estimators simply represented byϕ̂m,(k1,...,kℓ))

√
NT

(
ϕ̂m,(k1,...,kℓ) − ϕm,(k1,...,kℓ)

) d→ N
(
0,Σϕm,(k1,...,kℓ)

)
,

with Σϕm,(k1,...,kℓ)
the same in all three cases (as can easily be checked under appropriate

smoothness conditions).

In general terms, the limit distribution of the characteristics based on actual data,

ϕ̂a,(k1,...,kℓ),T takes a similar form:

√
T
(
ϕ̂a,(k1,...,kℓ),T − ϕa,(k1,...,kℓ)

) d→ N
(
0,Σϕa,(k1,...,kℓ)

)
,

with Σϕa,(k1,...,kℓ)
the asymptotic covariance matrix. Moreover, in cased(k1,...,kℓ)(m) =

da,(k1,...,kℓ) it holds thatΣϕm,(k1,...,kℓ)
= Σϕa,(k1,...,kℓ)

. The difference between the limit
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distributions ofϕ̂a,(k1,...,kℓ),T and the three estimatorŝϕm,(k1,...,kℓ) lies, of course, in

the rate of convergence: the microscopic simulation based estimators have the extra

dimensionN , making them converge much faster than the actual data basedestimator,

in caseN → ∞.

Example 1: The mean E(Xm,j
t )

The meanµm = E(Xm
t ) can be rewritten asµm =

∫
xdFm(x) = ψ(Fm) = ϕm,(0),

whereFm ≡ dm,(0) stands for the marginal distribution function ofXm
t , the same for

eacht, and where we haveℓ = 1 and(k1) = (0). We assume also thatk = 1, i.e.,

Xm
t ∈ R. The functionψ is defined asψ : F ∈ D(0) ⊆ D(R) 7→

∫
xdF (x) ∈ R, with

D(0) = {F ∈ D(R),
∫
|z| dF (z) < ∞}, and withD(R) the set of all non-decreasing

right continuous functionsz : R 7→ R such thatz(−∞) = 0 andz(+∞) = 1.

With T possibly fixed andN → ∞, we can take as estimators b) and d) (with in the

latter case possibly no second limitT → ∞). In case of b), we have that the empirical

distribution functionF̂ t
m ≡ d̂t

m,(0),N ∈ D(R) is given by

F̂ t
m(x) =

1

N

N∑

j=1

1[−∞,x](X
m,j
t ).

The corresponding estimate is given by

µ̂t
m ≡ ϕ̂t

m,(0),N = ψ(F̂ t
m) =

∫
xdF̂ t

m(x) =
1

N

∑

j

Xm,j
t .

Averaging overT time periods yields case d)

µ̂T
m ≡ ϕ̂T

m,(0),N =
1

T

∑

t

µ̂t
m.

In the alternative case withN possibly fixed andT → ∞, we can take as estimators

a) and c) (with in the latter case possibly no second limitN → ∞). In case of estimator
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a), we have that the empirical distribution functionF̂ j
m ≡ d̂j

m,(0),T ∈ D(R) is given by

F̂ j
m(x) =

1

T

T∑

t=1

1[−∞,x](X
m,j
t ).

The corresponding estimate is given by

µ̂j
m ≡ ϕ̂j

m,(0),T = ψ(F̂ j
m) =

∫
xdF̂ j

m(x) =
1

T

∑

t

Xm,j
t .

Averaging over theN independent simulations yields method c)

µ̂N
m ≡ ϕ̂N

m,(0),T =
1

N

∑

j

µ̂j
m.

In case of estimation method e), we haveF̂m ≡ d̂m,N,T given by

F̂m =
1

NT

N∑

j=1

T∑

t=1

1(−∞,x](X
m,j
t )

and

µ̂m,N,T ≡ ϕ̂m,(0),N,T =

∫
xdF̂m(x) =

1

NT

N∑

j=1

T∑

t=1

Xm,j
t .

Straightforward calculations show for estimation procedure d)

√
N(µ̂T

m − µm)
d→ N

(
0,

(
1

T
γm,0 + 2

T−1∑

i=1

T − i

T 2
γm,i

))
,

whenN → ∞, with γm,i = Cov(Xm,j
t , Xm,j

t+i ). For estimation method c), we find

√
T (µ̂N

m − µm)
d→ N

(
0,

1

N

(
γm,0 + 2

∞∑

i=1

γm,i

))
,

for T → ∞. And for estimation method e), we have

√
NT (µ̂m,N,T − µm)

d→ N
(

0,

(
γm,0 + 2

∞∑

i=1

γm,i

))
,
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whenN → ∞ andT → ∞. This latter limit distribution also applies to estimation

method d) with additional, sequential limitT → ∞ (and scaling by
√
NT instead of

√
T ) and to method c) with additional, sequential limitN → ∞ (and similar adaptation

of scaling).

Comparing microscopic simulation models—A comparison between two micro-

scopic modelsm1 andm2 in M corresponds to the null hypothesis

H0 : ϕm1,(k1,...,kℓ) = ϕm2,(k1,...,kℓ)

versus the alternative hypothesis

H1 : ϕm1,(k1,...,kℓ) 6= ϕm2,(k1,...,kℓ).

To test these hypotheses, we can use each of the estimators a)-e), so it is possible to

use those not requiringT → ∞. As test procedure we can use the standard Wald-test.

For instance, when bothN andT are assumed to go to∞, we can take as test statistic

NT
(
ϕ̂m1,(k1,...,kℓ) − ϕ̂m2,(k1,...,kℓ)

)′ (
Σ̂ϕ

m1,(k1,...,kℓ)
+ Σ̂ϕ

m2,(k1,...,kℓ)

)−1

×
(
ϕ̂m1,(k1,...,kℓ) − ϕ̂m2,(k1,...,kℓ)

) d→ χ2
ν

whereϕ̂m1,(k1,...,kℓ) is any of the estimators c)-e), and̂Σϕ
ma,(k1,...,kℓ)

is a consistent es-

timator forΣϕ
ma,(k1,...,kℓ)

, a ∈ {1, 2}, for instance, the Newey-West (1987) estimator.

The degree of freedomν is typically equal to the number of elements inϕma,(k1,...,kℓ).

Comparing a microscopic simulation model with actual data—The question

whether some particular microscopic modelm ∈ M is able to describe the actual

data leads to the following null hypothesis

H0 : ϕm,(k1,...,kℓ) = ϕa,(k1,...,kℓ)
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versus the alternative hypothesis

H1 : ϕm,(k1,...,kℓ) 6= ϕa,(k1,...,kℓ).

To be able to test the implied hypotheses we shall use as estimators

ϕ̂a,(k1,...,kℓ),T = ψ
(
d̂a,(k1,...,kℓ),T

)
,

for ϕa,(k1,...,kℓ) = ψ
(
da,(k1,...,kℓ)

)
and

ϕN
m,(k1,...,kℓ),T

=
1

N

N∑

j=1

ϕ̂j

m,(k1,...,kℓ),T
=

1

N

N∑

j=1

ψ
(
d̂j

m,(k1,...,kℓ),T

)

for ϕm,(k1,...,kℓ) = ψ
(
d(k1,...,kℓ) (m)

)
. When testing the equality ofϕm,(k1,...,kℓ) and

ϕa,(k1,...,kℓ) we exploit the simulation dimension in the asymptotics, assumingN → ∞,

and ignore the estimation inaccuracy in the microscopic simulation based estimator.

We can therefore apply the standard Wald test statistic

W = T
(
ϕ̂a,(k1,...,kℓ),T − ϕN

m,(k1,...,kℓ),T

)′
Σ̂−1

ϕa,(k1,...,kℓ)

(
ϕ̂a,(k1,...,kℓ),T − ϕN

m,(k1,...,kℓ),T

)
,

with Σ̂ϕa,(k1,...,kℓ)
a consistent estimator forΣϕa,(k1,...,kℓ)

, like the Newey-West estimator.

Comparing a microscopic simulation model class with actual data—Finally, and

perhaps most interestingly, we might be interested in finding out whether a particular

microscopic modelclass contains some modelm that is able to describe the actual

data. This leads to the following null hypothesis

H0 : ϕa,(k1,...,kℓ) ∈
{
ϕm,(k1,...,kℓ) : m ∈ M

}

versus the alternative hypothesis

H1 : ϕa,(k1,...,kℓ) /∈
{
ϕm,(k1,...,kℓ) : m ∈ M

}
.
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When testing these implied hypotheses, we have to deal with a problem. Estimation

of microscopic simulation models is quite often infeasible. First of all, the classM
might be rather complicated, so that we are unable to determine whether the transfor-

mationdT : M 7→ DT is injective. IfdT is not injective, then the microscopic model

classM is underidentified, i.e., the same distribution

δ(k1,...,kℓ) ∈ d(k1,...,kℓ)(M) ⊂ D(k1,...,kℓ)

might correspond to different microscopic models inM, making (consistent) estima-

tion impossible. But even if the transformationdT : M 7→ DT would turn out to be

injective (which we might not be able to find out), then still the distribution character-

istic

ϕm,(k1,...,kℓ) = ψ
(
d(k1,...,kℓ) (m)

)

usually will depend in a heavily nonlinear way onm, so that estimation ofm by mini-

mizing some distance between, say,ϕa,(k1,...,kℓ) = ψ
(
da,(k1,...,kℓ)

)
andϕm,(k1,...,kℓ) over

all m ∈ M is likely to be too complicated.

Instead, we shallcalibrate by selecting some microscopic modelm ∈ Mf ⊂ M,

over some subsetMf of MS models inM. In this subset, we select the modelm that

minimizes some distance between the sample and simulation analogues ofϕa,(k1,...,kℓ)

andϕm,(k1,...,kℓ), respectively.4 The null hypothesis

H0 : ϕa,(k1,...,kℓ) ∈
{
ϕm,(k1,...,kℓ) : m ∈ Mf

}

4In the application, we solve

m̂ ≡ m̂(k1,...,kℓ),N,T ∈ arg minm∈Mf

1

N

N∑

j=1

‖ϕ̂j

m,(k1,...,kℓ),T
− ϕ̂a,(k1,...,kℓ),T ‖2,

for the standard Euclidian norm‖ · ‖, using the generalized simplex algorithm.
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versus the alternative hypothesis

H1 : ϕa,(k1,...,kℓ) /∈
{
ϕm,(k1,...,kℓ) : m ∈ Mf

}

is then tested by comparinĝϕa,(k1,...,kℓ),T andϕN
m,(k1,...,kℓ),T

, for m = m̂, as in case

of comparing a given modelm with the real data case, but with using the calibrated

modelm̂ instead of some givenm.

2.3. Stationarity and long range distributional characteristics. Next to short range

distributional characteristics, we might have to deal withlong range distributional

characteristics. These are distributional characteristics that require the knowledge of

the distribution of(Xa
1 , X

a
2 , ...), or of

(
Xm,j

1 , Xm,j
2 , ...

)
. Denote the distribution of

(Xa
1 , X

a
2 , ...) by da,∞, and the distribution of

(
Xm,j

1 , Xm,j
2 , ...

)
by dm,∞. Long range

distributional characteristics are of the formϕa = ϕa,∞ = ψ(da,∞) andϕm = ϕm,∞ =

ψ(da,∞), and there is no(k1, ..., kℓ), with ℓ < ∞, such thatϕa,∞ = ψ(da,(k1,...,kℓ))

or ϕm,∞ = ψ(dm,(k1,...,kℓ)). In this case we need estimatorŝϕa,T = ψT (d̂a,T ) and

ϕ̂m,T = ψT (d̂m,T ) that are consistent forϕa,∞ andϕm,∞ asT → ∞, respectively, and

whose estimation/simulation inaccuracy can be quantified.Notice that now, even in

the case of comparing two microscopic simulation models, wecannot obtain results

without the limitT → ∞. We illustrate this case by two examples we will use in the

sequel.

Example 2: ARFIMA

Granger (1980) and Hosking (1981) introduced the ARFIMA(p, d, q) processXt ∈ R,

t ∈ Z

Φ(L)(1 − L)dXt = Θ(L)εt,
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whered ∈ (−1
2
, 1

2
], whereL is the lag operator, with the fractional difference operator

(1 − L)d defined as

(1 − L)d :=
∞∑

j=0



 d

j



 (−1)jLj,

with Lj the composition ofj lag operators, and whereΦ(L) andΘ(L) are lag polyno-

mials of ordersp andq respectively:

Φ(L) = 1 + A1L+ A2L
2 + ...+ ApL

p

and

Θ(L) = 1 +M1L+M2L
2 + ...+MqL

q.

Thus, a processXt is said to be fractionally integrated (FI), if, after applying the op-

erator(1 − L)d, it follows an ARMA(p, q) process. Generally, it is assumed that the

roots ofΦ(x) are simple, and the roots ofΦ(x) andΘ(x) are outside the unit circle,

andεt
i.i.d∼ N (0, σ2). It is proved in Granger (1980) and Hosking (1981) that when

d ∈ (−1
2
, 1

2
], Xt is (strictly) stationary and ergodic. For0 < d < 1

2
, the process has

long memory in the sense that its autocovariances are eventually positive and decay

slowly (at a hyperbolic rate). In the frequency domain, for small frequencies,ω, an

approximation for the spectral density function is given byω−2d. For−1
2
< d < 0, the

autocovariances are eventually negative and decline slowly. In the frequency domain,

the spectral density declines to zero as frequency approaches zero.

When modeling the process ofXa
t orXm,j

t by means of an ARFIMA(p, d, q) process,

the unknown parameters are given byϕb = (db, Ab1, ..., Abp,Mb1, ...,Mbq, σ
2
b )

′, satis-

fying ϕb = ϕb,∞ = ψ∞(db,∞) for b ∈ {a,m}.

Consistent estimation with quantification of estimation/simulation inaccuracy is pos-

sible by means of Maximum Likelihood, cf. Sowell (1992). This yields estimatorŝϕa,T
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for the actual data and̂ϕj
m,T for the simulated data of simulationj that both converge

at rate
√
T , assuming the number of time periods per simulation equals that of the

actual data. For the simulation based estimates, we can construct averages of the form

ϕm,T = 1
N

∑N

j=1 ϕ̂
j
m,T , which will converge at rate

√
NT , in case we also exploit the

limit N → ∞, sequentially afterT → ∞. This allows us to construct Wald tests, in

which we can ignore the simulation inaccuracy in the simulation based estimatorϕm,T ,

as in the case of short range dependence.

Example 3: FIGARCH

The family of ARCH (Autoregressive Conditionally Heteroskedastic) models was in-

troduced by Engle (1982) and its generalization, the GARCH model, was introduced

by Bollerslev (1986). Following their specification, a GARCH(p, q) model is defined

by: 




Xt =a+ bXt−1 + εt, εt = σtzt,

σ2
t =α0 + α(L)ε2

t + β(L)σ2
t , zt ∼ N (0, 1),

(1)

whereL is the lag operator,α(L) =
∑q

i=1 αiL
i andβ(L) =

∑p

j=1 βiL
j. Defining

vt = ε2
t − σ2

t , the process can be rewritten as an ARMA(m, p) process

[1 − α(L) − β(L)]ε2
t = α0 + [1 − β(L)]vt (2)

with m = max{p, q}.

Baillie et al. (1996) consider the Fractionally Integrated GARCH (FIGARCH)

process, where a shock to the conditional variance dies out at a slow hyperbolic rate of

decay. Chung (1999) suggested a slightly different parameterization of the model:

φ(L)(1 − L)d(ε2
t − σ2) = α0 + [1 − β(L)]vt, (3)
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whereφ(L) = 1 −∑q

i=1 φiL
i, α0 = φ(L)(1 − L)dσ2, andσ2 is the unconditional

variance of the corresponding GARCH model.

When modeling the process ofXa
t orXm,j

t by means of an FIGARCH process, the

unknown parameters are given by

ϕb = ϕb,∞ = (ab, bb, φb0, ...φbq, db, βb1, ..., βbp, σ
2
b )

′ = ψ∞(db,∞)

for b ∈ {a,m}. Consistent estimation with quantification of estimation/simulation

inaccuracy is possible by means of Maximum Likelihood, allowing us to construct as

estimatorŝϕa,T for the actual data, andϕm,T = 1
N

∑N

j=1 ϕ̂
j
m,T for the simulated data,

so that we can proceed as in the ARFIMA-case.

3. AN APPLICATION TO THE LLS MODEL

In this section, we illustrate how the proposed econometrictools can be used to

analyze the model by Levyet al. (2000) (LLS model from now on). First, we briefly

describe the LLS model classMLLS, and the LLS-model,mLLS, obtained by choosing

the parameter settings and initial conditions according toLevy et al. (2000). Then we

investigate the sensitivity ofmLLS to some initial conditions and parameter values,

and we compare it with an extended model, allowing for extra investors, and finally,

we confront this modelmLLS with real life data.

3.1. The Levy-Levy-Solomon Model Class. In the model class by Levyet al.(2000),

LLS economy from now on, there are two assets: a stock and a bond. The bond is

assumed to be a risk free asset, while the stock is a risky asset. The bond is exogenous

with infinite supply, so the investors can buy from it as much as they wish at a given

rate of return,r. The stock is in bounded supply. There areN outstanding shares of the
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stock.5 The return on the stock is composed of capital gains and dividend payments.

The dividend per share at time t,Dt, is a random variable that follows a multiplicative

random walk:Dt = Dt−1(1+z), wherez is distributed uniformly in the range[z1, z2].

The overall rate of gross return on the stock in periodt,Rt, is then given by

Rt =
Pt +Dt

Pt−1

(4)

wherePt is the stock price at timet.

The investors are expected utility maximizers, characterized by the utility index

U(W ) = W 1−α/ (1 − α), which reflects their personal preference. The investors are

divided into two groups, the first group will be referred to asthe rational informed

investors (RII), and the second group will be referred to as the efficient market believers

(EMB).

The RII investors—At time t the RII investors believe that the convergence of the

price to the fundamental value will occur in periodt + 1. Furthermore, RII investors

estimate the next period fundamental value of stock priceP f
t+1 by

P f
t+1 =

Et+1[Dt+2]

k − g
, (5)

according to Gordon’s dividend stream model. Herek is the discount factor, andg

is the expected growth rate of the dividend, i.e.,g = E(z), which is known to the

investors. UsingEt+1[Dt+2] = Dt+1(1 + g) andDt+1 = Dt(1 + z), RII investors thus

believe thatPt+1 = P f
t+1 is given by

P f
t+1 =

Dt(1 + z)(1 + g)

k − g
. (6)

5To keep close to the original notation by LLS, we might have togive the same symbol, likeN , different
meanings, but we expect that the context makes the correct interpretation straightforward.
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Investing a proportionx of wealth in the stock at timet, the expected utility becomes

E {U(Wt+1)} = E {U (Wt[(1 − x)r + xRt+1])} ,

with Wt the wealth at timet, and where the expectation is over the rate of return

Rt+1 = (Pt+1 +Dt+1)/Pt, with Pt+1 = P f
t+1. A solution for this optimization problem

can be found by solving the first order conditions.

The EMB investor—EMB investori has only a limited memory, and uses the most

recentmi returns on the stock to estimate the ex ante distribution. Attime t, each

of these past returns on the stockRj, j = t, t − 1, ..., t − mi + 1 is given an equal

probability1/mi to reoccur in the next period (t + 1). Therefore, the expected utility

of EMB investori is given by

E {U(Wt+1)} =
1

mi

mi∑

j=1

1

1 − α
[Wt[(1 − x)r + xRt−j]]

1−α. (7)

Maximization of this expected utility yields the optimal proportion of wealth,x∗i, that

will be invested in the stock by EMB-investori. To allow for noise around the optimal

portfolio choice, LLS assume

xi = x∗i + εi

whereεi is a random variable drawn from a normal distribution with mean zero and

standard deviationσ. For simplicity, noise is only added to the portfolio share of stocks

for the EMB investors.

Given the stock demand of the RII- and EMB-investors, togetherwith the total sup-

ply of sharesN fixed, the (temporary) Walrasian equilibrium stock price attime t, Pt,

can be determined. This price leads to updated expectationsand a new equilibrium

arises in the next period, and so on.
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The parameter values and initial conditions chosen by Levyet al. (2000) are as

follows.

• Time periods: quarters of a year.

• Number of investors= 1000, with 96% RII investors and4% EMB investors.

There are two types of EMB investors, with memory span5 and15, respec-

tively. Both groups are equally large.

• At time t = 1 each investor is endowed with a total wealth of$1000, which

is composed of10 shares worth an initial price of$20.94 per share, and the

remainder in cash.

• The initial dividend is set at$0.5.

• N = 1000, r = 1%, k = 4%, z1 = −7%, z2 = 10%, σ = 0.2, α = 1.5.

The model with these initial conditions and parameter settings will be referred to as

mLLS.

3.2. Sensitivity analysis. In this subsection we investigate the sensitivity of the bench-

mark modelmLLS to changes in initial conditions and parameter values. We illustrate

this by estimating ARFIMA(p, d, q)-processes, as discussed inExample 2, restricting

attention to the ARFIMA(0, 1, 0)- and ARFIMA(1, d, 1)-cases.

Table 1 summarizes the results of the benchmark modelmLLS, by presenting the

average results over the simulations, as well as the numbersof significant parameter

estimations. We run 5,000 independent simulations over 1,000 time periods, and for

each run we use the last 152 observations to estimate the two ARFIMA-models by

Maximum Likelihood. The reason that we use the final 152 observations is, first, to

wash away the initial noise effects, and, secondly, to matchthe sample size of the

actual data (the S&P 500) that we use later on.
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In case of ARFIMA(0, d, 0), we find on average a negative value ofd, but which is

in only 7.6% out of the 5,000 simulations significant. So, based on a single simulation,

we would accept most of the times the hypothesisd = 0. However, combining the

5,000 simulations, we find ast-valuet = −23.80,6 so that we clearly have to reject the

hypothesisd = 0!

In case of ARFIMA(1, d, 1) we find in most cases a significantly negative value

of d. Moreover, in most cases also the AR-coefficient is significant, while the MA-

coefficient in most cases turns out to be insignificant. However, combining again the

5,000 simulations, we find ast-value for the MA-coefficient,t = 9.66,7 so that the

MA-coefficient is clearly significantly different from zero.

TABLE 1. Maximum likelihood estimation of ARFIMA(p, d, q) model
for the LLS model

Coefficient Std. p-value 95% CI Sig%
(0, d, 0) −0.0272 0.0808 0.5210 [-0.0294, -0.0250] 7.6

(1, d, 1)
−0.7444
0.6983
0.0208

0.2155
0.1356
0.1521

0.0339
0.0151
0.5342

[-0.7506, -0.7382]
[0.6911, 0.7055]
[0.0147, 0.0269]

88.2
93.4
5

Note: The reported numbers under Coefficients, Std., andp-value are averages
over 5,000 simulations. The 95% confidence interval presents the simulation
accuracy. ‘Sig%’ reports the percentage of the estimates that are significant
at 5% level among 5,000 independent simulations. The estimated coefficients
of ARFIMA(1, d, 1) model are listed in the order:d, AR coefficient, MA
coefficient. This is also true for other tables in this section.

To investigate the sensitivity, we next run the LLS model with different input values,

including different initial price (P0 ∈ {16, 26}), initial dividend (D0 ∈ {0.4, 0.6}),

different risk aversion parameter (α ∈ {1.45, 1.55}), different maximum single-period

dividend decrease (z1 ∈ {−0.08,−0.06}), and different initial wealth (50%W0 = 500,

50%W0 = 1500, andW0 drawn from uniform distribution over[500, 1500]) We report

6t = −0.0272/(0.0808/
√

5000) = −23.80.
7t = 0.0208/(0.1521/

√
5000) = 9.66.
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the estimation results of the ARFIMA (0, d, 0) model in Table 2 and in Table 3 we also

report thet-test for the difference of estimatedd between the benchmark model and

the models with different initial parameters.

TABLE 2. Maximum likelihood estimation of ARFIMA(0, d, 0) model
for the LLS models

d Std. p-value 95% CI Sig%

P0
16
26

−0.0286
−0.0282

0.0807
0.0807

0.5201
0.5247

[-0.0308, -0.0264]
[-0.0304, -0.0260]

7.7
7.6

D0
0.4
0.6

−0.0272
−0.0247

0.0808
0.0807

0.5228
0.5193

[-0.0294, -0.0250]
[-0.0269, -0.0225]

7.4
6.7

α
1.45
1.55

−0.0281
−0.0273

0.0808
0.0808

0.5172
0.5233

[-0.0303, -0.0259]
[-0.0295, -0.0251]

7.9
7.4

z1
−0.08
−0.06

0.0077
−0.1806

0.0837
0.0707

0.6621
0.0848

[0.0063, 0.0091]
[-0.1827, -0.1785]

0.7
70

W0
unif.
50%

−0.0239
−0.0279

0.0809
0.0808

0.5241
0.5230

[-0.0261, -0.0217]
[-0.0301, -0.0257]

6.9
7.7

TABLE 3. Thet-test for the sensitivity analysis of the LLS models in
terms of ARFIMA(0, d, 0) estimates

P0 D0 α z1 W0

16 26 0.4 0.6 1.45 1.55 -0.08 -0.06 unif. 50%
t 1.167 0.840 0.047 1.935 0.760 0.125 26.696 105.53 2.546 0.554

We see from Table 3 that the LLS model is rather insensitive with respect to the

initial prices, initial dividend, risk aversion parameterin terms ofd. However, the

changes of maximal one-period dividend decreasez1 has a big impact. The reason

seems to be that the dividend process is the driving force in the LLS-model, and a

change inz1 changes the whole distribution of the dividend process.

In the benchmark model each investor is endowed equally witha total wealth of

$1000. If half of the investors is endowed$500 and the other half endowed with

$1500, then, compared to the benchmark model, the difference ind is not significant.
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However, the difference ind is significant when all of the investors initial wealth is

drawn from a uniform distribution on[500, 1500].

We also calculate the estimation results of the ARFIMA (1, d, 1) model, and the

Wald test for the difference in the estimated parameters between the benchmark model

and the models with different initial parameters (not reported). The results are more

or less in line with the ARFIMA(0, d, 0)-case, although the insensitivity of the LLS

model with respect to the initial conditions and parametersbecomes somewhat more

ambiguous, due to the fact that now three parameters are being estimated.

A sensitivity analysis, like the one above, may be of help in determining which pa-

rameters or initial conditions, in particular, to use when one would like to calibrate

(or even estimate) a MS model using actual data. In case of theLLS model, the divi-

dend process seems to be an appropriate choice in a calibration exercise. By modeling

it flexibly, one might become able to describe a wide range of potential distribution

characteristics, so that a calibration exercise might become successful.

3.3. Comparing two LLS models. In the benchmark modelmLLS, there are only two

types of investors, the RII and the EMB investors. It might be interesting to investigate

what will happen when we introduce a new type of investors. Similar to Zschischang

and Lux (2001), we consider as deviation from the benchmark model an economy

with an extra type of investors, namely the constant portfolio investors, who always

invest a constant proportion of their wealth in the stocks. Zschischang and Lux (2001)

investigate the LLS model where initially all the investorsare EMB investors (con-

sisting of three or more subgroups). The authors found, whenthe market is invaded

by only a small amount of constant portfolio investors (1%), that, even when these

new investors are endowed with a small initial wealth and hold 1.5% of their portfolio

in the stock, they eventually achieve dominance and asymptotically gain100% of the

available wealth. As an alternative economy, we consider aneconomy where0.5% of
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the investors are constant portfolio investors instead of RII-investors (having the same

initial wealth as the other investors). These constant portfolio investors invest1.5% of

their wealth in the stock. We keep the other characteristicsof the economy the same

as the benchmark model.

We performed a Wald test to investigate whether the introduction of the constant

portfolio investors has a significant impact on the economy.The comparison with the

benchmark model are made in terms of log return, log price, and proportion of to-

tal wealth held by the two groups EMB investors with different memory span. We

considered two cases to see the variations of these quantities over time and their

long run behavior. InCaseI, the periods under consideration are the last 100 pe-

riods, t = 901, 902, ..., 1000; in CaseII, only six time points are considered,t =

500, 600, ..., 900, 1000. The resulting test statistics are summarized in Table 4. Within

the column named ‘Log Return’, the first subrow reports the Wald statistics of the

benchmark economy, for instance, 101.88 is the Wald statistic corresponding to the

null hypothesis of equality of the average log return in periodst = 901, 902, ..., 1000

(with degrees of freedom between brackets), and so on, the second subrow reports the

Wald statistics of the new economy, and the third subrow reports the results of compar-

ing the new economy with the benchmark model, andms stands for memory span. It

is clear that none of the comparison statistics is significant, thus the constant portfolio

investors do not cause a significant impact on the economy.

Figure 1 explains why. It presents the average proportion oftotal wealth of the extra

constant portfolio investors across 5,000 simulations. Asthe figure shows, the wealth

of the constant portfolio investors decreases gradually. In the Zschischang and Lux-

analysis the constant portfolio investors are the only investors who are at the opposite

side of the market in case of the cycles, so that eventually they are able to gain all

wealth. But in the economy considered here, the RII investors for a large part take
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TABLE 4. The comparison results with the benchmark model in terms
of the mean

Log Return Log Price Wealth(ms = 5) Wealth(ms = 15)
101.88(99) 42085.5(99) 122.20(99) 125.10(99)

CaseI 101.68(99) 43413.2(99) 124.84(99) 113.73(99)
77.95(100) 76.95(100) 97.29(100) 79.13(100)

9.53(5) 192436.7(5) 383.93(5) 772.40(5)
CaseII 2.65(5) 194884.1(5) 388.87(5) 757.85(5)

8.33(6) 7.44(6) 3.37(6) 2.45(6)

over this role by buying or selling, depending on the price being lower or higher than

its fundamental value, resulting in a gradually decreasingwealth held by the constant

portfolio investors.
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FIGURE 1. Proportion of total wealth held by constant portfolio in-
vestors, averaged over 5,000 simulations.

3.4. Comparing the LLS model with real life data. We use quarterly data of the

S&P 500 from Datastream as representation of the real life situation, which runs from

the first quarter of 1965 to the first quarter of 2003. See Table5 for some descriptive

statistics.

TABLE 5. Sample statistics of returns of the S&P 500

Mean Median Std.Dev. Max Min Skew. Kurt.
0.0194 0.0162 0.0848 0.2923 -0.2548 -0.0575 3.800
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We consider a comparison in terms of AR coefficients and the coefficients of the

ARFIMA(p, d, q) process. First, for the actual data, we calculate the autocorrelations

and construct a confidence interval for each autocorrelation, using the Newey-West

corrected standard errors. Then we estimate the averaged autocorrelations that comes

from LLS model and verify whether the average autocorrelations lie in the confidence

intervals for the actual data. As one cannot compute all possible autocorrelations, we

focus on the autocorrelation for lags 1 to 60. The results aresummarized in Figure 2.

The average autocorrelations of the LLS economy lie entirely in the 95% confidence

intervals around the real-life data autocorrelations. Hence, we conclude that the LLS

model fits the real world very well in terms of the first sixty ARcoefficients.
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FIGURE 2. The confidence intervals for the autocorrelations of the
S&P 500 and the averaged autocorrelation of the LLS model.Note:
In this Figure, “betta” means the estimated autocorrelation of the S&P 500,
“lbcis” and “ubcis” indicate the lower and upper bounds of the confidence
intervals, and “Mean” is the averaged autocorrelation of the LLS model.

Next, we illustrate our comparison method in terms of the coefficients of the ARFIMA(p, d, q)

process. We estimate the ARFIMA (0, d, 0) model and the ARFIMA (1, d, 1) model

for stock returns and summarize the results for the S&P 500 inTable 6.

We see from the table that in both of the ARFIMA (0, d, 0) and ARFIMA (1, d, 1)

model the parameterd is not significant; there is no evidence of long memory in the

quarterly stock return process. For the ARFIMA (0, d, 0) model, the estimatedd from
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TABLE 6. Maximum likelihood estimation of ARFIMA(p, d, q) model
for the S&P 500

Coefficient Std. Error t-value p-value
(0, d, 0) −0.0183 0.0675 −0.272 0.786

(1, d, 1)
−0.0527
−0.5668
0.6365

0.0813
0.4687
0.4240

−0.648
−1.21
1.5

0.518
0.229
0.135

the LLS model (the average reported in Table 1) lies within the 95% confidence inter-

val of estimates ofd from actual data, which is(−0.1506, 0.114). However, for the

ARFIMA (1, d, 1) model, there is a significant difference between the actualdata and

the data of LLS model: The average value ofd according to the LLS-model does not

lie in the 95% confidence interval around the estimate ofd according to the actual data.

So, the ‘standard’ version of the LLS-model,mLLS, considered here, seems to be

able to give, at least, a description of some aspects of the actual data, but not all as-

pects. However, the sensitivity analysis that we performed, suggests that by choosing a

model in the LLS model classMLLS by calibration (or estimation), particularly using

a flexible description of the dividend process, might resultin a LLS-model that is able

to describe many aspects of the actual data quite well.

4. AN APPLICATION TO THE MARKET FRACTION MODEL CLASS

4.1. The Market Fraction Model Class. The market fraction (MF) model is a stan-

dard discounted value asset pricing model with heterogeneous agents. It is closely

related to the framework of Chiarella and He (2003). We outline the model and refer

the readers to He and Li (2005a) for details.

There is one risky and one risk free asset. The risk free assetis perfectly elastically

supplied at gross returnR = 1 + r/K, wherer stands for a constant risk-free rate

per annum andK = 250 stands for the frequency of trading periods (days) per year.
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Let Pt be the price (ex dividend) per share of the risky asset at timet and{Dt} be the

stochastic dividend process of the risky asset. Then the wealth of a typical investor-h

at t+ 1 is given by

Wh,t+1 = RWh,t + [Pt+1 +Dt+1 −RPt]zh,t, (8)

whereWh,t andzh,t are the wealth and the number of shares of the risky asset purchased

of investor-h att, respectively. LetEh,t andVh,t be the “beliefs” of typeh traders about

the conditional expectation and variance of quantities att+1 based on their information

set. Denote byRt+1 the excess capital gain on the risky asset att+ 1, that is

Rt+1 = Pt+1 +Dt+1 −RPt. (9)

Traders have a constant absolute risk aversion (CARA) utilityfunction with the risk

aversion coefficientah for typeh traders (that isUh(W ) = − exp(−ahW )) and their

optimal demand on the risky assetzh,t are determined by maximizing their expected

utility of the wealth, resulting in

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (10)

Given the heterogeneity and the nature of asymmetric information among traders,

we consider two popular trading strategies corresponding to two types of boundedly

rational traders—fundamentalists and trend followers. The market fraction of the fun-

damentalists and trend followers isn1 andn2, respectively. Letm = n1−n2 ∈ [−1, 1].

Then, using (10), the aggregate excess demand per investorze,t is given by

ze,t ≡ n1z1,t + n2z2,t =
1 +m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 −m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (11)
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The market is cleared by a market maker, who takes a long (whenze,t < 0) or

short (whenze,t > 0) position so as to clear the market. Letµ be the speed of price

adjustment of the market maker. To capture unexpected market news or speculators’

excess demand, there is a noisy demand termδt which is an i.i.d. normally distributed

random variable with mean0 and varianceσ2
δ . Based on these assumptions and (11),

the market price is determined by

Pt+1 = Pt +
µ

2

[
(1 +m)

E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1 −m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]
+ δt. (12)

Now we turn to discuss the beliefs of fundamentalists and trend followers.

Fundamentalists—Apart from the common information onPt,Pt−1, · · · ,Dt ,Dt−1, · · · ,
the fundamentalists havesuperiorinformation on the fundamental value. The relative

return (P ∗
t+1/P

∗
t − 1) of the fundamental value follows a Wiener process,

P ∗
t+1 = P ∗

t [1 + σǫǫt], ǫt ∼ N (0, 1), σǫ ≥ 0, P ∗
0 = P̄ > 0, (13)

whereǫt is independent of the noisy demand processδt. The conditional mean and

variance of the fundamental traders are assumed to follow

E1,t(Pt+1) = Pt + α(P ∗
t+1 − Pt), V1,t(Pt+1) = σ2

1, (14)

whereσ2
1 stands for a constant variance on the price, and withα ∈ [0, 1] the speed of

price adjustment of the fundamentalist towards the fundamental value.

Trend followers—The trend followers extrapolate the latest observed pricechange

over a long-run sample mean price and adjust their variance estimate accordingly.

More precisely, their conditional mean and variance are assumed to follow

E2,t(Pt+1) = Pt + γ(Pt − ut), V2,t(Pt+1) = σ2
1 + b2vt, (15)
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whereγ, b2 ≥ 0 are constants, andut andvt are sample mean and variance, respec-

tively, which follow the learning processes

ut = δut−1 + (1 − δ)Pt, (16)

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2, (17)

whereδ ∈ [0, 1] is a memory parameter.

The dividend processDt follows Dt ∼ N (D̄, σ2
D), the expected long-run funda-

mental valueP̄ = D̄/(R − 1), and the unconditional variances of price and dividend

over the trading period are related byσ2
D = qσ2

1, with σ2
1 = σ2

P̄
/K andq = r2.

The parameters in the model used by He and Li (2005a, b), to be denoted bymMF ,

areP = 100, q = r2 = 0.052, σ = 0.20, α = 0.1, γ = 0.3, a1 = 0.8, a2 = 0.8, µ = 2,

m = 0, δ = 0.85, b = 1, σε = 0.013, andσδ = 1.

4.2. Comparing the MF model class with real life data. Instead of comparing the

original MF-modelmMF with real data, we consider a subclass of MF-models,Mf
MF ⊂

MMF , with the aim to test whether some microscopic simulation model in this sub-

class is able to give an accurate description of real life data.

The real life data—As real life data we use the S&P 500 price index8. There

are altogether 5,306 daily observations from Oct 20, 1982 toOct 27, 2003. Table 7

gives summary statistics for the log returns. We can see fromTable 7 that the kurtosis

(44.76) is much higher than that of a normal distribution. The kurtosis and studen-

tized range statistics (which is the range divided by the standard deviation) show the

characteristic fat-tailed behavior compared with a normaldistribution. The Jarque-

Bera normality test statistic is far beyond the critical value which suggests that the log

return-distribution is far from a normal distribution.

8Data are obtained from http://finance.yahoo.com.



34 LI, DONKERS, AND MELENBERG

TABLE 7. Summary statistics ofrt.

data sample size mean std skewness kurtosis min max studentized range Jarque-Bera
rt 5305 0.00037 0.0108 -1.933 44.76 -0.229 0.087 29.16 388510

A well known stylized fact of high frequency stock returns isthat the log returns

themselves contain little serial correlation, but the squared returnsr2
t and absolute

return |rt| do have positive serial correlation over long lags. For example, Ding et

al. (1993) investigate autocorrelations of returns (and theirtransformations) of the

daily S&P 500 index over the period 1928 to 1991 and find that the absolute returns

and squared returns tend to have very slow decaying autocorrelations, and, further,

the sample autocorrelations for the absolute returns are greater than the sample auto-

correlations for squared returns at every lag up to at least 100 lags. Figure 3 shows

the autocorrelation coefficients for the returns, squared returns, and absolute returns,

where the lines from the bottom to the top are the autocorrelation coefficients for the

returns, squared returns, and absolute returns respectively. These results coincide with

the findings in Dinget al. (1993).
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FIGURE 3. Autocorrelations ofrt, r2
t and|rt| for the S&P 500.
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Calibration of the MF model—We calibrate the MF-model by minimizing the av-

erage distance between the actual (a = S&P500) autocorrelations of the log returns

(the squared log returns, the absolute log returns), and thecorresponding autocorrela-

tions according to the MF-models inMf
MF ,9 based on 1000 independent simulations.10

Again, it is not possible to use autocorrelations at all lags, so we focus on a limited

set of autocorrelations. In particular, we focus on lag lengths of 1 to 10, 20, 30, 40,

50, and 60 periods. To see how well the model classMf
MF is able to match the au-

tocorrelationsrt, r2
t and|rt| separately, we calibrate the model to the autocorrelations

for each quantity separately, resulting in̂mMF,rt
, m̂MF,r2

t
, andm̂MF,|rt|, respectively.

In addition, we try to find the best model inMf
MF for the autocorrelations of all three

quantities by calibrating the model to the total set of autocorrelations simultaneously.

The resulting MF-model is denoted bŷmMF .

TABLE 8. Original and estimated MF models

α γ a1 a2 µ m δ b σε σδ

mMF 0.1 0.3 0.8 0.8 2 0 0.85 1 0.013 1
m̂MF,rt

1.000 0.754 0.400 0.713 2.829 -0.249 0.797 1.188 0.021 0.750
m̂MF,r2

t
0.998 3.185 0.382 0.578 4.995 -0.063 0.282 0.155 0.020 0.096

m̂MF,|rt| 0.046 1.429 0.572 0.198 1.671 0.496 0.977 0.766 0.012 0.531
m̂MF 0.999 0.754 0.400 0.650 2.829 -0.250 0.797 1.438 0.021 0.750

Table 8 contains the parameter values of the original modelmMF , as used by He

and Li (2005a, b) and the calibrated modelsm̂MF,rt
, m̂MF,r2

t
, m̂MF,|rt|, and m̂MF .

For the calibrated models, apart from̂mMF,|rt|, the fundamentalists are more confident

about their estimate of the fundamental price (sinceα is close to 1) and less risk averse

9The setMMF is chosen by making a few steps in a generalized simplex algorithm, where the pa-
rameters are chosen to lie in the following ranges:α ∈ [0, 1], γ ∈ [0.05, 5.5], a1, a2 ∈ [0.05, 1.35],
µ ∈ [0.1, 5],m ∈ [−1, 1], δ ∈ [0, 1], b ∈ [0.05, 1.5], σε ∈ [0.1, 1.5], andσδ ∈ [0.05, 1.5]. P = 100, and
q = r2 = 0.052 are kept fixed.
10Each simulation run consisted of 6,306 time periods. The first 1,000 periods were discarded to wash
out potential initial condition effects.
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compared to the trend followers. In addition, as revealed bythe values ofm, there are

more trend followers than fundamentalists in the market. Incase ofm̂MF,|rt|, there are

about 75% (m = 0.496) fundamentalists who have almost no confidence (α is close

to 0) in their fundamental price and are more risk averse. Thememory decay rateδ is

close to 1, indicating that the trend followers put more weight on the historical trend

rather than the current price. Based on the stability and bifurcation analysis of the

underlying deterministic system in He and Li (2005a), amongthe five cases, the case

mMF is the only one where the steady state of the underlying deterministic system

is locally asymptotically stable. Among the four unstable cases, the casêmMF,|rt| is

the only one whereµ = 1.671 exceeds the boundary of the flip bifurcation (which is

0.355), and for the other three cases, the Hopf bifurcationsoccur (where the boundaries

of µ for m̂MF,rt
, m̂MF,r2

t
, andm̂MF are 0.610, 3.488 and 1.517, respectively). When

the steady state is unstable, the prices will eventually fliparound the steady state (in

case of flip bifurcation) or fluctuate (quasi) periodically around the steady state (in case

of Hopf bifurcation).

The implication of the stable (unstable) steady state for the statistical stationarity

of the returns is an important question. At present, the mathematical theory does not

yet seem to be able to give a clear answer to it, see, for instance, the discussions in

Arnold (1998). To investigate whether the assumption of stationarity and ‘asymptotic

independence’ makes sense, we ran 1000 independent simulations for each of the MF

model over 100,000 periods. Table 9 reports the averaged means and variances (where

we divided the whole sample equally into 10 sub-samples) over 1000 independent

simulations. Although the averaged means and variances seem to fluctuate over time,

there does not seem to be a systematic trend, for instance, going up or going down.

We take this as indication that the assumption of stationarity is not too bad an approx-

imation. We also estimate the long distance covariances, i.e., the covariance between
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the returns in the first and final 10,000 observations. According to these estimations

the long distance correlation seems to be zero in most cases,indicating that also the

assumption of ‘asymptotic independence’ might not be too bad an approximation.

TABLE 9. Means and variances (×103) of the MF models

Period-1 Period-2 Period-3 Period-4 Period-5 Period-6 Period-7 Period-8 Period-9 Period-10

mMF 0.016 0.002 -0.002 -0.001 0.005 -0.003 0.001 0.002 -0.005 -0.012
1.907 1.839 1.823 1.802 1.808 1.794 1.836 1.806 1.805 1.917bmMF,rt 0.072 0.021 -0.006 0.005 0.003 0.001 -0.007 0.008 -0.007 -0.029
0.770 0.695 0.688 0.693 0.673 0.677 0.678 0.689 0.683 0.697bmMF,r2

t
0.212 0.086 0.039 0.028 0.015 -0.017 -0.014 -0.020 -0.064 -0.108
0.537 0.468 0.459 0.452 0.450 0.449 0.453 0.460 0.463 0.488bmMF,|rt| 0.035 0.047 0.026 0.034 0.017 -0.009 0.005 -0.010 -0.030 -0.057
0.236 0.274 0.207 0.165 0.142 0.140 0.141 0.154 0.172 0.285bmMF 0.081 0.031 -0.007 0.002 0.019 -0.008 -0.012 0.002 -0.006 -0.036
0.708 0.668 0.664 0.671 0.650 0.645 0.661 0.659 0.663 0.679

Note: In each row of the table, the first sub-row reports the mean and thesecond sub-row
reports the variance. For instance, 0.016 is the averaged mean of the first 10,000 periods, and
1.907 is the averaged variance of the first 10,000 periods over 1000independent simulations of
themMF model; 0.002 and 1.839 are those for the second 10,000 periods; soon and so forth.

Comparison with actual data via autocorrelations—For the purpose of compari-

son with real data, we combine in Figure 4 the data based autocorrelations with their

confidence intervals and the autocorrelations resulting from the first three calibrated

MF-models. In general, the calibrated autocorrelations fittheir actual counterpart well.

For example, the calibrated autocorrelations of the squared returns fit those of the data

relatively well in Figure 4(b), but there are large differences for the autocorrelations of

the returns and the absolute returns. Hence, theMf
MF class of models is able to fit the

autocorrelations ofrt, r2
t and|rt| individually rather well.

For the overall calibration̂mMF , Figure 5 plots the corresponding autocorrelations.

Here we see that the calibrated MF-model is able to fit the actual autocorrelations of the

log returns and their absolute values quite well. The calibrated MF-model, however,

has difficulties in fitting the squared log returns simultaneously.
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FIGURE 4. Autocorrelations of returns, squared returns and absolute
returns of the S&P 500 (with confidence intervals) and the calibrated
MF modelm̂MF,rt

(a),m̂MF,r2
t

(b), andm̂MF,|rt| (c).

To further illustrate the comparison methodology for the market fraction models,

we will focus onm̂MF , as this MS model best fits all three autocorrelation series (by

construction).

Comparison with actual data via ARFIMA—For the daily return, absolute re-

turn, and squared return of the S&P 500, we estimate the ARFIMA(0, d, 0) model; the

estimates of parameterd are summarized in Table 10.

TABLE 10. Estimates ofd for the S&P 500

d Std. P-value 95% CI
r -0.0192 0.0112 0.086 [-0.0410, 0.0027]
r2 0.1233 0.0102 0.000 [0.1033, 0.1433]
|r| 0.1762 0.0085 0.000 [0.1594, 0.1931]
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FIGURE 5. Autocorrelations of returns, squared returns and absolute
returns for the MF model (bold lines) and the S&P 500 (top left). Au-
tocorrelations of returns for the MF model and the S&P 500 (top right).
The bold line refers to the MF model while the confidence intervals are
constructed for the S&P 500, this also holds to squared returns (low
left), and absolute returns (low right).

We see that the results do provide evidence of long run persistence for squared

returns and absolute returns, while it seems that the estimatedd is not significant for

the daily returns: the persistence in absolute returns seems to be much stronger than

that in squared returns. These results coincide with the well-established findings in the

empirical finance literature.

The corresponding estimates of the calibrated MF-model arereported in Table 11,

where the last column indicates the percentage of the estimates that are significantly

different from zero at the 5% level, for 1,000 independent simulations.

The average value ofd according to the calibrated MF-model does not lie in the

95%-confidence interval of the corresponding estimate ofd based on the actual data in
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TABLE 11. Estimates ofd for the MF model

d Std. p-value 95% CI Sig%
r -0.0525 0.0112 0.0225 [-0.0532, -0.0518] 93.9
r2 0.1252 0.0088 0.000 [0.1247,0.1257] 100
|r| 0.1286 0.0086 0.000 [0.1281, 0.1291] 100

case of the log returns and in case of the absolute returns, while it fits inside the 95%

confidence interval for the squared log returns.

Thus, the calibrated MF model is able to give partial descriptions of the actual data,

but not a full description. In terms of the log returns and absolute log returns, the

autocorrelation structure can be described, but not the long memory parameter, while

in terms of the squared log returns the situation is the otherway around: the memory

parameter can be described, but not the autocorrelation structure. This indicates that

the MF model class might require adaptations, if the aim is todescribe aspects of actual

data as the ones considered here.

Comparison with actual data via (FI)GARCH—Table 12 reports the estimates

of the GARCH(1, 1) model applied to the actual data, where the mean process fol-

lows an AR(1) structure, cf.Example 3. Based on the estimates, one can see that a

TABLE 12. GARCH(1, 1) Parameter Estimates for the S&P 500

a× 103 b α0 × 105 α1 β1

0.608 0.0359 0.113 0.0783 0.9145
(0.125 ) (0.014) (0.059) (0.0304) (0.0305)

Note: Standard errors are in parentheses. This is also true for other tables in
this section

small influence of the most recent innovation (α1 < 0.1) is accompanied by a strong

persistence of the variance coefficient (β1 > 0.9). It is also interesting to observe that

the sum of the coefficientsα1 + β1 is close to one, i.e., the process is close to an in-

tegrated GARCH (IGARCH) process. Such parameter estimates are rather common
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when considering returns from high frequency daily financial data of both share and

foreign exchange markets (Pagan, 1996).

Table 13 reports the S&P 500-estimates of the FIGARCH(1, d, 1) model, where the

mean process follows an AR(1) model. The estimate for the fractional differencing

parameterd is positive and significantly different from zero. This is consistent with

the well known findings that the shocks to the conditional variance dies out at a slow

hyperbolic rate.

TABLE 13. FIGARCH(1, d, 1) Parameter Estimates for the S&P 500

a b α0 × 104 d φ1 β
-0.0258 0.0166 0.000017 0.3933 0.1012 0.7968

(0.00039 ) (0.0083) (0.1930) (0.0091) (0.0116) (0.0035)

Next, we turn to look at the GARCH estimates and the FIGARCH estimates for the

calibrated MF-model̂mMF . We report the estimates of the GARCH and FIGARCH

model in Table 14 and Table 15, respectively. Again, these estimates are obtained from

the estimation for each run of the simulation model and then averaged over indepen-

dent simulations.

TABLE 14. GARCH(1, 1) Parameter Estimates for the MF Model

a× 103 b α0 × 104 α1 β
-0.1396 0.0620 0.0510 0.0194 0.9605

(0.3546 ) (0.0139) (0.1421) (0.0036) (0.0766)
1.5 88.7 12.9 95.7 96.8

Note: The last row presents the percentage of the simulations for which the
parameter estimates are significantly different from zero.

The resulting Wald statistic for testing equality of the S&P500 and calibrated MF-

model parameters is 38.29, which suggests that the null hypothesis is strongly rejected

and hence the GARCH(1, 1) model in case of the MF model and that of the S&P 500

are significantly different. Similarly, for the FIGARCH(1, 1) estimates, the resulting
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TABLE 15. FIGARCH(1, d, 1) Parameter Estimates for the MF Model

a b α0 × 104 d φ1 β
0.0348 0.0733 0.2594 0.4182 0.2398 0.7928

(0.0014 ) (0.0189) (0.9175) (0.0366) (0.0255) (0.0199)
55.4 75 11 91.4 76.7 98.4

Note: The last row presents the percentage of the simulations for which the
parameter estimates are significantly different from zero.

Wald statistics is 4568, which is far beyond the critical value at any conventional sig-

nificant level. So, the FIGARCH(1, d, 1) model of the calibrated MF model seems to

be significantly different from that of the S&P 500, confirming the conclusion of the

previous subsection that the MF model class might need to be adapted to better match

the features of the actual data we investigated.

5. CONCLUSIONS

Microscopic Simulation (MS-)models are a promising way to study financial mar-

kets, since they allow for the possibility to include all kinds of realistic and complex

behavior of interacting economic agents, without having toworry about analytical

tractability. However, in many cases judgements of the outcomes of MS models seem

to be based solely on visual inspection.

In this paper we propose to investigate Microscopic Simulation (MS) models using

statistical and econometric techniques. Such techniques can be used to study the im-

pact of changes in the initial parameter settings and initial conditions on the simulated

time series behavior of the relevant quantities. But also different MS economies can

be compared using these techniques, in order to find out whether particular adaptations

are crucial or not. We also develop the methodology to compare real life data with the

MS economies.
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We consider two applications. In the first one, we compare theoriginal LLS-model,

developed by Levyet al. (2000), with variations by changing the inputs. This re-

veals which input changes turn out to be significant and whichones insignificant. We

also extend the LLS model by including an additional type of investor. The extended

model does not seem to deviate much from the original model: in the end the extra

agents are competed away by the originally included economic agents. Finally, we

compare the LLS model with actual data, by comparing variousdistributional charac-

teristics. When the actual data are described by means of an ARFIMA( 0, d, 0)-model,

the LLS-model seems to be able to provide a good description;however, in terms of an

ARFIMA(1, d, 1)-model the LLS-model is unable to provide an accurate description.

However, the sensitivity analysis suggests that when calibrating the LLS model class

using a flexible specification of the dividend process, the LLS model might be able to

provide appropriate descriptions of actual distributional characteristics.

The second application is the market fraction model introduced by He and Li (2005a,

b). Here, we first calibrate the model class to actual data from the S&P 500 by min-

imizing the distance between the actual and model based autocorrelations of returns,

squared returns, and absolute returns. Then we investigatehow well the calibrated

model is able to describe the actual data in terms of ARFIMA and(FI)GARCH mod-

els. The MF-model class seems to have some difficulties in providing an accurate

description of all actual distributional characteristicsthat we investigated at the same

time.
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