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Abstract

In the strategic investment under uncertainty literature the trade off between the value of waiting

known from single decision maker models and the incentive to preempt competitors is mainly studied in

duopoly models. This paper aims at studying competitive investments in new markets where more than

two (potential) competitors are present.

In case of three firms an accordion effect in terms of investment thresholds is detected in the sense

that an exogenous demand shock results in a change of the wedge between the investment thresholds of

the first and second investors that is qualitatively different from the change of the wedge between the

second and third investment threshold. This result extends to the n firm case. We show that a direct

implication of the accordion effect is that there are two types of equilibria in the three firm case. In the

first type all firms invest sequentially and in the second type the first two investors invest simultaneously

and the third investor invests at a later moment.

∗The authors thank participants of the 9th Annual International Conference on Real Options in Paris (June 2005) and of

the Recent Topics in Investment under Uncertainty workshop in Dublin (April 2006) for their constructive comments.
†Corresponding author. Tel: +31-13-4662062; Fax: +31-13-4663280; E-mail: kort@uvt.nl
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If we consider sequential equilibria and compare entry times of the first investors for different potential

market sizes, it turns out that in the two firm case the first investor invests earlier than in the monopoly

case, in the three firm case the investment timing lies in between the one and the two firm case, the four

firm case lies in between the two and the three firm case, and so on and so forth. Hence, a policy maker

interested in an early start up should hope for an even number of competitors, although for n large the

investment times of the first investors are almost equal.

JEL-codes: C73, D92, L13

Keywords: Investment, Real options, Oligopoly

1 Introduction

The theory of investment under uncertainty, also known as real option theory, prescribes that uncertainty and

irreversibility creates a value of waiting with undertaking capital investments. The reason is that over time

more information becomes available that enables the decision maker to take better investment decisions at a

later date. This result especially holds in single decision maker problems of firms where strategic interactions

are not present or simply ignored. Standard references on real options are Dixit and Pindyck (1994) and

Trigeorgis (1996). However, in the western economies the extensive process of deregulation, combined with

a waive of mergers and acquisitions, has resulted in an oligopolistic structure of a large number of sectors.

This implies that there is a strong need to combine the real option approach with a multiple decision maker

framework, as to include competition.

By now the recent literature contains lots of contributions that take up this challenge by studying invest-

ment under uncertainty in duopoly models, see e.g. the surveys by Grenadier (2000) and Huisman et al.

(2004). In such a framework still the value of waiting incentive exists, but it is combined now with strategic

considerations that can make it imperative to act quickly to preempt investment by the competitor. For

example, a firm that enters a new market as first leaves less market share to the other firm, which reduces

the profitability of entering this market for this firm.

Of course, in practice only a few markets exist where the number of firms exactly equals two. For this

reason the purpose of this paper is to study implications of extending the number of (potential) competitors

to three and later on to n. We carry out this research in a so-called new market model where firms have to

invest first before they have access to any revenue.

The study of investment under uncertainty with three firms reveals the presence of a new mechanism in

the strategic real option literature that we denote as the accordion effect. In case all firms invest sequentially

and there is an exogenous shock in demand, the wedge between the investment thresholds of the first and

second investor changes in an opposite direction compared to the change of the wedge between the second

and the third investment threshold. The reason is that if entry of the third firm is delayed1, the second

1For simplicitly we assume in the text below that a lower (higher) threshold implies earlier (later) investment and vice versa.

This assumption might not hold if the change of the threshold is caused by a change in the volatility of the underlying stochastic

2



firm has an incentive to invest earlier because this firm can enjoy the duopoly market structure (rather than

having three firms in the market) for a longer time. Hence, the first firm faces earlier entry of the second

one and thus a shorter period in which it can enjoy monopoly profits. This reduces the investment incentive

for the first firm and thus it invests later. If the exogenous demand change is sufficiently large, the length

of this shorter period converges to zero. We can thus conclude that a direct consequence of the accordion

effect is that there exist two possibilities concerning the order of investment of the firms. In the first case

all firms invest sequentially, whereas in the second case two firms start out investing together followed later

on by the other firm. The latter case occurs more often in more uncertain environments, thus where the

preemption incentive of being the first to invest is counterbalanced by a considerable value of waiting effect.

The sequential case especially takes place in case a market with two active firms results in much less revenue

per firm than when only one firm is active in this market.

We further compare the entry time of the first investor in case the number of firms equals one, two and

three. Here we build on Nielsen (2002) who already found that the first investor in the duopoly case invests

earlier than the monopolist in the one firm case. In this paper we find that the first investor in the three firm

case invests at a time that lies in between the monopoly and duopoly first investor time in case of sequential

investment. However, the first investment in the three firm case can take place earlier than in the two firm

case if the equilibrium is of the simultaneous type.

Finally, this paper takes up the challenge to consider a n-firm framework. First, we find that the accordion

effect also holds here, which means that exogenous demand changes affect the timing of entry of the first,

third, fifth,..., investor in the same qualitative way, while the entry time of the second, fourth, sixth,...,

investor is affected in exactly the opposite qualitative way. In other words, if a delay is observed for the

“odd” investors, then the “even” investors will invest sooner.

A numerical example is set up to check the timing of the first entrant for different potential market sizes

and sequential equilibria. It turns out that in the case of four firms the first investor enters at a time that

lies in between the entry times of the first investor in the two firm and the three firm case, respectively. In

the same way the first investor in the five firm case invests at a time in between the three and four firm

case, and so on and so forth. We conclude that the result that relates to up to three firms extends in an

analogous manner every time we add a new firm. A second conclusion is that if a social planner is interested

in an early start up of the market, it is beneficial to have an even number of potential competitors, although

it has to be remarked that for n large the entry times of the first investor are almost equal.

Grenadier (2002) also considers a real option framework with more than two firms. The main difference

with our setting is that in Grenadier (2002) every investment increases output with an infinitesimal increment,

leading to a path of output that is continuous over time. Contrastingly, our framework has investments in

lumps with the result that output jumps every time an investment is undertaken. Grenadier’s main result

is that the impact of competition drastically erodes the value of the option to wait and leads to investment

process (see Sarkar (2000)).
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at very near the zero net present value threshold. This result is confirmed in our numerical example of the

n-firm framework, where the value of waiting of the first investor quickly converges to zero as the number

of firms increase.

This paper is organized as follows. In the next section the oligopoly model with three firms is presented.

Section 3 analyzes the n firm case, while Section 4 concludes. The proofs of the propositions and theorems

are given in Appendix A. In Appendix B the equilibrium concept is presented. Appendix C gives some of

the derivations of the example that is presented in Sections 2 and 3.

2 Oligopoly with three firms

This section treats the oligopoly model with three firms. Section 2.1 presents the model. Then the solution

is obtained in Section 2.2. This section also defines the accordion effect and contains some illustrations of

this effect based on comparative statics results with regard to the uncertainty parameter and the curvature

of the demand function. Section 2.3 compares the obtained results with those of the duopoly case. Finally,

a specific example is provided in Section 2.4.

2.1 Model

The first paper dealing with a multiple decision maker model in a real option context is Smets (1991). It

considers an international duopoly with identical firms producing a single homogeneous good. Both firms can

increase their revenue stream by investing. Like in the deterministic analysis in Fudenberg and Tirole (1985)

two equilibria arise: a preemption equilibrium, where one of the firms invests early, and a simultaneous

one, where both firms delay their investment considerably. A simplified version was discussed in Dixit and

Pindyck (1994) in the sense that the firms are not active before the investment is undertaken. The resulting

new market model only has the preemption equilibrium. The model in the present section builds on Dixit

and Pindyck (1994) and extends it by considering three firms instead of two.

We thus consider an oligopolistic industry comprising of three identical firms producing a single, homoge-

neous good. Each firm has the opportunity to invest once with sunk costs I > 0. Undertaking the investment

gives access to a profit flow

Y (t)Dk,

where k is the number of active firms and Y (t) follows a geometric Brownian motion with drift parameter

µ and volatility parameter σ:

dY (t) = µY (t) dt+ σY (t) dω (t) , (1)

Y (0) = y. (2)

The effect of competition on profits is reflected in Dk. If k goes up the market has to be shared by more

firms, which implies that individual firm profits will be lower. For this reason it holds that Dk is strictly
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decreasing in k as long as k > 0, i.e.

D1 > D2 > D3 > D∞ = 0.

Such a general formulation embraces, for instance, Cournot quantity competition, as will be illustrated later

on in Section 2.4.

Furthermore, the firms are risk neutral, value maximizing, discount with constant rate r, and variable

costs of production are absent. Assume that r > µ in order to ensure convergence.

2.2 Solution

Given the stochastic process (Yt)t≥0 we can define the value functions of the firms for the different possible

strategies. By Vij (Y ) we denote the value of a firm that invests at Y given that j firms are already active

in the market and i firms jointly invest. Furthermore, let Wij (Y ) be the value of a firm that does not invest

when i other firms invest at Y given that j firms were active in the market before the investment (here “W”

denotes “waiting”). The optimal investment trigger for the i firms that invest simultaneously when there

are j firms already active in the market is denoted by Yij .

As in the standard approach used to solve dynamic games, we analyze the problem backward in time.

First, we derive the optimal strategy of the third investor, who takes the strategy of the other two firms as

given. Subsequently, we analyze the decisions of the second and the first investor, respectively.

So, we start out by considering the investment decision of the third investor in a situation where the two

other firms have already invested. After the first two investments are undertaken, the only decision left to

take is when the third firm should invest. From this it follows that the problem that the third firm faces is

a purely decision theoretic one, i.e. strategic considerations are absent. Essentially, the investment problem

of the third investor can be analyzed by employing the standard real option model presented in Dixit and

Pindyck (1994, Chapter 6). The third investor’s value function, V12, is equal to

V12 (Y ) =







(

Y
Y12

)β (
Y12D3

r−µ
− I
)

if Y < Y12,

Y D3

r−µ
− I if Y ≥ Y12,

(3)

where β is the positive solution of the so-called fundamental quadratic, i.e. 1
2σ

2β2 +
(

µ− 1
2σ

2
)

β − r = 0.

The investment trigger Y12 is given by

Y12 =
β

β − 1

(r − µ) I

D3
. (4)

The first row of (3) is the present value of profits when the third firm does not invest immediately. This

term equals the value of the option to invest, which is the net present value of the third firm’s investment

discounted back from the (random) time of reaching the third firm’s threshold Y12. Consequently,
(

Y
Y12

)β

is interpreted as a stochastic discount factor, and it can in fact be shown that (see, e.g., Dixit and Pindyck

(1994))

E
(

e−rT
)

=

(

Y

Y12

)β

,
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where T is the random first time the process reaches a fixed level Y12 starting from the initial position Y.

The optimal investment strategy for the third investor is to invest at the first moment that Y (t) is larger

than or equal to Y12. The following proposition is directly obtained from (4).

Proposition 1 The investment trigger of the third investor, Y12, is decreasing in D3 and increasing in σ.

Next, we analyze the investment decision of the second investor in a situation where the first investor has

already invested. After the first investor has made its investment, the two remaining firms face the duopoly

investment game that is analyzed in Huisman (2001, Chapter 7). Therefore, the value function of the second

investor is equal to the leader value function in the duopoly investment game, i.e.

V11 (Y ) =







Y D2

r−µ
− I +

(

Y
Y12

)β
Y12(D3−D2)

r−µ
if Y < Y12,

Y D3

r−µ
− I if Y ≥ Y12.

(5)

In the first row of (5) it is taken into account that at Y12 the third firm invests, implying that for the second

investor the profit flow Y D2 is replaced by Y D3. Huisman (2001, Chapter 7) shows that the expected value

of a firm in the duopoly investment game before the first firm invested is equal to the follower value. This

result implies for the current model that before the second investment is undertaken the expected value of

the second investor equals the value of the third investor, i.e. W11 (Y ) = V12 (Y ) . Furthermore, Huisman

(2001, Chapter 7) shows that there always exists a unique preemption threshold in the duopoly investment

game at which the leader, which is here the second investor, will invest, given that the initial value of Y is

lower than this preemption threshold. This investment trigger Y11 is defined as follows:

Y11 = inf (Y ∈ (0, Y12) |V11 (Y ) = W11 (Y ) ) . (6)

In the interval (Y11, Y12) the value of being second investor strictly exceeds the value of being third

investor. Hence, both firms prefer to invest rather than wait and be third investor. Nevertheless, in case two

firms already have invested and it holds that Y < Y12, the third investor’s value of waiting with investment

until Y12 is reached, strictly exceeds the value obtained from investing immediately as a third firm. Hence,

if the second firm already has invested, the third firm prefers to wait.

The optimal investment strategy for the second investor is to invest at the first moment that Y (t) is larger

than or equal to Y11 (otherwise, the second investor will be preempted by the third firm). The following

proposition reports how the value of Y11 can be obtained and how Y11 depends on several model parameters.

Proposition 2 The investment trigger of the second investor, Y11, is implicitly defined by

Y11D2

r − µ
− I =

(

Y11

Y12

)β (
Y12D2

r − µ
− I

)

. (7)

The threshold Y11 is increasing in D3, decreasing in D2, and increasing in σ.

Economically, equation (7) states that the threshold Y11 is defined as the value at which the firm is

indifferent between being the second investor and being the third investor.
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Finally, we analyze the investment decision of the first investor. Departing from the optimal investment

decisions of the other firms, we can derive the value function for the first investor:

V10 (Y ) =



















Y D1

r−µ
− I +

(

Y
Y11

)β
Y11(D2−D1)

r−µ
+
(

Y
Y12

)β
Y12(D3−D2)

r−µ
if Y < Y11,

Y D2

r−µ
− I +

(

Y
Y12

)β
Y12(D3−D2)

r−µ
if Y11 ≤ Y < Y12,

Y D3

r−µ
− I if Y ≥ Y12.

(8)

In the first row of (8) it is taken into account that at Y11 the second investor invests, implying that for

the first investor the profit flow Y D1 is replaced by Y D2. Subsequently, at Y12 the third investor enters the

market so that then the profit flow changes from Y D2 into Y D3.

Since we are analyzing a new market model, i.e. a firm makes no profit before the investment is made,

the value of a firm that invests simultaneously with another firm as first, V20, equals the value of the second

investor, V11. Thus we have V20 (Y ) = V11 (Y ). Furthermore, if three firms invest simultaneously, each firm’s

value is equal to the third investor’s value, so that V30 (Y ) = V12 (Y ) .

Let us now focus on the value functions of the firms that do not invest as first. First, consider the case

that there is only one firm that invests as first. After this first investment is undertaken, the other two firms

end up in a duopoly investment game. From this game we know that the expected value of both firms equals

the follower value in that game, so that W10 (Y ) = V12 (Y ). Next, assume that there are two firms investing

simultaneously as first. Then the value of the firm that did not invest also equals the third investor’s value

W20 (Y ) = V12 (Y ) . In other words we have that

W11 (Y ) = W10 (Y ) = W20 (Y ) = V12 (Y ) . (9)

Provided that it exists (see the next proposition), the investment trigger for the first firm Y10 is equal to

Y10 = inf (Y ∈ (0, Y11) |V10 (Y ) = W10 (Y ) ) . (10)

In the interval (Y10, Y11) the value of being first investor exceeds the value of being second investor.

However, once being the second investor, that firm prefers to wait until Y (t) reaches Y11 above investing

immediately. This implies that if the first investor already has invested, the second investor will wait. Since

it has to prevent preemption by one of the other firms, the first investor will choose to invest at the first

moment that Y (t) is larger than or equal to Y10.

However, it turns out that existence of Y10 is not assured. Once it does not exist, it will be optimal for

two firms to invest simultaneously as first. Because of the new market structure the corresponding trigger

is then Y11. The following proposition states the necessary and sufficient condition for the existence of the

investment trigger of the first investor.

Proposition 3 There exists a unique value for Y, Y10, such that

V10 (Y ) = W10 (Y ) and 0 < Y10 < Y11, (11)
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if and only if

Y11 > YM
1 , (12)

where

Y M
1 =

β

β − 1

(r − µ) I

D1
. (13)

The threshold Y10 is implicitly defined by

Y10D1

r − µ
− I =

(

Y10

Y11

)β (
Y11D1

r − µ
− I

)

. (14)

The investment trigger Y10 is equal to that value for which a firm is indifferent between being the first

investor and being the second investor. The next proposition shows how this trigger depends on some

relevant parameter values.

Proposition 4 Whenever the investment trigger Y10 exists, it is decreasing in D3, increasing in D2, de-

creasing in D1, and increasing in σ.

2.2.1 The two equilibria: sequential and simultaneous

Depending on the existence of Y10, either one of two types of equilibria can occur. In the first type the

first two investors make their investments sequentially and in the second type the first two investors invest

simultaneously. In Figure 1 the value functions are plotted for the sequential equilibrium case and in Figure

2 the same is done for the simultaneous equilibrium case.

Consider Figure 1 first. In the interval (0, Y10) the waiting curve is the highest one, so all firms benefit

from refraining from investment. The reason is that the profit flow Y D1 is too low to counterbalance the

sunk investment costs. In the interval (Y10, Y11) the first investor has the highest payoff, which provides the

incentive for the first investor to preempt the two other firms at Y10. If the initial value of the process Y is

such that it is in between Y10 and Y11, with probability one at least one of the firms will invest immediately.

In fact, by applying a mixed strategy concept (for details, see Huisman (2001) or Thijssen (2004)) Appendix

B shows that with positive probability either one, two or three firms will invest there2.

In the interval (Y11, Y12) it holds that V20 (Y ) = V11 (Y ) gives the highest payoff, implying that at Y11 the

second investor wants to preempt the third one. If the initial value falls in this interval, with probability one

two firms will invest immediately3. Finally, in the interval (Y12,∞) the market is big enough for all firms to

invest at once.

Next, consider Figure 2. We see that here no Y−interval exists where V10 (Y ) has the highest value.

For this reason the first two investors will invest simultaneously. This will happen in the interval (Y11, Y12)

2Of course, firms do not want to end up in an outcome where more than one firm invests, since this leaves them with a low

payoff V20 (Y ) or V30 (Y ) . However, such an outcome can occur as the result of a coordination failure.
3Analogous to the interval (Y10, Y11), also here it holds that with positive probability a coordination failure can occur in the

sense that three firms will invest immediately, leaving all the firms with a very low payoff.
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Y10 Y11 Y12

Y

0

−I

V
1
0
(Y

),
V
2
0
(Y

),
V
3
0
(Y

),
W

(Y
)

V10( Y)

V20( Y)

V30( Y)

W( Y)

Figure 1: Value functions in the sequential equilibrium case.

(at which precise value of Y ∈ (Y11, Y12) the firms will invest, depends of course on the initial value of Y ).

Furthermore in the interval (0, Y11) the waiting curve gives the highest value, so investing is not optimal,

while in (Y12,∞) all firms will again invest immediately.

Below we show that the position of D2 on the (D3, D1) interval determines the type of the equilibrium

that prevails. For relatively low values of D2, that is, for D2 close to D3, the equilibrium will be of the

sequential type. The reason is that the first mover advantage is relatively high as D1 is large compared to

D2, so that the firms have an incentive to become the first investor and earn the relatively high monopoly

profits until the second firm has invested. On the other hand, if D2 is relatively high (close to D1) the first

mover advantage is relatively small, so that firms do not really care to become the first or second investor

as long as they are not the third investor. Mathematically it can be shown that there is a unique value

of D2, denoted by D∗
2 such that the equilibrium is of the sequential type if D2 is smaller than D∗

2 and

the simultaneous equilibrium prevails for D2 larger than or equal to D∗
2 . This boundary D∗

2 is dependent

on the level of uncertainty. If uncertainty rises, the bound D∗
2 decreases as firms become more hesitant to

invest quickly. Consequently, the incentive to preempt reduces and the area of simultaneous investment rises.

Below we prove that there is a lower bound for D∗
2 which is larger than D3. This implies that there exist

values for D2 (relatively low values) that will always lead to a sequential equilibrium no matter what the

level of uncertainty is. Lastly, it turns out that there does not exist a D2 region for which the equilibrium

is always of the simultaneous type no matter the level of uncertainty.

The following theorem formalizes the above statements, where it is important to note that β is decreasing
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Y11 Y12

Y

0

−I

V
1
0
(Y

),
V
2
0
(Y

),
V
3
0
(Y

),
W

(Y
)

V10( Y)

V20( Y)

V30( Y)

W( Y)

Figure 2: Value functions in the simultaneous equilibrium case.

in uncertainty and that β → 1 for σ → ∞.

Theorem 1 The first two investors invest sequentially if D2 < D∗
2 (β) and the first two investors invest

simultaneously if D2 ≥ D∗
2 (β) , where

D∗
2 (β) =

β − 1

β

D
β
1 −D

β
3

D
β−1
1 −D

β−1
3

. (15)

It holds that

∂D∗
2 (β)

∂β
> 0, (16)

D∗
2 (1) =

D1 −D3

log (D1) − log (D3)
> D3, (17)

lim
β→∞

D∗
2 (β) = D1, (18)

which implies that the equilibrium is always of the sequential type if D2 ∈ (D3, D
∗
2 (1)) no matter the level

of uncertainty.

2.2.2 The accordion effect

Propositions 1, 2 and 4 state that a decrease inD3 leads to an increase in the third firm’s threshold, a decrease

in the second firm’s threshold, and an increase in the first firm’s threshold. Hence, the wedge between the

first and the second threshold decreases and the wedge between the second and the third threshold increases.
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The opposite directions of the changes in these wedges is what we call the accordion effect. This effect also

arises due to changes in uncertainty, σ, drift, µ, discount rate, r, and the number of competitors (see Section

3).

The next section presents the accordion effect in case of a change in uncertainty. It is shown that this

feature especially influences the strategic effect of uncertainty. The section after that explains in detail how

a change in the demand function curvature (i.e. changing the value of one of the Di’s) also leads to the

occurrence of the accordion effect.

2.2.3 Change in uncertainty

Here we consider the impact of an increase in uncertainty on the investment threshold values. Two effects

can be detected that work in opposite directions. The first is the waiting effect and the second the strategic

effect. The waiting effect leads to an increase in the investment thresholds. The reason is that uncertainty

raises the value of waiting with investment, which is the standard real options result.

Now, let us analyze the strategic effect. First, we observe that, since the other two firms have already

taken their decisions in that their investments already took place, the investment trigger of the third investor

is not affected by a strategic effect. This implies that only the waiting effect plays a role, so that the third

investor will invest later, i.e. Y12 goes up with uncertainty (cf. Proposition 1). This in turn implies that the

second investor stays in a duopoly (rather than in a market with three firms) for a longer time. Therefore,

the investment of the second investor becomes more profitable, so that the second investor has an incentive

to invest earlier. Hence, the strategic effect on the second investor’s trigger is negative. However, taking the

waiting effect and the strategic effect together, it turns out that the waiting effect dominates so that also

firm 2’s trigger, Y11, increases with uncertainty (see Proposition 2).

So, given that the second investor invests later, also for the first investor it holds that investing becomes

more profitable and thus that the strategic effect results in a lower trigger. But still also here the total

effect of uncertainty is that the first investor’s trigger, Y10, will be increasing when uncertainty goes up, as

is reported in Proposition 4.

As a result of the above effects, and especially the strategic effect, it holds that, whenever D2 > D∗
2 (1), an

increase in σ reduces the wedge Y11 −Y10, while it raises the wedge Y21−Y11. In other words, as uncertainty

goes up the thresholds of the first and second investor approach each other, while the thresholds of the

second and third firm diverge. This is again the accordion effect.

Section 2.2.1 learned that for D2 > D∗
2 (1) we have the sequential equilibrium for low uncertainty levels

and the simultaneous equilibrium for high levels of uncertainty. Then, as long as the sequential equilibrium

prevails and uncertainty goes up, the investment triggers Y10 and Y11 get closer, while they converge at the

moment that σ is large enough for the simultaneous equilibrium to occur. This is shown in the left panel of

Figure 3, where the wedge between the investment triggers Y10 and Y11, i.e. Y11−Y10, is plotted as a function

of the degree of uncertainty σ. We conclude that the existence of two qualitatively different equilibria is a
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direct implication of the accordion effect.

In the previous section we also detected that for low values of D2 the incentive to preempt in order to

become the first investor is high, so that we always have the sequential equilibrium. This happens when

D2 < D∗
2 (1) . Then it turns out that the wedge between Y10 and Y11 does not have to be a monotonous

function in σ, as is shown in the right panel of Figure 3.
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Figure 3: Wedge between the investment triggers Y10 and Y11 as function of σ for D1 = 10, D3 = 2, r = 0.1,

µ = 0.025, and I = 10. In the left panel D2 = 6 and in the right panel D2 = 4.8. For these parameters it

holds that D∗
2 (1) = 4.97.

2.2.4 Change in the demand function curvature

This section checks how changes in the demand parameters D1, D2 and D3 affect the investment decisions

of the firms. If industry output goes up with the number of firms, which is generally true in case of Cournot

competition, studying the effects of separate changes of the Di’s provides information on how investment

timing depends on the curvature of the demand function.

Let us first analyze what happens when D3 increases. From Proposition 1 we know that an increase in

D3 leads the third firm to invest earlier. Regarding the investment timing decision of the second firm, a

variation in D3 has two opposing effects. First, an increase in D3 makes investment by the second firm less

attractive as this firm receives the temporary “duopolistic” profit for a shorter period of time, because the

third firm enters the market earlier. Second, an increase in D3 may lead to earlier investment of the second

firm since the negative effect of competition on profits is less severe in the sense that the drop in the profit

flow due to the entry of the third firm, being equal to (D2 −D3)Y, is smaller. According to Proposition 2

the first effect always dominates the second one so that the second firm always invests later as D3 increases.

By a domino effect, an increase in D3 makes investment by the first firm more attractive (cf. Proposition

4). Indeed, the temporary “monopolistic” profit accruing to this firm lasts for a longer period of time when

D3 is large, as the second firm enters the market later. Hence, an increase in D3 has a positive effect on

the entry decision of the first firm. In other words, an increase in D3 implies that the investment thresholds

of the first and the second investor diverge, while the thresholds of the second and third investor approach

12



each other. We conclude that changing D3 gives rise to the accordion effect.

If D2 increases the third investor is not affected, because it is simply not active during the time period

that the profit flow is dependent on D2. Furthermore an increase in D2 straightforwardly leads to earlier

investment of the second investor, and, since the monopoly period lasts less long, to later investment by the

first firm.

By now it will be clear that an increase in D1 will accelerate the investment timing of the first investor,

while it does not influence the investment decisions of both other firms. The effects of an increase in D1, D2

or D3 on the investment policy of each firm are summarized in Table 1.

increase in

D3 D2 D1

firm 3 invests earlier no effect no effect

firm 2 invests later earlier no effect

firm 1 invests earlier later earlier

Table 1: Effects of D1, D2, and D3 on the investment policies.

It is interesting to note that when D3 or D2 varies, the first and the second firm always move in the

opposite direction. This explains why joint investment can occur: the first firm invests later (Y10 increases)

and the second firm invests earlier (Y11 decreases) as D2 increases (D3 decreases) and for D2 sufficiently

large (or D3 sufficiently low), both firms will invest at the same time. Indeed, from Theorem 1 we know that

the joint investment equilibrium will occur for a larger interval of the uncertainty parameter values when

D2 increases.

2.3 Comparison with Duopoly

Let us now compare the three firms’ model with the duopoly model. For the duopoly model we denote the

threshold of the first investor by YP (the subscript “P” relates to preemption) and YF (with “F” of follower)

is the threshold of the second investor. Then, from Huisman (2001, Chapter 7) we know that YP is implicitly

given by

YPD1

r − µ
− I =

(

YP

YF

)β (
YFD1

r − µ
− I

)

,

while YF satisfies

YF =
β

β − 1

(r − µ) I

D2
.

Nielsen (2002) has derived that the monopoly investment trigger, given by

YM =
β

β − 1

(r − µ) I

D1
,

is larger than YP . The reason is that in the duopoly model the first investor has an incentive to act quickly

to achieve the (temporary) monopoly position.
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The following proposition shows that, if the equilibrium in the three firm case is of the sequential type,

the first investor invests at a time that lies in between the monopoly and duopoly first investor time.

Proposition 5 Consider the sequential equilibrium in the three firm case. Then the investment threshold of

the first firm to invest in the three firm case, Y10, is strictly larger than the investment threshold of the first

investor in the duopoly case, YP , but smaller than the monopoly investment trigger, YM .

The economic interpretation of this result is as follows. Analogous to the comparison of the first investors

in duopoly and monopoly case, it holds that in the three firm case the second investor invests earlier than

the second investor in the duopoly case, because in the three firm case the second investor must act quickly

in order to enter the market earlier than the third investor. Therefore, in the three firm case the monopoly

period of the first investor lasts less long, which reduces the first investor’s incentive to invest. Consequently,

the first investor will invest later than in the duopoly case.

Next, consider the simultaneous equilibrium in the three firm case. Contrary to Proposition 5, in this

case it can happen that the first investment in the three firm case can be earlier than in the duopoly case,

i.e. Y20 = Y11 < YP . To show this, first observe that in the duopoly case joint investment is only possible

if D2 = D1. Then both the trigger value of the follower and the leader are equal to the trigger value of a

monopolist, i.e.

D2 = D1 ⇒ YF = YP = YM . (19)

In the case with three firms, we know that sequential investment only occurs when (cf. (12))

Y20 = Y11 > Y M
1 .

Hence, in the complementary case,

Y20 = Y11 ≤ Y M
1 , (20)

the outcome where the first two firms invest at the same time, is the unique equilibrium outcome. After

comparing (19) with (20), it can be expected that in that equilibrium the first investment trigger is lower

than YP whenever D2 is close to D1.
4 Economically, this result can be explained by observing that the

preemption incentive in the duopoly case is rather low when D2 is close to D1, so therefore YP will be large

in such a case. At the same time the preemption incentive of the first two firms in the three firm case can

be large, which is the case when D3 is low.

The reason why this will not hold in the sequential investment case is the following. Theorem 1 learned

us that occurrence of the sequential equilibrium requires a low D2, implying that in such a case there is a

large incentive to preempt in the duopoly model. Consequently, YP will be small leading to the result of

Proposition 5.

4This expectation is confirmed by numerical experiments not reported here.
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2.4 Example

This section presents an example that will help to illustrate the results. In this example we start out from

Cournot competition with a specific inverse demand function. From thereon we derive the profit flows

Y (t)Dk and the resulting optimal investment triggers of the three firms. We do this generally in the sense

that we consider n firms rather than just three. This is the reason why we also employ this example in the

next section where we analyze the n firm case.

The price of a unit of output, P (t) , fluctuates stochastically over time so as to clear the market:

P (t) = D (X (t) , Q (t)) ,

where D is the inverse demand function, X (t) is an exogenous shock process to demand and Q (t) is total

output, i.e.

Q (t) =

n
∑

i=1

qi.

In this particular example we employ the following specifications for the inverse demand curve D (X,Q)

and the shock process X (t) . Assume that the market inverse demand function is of a constant elasticity

form:

P (t) = X (t) (Q (t))
− 1

γ , (21)

where γ (> 1) is the elasticity parameter. X (t) represents a multiplicative demand shock, and evolves as a

geometric Brownian motion:

dX (t) = µXX (t) dt+ σXX (t) dz.

Furthermore, let the marginal costs of production be the same for all firms and equal to c.

In Appendix C we show that whenever there are n firms active, the profit flow of firm i is equal to

DnY (t) ,

where

Dn =
1

n

(

c

nγ − 1

)1−γ

(nγ)
−γ

,

and Y (t) follows a geometric Brownian motion with parameters µ and σ that are given by

µ = γµX +
1

2
γ (γ − 1)σ2

X ,

σ = γσX .

As a numerical illustration, consider three firms all having the possibility to enter the market after

undertaking a sunk cost investment of I = 10. As for the other parameters, we set µX = 0.025, σX = 0.1,

I = 10, c = 1, and r = 0.1. Table 2 illustrates how the solution depends on the parameter γ. Among other

things, the table shows the investment threshold values, Y10, Y11, and Y12, for the first, second and third

investor, respectively, where γ = 1.25, 1.5 and 2.

15



γ 1.25 1.5 2

D1 0.534992 0.3849 0.25

D2 0.176022 0.136083 0.09375

D3 0.082257 0.0653272 0.0462963

µ 0.0328125 0.04125 0.06

σ 0.125 0.15 0.2

Y10 1.51158 2.1546 3.54222

Y11 4.55069 5.8353 8.45832

Y12 14.3597 18.6358 27.8618

V10 (Y10) 0.0409444 0.165737 1.11924

Table 2: Example with three firms with the settings µX = 0.025, σX = 0.1, I = 10, c = 1, and r = 0.1.

Observe that in all three cases the triggers are different, so that all equilibria are of the sequential type.

The triggers go up with γ implying that the firms will invest later when the demand elasticity is higher. One

of the reasons is that the output price reacts stronger to the shock process X (t) , if the demand elasticity is

large (cf. (21)). Hence, as is also shown in the table, σ goes up with γ. Therefore, also the value of waiting

with investment goes up, which results in higher trigger values. For the first investor this higher value of

waiting is also illustrated by the fact that V10 (Y10) increases with γ.

Another reason is that we know from microeconomic theory that markets get more competitive under

a higher demand elasticity, as is reflected in a lower Lerner index (see, e.g., Tirole (1988)). Consequently,

profits are smaller, which in the table gives smaller Dn values, and thus the firms will wait longer with

investment.

3 Extension to n firms

In this section we analyze the n firm case. We first present some analytical results in Section 3.1. After that,

in Section 3.2 we present a numerical example.

3.1 General analysis

The model is the same as in Section 2.1, but now the number of firms is n instead of three. Then for the

deterministic part of the profit flow it holds that

D1 > D2 > ... > Dn−1 > Dn > D∞ = 0.

The following theorem gives (implicit) equations for the trigger values and provides an existence condi-

tion for each particular trigger. In case a trigger does not exist, then, analogous to the three firm case,
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simultaneous investment will occur.

Theorem 2 Consider a new market in which n firms may enter. Let k ∈ {1, . . . , n} . Define Y1k to be the

optimal investment trigger for the firm that invests when there are already k firms active in the market. The

investment trigger Y1k (k ∈ {0, . . . , n− 2}) is the solution of the equation

Y1kDk+1

r − µ
− I =

(

Y1k

Y1k+1

)β (
Y1k+1Dk+1

r − µ
− I

)

, (22)

and

Y1n−1 =
β

β − 1

(r − µ) I

Dn

. (23)

Define Y M
k to be the monopolistic investment trigger in a market where the profit multiplication factor equals

Dk, i.e.

Y M
k =

β

β − 1

(r − µ) I

Dk

. (24)

The investment trigger Y1k exists if and only if it holds that

Y1k+1 > Y M
k+1. (25)

Equation (22) implies that at the threshold Y1k a firm is indifferent between investing now and investing

at the next trigger. A direct result of Theorem 2 is that the thresholds in the n firm case can be derived

backwards. First, equation (23) determines Y1n−1, having this value we can calculate Y1n−2 via (22), and so

on and so forth until Y10. In each step the existence of the threshold can be checked with equation (25). If

the trigger Y1k does not exist, i.e. equation (25) does not hold, we have that Y1k = Y1k+1.

Proposition 6 contains comparative statics results for some relevant parameters.

Proposition 6 Let k ∈ {0, . . . , n− 1} . Whenever the investment trigger Y1k exists, it is increasing in σ

and decreasing in Dk+1+2j with j ∈
{

0, 1, . . . ,
⌊

n−k−1
2

⌋}

. Furthermore, the threshold Y1k with k ≤ n− 2 is

increasing in Dk+2+2j with j ∈
{

0, 1, . . . ,
⌊

n−k−2
2

⌋}

.

First, this proposition shows that all investments are delayed if uncertainty increases. Second, this propo-

sition says that an exogenous demand change has the same qualitative effect on the investment timing of the

odd firms, while the direction is opposite for the even firms. So, if investments for the odd firms are delayed,

then investments for the even firms are accelerated. This implies that the accordion effect is extended to the

n firm case.

3.2 Example

In this section we continue the example of Section 2.4. Table 3 shows the different triggers for markets with

one up to ten firms for the parameter values γ = 1.25, µX = 0.025, σX = 0.1, I = 10, c = 1, and r = 0.1.

Some of the highlights of this table are depicted in Figure 4 and Figure 5. In Figure 4 the trigger of the
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first investor is plotted as a function of the number of firms. The first three “dots” confirm Proposition 5 in

that the trigger of the first investor in the three firm case lies in between the ones of the monopoly and the

duopoly case. Moreover, we see that this pattern extends as the number of firms goes up in the sense that

the trigger of the first investor in the n+ 2 firm case always lies in between the first investment triggers of

the n and the n+ 1 firm case. This results in a sawtooth pattern with reducing length of the sawtooth as n

increases. Ultimately, for n large enough the timing of the first investor becomes insensitive to the value of

n.

Another implication is that first investor entry takes place earlier if the number of firms is even. Since the

size of the “sawtooth” decreases as n goes up, this observation is particularly relevant in case the number of

firms is small. Furthermore, Table 3 shows that the sawtooth pattern also applies if we consider the second,

third or n’th investor instead of the first one, since for each k it holds that Y1k first decreases, then increases,

and so on and so forth, as the number of firms goes up.

2 4 6 8 10
n

1.4

1.6

1.8

2

2.2

Y
1
0

Figure 4: Trigger of the first investor as function of the number of firms.

Figure 5 shows the value of the first investor at its investment threshold as a function of the number of

firms. We see that the value of the first investor at the moment of the investment converges fastly to zero

as the number of firms increase. This confirms Grenadier (2002)’s result that competition drastically erodes

the value of the option to wait.
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n V10 (Y10) Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19

1 7.58045 2.20786

2 0.200007 1.39978 6.71043

3 0.0409444 1.51158 4.55069 14.3597

4 0.0106862 1.4734 5.0604 10.3435 24.979

5 0.00400427 1.48945 4.82759 11.7157 18.8259 38.5566

6 0.0017281 1.48127 4.94254 10.9729 21.4652 30.0826 55.0894

7 0.000862315 1.4859 4.87655 11.3813 19.874 34.3132 44.1668 74.5763

8 0.000466411 1.48305 4.91693 11.1261 20.8208 31.5666 50.2397 61.1126 97.017

9 0.00027281 1.48491 4.89045 11.2914 20.1908 33.304 46.078 69.2214 80.943 122.411

10 0.000167957 1.48363 4.90856 11.1775 20.6179 32.0914 48.8425 63.43 91.2377 103.674 150.758

Table 3: Value of first investor and triggers for different number of firms in the market and the settings γ = 1.25, µX = 0.025, σX = 0.1, I = 10,

c = 1, and r = 0.1.
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Figure 5: Value of the first investor as function of the number of firms.

4 Conclusion

The study of investment under uncertainty in an oligopolistic market structure generates contradictory

effects. On the one hand it holds that an uncertain economic environment implies that there is an incentive

to wait with investing. The reason is that over time more price and cost realizations become available so

that investment decisions at later dates are based on more information. On the other hand we have that

competition provides the incentive for a firm to invest quickly in order to prevent that another firm grabs

the market share the firm could have obtained by quickly investing itself.

Until now, in the literature the above trade-off was mainly studied in a duopoly framework. The present

paper extends this literature by analyzing investment under uncertainty and competition for a varying

number of firms. To do so we adopted a framework where firms have the opportunity to invest just once.

Upon investment the firm enters a market after which it receives some profit stream. Profit stochastically

fluctuates over time and is negatively affected by entry of other firms.

This research led to the following new insights. First, in the three firm case either the firms invest

sequentially over time, or the first two firms invest simultaneously, which is later on followed by entry of the

third firm. Second, the effect of an exogenous demand change on investment timing leads to adverse effects

on the wedges between subsequent investment thresholds. In other words, if the change in demand leads to

a decreasing wedge between the first and second threshold, then the same holds for the wedge between the

third and fourth, the fifth and sixth, ..., threshold, while the wedge between the second and third threshold,
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fourth and fifth,..., threshold will increase. This is what we call the accordion effect.

Third, in equilibria where firms invest sequentially, the timing of the first investor in case of n+ 2 firms

always lies in between the timing of the n and n+ 1 firm case. This implies that the function describing the

dependence of the timing of the first investor on the number of firms has a sawtooth form, where the length

of the sawtooth reduces as the number of firms increases. One implication is that market entry occurs most

early when the number of potential market entrants is small and even.

A Proofs

Proof of Proposition 1 See the proof of Proposition 6 as this is a special case. �

Proof of Proposition 2 See the proof of Proposition 6 and the proof of Theorem 2 as this is a special

case. �

Proof of Proposition 3 See the proof of Proposition 6 and the proof of Theorem 2 as this is a special

case. �

Proof of Proposition 4 See the proof of Proposition 6 as this is a special case. �

Proof of Theorem 1 The equilibrium is of the sequential type whenever Y10 exists. From Proposition 3 we

know that Y10 exists if and only if Y11 > Y M
1 . From the proof of Theorem 2 we know that ∆11 (Y ) is a concave

function that is negative on the interval (0, Y11) and positive on the interval (Y11, Y12) . Furthermore, we know

that YM
1 < Y12 as D1 > D3. This implies that the condition Y11 > Y M

1 can be written as ∆11

(

Y M
1

)

< 0.

Substitution of Y M
1 in ∆11 (56) gives

∆11

(

Y M
1

)

=

β
β−1

(r−µ)I
D1

D2

r − µ
− I +

(

β
β−1

(r−µ)I
D1

β
β−1

(r−µ)I
D3

)β (

I −

β
β−1

(r−µ)I
D3

D2

r − µ

)

=
β

β − 1
I
D2

D1
− I +

(

D3

D1

)β (

I −
β

β − 1
I
D2

D3

)

= I

(

β

β − 1

D2

D1
− 1 +

(

D3

D1

)β (

1 −
β

β − 1

D2

D3

)

)

= I

(

β

β − 1

D2

D1

(

1 −

(

D3

D1

)β−1
)

+

(

D3

D1

)β

− 1

)

. (26)

Thus we have that ∆11

(

Y M
1

)

< 0 if and only if

β

β − 1

D2

D1

(

1 −

(

D3

D1

)β−1
)

+

(

D3

D1

)β

− 1 < 0, (27)

rewriting gives

D2 < D1
β − 1

β

1 −
(

D3

D1

)β

1 −
(

D3

D1

)β−1
=
β − 1

β

D
β
1 −D

β
3

D
β−1
1 −D

β−1
3

= D∗
2 (β) . (28)
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Define the function f (β) as follows

f (β) =
β − 1

β

1 − yβ

1 − yβ−1
, (29)

then we have that for y = D3

D1

D∗
2 (β) = D1f (β) , (30)

so that if we prove that f is increasing in β we have that D∗
2 is increasing β. Differentiating f with respect

to β gives
∂f (β)

∂β
=

(

1 − yβ−1
) (

1 − yβ
)

+ β (β − 1) yβ−1 (1 − y) log (y)

β2 (1 − yβ−1)
2 . (31)

Define φ (β) as follows

φ (β) =
(

1 − yβ−1
) (

1 − yβ
)

+ β (β − 1) yβ−1 (1 − y) log (y) , (32)

then it holds that φ (1) = 0. Furthermore,

∂φ (β)

∂β
= −yβ log (y)

(

1 − yβ−1
)

− yβ−1 log (y)
(

1 − yβ
)

+ β (β − 1) yβ−1 log (y) (1 − y) log (y)

+ (2β − 1) yβ−1 (1 − y) log (y)

= yβ−1 log (y)
(

2yβ + (1 − y) log (y)β2 + (1 − y) (2 − log (y))β − 2
)

. (33)

Let us define ϕ (β) as follows

ϕ (β) = 2yβ + (1 − y) log (y)β2 + (1 − y) (2 − log (y))β − 2, (34)

then ϕ (1) = 0 and

∂ϕ (β)

∂β
= 2yβ log (y) + 2 (1 − y) log (y)β + (1 − y) (2 − log (y)) . (35)

Thus

∂ϕ (β)

∂β

∣

∣

∣

∣

β=1

= 2y log (y) + 2 (1 − y) log (y) + (1 − y) (2 − log (y))

= 2 − 2y + log (y) (y + 1) . (36)

Define the function ξ (y) = 2 − 2y + log (y) (y + 1) , then ξ (1) = 0, and

∂ξ (y)

∂y
= −2 +

1

y
(y + 1) + log (y)

= −1 +
1

y
+ log (y) , (37)

so that
∂ξ (y)

∂y

∣

∣

∣

∣

y=1

= 0, (38)

and

∂2ξ (y)

∂y2
= −

1

y2
+

1

y

= −
1

y

(

1

y
− 1

)

< 0, (39)
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since y ∈ (0, 1) . This implies that ∂ξ(y)
∂y

is strictly decreasing on (0, 1) . Together with (38) this results in the

fact that ∂ξ(y)
∂y

is strictly positive on (0, 1), i.e.

∂ξ (y)

∂y
> 0. (40)

Therefore, ξ (y) is strictly increasing on (0, 1) and together with ξ (1) = 0 we know that ξ (y) < 0 on (0, 1) .

This leads to
∂ϕ (β)

∂β

∣

∣

∣

∣

β=1

< 0. (41)

Furthermore,
∂2ϕ (β)

∂β2 = 2yβ log2 (y) + 2 (1 − y) log (y) . (42)

Thus

∂2ϕ (β)

∂β2

∣

∣

∣

∣

β=1

= 2y log2 (y) + 2 (1 − y) log (y)

= 2 log (y) (y log (y) − y + 1) . (43)

Define the function ψ (y) = y log (y) − y + 1, then ψ (1) = 0, and

∂ψ (y)

∂y
= 1 + log (y) − 1 = log (y) < 0. (44)

From equation (44) and ψ (1) = 0 we derive that ψ (y) > 0 for y ∈ (0, 1) . This result together with equation

(43) gives
∂2ϕ (β)

∂β2

∣

∣

∣

∣

β=1

< 0. (45)

Furthermore, it holds that
∂3ϕ (β)

∂β3 = 2yβ log3 (y) < 0, (46)

so that ∂2ϕ(β)
∂β2 < 0 for β ∈ (1,∞) . Therefore, together with equation (41) we have that ∂ϕ(β)

∂β
< 0 for

β ∈ (1,∞) and this leads with ϕ (1) = 0 to ϕ (β) < 0 for β ∈ (1,∞) . Finally, combining this result with

equation (33) gives
∂φ (β)

∂β
= yβ−1 log (y)ϕ (β) > 0, (47)

and therefore
∂f (β)

∂β
=
yβ−1 log (y)ϕ (β)

β2 (1 − yβ−1)
2 > 0. (48)

Furthermore, it holds that

D∗
2 (1) = lim

β→1

β − 1

β

D
β
1 −D

β
3

D
β−1
1 −D

β−1
3

= lim
β→1

(β − 1)
(

D
β
1 log (D1) −D

β
3 log (D3)

)

+D
β
1 −D

β
3

β
(

D
β−1
1 log (D1) −D

β−1
3 log (D3)

)

+D
β−1
1 −D

β−1
3

=
D1 −D3

log (D1) − log (D3)
, (49)
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and

D∗
2 (1) > D3, (50)

⇐⇒
D1 −D3

log (D1) − log (D3)
> D3,

⇐⇒ D1 −D3 > D3 (log (D1) − log (D3)) ,

⇐⇒ D1 +D3

(

log

(

D3

D1

)

− 1

)

> 0,

⇐⇒ 1 +
D3

D1

(

log

(

D3

D1

)

− 1

)

> 0,

which holds if and only if φ (y) > 0 for y ∈ (0, 1), with φ (y) = 1 + y (log (y) − 1) . We have that φ (1) = 0

and
dφ (y)

dy
= log (y) − 1 + y

1

y
= log (y) < 0, (51)

for y ∈ (0, 1) , so that indeed equation (50) holds. The last thing to show is the limit of D∗
2 (β) when β goes

to infinity:

lim
β→∞

D∗
2 (β) = lim

β→∞

β − 1

β

D
β
1 −D

β
3

D
β−1
1 −D

β−1
3

= lim
β→∞

D1
β − 1

β

1 −
(

D3

D1

)β

1 −
(

D3

D1

)β−1

= D1, (52)

which finishes the proof. �

Proof of Theorem 2 The threshold for the firm that invests as n-th firm is equal to

Y1n−1 =
β

β − 1

(r − µ) I

Dn

. (53)

The threshold Y1k (for k ∈ {0, 1, . . . , n− 2}) is the solution of the following equation (the left hand side is

the value of the firm that invests when there are already k firms active, and the right hand side is equal to

the value of the firm if the firm waits with investing, which is equal to the value of the firm that invests as

n-th and last firm, since the rent equalization principle holds)

Y1kDk+1

r − µ
− I +

n−1
∑

j=k+1

(

Y1k

Y1j

)β
Y1j (Dj+1 −Dj)

r − µ
=

(

Y1k

Y1n−1

)β (
Y1n−1Dn−1

r − µ
− I

)

. (54)

In the same fashion we can write down the equation for Y1k+1

Y1k+1Dk+2

r − µ
− I +

n−1
∑

j=k+2

(

Y1k+1

Y1j

)β
Y1j (Dj+1 −Dj)

r − µ
=

(

Y1k+1

Y1n−1

)β (
Y1n−1Dn−1

r − µ
− I

)

. (55)

Multiplying (55) by
(

Y1k

Y1k+1

)β

and substitution of the result in equation (54) gives equation (22). Define

∆1k (Y ) as follows

∆1k (Y ) =
Y Dk+1

r − µ
− I +

(

Y

Y1k+1

)β (

I −
Y1k+1Dk+1

r − µ

)

. (56)
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Then the investment trigger Y1k is the smallest positive zero point of the function ∆1k (Y ). Furthermore, it

holds that Y1k < Y1k+1 if we show that

∆1k (0) < 0, (57)

∆1k (Y1k+1) = 0, (58)

∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k+1

< 0, (59)

∂2∆1k (Y )

∂Y 2
< 0, ∀Y ≥ 0. (60)

The first and the second statements are straight forward to prove, as

∆1k (0) = −I < 0, (61)

and

∆1k (Y1k+1) =
Y1k+1Dk+1

r − µ
− I +

(

Y1k+1

Y1k+1

)β (

I −
Y1k+1Dk+1

r − µ

)

=
Y1k+1Dk+1

r − µ
− I + I −

Y1k+1Dk+1

r − µ

= 0. (62)

The derivative of ∆1k to Y is given by

∂∆1k (Y )

∂Y
=
Dk+1

r − µ
+ βY β−1Y

−β
k+1

(

I −
Y1k+1Dk+1

r − µ

)

, (63)

thus

∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k+1

=
Dk+1

r − µ
+ βY

β−1
k+1 Y

−β
k+1

(

I −
Y1k+1Dk+1

r − µ

)

=
Dk+1

r − µ
+

β

Y1k+1

(

I −
Y1k+1Dk+1

r − µ

)

=
β

Y1k+1

(

1 − β

β

Y1k+1Dk+1

r − µ
+ I

)

. (64)

Therefore it holds that
∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k+1

< 0 (65)

if and only if
1 − β

β

Y1k+1Dk+1

r − µ
+ I < 0, (66)

or

Y1k+1 >
β

β − 1

(r − µ) I

Dk+1
= Y M

k+1. (67)

Furthermore, we have that

∂2∆1k (Y )

∂Y 2
= β (β − 1)Y β−2Y

−β
k+1

(

I −
Y1k+1Dk+1

r − µ

)

< 0, (68)

since Y1k+1 >
(r−µ)I
Dk+1

. �
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Proof of Proposition 5 For the demonstration that Y10 < YM , see the proof of Proposition 6 as this is a

special case. We know that Y10 > YP if ∆10 (YP ) < 0, where YP verifies

YPD1

r − µ
− I =

(

YP

YF

)β (
YFD1

r − µ
− I

)

. (69)

From equation (56),

∆10 (YP ) =
YPD1

r − µ
− I +

(

YP

Y11

)β (

I −
Y11D1

r − µ

)

=

(

YP

YF

)β (
YFD1

r − µ
− I

)

+

(

YP

Y11

)β (

I −
Y11D1

r − µ

)

= Y
β
P

(

Y
−β
F

(

YFD1

r − µ
− I

)

− Y
−β
11

(

Y11D1

r − µ
− I

))

. (70)

Define the function ζ as follows for Y11 ∈ (YM , Y12)

ζ (Y11) = Y
β
P

(

Y
−β
F

(

YFD1

r − µ
− I

)

− Y
−β
11

(

Y11D1

r − µ
− I

))

. (71)

It holds that ζ (YF ) = 0 and

∂ζ (Y11)

∂Y11
= Y

β
P

(

βY
−β−1
11

(

Y11D1

r − µ
− I

)

− Y
−β
11

D1

r − µ

)

= Y
β
P

(

Y
−β
11

(

(β − 1)
D1

r − µ
−
βI

Y11

))

> 0, (72)

since we are in the case that Y11 > YM . Besides, Y11 < YF if we show that ∆11 (YF ) > 0.

∆11 (YF ) =
YFD2

r − µ
− I +

(

YF

Y12

)β (

I −
Y12D2

r − µ

)

=
β

β − 1
I − I +

(

D3

D2

)β (

I −
β

β − 1

D2

D3
I

)

= I

[

(

β

β − 1
− 1

)

−

(

D3

D2

)β−1(
β

β − 1
−
D3

D2

)

]

= I

[(

β

β − 1
− 1

)

− zβ−1

(

β

β − 1
− z

)]

, (73)

where z =
D3

D2
∈ (0, 1) and

∂∆11 (YF )

∂z
= −I

[

(β − 1)zβ−2

(

β

β − 1
− z

)

− zβ−1

]

= −Iβzβ−1

(

1

z
− 1

)

< 0. (74)

As z → 1 (D3 → D2), ∆11(YF ) → 0+ hence ∆11(YF ) is always strictly positive and Y11 < YF . ζ (YF ) = 0,

∂ζ(Y11)
∂Y11

> 0 for Y11 ∈ (YM , Y12) and Y11 < YF imply ζ (Y11) < 0 and ∆10 (YP ) < 0, so that Y10 > YP . �

Proof of Proposition 6 Let the function ∆1k (Y ) be defined by equation (56), so that

∆1k (Y1k) = 0. (75)
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Differentiating to Dj , with j ∈ {k + 1, . . . , n} gives

∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k

∂Y1k

∂Dj

+
∂∆1k (Y )

∂Dj

∣

∣

∣

∣

Y =Y1k

= 0. (76)

Rewriting gives

∂Y1k

∂Dj

= −

∂∆1k(Y )
∂Dj

∣

∣

∣

Y =Y1k

∂∆1k(Y )
∂Y

∣

∣

∣

Y =Y1k

. (77)

Let us first derive the sign of the derivative of ∆1k with respect to Y at Y = Y1k

∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k

=
Dk+1

r − µ
+ βY

β−1
1k Y

−β
1k+1

(

I −
Y1k+1Dk+1

r − µ

)

=
β

Y1k

(

1

β

Y1kDk+1

r − µ
+

(

Y1k

Y1k+1

)β (

I −
Y1k+1Dk+1

r − µ

)

)

, (78)

substitution of (22) gives

∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k

=
β

Y1k

(

1

β

Y1kDk+1

r − µ
+ I −

Y1kDk+1

r − µ

)

=
β

Y1k

(

1 − β

β

Y1kDk+1

r − µ
+ I

)

(79)

so that it holds that
∂∆1k (Y )

∂Y

∣

∣

∣

∣

Y =Y1k

> 0, (80)

if and only if
1 − β

β

Y1kDk+1

r − µ
+ I > 0. (81)

Rewriting (81) gives

Y1k <
β

β − 1

(r − µ) I

Dk+1
= Y M

k+1. (82)

Equation (82) holds if we can show that ∆1k

(

Y M
k+1

)

> 0,

∆1k

(

Y M
k+1

)

=

β
β−1

(r−µ)I
Dk+1

Dk+1

r − µ
− I +

(

Y M
k+1

Y1k+1

)β
(

I −
Y1k+1Dk+1

r − µ

)

=
I

β − 1
+
(

Y M
k+1

)β
(

Y
−β
1k+1I − Y

1−β
1k+1

Dk+1

r − µ

)

. (83)

Define the function ψ as follows for Y ∈
(

YM
k+1,∞

)

ψ (Y ) =
I

β − 1
+
(

YM
k+1

)β
(

Y −βI − Y 1−βDk+1

r − µ

)

. (84)

It holds that ψ
(

Y M
k+1

)

= 0 and

∂ψ (Y )

∂Y
=
(

Y M
k+1

)β
(

−βY −β−1I − (1 − β)Y −βDk+1

r − µ

)

=
(

YM
k+1

)β
Y −β

(

−
βI

Y
− (1 − β)

Dk+1

r − µ

)

> 0, (85)
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since we are in the case that Y > Y M
k+1. The last two observations imply that ψ (Y ) > 0 for Y ∈

(

YM
k+1,∞

)

.

Thus ∆1k

(

YM
k+1

)

> 0, so that Y1k < Y M
k+1 and ∂∆1k(Y )

∂Y

∣

∣

∣

Y =Y1k

> 0. The derivative of ∆1k with respect to

Dk+1 is equal to

∂∆1k (Y )

∂Dk+1

∣

∣

∣

∣

Y =Y1k

=
Y1k

r − µ
−

(

Y1k

Y1k+1

)β
Y1k+1

r − µ

=
1

Dk+1

(

Y1kDk+1

r − µ
−

(

Y1k

Y1k+1

)β
Y1k+1Dk+1

r − µ

)

. (86)

Substitution of equation (22) gives

∂∆1k (Y )

∂Dk+1

∣

∣

∣

∣

Y =Y1k

=
I

Dk+1

(

1 −

(

Y1k

Y1k+1

)β
)

> 0, (87)

which implies that Y1k is decreasing in Dk+1. Next, we take the derivative of ∆1k with respect to Dj for

j > k + 1

∂∆1k (Y )

∂Dj

∣

∣

∣

∣

Y =Y1k

= −βY β
1kY

−β−1
1k+1 I

∂Y1k+1

∂Dj

− (1 − β)Y β
1kY

−β
1k+1

Dk+1

r − µ

∂Y1k+1

∂Dj

= Y
β
1kY

−β
1k+1

∂Y1k+1

∂Dj

(

−
βI

Y1k+1
− (1 − β)

Dk+1

r − µ

)

. (88)

Since Y1k exists by assumption, we have that Y1k+1 > YM
k+1, so that

sign

(

∂∆1k (Y )

∂Dj

∣

∣

∣

∣

Y =Y1k

)

= sign

(

∂Y1k+1

∂Dj

)

. (89)

Therefore the investment trigger Y1k is increasing in Dj if and only if Y1k+1 is decreasing in Dj . The last

part of this proof deals with the effect of σ on Y1k. We have that

∂∆1k (Y )

∂β

∣

∣

∣

∣

Y =Y1k

= −

(

Y1k

Y1k+1

)β
Dk+1

r − µ

∂Y1k+1

∂β

+

(

Y1k

Y1k+1

)β (

I −
Y1k+1Dk+1

r − µ

)(

log

(

Y1k

Y1k+1

)

−
β

Y1k+1

∂Y1k+1

∂β

)

=

(

Y1k

Y1k+1

)β (
∂Y1k+1

∂β

(

−
βI

Y1k+1
− (1 − β)

Dk+1

r − µ

)

+

(

I −
Y1k+1Dk+1

r − µ

)

log

(

Y1k

Y1k+1

))

, (90)

so that ∂∆1k(Y )
∂β

∣

∣

∣

Y =Y1k

is positive if and only if η (Y ) > 0 for Y ∈ (Y1k, Y1k+1) with

η (Y ) =
∂Y1k+1

∂β

(

−
βI

Y1k+1
− (1 − β)

Dk+1

r − µ

)

+

(

I −
Y1k+1Dk+1

r − µ

)

log

(

Y

Y1k+1

)

. (91)

Whenever Y1k equals Y1k+1 we have that Y1k = Y1k+1 = YM
k+1, so that

η (Y1k+1) =
∂Y1k+1

∂β

(

−
βI

Y M
k+1

− (1 − β)
Dk+1

r − µ

)

+

(

I −
Y1k+1D1

r − µ

)

log

(

Y1k+1

Y1k+1

)

= 0. (92)
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Furthermore, we have that
∂η (Y )

∂Y
=

(

I −
Y1k+1Dk+1

r − µ

)

1

Y
< 0, (93)

which implies together with (92) that η (Y1k) > 0 for Y1k ∈ (Y1k, Y1k+1). This results in the fact that

∂∆1k (Y )

∂β

∣

∣

∣

∣

Y =Y1k

> 0, (94)

which leads to the Y1k being decreasing in β and increasing in σ, since it holds that ∂β
∂σ

< 0 (see Huisman

(2001, Chapter 7) for a proof). �

B Equilibrium Strategies

In this appendix we show that the equilibrium concept for stochastic timing games as described in Thijssen

(2004, Chapter 4), Huisman (2001, Chapter 7), and Thijssen et al. (2002) can be extended from 2 firms

to n firms. Please note that the proposed extension is only valid for new market models. Fudenberg and

Tirole (1985) state (and show) in their Section 5 that the possibility of preemption need not enforce rent

equalization when there are more than two firms in case of an existing market model. In this paper we

analyze a new market model, and that is why it is possible for us to derive symmetric equilibrium strategies

for the investment game with more than two firms and that the rent equalization principle still holds for

more than two firms.

Whenever the initial value of the geometric Brownian motion in the investment timing game is lower than

the lowest investment threshold, firms will invest at those times at which the geometric Brownian motion

hits a threshold for the first time. For example in the three firm sequential case, the first investment will

take place at time T10 = inf (t |Y (t) ≥ Y10 ) , the second investment at time T11 = inf (t |Y (t) ≥ Y11 ) , and

the third investment at time T12 = inf (t |Y (t) ≥ Y12 ) . Each firm becomes first, second or third investor

with probability 1
3 , and the probability of a mistake, i.e. two firms investing at the same time, equals zero.

From the existing literature on stochastic timing games we know that the most important thing is to

derive the intensity functions αi if the initial value of the geometric Brownian motion is larger than the

lowest investment threshold. Below we will derive the equation that defines these intensity functions for the

n firm case. Furthermore, we will use this equation to derive the intensity functions in the case with two

firms and in the case with three firms.

Let us assume that there are n firms in the market and that none of them is active yet. Firm i invests

with probability αi. Define pn (k, i) as the probability that out of the (n− 1) firms besides firm i, k firms

invest. So it holds that

pn (0, i) =
∏

j 6=i

(1 − αj) , (95)

and

pn (n− 1, i) =
∏

j 6=i

αj . (96)
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Consider the situation that no firm has invested yet.5 The value of firm i, denoted by Ψi, equals (we skip

the dependence of Y for the moment)

Ψi = αi

n−1
∑

k=0

pn (k, i)Vk+10 + (1 − αi)

n−1
∑

k=1

pn (k, i)W

+ (1 − αi) pn (0, i)Ψi, (97)

where V(k+1)0 and W are defined as in Section 2. Thus W denotes the value of the firm if the firm does not

invest in this investment round and ends up in the next investment game. Note that W is independent of k

as it is equal to the expected value of the firm in the investment game that is played after this investment

game is finished. This expected value is equal to the value of the firm that invests as last firm, thus

W (Y ) =

(

Y

Y1(n−1)

)β (Y1(n−1)Dn

r − µ
− I

)

. (98)

Rewriting (97) gives

Ψi =

αi

n−1
∑

k=0

pn (k, i)V(k+1)0 + (1 − αi)

n−1
∑

k=1

pn (k, i)W

1 − (1 − αi) pn (0, i)
. (99)

Taking the derivative with respect to αi gives

∂Ψi

∂αi

=

(1 − (1 − αi) pn (0, i))

(

n−1
∑

k=0

pn (k, i)V(k+1)0 −

n−1
∑

k=1

pn (k, i)W

)

(1 − (1 − αi) pn (0, i))
2

−

(

αi

n−1
∑

k=0

pn (k, i)V(k+1)0 + (1 − αi)

n−1
∑

k=1

pn (k, i)W

)

pn (0, i)

(1 − (1 − αi) pn (0, i))
2

=

(1 − pn (0, i))

n−1
∑

k=0

pn (k, i)V(k+1)0 −

n−1
∑

k=1

pn (k, i)W

(1 − (1 − αi) pn (0, i))
2 . (100)

Since the firms are symmetric we let the firms play symmetric equilibrium strategies, i.e. αi = αn. Next

we enforce that the derivative (100) is equal to zero. This implies that we have an equilibrium as firm i can

not improve by deviating from playing the strategy α. Then we have that

pn (k, i) =

(

n− 1

k

)

αk
n (1 − αn)

n−k−1
, (101)

where
(

n

k

)

=
n!

k! (n− k)!
. (102)

Thus, solving the following equation gives αn :

(

1 − (1 − αn)n−1
)

n−1
∑

k=0

(

n− 1

k

)

αk
n (1 − αn)n−k−1

V(k+1)0 −
n−1
∑

k=1

(

n− 1

k

)

αk
n (1 − αn)n−k−1

W = 0. (103)

5This is without loss of generality. If for example m firms have already invested then n should be replaced by n − m in the

analysis and the value functions V(k+1)0 by V(k+1)m.
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B.1 Two firms

For n = 2 equation (103) becomes

(1 − (1 − α2))

1
∑

k=0

(

1

k

)

αk
2 (1 − α2)

1−k
V(k+1)0 − α2W (104)

= α2 ((1 − α2)V10 + α2V20 −W ) = 0,

so that α2 = 0 or

α2 =
V10 −W

V10 − V20
. (105)

Since we only consider symmetric equilibria, α2 = 0 is not a candidate. Equation (105) is equivalent to

the probability that was found in Huisman (2001, Chapter 7). The probability that the two firms invest

simultaneously is equal to (each firm invests with probability α2 and with probability (1 − α2)
2

the game is

repeated)
α2

2

1 − (1 − α2)
2 =

α2

2 − α2
, (106)

and the probability that only one firm invests is given by

2
α2 (1 − α2)

1 − (1 − α2)
2 =

2 − 2α2

2 − α2
. (107)

B.2 Three firms

For n = 3 equation (103) becomes

(

1 − (1 − α3)
2
)

2
∑

k=0

(

2

k

)

αk
3 (1 − α3)

2−k
V(k+1)0 −

2
∑

k=1

(

2

k

)

αk
3 (1 − α3)

2−k
W

= α3 (2 − α3)
(

(1 − α3)
2
V10 + 2α3 (1 − α3) V20 + α2

3V30

)

− 2α3 (1 − α3)W − α2
3W

= α3 (2 − α3)
(

(1 − α3)
2
V10 + 2α3 (1 − α3) V20 + α2

3V30

)

− α3 (2 − α3)W

= α3 (2 − α3)
(

(1 − α3)
2
V10 + 2α3 (1 − α3) V20 + α2

3V30 −W
)

= α3 (2 − α3)
(

(V10 − 2V20 + V30)α
2
3 − 2 (V10 − V20)α3 + V10 −W

)

= 0. (108)

So that α3 = 0, α3 = 2, or

α3 =
V10 − V20 ±

√

(V10 − V20)
2
− (V10 − 2V20 + V30) (V10 −W )

V10 − 2V20 + V30
.

Since we only consider symmetric equilibria and α3 must be in the interval [0, 1] the solutions α3 = 0 and

α3 = 2 drop out. Question is which of the other two roots we have to take. Therefore, we make the following

definitions

a = V10 − V20 ≥ 0,

b = V20 − V30 ≥ 0,

c = V10 −W ≥ 0,
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so that

α+
3 =

a+
√

a2 − (a− b) c

a− b
,

α−
3 =

a−
√

a2 − (a− b) c

a− b
.

The sign of a− b depends on the values of the parameters. Assume that a− b is negative, then α+
3 < 0 and

α−
3 ∈ [0, 1] , as

a−
√

a2 − (a− b) c ≤ 0

⇐⇒
√

a2 − (a− b) c ≥ a

⇐⇒ a2 − (a− b) c ≥ a2

⇐⇒ − (a− b) c ≥ 0,

and

a−
√

a2 − (a− b) c

a− b
≤ 1,

⇐⇒ a−
√

a2 − (a− b) c ≥ a− b,

⇐⇒
√

a2 − (a− b) c ≤ b,

⇐⇒ a2 − (a− b) c ≤ b2,

⇐⇒ (a− b) (a+ b− c) ≤ 0,

which holds since a+ b− c = W − V30 ≥ 0 and a− b < 0. If a− b = 0 we have that (using L’Hôpital for α−
3 )

α+
3 → ∞,

α−
3 = −

1

2

(

a2 − (a− b) c
)− 1

2 · −c =
c

2a
> 0.

Furthermore, we have that α−
3 ≤ 1, since

c ≤ 2a,

⇐⇒ V10 −W ≤ 2V10 − 2V20,

⇐⇒ V20 − V10 + V20 −W ≤ 0.

Last we consider the case that a − b > 0. Then the root exists as for Y ∈ [Y10, Y11] we have that a − c =

W − V20 ≥ 0 so that a2 − (a− b) c =

a2 − (a− b) c

= a (a− c) + bc ≥ 0,

and for Y ∈ [Y11, Y12] we have that V10 = V20, so that a = 0 and

a2 − (a− b) c

= bc ≥ 0.
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Then α+
3 > 1 as

a+
√

a2 − (a− b) c

a− b
> 1,

⇐⇒ a+
√

a2 − (a− b) c > a− b,

⇐⇒
√

a2 − (a− b) c > −b,

and α−
3 ∈ [0, 1] as it holds that

a−
√

a2 − (a− b) c ≥ 0,

⇐⇒
√

a2 − (a− b) c ≤ a,

⇐⇒ a2 − (a− b) c ≤ a2,

⇐⇒ − (a− b) c ≤ 0,

and

a−
√

a2 − (a− b) c

a− b
≤ 1,

⇐⇒ a−
√

a2 − (a− b) c ≤ a− b,

⇐⇒
√

a2 − (a− b) c ≥ b,

⇐⇒ a2 − (a− b) c ≥ b2,

⇐⇒ (a− b) (a+ b− c) ≥ 0.

Conclusion is that α3 is equal to α−
3 , i.e.

α3 =
V10 − V20 −

√

(V10 − V20)
2
− (V10 − 2V20 + V30) (V10 −W )

V10 − 2V20 + V30
. (109)

Equation (109) is important if y > Y10. One can easily verify that α3 (Y10) = 0 (at Y10 we have that

V10 = W ) and α3 (Y11) = 0 (at Y11 we have that V10 = V20 and V10 = W ). The economic interpretation

for this is that at these two thresholds the waiting curve coincides with the first investor curve, so that no

firm is willing to set a strict positive intensity as it would then risk ending up in the situation were there

are three simultaneous investments. In Figure 6 the investment intensity α3 is plotted as function of y.

Let us consider the case y ∈ (Y10, Y11) . The probability that all three firms invest at the same time is

equal to
α3

3

1 − (1 − α3)
3 =

α2
3

3 − 3α3 + α2
3

, (110)

the probability that two firms invest at the same time is

3
α2

3 (1 − α3)

1 − (1 − α3)
3 =

3α3 (1 − α3)

3 − 3α3 + α2
3

, (111)

and the probability that there is only one firm that invests equals

3
α3 (1 − α3)

2

1 − (1 − α3)
3 =

3 (1 − α3)
2

3 − 3α3 + α2
3

. (112)
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Figure 6: The investment intensity α3 as function of y in the three firm case.

Next, we consider the case y ∈ (Y11, Y12) . We know that if only one firm would have won the investment

race, the other two will immediately engage each other in a new investment race. Thus the probability that

only one firm invests is equal to zero and the probability that all three firms invest at the same time is equal

to
α2

3

3 − 3α3 + α2
3

+
3 (1 − α3)

2

3 − 3α3 + α2
3

(

α2

2 − α2

)

, (113)

and the probability that two firms invest at the same time is equal to

3α3 (1 − α3)

3 − 3α3 + α2
3

+
3 (1 − α3)

2

3 − 3α3 + α2
3

(

2 − 2α2

2 − α2

)

. (114)

In Figure 7 the probabilities of each scenario (one firm, two firms, and three firms) are plotted as function

of the starting value y.

C Cournot Competition

The profit flow of firm i is equal to

πi (t) = (P (t) − c) qi (t) . (115)

In order to derive the optimal output quantity we write down the first order condition for optimality

−
1

γ
X (t)





n
∑

j=1

qj (t)





− 1
γ
−1

qi (t) +X (t)





n
∑

j=1

qj (t)





− 1
γ

− c = 0, (116)
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Figure 7: The probability of each possible scenario, i.e. one firm, two firms, or three firms, in the three firm

case as function of the starting value y.

since we are looking for a symmetric equilibrium we make the substitution qi (t) = q∗ (t) :

−
1

γ
X (t)





n
∑

j=1

q∗ (t)





− 1
γ
−1

q∗ (t) +X (t)





n
∑

j=1

q∗ (t)





− 1
γ

− c = 0. (117)

Rewriting gives
(

1 −
1

nγ

)

n− 1
γ X (t) (q∗ (t))

− 1
γ = c. (118)

Thus

q∗ (t) =
1

n

(

c

X (t)

nγ

nγ − 1

)−γ

. (119)

35



To ensure that this is the maximum we check the second order condition for optimality

(

−
1

γ
− 1

)

−
1

γ
X (t)





n
∑

j=1

qj (t)





− 1
γ
−2

qi (t) −
1

γ
X (t)





n
∑

j=1

qj (t)





− 1
γ
−1

−
1

γ
X (t)





n
∑

j=1

qj (t)





− 1
γ
−1

=

(

1

γ2
+

1

γ

)

X (t)





n
∑

j=1

qj (t)





− 1
γ
−2

qi (t) −
2

γ
X (t)





n
∑

j=1

qj (t)





− 1
γ
−1

=





(

1

γ2
+

1

γ

)

qi (t) −
2

γ

n
∑

j=1

qj (t)



X (t)





n
∑

j=1

qj (t)





− 1
γ
−2

=





(

1

γ2
−

1

γ

)

qi (t) −
2

γ

∑

j 6=i

qj (t)



X (t)





n
∑

j=1

qj (t)





− 1
γ
−2

=





1 − γ

γ2
qi (t) −

2

γ

∑

j 6=i

qj (t)



X (t)





n
∑

j=1

qj (t)





− 1
γ
−2

< 0, (120)

since we made the assumption that γ > 1. Substitution in the profit flow function gives

πi (t) =






X (t)





n
∑

j=1

1

n

(

c

X (t)

nγ

nγ − 1

)−γ




− 1
γ

− c







1

n

(

c

X (t)

nγ

nγ − 1

)−γ

=



X (t)

(

(

c

X (t)

nγ

nγ − 1

)−γ
)− 1

γ

− c





1

n

(

c

X (t)

nγ

nγ − 1

)−γ

= c

(

nγ

nγ − 1
− 1

)

1

n

(

c

X (t)

nγ

nγ − 1

)−γ

=
1

n

(

c

nγ − 1

)1−γ (
X (t)

nγ

)γ

= DnY (t) , (121)

where

Dn =
1

n

(

c

nγ − 1

)1−γ

(nγ)
−γ

, (122)

and Y (t) follows a geometric Brownian motion with parameters µ and σ that are equal to

µ = γµX +
1

2
γ (γ − 1)σ2

X , (123)

σ = γσX . (124)
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Let X (t) follow a geometric Brownian motion with parameters µX and σX , and define F (X (t)) = (X (t))
γ
.

Then Ito’s lemma gives that

dF (X (t)) =
∂F (X (t))

∂X (t)
(dX (t)) +

1

2

∂2F (X (t))

∂X (t)
2 (dX (t))2

= γ (X (t))
γ−1

(µXX (t) dt+ σXX (t) dω (t)) +
1

2
γ (γ − 1) (X (t))

γ−2
σ2

X (X (t))
2
dt

=

(

γµX +
1

2
γ (γ − 1)σ2

X

)

(X (t))
γ
dt+ γσX (X (t))

γ
dω (t)

=

(

γµX +
1

2
γ (γ − 1)σ2

X

)

F (X (t)) dt+ γσXF (X (t)) dω (t)

= µF (X (t)) dt+ σF (X (t)) dω (t) . (125)
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