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Abstract Generalized Response Surface Methodology (GRSM) is a novel
general-purpose metaheuristic based on Box and Wilson�s Response Sur-
face Methodology (RSM). Both GRSM and RSM estimate local gradients
to search for the optimal solution. These gradients use local �rst-order poly-
nomials. GRSM, however, uses these gradients to estimate a better search
direction than the steepest ascent direction used by RSM. Moreover, GRSM
allows multiple responses, selecting one response as goal and the other re-
sponses as constrained variables. Finally, these estimated gradients may be
used to test whether the estimated solution is indeed optimal. The focus of
this paper is optimization of simulated systems.

Key words experimental design - multivariate regression analysis - least
squares - Karush-Kuhn-Tucker conditions - bootstrap
JEL: C0, C1, C9

1 Introduction

The importance of optimizing engineered systems (man-made artefacts) is
emphasized in the 2006 NSF panel reported in Oden (2006). That report also
emphasizes the crucial role of simulation in engineering science. An essential
characteristic of simulation� compared with Mathematical Programming
(MP)� is that in simulation the objective function (which is the function to
be minimized or maximized) is not known explicitly; actually, this function
is de�ned implicitly by the simulation model (computer code, computer
program). The simplest optimization problem has no constraints on the
inputs or outputs of the system (either real or simulated). The simulation
model may be either deterministic or random (stochastic, discrete event). In
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this article, however, I will focus on random simulation, which (by de�nition)
uses Pseudo-Random Numbers (PRNs)� PRN are de�ned as independently
and uniformly distributed on the interval [0; 1]. Nevertheless, I expect that
the methodology for optimization of random simulation models� known as
simulation optimization� is also relevant for optimization of deterministic
simulation models and real-world systems.
The simplest optimization concerns the minimization of the expected

value of a single (univariate) simulation output. An academic example is
an (s;Q) inventory management simulation aimed at minimization of the
expected value of the total inventory costs (the sum of inventory carrying,
reorder, and out-of-stock costs), and the decision variables are the reorder
level s and the order quantity Q. (Implicit input constraints are that these
two decision variables must be nonnegative.) More complicated examples
are inventory-production simulation models in logistics and operations man-
agement. Furthermore, telecommunications often uses queueing simulation
models that try to minimize a given deterministic function of either the ex-
pected customer delay or the server blocking probability (such a probability
may be formulated as the expected value of a binary variable).
In practice, however, simulation models have multiple outputs. Examples

are many practical inventory models that require the inventory system to
satisfy a minimum service rate (or �ll rate), because the out-of-stock costs
are hard to quantify (an example is Ivanescu et al. 2006). I shall formalize
this type of problems in Section 3.
Metaheuristics can be used to optimize a simulated system. These meth-

ods treat the simulation model as a �black box�; i.e., they observe only the
inputs and outputs of the simulation model. In this article, I focus on Re-
sponse Surface Methodology (RSM). This method is often ignored in the
literature on metaheuristics. Nevertheless, RSM is a method that is often
applied in real-life experiments; see Section 2 and also the Design-Expert
software (see www.statease.com). (Some authors outside random simula-
tion speak of RSM, but mean �what-if�analysis� not sequential or iterative
optimization; see, for example, Downing et al., (1985) and Olivi (1984).)
Generalized Response Surface Methodology (GRSM) is a novel general-

purpose metaheuristic based on Box and Wilson (1951)�s classic RSM. Both
GRSM and RSM estimate local gradients to search for the optimal solution.
These gradient estimates use locally �tted �rst-order polynomials. GRSM,
however, uses these gradients to estimate a better search direction than
the steepest ascent direction used by RSM. Moreover, GRSM allows mul-
tiple responses, selecting one response as goal and the other responses as
constrained variables. The input variables may also be subjected to box
constraints. Finally, GRSM uses the estimated gradients to test whether
the estimated solution is indeed optimal.
In this article, I focuses on expensive simulation; i.e, it takes much com-

puter time to compute a single realization of the time path of the simulated
system. For example, 36 to 160 hours of computer time were needed to sim-
ulate a crash model at Ford Motor Company; see the panel discussion on
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optimization in Simpson et al. (2004). This panel also reports the exam-
ple of a (so-called �cooling�) problem with twelve inputs (decision variables,
factors), ten constraints, and one objective function. For such expensive
simulations, many simulation optimization methods are unpractical; for ex-
ample, OptQuest (an add-on to random simulation software products such
as Arena and Simul8) requires relatively many simulation replicates and
input combinations (points, scenarios); see Kleijnen and Wan (2006).
In this article, I summarize previous work that I did on classic RSM,

and recent work on GRSM. That recent work is scattered over several pa-
pers, referenced in the following sections. More details are given in Kleijnen
(2007).
The remainder of this article is organized as follows. Section 2 summa-

rizes classic RSM, and the Adapted Steepest Ascent (ASA) search direction
developed by Kleijnen et al. (2004). Section 3 summarizes GRSM for simu-
lation with multiple responses, developed by Angün et al. (2006). Section 4
summarizes a procedure for testing whether an estimated optimum is truly
optimal� using the Karush-Kuhn-Tucker (KKT) conditions� developed by
Bettonvil et al. (2006). Section 5 presents conclusions. As many as 34 ref-
erences enable the readers to study further details.

2 Classic RSM: single output and no constraints

Box and Wilson (1951) �s classic RSM searches for the combination of quan-
titative inputs that minimizes the univariate output of a real-world system
(or maximizes that output: simply add a minus sign to the output). Numer-
ous applications are given in Myers et al. (1989)�s excellent survey of the
period 1966-1988. Recent textbooks are Khuri and Cornell (1996) and My-
ers and Montgomery (2002). Recent software is Stat-Ease�s �Design-Ease�
and �Design-Expert�.
This RSM has also been applied to simulation; see Bartz-Beielstein

(2006), Irizarry et al. (2001), Kleijnen (1998), Rosen et al. (2006), Yang
and Tseng (2002). A case study of RSM for deterministic simulation is Ben-
Gal and Bukchin (2002). RSM is also discussed in the classic discrete-event
simulation textbook by Law and Kelton (2006, pp. 646-655).
As I have already stated in Section 1, the simplest optimization problem

concerns the minimization of the expected value of a single (univariate)
simulation output :

min
z
E(w0jz; r0) (1)

where
E(w0jz; r0) is the goal (or objective) output of the (random; see r0)

simulation model, which is to be minimized through the choice of z;
z = (z1; : : : ; zk)

0 where zj (j = 1; : : : k) denotes the jth original (non-
coded, non-standardized) input of the simulation program;
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r0 is the vector with the seeds of the PRN streams (this vector may
consist of a single element).
Classic RSM (applied to real-world or simulated systems) has the fol-

lowing characteristics.

�RSM is an optimization heuristic that tries to estimate the input com-
bination that minimizes a given goal function; see (1) above. Because
RSM is a heuristic, success is not guaranteed (see below).

�RSM is a stepwise (multi-stage) method.
� In these steps, RSM uses �rst-order and second-order polynomial regres-
sion (meta)models (response surfaces). RSM assumes that the responses
have white noise; i.e., the residuals e are Normally, Independently, and
Identically Distributed (NIID) with zero mean and constant variance:
e � NIID(0; �2). Ordinary Least Squares (OLS) then gives the Best
Linear Unbiased Estimator (BLUE); see Kleijnen (2006).

�To �t (estimate, calibrate) these �rst-order polynomials, RSM uses clas-
sic designs of resolution III; for second-order polynomials, RSM uses a
Central Composite Design (CCD); details on these designs are given in
Myers and Montgomery (2002).

�To determine in which direction the inputs will be changed in a next
step, RSM uses the gradient that is implied by the �rst-order polynomial
�tted in the current step. This gradient is used in the mathematical (not
statistical) technique of steepest descent (or steepest ascent, in case the
output is to be maximized, not minimized; details follow below).

� In the �nal step, RSM applies the mathematical technique of canoni-
cal analysis to the second-order polynomial metamodel, to examine the
shape of the optimal (sub)region: does that region have a unique mini-
mum, a saddle point, or a ridge (stationary points)?

More speci�cally, classic RSM consists of the following eight steps (also
see Figure 1 below, which gives an example with a single goal function and
two constrained random outputs; these constraints vanish in classic RSM).

1. The analysts begin by selecting a starting point. They may select the
input combination currently used in practice if the simulated system
already exists. Otherwise, they should use intuition and prior knowledge
(as in many other metaheuristics).

2. For the neighborhood of this starting point, the analysts explore the
Input/Output (I/O) behavior of the simulated system. This behavior
is approximated through a local �rst-order polynomial (as the Taylor
series expansion suggests). Hence the analysts need to estimate the in-
tercept �0 and the k main (�rst-order) e¤ects �j with j = 1; : : : ; k.
Therefore they use a resolution-III design. Unfortunately, there are no
general guidelines to determine the appropriate size of this local area;
again, intuition and prior knowledge are important.

3. To decide on the next subarea to be explored by simulation, the ana-
lysts follow the steepest descent path, which uses the local gradient. For



Generalized Response Surface Methodology 5

example, if the estimated �rst-order e¤ects are such that b�1 >> b�2,
then they obviously decrease z1 much more than z2. Unfortunately, the
steepest descent method is scale dependent ; i.e., linear transformations
of the inputs a¤ect the search direction (see Myers and Montgomery
(2002, pp. 218-220)). Fortunately, Kleijnen et al. (2004, 2006) developed
a scale-independent variant, which I shall present at the end of this
section.

4. Unfortunately, the steepest descent technique does not quantify the step
size along its path. The analysts may therefore try some value for the
step size. If that value yields an inferior simulation output (higher instead
of lower output), then they may reduce the step size. Otherwise, they
take one more step in the current steepest descent direction. (There are
more sophisticated mathematical procedures for selecting step sizes; see
Sa�zadeh and Signorile (1994), and the following section, Section 3.)

5. After a number of steps along the steepest descent path, the simula-
tion output will deteriorate (increase instead of decrease), because the
�rst-order polynomial is only a local approximation of the implicit I/O
function de�ned by the simulation model itself. When this deterioration
happens, the analysts simulate the n > k factor combinations speci�ed
by a resolution-III design centered around the best point found so far.
(The analysts may use the same coded design as in step 2, but translate
that design into di¤erent values for the original variables; the best com-
bination found so far, may be one of the corner points of the design; see
Figure 1 below.) Next the analysts estimate the �rst-order e¤ects in the
new local polynomial approximation And so their search continues.

6. However, it is intuitively clear that a plane (implied by the most re-
cent local �rst-order polynomial) cannot adequately represent a hill top
(when searching for the maximum; the analogue holds for the mini-
mum). So in the neighborhood of the optimum, a �rst-order polynomial
shows serious lack of �t. A popular and simple diagnostic measure is the
coe¢ cient of determination R2. A related diagnostic tests whether all
estimated �rst-order e¤ects (and hence the gradient) are zero. Instead
of these diagnostics, the analysts might use cross-validation. If the most
recently �tted �rst-order polynomial turns out to be inadequate, then
the analysts �t a second-order polynomial. To estimate this metamodel,
they simulate the combinations speci�ed by a CCD.

7. From this second-order polynomial, the analysts estimate the optimal
values of the decision variables by straightforward di¤erentiation or
by more sophisticated canonical analysis; see Myers and Montgomery
(2002, p. 208).

8. If time permits, then the analysts may try to escape from a local mini-
mum and restart their search from a di¤erent initial local area� which
brings them back to Step 1.

In step 3, I mentioned a variant of steepest descent. This so-called
Adapted Steepest Descent (ASD) accounts for the covariances between the
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elements of the estimated gradient b��0 = (b�1; : : : ; b�k)0, where the subscript
�0 means that the intercept b�0 of the estimated �rst-order polynomial van-
ishes in the estimated gradient so b� = (b�0; b��0)0.
This cov(b��0) follows from the (classic) white noise assumption:

cov(b�) = �2w(Z0Z)�1 = �2w � a b0b C

�
(2)

where
�2w denotes the variance of the (goal) simulation output w;
Z the N � (1 + k) matrix of explanatory regression variables including

the column with N one�s;
N =

Pn
i=1mi the total number of simulation runs;

n the number of simulated input combinations;
mi the number of Identically and Independently Distributed (IID) repli-

cates for combination i;
a a scalar;
b a k-dimensional vector;
C a k � k matrix such that cov(b��0) = �2wC.
Note that Z�s �rst column corresponds with the intercept �0. Further-

more, Z is determined by a resolution-III design (so n > k), transformed
into the original values of the inputs in the local area. To save computer
time, only the center of the local area may be replicated (the center is not
part of the resolution-III design). Replicates use the same input combination
zi(i = 1; : : : n).
The variance �2w in (2) is estimated through the Mean Squared Residuals

(MSR): b�2w = Pn
i=1

Pmi

r=1(wi;r � byi)2Pn
i=1mi � (k + 1)

(3)

where by = z0ib�; also see Myers and Montgomery (2002).
It is easy to prove that the predictor variance var(byjz) increases as z

(point to be predicted) moves further away from the local area where the
gradient is estimated. The point with the minimum predictor variance is
the point �C�1b (with C and b de�ned below equation 2).
The new point to be simulated is

d = �C�1b� �C�1b��0 (4)

where
�C�1b is the point where the local search starts, namely the point with

the minimum variance locally;
� is the step size;
C�1b��0 is the (classic) steepest descent direction b��0� adapted for

cov(b��0).
Accounting for cov(b��0) gives a scale independent search direction,

which is an important characteristic for both practitioners and researchers.
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This search direction in general performs better than steepest descent; see
Kleijnen et al. (2004, 2006).

3 GRSM: multiple outputs and constraints

In practice, simulation models have multiple responses (multivariate out-
put). Several approaches to solve the resulting issues are surveyed by Rosen
et al. (2006). Furthermore, the RSM literature also o¤ers a few approaches
for such situations; see the surveys in Angün et al. (2006) and Khuri (1996).
However, I �nd these approaches less attractive than the following approach,
called GRSM.
Assume that one simulation output should be minimized, while all the

other outputs must satisfy given constraints. More speci�cally, GRSM has
the following characteristics.

�GRSM generalizes the steepest descent search direction (applied in clas-
sic RSM), using the �a¢ ne scaling search direction�and borrowing ideas
from interior point methods (a variation on Karmarkar�s algorithm) in
mathematical programming; see Barnes (1986). This novel search direc-
tion moves faster to the optimum than steepest descent, since the GRSM
search avoids creeping along the boundary of the feasible area (this fea-
sible area is determined by the constraints on the random outputs and
the deterministic inputs; see below.) Moreover, this search direction is
scale independent.

�GRSM uses its search direction iteratively (as classic RSM does). Be-
cause this heuristic is developed for expensive simulation experiments,
the search should quickly reach a neighborhood of the true optimum.

�Though GRSM has been developed for random simulations, it can easily
be adapted for deterministic simulations and real-world (non-simulated)
systems (analogous to classic RSM).

Formally, GRSM extends the classic RSM problem formulated in (1) to
the following constrained nonlinear random optimization problem:

min
z
E(w0jz; r0) (5)

such that the other (r � 1) random outputs satisfy the constraints

E(wh0 jz; r0) � ah0 with h0 = 1; : : : ; r � 1 (6)

and the k deterministic inputs satisfy the box constraints

lj � zj � uj with j = 1; : : : ; k. (7)

An example is the following inventory simulation. The sum of the ex-
pected inventory carrying costs and ordering costs should be minimized,
The expected service percentage (or �ll rate) should be at least (say) 90%
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so a1 = 0:9 in (6). Both the reorder quantity z1(= Q) and the reorder level
z2(= s) should be non-negative, so z1 � 0 and z2 � 0. (Note the simi-
larity of the constraints on the random outputs and the deterministic in-
puts.) Stricter input constraints may be formulated; for example, the reorder
level should at least cover the expected demand during the expected order
lead time. Input constraints more complicated than these box constraints
(namely, geometry constraints) are discussed in Stinstra et al. (2003).
Analogously to the �rst steps of classic RSM, GRSM locally approxi-

mates the multivariate I/O function by r univariate �rst-order polynomials:

yh = Z�h+eh with h = 0; : : : r � 1: (8)

Like RSM, GRSM assumes that locally the white noise assumption holds.
The following OLS estimators are then the BLUE:

�̂h = (Z
0Z)

�1
Z0wh with h = 0; : : : ; r � 1 (9)

Then �̂0 (OLS estimator for �rst-order polynomial approximation of
goal function) and the goal function (5) result in

min
z
b�0;�0z (10)

where b�0;�0 denotes the OLS estimate of the local regression parameters
for the goal output (which explains the �rst subscript 0) excluding the
intercept (which explains the second subscript �0); in other words, b�0;�0
= (b�0;1; : : : ; b�0;k)0 is the estimated local gradient of the goal function.
The (r � 1) estimates �̂h0 in (9) combined with the original output

constraints (6) give

b�0h0;�0z � ch0 with h0 = 1; : : : ; r � 1 (11)

where b�h0;�0 = (b�h0;1; : : : ; b�h0;k)0 denotes the estimated local gradient of
constraint function h0, and ch0 = ah0 � b�h0;0 denotes the modi�ed right-
hand side of this constraint function. The box constraints in (7) remain
unchanged.
Now the (r�1) k-dimensional vectors b�h0;�0 in (11) are collected in the

(r� 1)� k matrix called B. Likewise, the (r� 1) elements ch0 are collected
in the vector c. And the k-dimensional vectors with the non-negative slack
variables s, r, and v are introduced. Altogether this gives

minimize b�00;�0z
subject to Bz� s = c

z+ r = u
z� v = l.

(12)
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This (local) optimization problem is linear in the decision variables z.
GRSM does not solve this LP problem, but uses this problem only to derive
the following novel search direction d:

d = �
�
B

0
S�2B+R�2 +V�2

��1 b�0;�0 (13)

where S, R, and V are diagonal matrixes with as main-diagonal elements
the current estimated slack vectors s, r, and v in (12); the last factor (b�0;�0)
is the estimated classic steepest ascent direction. GRSM�s search direction
can be proven to be scale independent.
Note that as the value of a slack variable in (13) decreases (so the cor-

responding constraint gets tighter), the GRSM search direction deviates
more from the steepest descent direction. Possible singularity of the various
matrices in (13) is discussed in Angün et al. (2006).
Following the search direction (or path) de�ned by (13), GRSM must

decide on the step size (say) � along this path. An explicit step size assuming
that the local metamodel (11) holds globally is

� = 0:8min
h0

"
ch0 � b�0h0;�0zcb�0h0;�0d

#
(14)

where the factor 0:8 is chosen to decrease the probability that the local
metamodel is misleading when applied globally; zc denotes the current input
combination, so the new combination becomes zc + �d. Obviously, the box
constraints (7) for the deterministic inputs hold globally, so it is easy to
check the solution in (14) against these constraints.
Analogously to classic RSM, GRSM proceeds stepwise; i.e., after each

step along the search path, the following hypotheses are tested:

1. w0(zc+�d) (simulation output of new combination) is no improvement
over w0(zc) (output of old combination); i.e. this step increases the goal
output w0 (pessimistic null-hypothesis):

H0 : E[w0(zc + �d)] � E[w0(zc)]: (15)

2. This step is feasible; i.e., the new solution satis�es the (r�1) constraints
in (6):

H0 : E(wh0 jz; r0) � ah0with h0 = 1; : : : ; r � 1: (16)

To test these hypotheses, I propose the following statistical procedures
(more complicated parametric bootstrapping is used by Angün et al. 2006,
which permits non-normality and tests the relative improvement w0(zc +
�d)=w0(zc) and the relative slacks sh0(zc + �d)=sh0(zc)).
Sub 1 : To test (15), the classic Student t statistic may be applied. A

paired t statistic may be applied if Common Random Numbers (CRN) are
used to obtain the two simulation outputs w0(zc + �d) and w0(zc). To
estimate the standard error of their di¤erence, m � 2 replicates su¢ ce:
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z1

z2 E(w0) = a0;2 (< a0;1)

E(w0) = a0;1

E(w2) = a2

E(w1) = a1
(0)

(1) (2)(3)

(4)

(5)

(6)

Fig. 1 GRSM example

the t statistic has m � 1 degrees of freedom. The hypothesis is rejected if
signi�cant improvement is observed.
Sub 2 : Again a t statistic with m�1 degrees of freedom may be applied.

Because r � 1 hypotheses are implied by (16), Bonferroni�s inequality may
be used (i.e., divide the classic � value by the number of tests). Recent
references on this inequality are given in Gordon (2006).
Actually, a better solution may lie in between zc (old combination) and

zc + �d (new combination at �maximum�step size). Therefore GRSM uses
binary search; i.e., it simulates a combination that lies halfway these two
combinations (and is still on the search path). Actually, this halving of
the stepsize may be applied a number of times� accounting for the limited
computer budget.
Next GRSM proceeds analogously to classic RSM. So around the best

combination found so far, it selects a new local area. Again a resolution-
III design selects new simulation runs. Again, only the new center may be
replicatedm > 1 times. And r �rst-order polynomials are �tted, which gives
a new search direction. And so on.
Angün et al. (2006) applied GRSM to two examples, namely Bashyam

and Fu (1998)�s inventory simulation with a service constraint so the solu-
tion is unknown, and an arti�cial example with known solution. The results
of these examples are encouraging, as GRSM found solutions that were both
feasible and gave drastically lower goal functions. Figure 1 gives an example,
which deserves the following comments.
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There are two inputs; see the two axes labeled z1 and z2 in the �gure.
There is one goal function; the �gure shows only two contour plots (iso-costs
functions), namely E(w0) = a0;1 and E(w0) = a0;2 with a0;2 < a0;1. There
are two constrained random outputs; see E(w1) = a1 and E(w2) = a2. The
search starts in the lower right local area, where a 22 design is executed; see
the four elongated points. This design and the (not shown) replicates give a
search direction; see the arrow leaving from point (0). The maximum step
size along this path takes the search from point (0) to point (1). The binary
search takes the search back to point (2), and next to point (3). Because
the best point so far turns out to be point (1), the 22 design is simulated at
the local area with this point as one of its points. This design gives a new
search direction, which avoids the boundary. The maximum step size now
takes the search to point (4). The binary search takes the search back to
point (5), and next to point (6). Because the best point so far is now point
(4), the 22 design is simulated at the local area with this point as one of
its points. A new search direction is estimated; etc. (the remaining search
is not displayed).

4 Testing an estimated optimum: Karush-Kuhn-Tucker
conditions

By de�nition, it is uncertain whether the optimum estimated by a (meta)heuristic
(such as GRSM) is close enough to the true optimum. In deterministic non-
linear mathematical programming, the Karush-Kuhn-Tucker (KKT) �rst-
order optimality conditions have been derived; see, for example, Gill et al.
(2000).
Figure 2 illustrates the same type of problem as the one in Figure 1. In

the present example there is again a goal function E(w0), for which three
contour plots are displayed corresponding to the values 66, 76, and 96; also
see (5). There are two constrained simulation outputs, namely E(w1) = 4
and E(w2) = 9; also see (6). The optimum combination is point A. Points
B and C lie on the boundary E(w2) = 9; point D lies on the boundary
E(w1) = 4. Obviously, point D is far away from the optimum combination
A. The �gure also displays the (local) gradients at these four points for the
goal function and the binding constraint ; i.e., the constraint with a zero
slack value in (6). These gradients are perpendicular to the local tangent
lines; those lines are shown only for the binding constraint� not for the
goal function. At the optimum the gradients for the goal function and the
binding constraint coincide; at point D these two gradients point in very
di¤erent directions.
The characteristic illustrated in this �gure is formalized by the KKT

conditions:

�0;�0 = BJ;�0� (17)

where
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z1

z2

E(w0) = 66

E(w0) = 76

E(w0) = 96

E(w2) = 9

E(w1) = 4

A

D

B

C

Fig. 2 A constrained nonlinear random optimization problem

�0;�0 denotes the k-dimensional vector with the (deterministic) gradient
of the goal function (also see equation 10);
BJ;�0 denotes the k�J matrix with the gradients �h;�0 of the J binding

constraints (if the constrained simulation outputs are relabeled such that
the �rst binding constraint has label 1, the second binding constraint has
label 2, and so on, then h = 1; : : : ; J ; at the four points labeled A through D
in Figure 2 the matrix BJ has only one column; this column consists of the
components of the gradient of the constraint that is binding at the speci�c
point);
� denotes the J-dimensional vector with the non-negative Lagrange mul-

tipliers.
Figure 2 shows that point A satis�es (17); point B has two gradients

that point in di¤erent but similar directions� and so does point C. Point D
has two gradients that point in completely di¤erent directions.
Note: If the optimum occurs inside the feasible area, then there are no

binding constraints. The KKT conditions then reduce to the condition that
the goal gradient is zero. Classic RSM tests for a zero gradient, estimated
from a second-order polynomial; see Step 7 in Section 2. This test may use
a classic F -test (see Section 2 and Myers and Montgomery (2002)). In this
article, I do not consider such situations any further.
Unfortunately, in random simulation the gradients must be estimated.

Moreover, to check which constraints are binding, the slacks of the con-
straints must be estimated. This estimation turns the KKT conditions (17)
into a problem of nonlinear statistics.
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Angün and Kleijnen (2006) derived an asymptotic test to check whether
the optimum has indeed been found. Bettonvil et al. (2006) derived an
alternative, bootstrap test. I focus on the latter test, because it is simpler
(the former test uses the so-called Delta method and a generalized form of
the so-called Wald statistic) and it allows a small number of replicates (as
is the case in expensive simulation). Both tests assume a problem like the
one formulated in the preceding section; i.e., there is one random simulation
output to be minimized and there are r� 1 constrained random simulation
outputs; see (5) and (6).
Both tests assume that estimated gradients are available. RSM and

GRSM do give estimated gradients; most metaheuristics do not estimate
gradients. However, when the latter metaheuristics are applied, then at the
presumed end of the search a local experiment may be performed to esti-
mate the gradients and use these gradients as a stopping criterion� instead
of using rather arbitrary criteria such as a pre�xed computer budget!
Note: Whenever a metaheuristic is used to estimate gradients while

treating the simulation model as a black box, the analysts should not change
one factor at a time followed by some type of �nite di¤erencing (such an
approach is proposed in, for example, Spall (2003)). Instead, the analysts
should use classic designs to �t �rst-order or second-order polynomials lo-
cally; for example, the tangent lines in Figure 2 may be interpreted as
�rst-order polynomials. To �t such polynomials, classic RSM uses highly ef-
�cient resolution-III designs and a CCD (see Section 2 and also Joshi et al.
(1998)). Obviously, the estimated gradient is biased if second-order e¤ects
are important and yet a �rst-order polynomial is �tted.
As in classic RSM, let us assume locally constant (co)variances for each

of the r simulation outputs; i.e., when moving to a new local area, the
(co)variances may change. For example, the points A through D in Figure 4
do not have the same variance for the goal output. Under these assumptions,
OLS applied per univariate simulation output gives the BLUE, �̂h (h =
0; 1; : : : ; r�1) de�ned in (9). These OLS estimators then have the following
estimated covariance matrix:

dcov(�̂h; �̂h0) = dcov(wh; wh0)
 (Z0Z)�1 (h; h0 = 0; : : : ; r � 1) (18)

where 
 is the well-known �Kronecker product�operator and dcov(wh; wh0)
is an r � r matrix with the classic estimators of the (co)variances based on
the m replicates at the local center:

dcov(wh; wh0) = (b�h;h0) = ( mX
l=1

(wh;l � wh)(wh0;l � wh0))
1

m� 1 : (19)

The Kronecker product implies thatdcov(�̂h; �̂h0) is an rq�rq matrix with q
denoting the number of regression parameters (e.g., q = 1+k in a �rst-order
polynomial), formed from the r�r matrix dcov(wh; wh0) by multiplying each
of its elements by the entire q � q matrix (Z0Z)�1 (in equation 2, Z was
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an N � (1 + k) matrix). The matrix dcov(wh; wh0) is singular if m � r; for
example, the case study in Kleijnen (1993) has r = 2 response types and
k = 14 inputs so m � 3 replicates of the center point are required.
Another reason for replicating the center point is that this point is used

to test whether a constraint is binding in the current local area (see equation
20 below). The center point is more representative of the local behavior than
any of the other points of the design. Classic RSM also uses replication of the
center point when using a CCD (for estimating a second-order polynomial).
Let us further assume that the r-variate simulation output is multivari-

ate Gaussian. Then (as in classic RSM) the validity of the local metamodel
may be tested through the classic lack-of��t F statistic; see Myers and
Montgomery (2002). This test also assumes that no CRN are applied. In
GRSM there are multiple simulation responses, so this classic test is com-
bined with Bonferroni�s inequality ; i.e., the classic type-I error rate � is
replaced by the �experimentwise�or �familywise�error rate �=r.
If the metamodel is rejected, then there are two options: (i) Decrease

the local area; for example, halve each factor�s range. (ii) Increase the order
of the polynomial; for example, switch from a �rst-order to a second-order
polynomial. I do not explore these options further in this article.
Testing the KKT conditions in random simulation implies testing the

following three null-hypotheses, denoted by the superscripts (1) through
(3):

1. The current solution is feasible and at least one constraint is binding;
see (6):

H
(1)
0 : E(wh0 jx = 0; r0) = ah0 with h0 = 1; : : : ; r � 1 (20)

where x = 0 corresponds with the center point expressed in the coded
(standardized) inputs.

2. The expected value of the estimated local gradient equals the expected
value of the product of the estimated gradients of the simulation outputs
in the binding constraints and the Lagrange multipliers; see (17):

H
(2)
0 : E(b�0;�0) = E(bBJ;�0b�): (21)

3. The Lagrange multipliers in (21) are non-negative:

H
(3)
0 : E(b�) � 0: (22)

Each of these three hypotheses requires multiple tests, so Bonferroni�s
inequality is applied. Moreover, these three hypotheses are tested sequen-
tially, so it is hard to control the �nal type-I and type-II error probabilities.
However, classic RSM has the same type of problems, and nevertheless, it
has acquired a track record in practice.
Sub 1 : To test the hypothesis (20), the classic Student t statistic may

be used:

t
(h0)
m�1 =

wh0(x = 0; r0)� ah0pb�h0;h0=m with h0 = 1; : : : ; r � 1 (23)
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where both the numerator and the denominator are based on the m repli-
cates at the local center point; see (19).
Note: To save simulation runs, a local experiment should start at its

center point including replicates. If it turns out that either no constraint
is binding or at least one constraint is violated, then the other hypotheses
need not be tested so the remainder of the local design is not simulated.
The t statistic in (23) may give the following three di¤erent results:

�The statistic is signi�cantly positive; i.e., the constraint for output h0

is not binding. If none of the (r � 1) constraints is binding, then the
optimal solution is not yet found (assuming that at the optimum at least
one constraint is binding; otherwise, classic RSM applies). The search
for better solutions continues (also see Section 3).

�The statistic is signi�cantly negative; i.e., the current local area does
not give feasible solutions so the optimal solution is not yet found. The
search should back up into the feasible area.

�The statistic is non-signi�cant ; i.e., the current local area gives feasible
solutions, and the constraint for output h0 is binding. The gradient of this
response is then included in bBJ ; see (21). And the KKT test proceeds
as follows.

Sub 2 : The hypothesis (21) states that the goal gradient is a linear
combination of the gradients of the binding constraints. Such a combination
may be estimated through OLS, using bBJ;�0 as the matrix of explanatory
variables: bb�0;�0 = bBJ;�0(bB0J;�0 bBJ;�0)�1 bB0J;�0b�0;�0 = bBJ;�0b� (24)

with b� = (bB0J;�0 bBJ;�0)�1 bB0J;�0b�0;�0.
The validity of this linear approximation may be quanti�ed through the

k-dimensional vector of residuals

be(bb�0;�0) = bb�0;�0 � b�0;�0: (25)

The hypothesis (21) implies E(be(bb�0;�0)) = 0. This hypothesis involves the
product of multivariates, so standard tests do not apply. Therefore bootstrap-
ping may be used. Distribution-free bootstrapping does not apply because
in expensive simulation only the center point is replicated a few times. In-
stead, parametric bootstrapping should be used; i.e., a speci�c distribution
type is assumed and its parameters are estimated from the simulation�s I/O
data at hand (so the bootstrap is called �data driven�; it is also known as
the �Monte Carlo�method). Like in classic RSM, the type of distribution
assumed for testing the KKT conditions is the Gaussian distribution.
Figure 3 shows the following three layers of models:

1. The simulation model, which is treated as a black box. Like in Figure 2,
only two simulation inputs and three simulation outputs are assumed.
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Fig. 3 I/O of simulation, regression, and bootstrap models

2. The regression metamodel, which uses the simulation I/O data (Z;w)
as input and estimates the gradients of the goal response (b�0;�0 ) and
of the constrained responses including the binding constraints collected
in bBJ;�0. The regression analysis also estimates dcov(b�0;�0, bBJ;�0) (co-
variance matrix of these estimated gradients).

3. The bootstrap model, which uses the regression output (b�0;�0, bBJ;�0,dcov(b�0;�0, bBJ;�0)) as parameters of the multivariate normal distrib-
ution of its output b��0;�0 and bB�J;�0 where the superscript � denotes
bootstrapped values.

More speci�cally, the bootstrap procedure consists of the following four
steps:

1. Use the Monte Carlo method to sample vec(b��0;�0; bB�J;�0), which is
a (k + kJ)-dimensional vector formed by �stapling� (stacking) the k-
dimensional goal gradient vector and the J k-dimensional vectors of the
k � J matrix bB�J;�0:
vec(b��0;�0; bB�J;�0) � N(vec(b�0;�0; bBJ;�0);dcov(vec(b�0;�0; bBJ;�0)))

(26)
wheredcov(vec(b�0;�0; bBJ;�0)) is the (k+kJ)�(k+kJ) matrix computed
through (18).

2. Use the bootstrap values resulting from Step 1, to compute the OLS
estimate of the bootstrapped goal gradient using the bootstrapped gra-
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dients of the binding constraints as explanatory variables; i.e., use (24)

adding the superscript � to all random variables resulting in bb��0;�0 andb��.
3. Use bb��0;�0 from Step 2 and b��0;�0 from Step 1 to compute the bootstrap

residual be(bb��0;�0) = bb��0;�0 � b��0;�0 (analogous to equation 25). Further-
more, determine whether any of the bootstrapped Lagrange multipliersb�� (found in Step 2) is negative; i.e., augment a counter (say) c� with
the value 1 if this event occurs.

4. Repeat the preceding three steps (say) 1000 times (this is known as
the �bootstrap sample size�). This gives the Estimated Density Func-
tion (EDF) of the bootstrapped residuals per input j (j = 1; : : : ; k)be(bb��0;�0;j) and the �nal value of the counter c�. Reject the hypothesis
in (21) if this EDF implies a two-sided (1� �=(2k)) con�dence interval
that does not cover the value 0 (the factor k is explained by Bonfer-
roni�s inequality). Reject the hypothesis in (22) if the fraction c�=1000
is signi�cantly higher than 50% (if the true Lagrange multiplier is only
�slightly�larger than zero, then �nearly�50% of the bootstrapped values
is negative). To test the latter fraction, the binomial distribution may
be approximated though the normal distribution with mean 0.50 and
variance (0:50� 0:50)=1000 = 0:00025.

The numerical examples in Bettonvil et al. (2006) are encouraging:

1. The classic t test for zero slacks and the classic F test for lack of �t
perform as expected.

2. The new bootstrap tests give observed type I error rates close to the
prespeci�ed (nominal) rates; the type II error rate (complement of the
power) decreases as the input combination tested moves farther away
from the true optimum (see the points A through D in Figure 2).

5 Conclusions

In this article, I �rst summarized classic RSM, assuming a single response
variable. I added the Adapted Steepest Ascent (ASA) search direction,
which improves the classic Steepest Ascent.
Next, I summarized GRSM for simulation with multivariate responses,

assuming that one response is to be minimized while all the other responses
must meet given constraints. Moreover, the (deterministic) inputs must sat-
isfy given box constraints.
Finally, I summarized a procedure for testing whether an estimated opti-

mum is truly optimal� using the KKT conditions. This procedure combines
classic tests and bootstrapped tests.
Further research is needed to investigate the performance of GRSM rel-

ative to other metaheuristics.
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