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Abstract

In a proportionate flow shop problem several jobs have to be processed through a fixed sequence of

machines and the processing time of each job is equal on all machines. By identifying jobs with agents,

whose costs linearly depend on the completion time of their jobs, and assuming an initial processing order

on the jobs, we face an additional problem: how to allocate the cost savings obtained by ordering the jobs

optimally? In this paper, PFS games are defined as cooperative games associated to proportionate flow

shop problems. It is seen that PFS games have a nonempty core. Moreover, it is shown that PFS games

are convex if the jobs are initially ordered in decreasing urgency. For this case an explicit expression for

the Shapley value and a specific type of equal gain splitting rule which leads to core elements of the PFS

game are proposed.

Keywords: Proportionate flow shop problems, core, convexity.

JEL Classification Numbers: C71

1 Introduction

In a flow shop problem a group of jobs has to be processed through a fixed number of machines and the

order of the machines in which the jobs have to be processed is the same for all jobs. To each job a cost
2Corresponding author.
4The author acknowledges the financial support of Ministerio de Ciencia y Tecnoloǵıa, FEDER, Xunta de Galicia (projects

BEC2002-04102-C02-02, SEJ2005-07637-C02-02 and PGIDT03PXIC20701PN).
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is associated dependent on its completion time. In this paper we will consider proportionate flow shop

problems. A proportionate flow shop problem is a flow shop problem in which additionally every job has

the same processing time on each machine (e.g. a wooden door needs several layers of paint, each with a

different product, but the painting time is always the same). Proportionate flow shop problems have gained

considerable attention lately and various papers have been devoted to this topic. In Shakhlevich, Hoogeveen

and Pinedo (1998) an algorithm is provided to obtain an optimal schedule for this kind of problems. Shiau

and Huang (2004) generalize this type of problems by considering multiple identical machines at any stage. In

Allahverdi (1996) and Allahverdi and Savsar (2001) proportionate flow shop problems with breakdowns and

setup times are studied, respectively. Cheng and Shakhlevich (1999) propose algorithms for proportionate

flow shop problems where the processing times can be controlled by incurring extra costs.

By associating jobs to clients, a proportionate flow shop problem gives rise to an interactive decision

making problem. Each client incurs costs, which we assume to depend linearly on the completion time of

its job. By assuming an initial order on the jobs, the first problem the clients jointly face is an optimization

problem: the problem of finding an optimal reordering of all jobs, i.e., a schedule that maximizes joint cost

savings. The subsequent problem is of a game theoretic nature: how to reallocate these cost savings in a fair

way. By defining the value of a coalition of clients as the maximal attainable costs savings by means of an

optimal admissible reordering, we obtain a cooperative proportionate flow shop game (a PFS game) related

to the proportionate flow shop problem. The core of this game provides insight in the allocation problem at

hand since core elements lead to a stable reallocation of the joint cost savings. A game is said to be balanced

if it has a non-empty core.

The above game-theoretic approach to sequencing situations has been initiated by Curiel, Pederzoli and

Tijs (1989) for the class of one-machine sequencing situations. Generalizations to e.g. ready times, due

dates, multiple ownership and more machines have been studied in Hamers, Borm and Tijs (1995); Borm,

Fiestras-Janeiro, Hamers, Sánchez and Voorneveld (2002); Calleja, Estévez-Fernández, Borm and Hamers

(2006); Estévez-Fernández, Calleja, Borm and Hamers (2004); Hamers, Klijn and Suijs (1999); Calleja, Borm,

Hamers, Klijn and Slikker (2002). A recent review on sequencing games can be found in Curiel, Hamers and

Klijn (2002). Finally, within the context of flow shop problems, van den Nouweland, Krabbenborg and Potters

(1990) and van den Nouweland (1993) have studied the specific case of a dominant machine.

This article analyzes proportionate flow shop problems and related PFS games. It is shown that PFS

games are balanced. Moreover, PFS games turn out to be convex if the initial order is the urgency order, in

which case the Shapley value is in the core of the game. We provide an explicit expression for the Shapley

value. Under this assumption, we also provide a context-specific allocation rule (the γ-rule) in the same

spirit as the equal gain splitting (EGS) rule introduced in Curiel et al. (1989). This allocation rule follows

the algorithm in Shakhlevich et al. (1998). In this way, the optimization problem of determining the optimal
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order of the grand coalition and the allocation problem of how to share joint savings can be solved in an

integrated way.

The remainder of the paper is organized as follows. Section 2 provides the basic definitions and termi-

nology of proportionate flow shop problems. Moreover, two useful results in Shakhlevich et al. (1998) are

recalled. Section 3 deals with cooperation within proportionate flow shop problems. The γ-rule is introduced

as a specific allocation rule of the maximal joint cost savings. In Section 4 PFS games are defined. It is shown

that these games are convex provided that the initial order is an urgency order and an expression of the

Shapley value is provided. Moreover, it is seen that in this case also the γ-rule will provide a core element.

2 Proportionate Flow Shop problems

A flow shop situation consists of a fixed sequence of m machines, and a finite set of jobs N that have to

be processed on all machines. A proportionate flow shop (PFS) situation is a flow shop situation where the

processing time of every job is the same on each machine. Hence, a PFS situation can be described by a

3-tuple (M, N, p) with M = {M1, . . . , Mm} the set of machines, N = {1, . . . , n} the set of jobs, and p ∈ RN
+

the vector of processing times of the jobs.

A schedule fixes for every job i and every machine r a time interval of length pi in which job i will

be processed in such a way that neither a job is processed on two different machines at the same time,

nor a machine processes two different jobs at the same time. Given a PFS situation (M,N, p) we denote a

schedule of the jobs in the machines as σ = (σ1, . . . , σm) with σr : N → {1, . . . , |N |} a bijection describing

the processing order in machine Mr. We will denote by Π(N,M) the set of all schedules of the jobs in the

machines. Given σ ∈ Π(N, M), i ∈ N , and Mr ∈ M , we denote by P (σr, i) the set of predecessors of job

i in machine Mr, i.e., P (σr, i) = {j ∈ N |σr(j) < σr(i)}. Further, we define P̄ (σr, i) := P (σr, i) ∪ {i}.
We denote by p(σr, i) the immediate predecessor of job i in machine Mr, i.e., p(σr, i) ∈ N such that

P̄ (σr, p(σr, i)) = P (σr, i). Note that in principle the order in machines need not be the same. A schedule

σ = (σ1, . . . , σm) with σ1 = . . . = σm is called a permutation schedule or order. With minor abuse of

notation, σ will then denote the order in each machine. We will denote by Π(N) the set of all permutations

schedules of the jobs.

Assuming that processing starts at time 0 and that there are no unnecessary delays, the completion time

of job i in machine Mr with respect to an arbitrary schedule σ, Cσ
i (r), can be recursively determined by

Cσ
i (1) =

∑

j∈P̄ (σ1,i)

pj
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and for r = 2, . . . ,m,

Cσ
i (r) =





Cσ
i (r − 1) + pi if P (σr, i) = ∅,

max{Cσ
p(σr,i)(r), C

σ
i (r − 1)}+ pi otherwise.

It is assumed that each job i ∈ N incurs costs, ci, which are linear with respect to the time in which the

job leaves the system according to the schedule σ. Hence, there exist positive numbers αi, i ∈ N , such that

ci(σ) = αiC
σ
i (m). From now on we will denote the overall completion time Cσ

i (m) by Cσ
i .

Given a PFS situation (M,N, p) and a linear cost associated to each job, which will be represented by

α ∈ RN , the associated PFS problem, (M, N, p, α) has as objective to find a schedule that minimizes the

total cost originated in the system, i.e., find σ̂ such that

cN (σ̂) = min
σ∈Π(N,M)

cN (σ)

with cN (σ) =
∑

i∈N ci(σ) =
∑

i∈N αiC
σ
i . Note that Π(N, M) is finite and therefore there exists at least one

optimal solution.

Next, we will recall three lemmas from Shakhlevich et al. (1998) that will be used throughout the article.

Lemma 2.1 (Shakhlevich et al. (1998)). Let (M, N, p, α) be a PFS problem. Then,

(i) Every optimal schedule is a permutation schedule.

(ii) For a permutation schedule σ and i ∈ N , the completion time Cσ
i is given by

Cσ
i =

∑

j∈P̄ (σ,i)

pj + (m− 1) max
j∈P̄ (σ,i)

{pj}.

Since every optimal schedule is a permutation schedule, we will restrict our study to permutation schedules

from now on.

Example 2.1. Let (M, N, p, α) be a PFS problem with machines M = {M1,M2}, jobs N = {1, 2, 3, 4},
vector of processing times p = (4, 5, 6, 1), and vector of cost coefficients α = (32.5, 32, 32, 5). Let σ = (1 2 3 4)

be a permutation schedule. This situation is represented in Figure 1.

-

M1

M2

0 5 10 15 20 t

1 2 3 4

1 2 3 4

Figure 1: Gantt Chart of the PFS situation in Example 2.1
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Here, Cσ
1 = 8, Cσ

2 = 14, Cσ
3 = 21 and Cσ

4 = 22. We illustrate how to calculate Cσ
3 below.

Cσ
3 = p1 + p2 + p3 + (m− 1)max{p1, p2, p3}

= 4 + 5 + 6 + (2− 1)max{4, 5, 6} = 21.

Hence, the total weighted completion time according to σ is cN (σ) = 1490. 3

Since the processing time of a job is the same in all machines, we can define an urgency (index) of job

i ∈ N as ui = αi

pi
. The next lemma states that if a job has higher urgency than another with larger processing

time, then the one with higher urgency will be processed first in an optimal order.

Lemma 2.2 (Shakhlevich et al. (1998)). Let (M, N, p, α) be a PFS problem and σ an optimal order. If

i, j ∈ N are such that ui ≥ uj and pi < pj or ui > uj and pi ≤ pj , then σ(i) < σ(j).

Let (M, N, p, α) be a PFS problem and let σ ∈ Π(N). We say that job i ∈ N is a new-max job according

to σ if pi > maxj∈P (σ,i){pj}. Let aσ
1 , . . . , aσ

s be the new-max jobs according to σ, with σ(aσ
1 ) < . . . < σ(aσ

s ).

Then, N can be partitioned into s so-called segments Aσ
1 , . . . , Aσ

s in the following way

Aσ
r :=





P (σ, aσ
r+1) \ P (σ, aσ

r ) if 1 ≤ r < s,

N \ P (σ, aσ
r ) if r = s.

Note that, since σ(aσ
1 ) = 1, P (σ, aσ

1 ) = ∅. The above partition into segments is denoted by Seg(σ).

The lemma below states that in any optimal order the jobs in a segment are processed in decreasing

urgency order.

Lemma 2.3 (Shakhlevich et al. (1998)). Let (M, N, p, α) be a PFS problem and σ an optimal order. Let

Aσ
r be a segment corresponding to σ and i, j ∈ Aσ

r . If σ(i) < σ(j), then ui ≥ uj .

3 Cooperation in proportionate flow shops

In this section we will recall the algorithm to find an optimal schedule for PFS problems given in Shakhlevich

et al. (1998) and propose an allocation rule to share the costs savings obtained by reordering the jobs into

an optimal order if the initial order is in decreasing urgency order.

We first describe the algorithm in Shakhlevich et al. (1998). Let (M,N, p, α) be a PFS problem. We define

the urgency order, σu, as the order in which the jobs are ordered in decreasing urgency. Since the starting

point of the algorithm is σu, we can assume without loss of generality that σu = (1 . . . n). To find the

optimal order we will generate orders σ̂1, . . . , σ̂n where σ̂1 := σu and σ̂n is optimal. Note that associated to

the order σ̂i−1 we have the segments A
σ̂i−1
1 , . . . , A

σ̂i−1
s which give a partition of N . Now, we explain how to
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obtain σ̂i from σ̂i−1. Let si ∈ {1, . . . , s} be such that A
σ̂i−1
si ∩{1, . . . , i−1} 6= ∅ and A

σ̂i−1
si+1∩{1, . . . , i−1} = ∅.

We define A(i, 1), . . . , A(i, si) as A(i, 1) = A
σ̂i−1
si ∩ {1, . . . , i− 1} and A(i, r) = A

σ̂i−1
si−r+1 for r = 2, . . . , si.

Here, we have numbered the segments from right to left (instead from left to right) for convenience of

the description of the rule that we will give later on. Subsequently, σ̂i is obtained from σ̂i−1 by placing i in

first position or in between two consecutive segments or remain in its initial position. The decision will be

taken in such a way that cN (σ̂i) is minimal and maxk∈P̄ (σ̂i,i){pk} is maximal.

Now we turn to interactive proportionate flow shop situations and assume that each job belongs to a

player. We define the γ-rule which allocates the gains
∑

i∈N (cN (σ̂i−1) − cN (σ̂i)). Here, we will decompose

the gain cN (σ̂i−1)− cN (σ̂i) into “positive jumps” and the associated “positive gains” will be shared among

the jobs involved. For this, we will need some additional notation. We define

gA(i,r)i :=
∑

j∈A(i,r)

(αipj − αjpi) + αi(m− 1)( max
j∈A(i,r)∪{i}

{pj} − max
j∈A(i,r+1)∪{i}

{pj}), (3.1)

for r = 1, . . . , si, with A(i, si + 1) := ∅.
Hence, gA(i,r)i represents the cost savings obtained when job i goes from the tale of A(i, r) to its front.

Note that gA(i,r)i can be negative. Define N(i, 1) := A(i, 1), gN(i,1) := gA(i,1)i, and hN(i,1) := (gN(i,1))+. For

r = 1, . . . , si we define recursively

N(i, r) :=





N(i, r − 1) ∪A(i, r) if hN(i,r−1) = 0,

A(i, r) otherwise,

gN(i,r) :=





gN(i,r−1) + gA(i,r)i if hN(i,r−1) = 0,

gA(i,r)i otherwise,

and

hN(i,r) := (gN(i,r))+.

Easily, c(σ̂i−1) − c(σ̂i) =
∑si

r=1 hN(i,r) and therefore
∑

i∈N

∑si

r=1 hN(i,r) gives the total cost savings gained

by means of cooperation. The γ-rule simply gives half of hN(i,r) to i while the other half is shared equally

among the jobs in N(i, r) for each i ∈ N and 1 ≤ r ≤ si. Formally, we define

γ(M,N, p, α) =
∑

i∈N

si∑
r=1

(
hN(i,r)

2
e{i} +

hN(i,r)

2|N(i, r)|e
N(i,r)

)

with eR ∈ RN a vector of zeros and ones with eR
i = 1 if i ∈ R and eR

i = 0 otherwise, for R ⊂ N .

The following example illustrates the computation of the γ-rule.

Example 3.1. Let (M, N, p, α) be a PFS problem with M = {M1,M2,M3}, N = {1, 2, 3, 4, 5, 6, 7, 8, 9},
p = (20, 30, 10, 30, 10, 30, 20, 10, 40) and α = (200, 270, 80, 210, 69, 180, 130, 59, 200). Hence, the urgency order

is σu = (1 2 3 4 5 6 7 8 9). Suppose that initially the jobs are processed according to the urgency order.

Then, cN (σu) = 224320. The situation is represented in Figure 2.
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M1

M2

M3

0 50 100 150 200 250 t

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Figure 2: Gantt Chart of the PFS situation in Example 3.1.

The allocation of the total cost savings after reordering the jobs in the optimal order is summarized in

Table 1.

1 2 3 4 5 6 7 8 9

i = 1 0 0 0 0 0 0 0 0 0

i = 2 0 0 0 0 0 0 0 0 0

i = 3 600 650 650 + 600 0 0 0 0 0 0

i = 4 0 0 0 0 0 0 0 0 0

i = 5 380 180 0 180 360 + 380 0 0 0 0

i = 6 0 0 0 0 0 0 0 0 0

i = 7 0 550
3 0 550

3 0 550
3 550 0 0

i = 8 13 13 0 13 0 13 13 65 0

i = 9 0 0 0 0 0 0 0 0 0

993 1026 1
3 1250 3761

3 740 196 1
3 563 65 0

Table 1: Allocation of the cost savings in Example 3.1.

We explain below how the cost savings are shared when jobs 5 and 8 are reordered.

First, we will study the case in which job 5 is reordered. We leave it to the reader to

verify that the order obtained after reordering jobs 1, 2, 3 and 4 is σ̂4 = (3 1 2 4 5 6 7 8 9) and

Seg(σ̂4) = {{3}, {1}, {2, 4, 5, 6, 7, 8}, {9}}. Take i = 5 and as previous order σ̂4. Hence, A(5, 1) = {2, 4},
A(5, 2) = {1}, and A(5, 3) = {3}. Moreover,

gA(5,1)5 = cN (σ̂4)− cN (τ1
5 ) = (α2C

σ̂4
2 + α4C

σ̂4
4 + α5C

σ̂4
5 )− (α2C

τ1
5

2 + α4C
τ1
5

4 + α5C
τ1
5

5 ) = 720,

with τ1
5 = (3 1 5 2 4 6 7 8 9),

gA(5,2)5 = cN (τ1
5 )− cN (τ2

5 ) = (α1C
τ1
5

1 + α5C
τ1
5

5 )− (α1C
τ2
5

1 + α5C
τ2
5

5 ) = 760,
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with τ2
5 = (3 5 1 2 4 6 7 8 9), and

gA(5,3)5 = cN (τ2
5 )− cN (τ3

5 ) = (α3C
τ2
5

3 + α5C
τ2
5

5 )− (α3C
τ3
5

3 + α5C
τ3
5

5 ) = −110,

with τ3
5 = (5 3 1 2 4 6 7 8 9).

Hence, N(5, 1) := A(5, 1) = {2, 4}, gN(5,1) = 720, hN(5,1) = 720, N(5, 2) = {1}, gN(5,2) = 760, hN(5,2) = 760,

N(5, 3) = {3}, gN(5,3) = −110, hN(5,3) = 0. In this step, the owner of job 5 gets 360 from hN(5,1) and the

owners of jobs in N(5, 1) share equally 360, i.e., 2 and 4 get 180 each. Similarly, the owner of job 5 gets 380

from hN(5,2) and the owner of the job in N(5, 2) gets 380, i.e., 1 gets 380.

Hence, an optimal order after reallocating 5 is σ̂5 = τ2
5 = (3 5 1 2 4 6 7 8 9) and the cost savings obtained

after this reorder are hN(5,1) + hN(5,2) + hN(5,3) = 1480.

Next, we will study the case in which job 8 is reordered. In this case, σ̂7 = (3 5 1 7 2 4 6 8 9) and

Seg(σ̂7) = {{3, 5}, {1, 7}, {2, 4, 6, 8}, {9}}. Take i = 8 and as previous order σ̂7. Here, A(8, 1) = {2, 4, 6},
A(8, 2) = {1, 7}, and A(8, 3) = {3, 5}. Moreover,

gA(8,1)8 = cN (σ̂7)−cN (τ1
8 ) = (α2C

σ̂7
2 +α4C

σ̂7
4 +α6C

σ̂7
6 +α8C

σ̂7
8 )−(α2C

τ1
8

2 +α4C
τ1
8

4 +α6C
τ1
8

6 +α8C
τ1
8

8 ) = −110,

with τ1
8 = (3 5 1 7 8 2 4 6 9),

gA(8,2)8 = cN (τ1
8 )− cN (τ2

8 ) = (α1C
τ1
8

1 + α7C
τ1
8

7 + α8C
τ1
8

8 )− (α1C
τ2
8

1 + α7C
τ2
8

7 + α8C
τ2
8

8 ) = 240,

with τ2
8 = (3 5 8 1 7 2 4 6 9).

Note that job 8 can not be reallocated in an earlier position since it would violate

Lemma 2.2. Hence, N(8, 1) := A(8, 1) = {2, 4, 6}, gN(8,1) = −110, hN(8,1) = 0, N(8, 2) = {1, 2, 4, 6, 7},
gN(8,2) = −110+240 = 130, hN(8,2) = 130, N(8, 3) = {3, 5}, gN(8,3) < 0, hN(8,3) = 0. In this step, the owner

of job 8 gets 65 from hN(8,2) and the owners of jobs in N(8, 2) share equally 65, i.e., 1, 2, 4, 6 and 7 get 13

each.

Hence, an optimal order after reallocating 8 is σ̂8 = τ2
8 = (3 5 8 1 7 2 4 6 9) and the cost savings obtained

after this reorder are hN(8,1) + hN(8,2) + hN(8,3) = 130. 3

4 Proportionate flow shop games

In this section we study proportionate flow shop games and show that they are balanced. Moreover, if the

initial order is the urgency order, then they are convex and an explicit expression of the Shapley value is

provided based on the decomposition of the proportionate flow shop games into unanimity games. Besides,

it is shown that the γ-rule leads to a core element.
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Before stating our main results we will recall some basic notions from cooperative game theory.

A cooperative TU-game in characteristic function form is an ordered pair (N, v) where N is a finite set

(the set of players) and v : 2N → R satisfies v(∅) = 0. The core of a cooperative TU-game (N, v) is defined

by

Core(v) = {x ∈ RN |
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N},

i.e., the core is the set of efficient allocations of v(N) such that there is no coalition with an incentive to

split off. A game is said to be balanced (see Bondareva (1963) and Shapley (1967)) if the core is nonempty.

An important subclass of balanced games is the class of convex games (cf. Shapley (1971)). A game (N, v)

is said to be convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) (4.1)

for all S, T ⊂ N.

Let (N, v) be a game and let π : {1, . . . , |N |} → N be a bijection. The marginal vector mπ(v), is defined

by

mπ
π(k)(v) := v({π(1), . . . , π(k)})− v({π(1), . . . , π(k − 1)})

for all k ∈ {1, . . . , |N |}. It is known that convexity of a game is equivalent to every marginal vector being a

core element (see Shapley (1953) and Ichiishi (1981)). The Shapley value of a game (N, v) is defined as the

average of its marginal vectors.

Next, we start the game theoretical study of proportionate flow shops. Let (M, N, p, α) be a PFS

problem and let σ0 ∈ Π(N) be an initial order on the jobs. We assume without loss of generality that

σ0 = (1 . . . n). By associating jobs with players (or clients) the associated PFS game (N, v) is defined by

v(S) := max
σ∈A(S)

{cN (σ0)− cN (σ)} (4.2)

for every S ⊂ N , where A(S) is the set of admissible rearrangements for coalition S. An order σ ∈ Π(N) is

said to be admissible for coalition S if P (σ0, j) = P (σ, j) for all j ∈ N \S. This implies that in an admissible

rearrangement the initial schedule for jobs outside S does not change, i.e., the starting time in each machine

of each player outside S does not change with respect to the initial order. Moreover, agents of S are only

allowed to be reordered within maximally connected components of S with regard to σ0. Here, a coalition R

is called connected (with respect to σ0) if for all i, j ∈ R and k ∈ N such that σ0(i) < σ0(k) < σ0(j) it holds

that k ∈ R. Given a coalition S ⊂ N , we denote by S/σ0 the set of all maximally connected components of

S according to σ0. Due to the definition of admissible rearrangements, we can write the value of coalition

S ⊂ N as

v(S) =
∑

R∈S/σ0

v(R). (4.3)

9



It is readily seen that PFS games are σ0-component additive and therefore balanced (see Curiel et al. (1994)).

Example 4.1. Let (M, N, p, α) be a PFS situation where N = {1, 2, 3}, M = {M1,M2,M3}, p = (3, 1, 4)

and α = (4, 1, 7). Let σ0 = (1 2 3). The situation is represented in Figure 3.

-

M1

M2

M3

0 5 10 15 t

1 2 3

1 2 3

1 2 3

Figure 3: Gantt Chart of the PFS situation in Example 4.1.

The corresponding PFS game (N, v) is

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 0 3 0 1 3

We explain in detail how to calculate the value of coalition {1, 2} below. The total cost with the initial

order is cN (σ0) = 158. The set of admissible rearrangements for coalition {1, 2} is A({1, 2}) = {σ0, σ1}, with

σ1 = (2 1 3), and the total cost for the order σ1 is cN (σ1) = 155. Then,

v({1, 2}) = max
σ∈{σ0,σ1}

{cN (σ0)− cN (σ)} = max{0, 3} = 3. 3

Note that the initial order in Example 4.1 is not an urgency order. Moreover, the game is balanced but

not convex (take S = {1, 2} and T = {2, 3}).

From now on we will study PFS games with an urgency order as the initial order, i.e.,

σ0 = σu = (1 2 . . . n).

We will give an expression for the value of a coalition based on the cost savings that each player can

obtain if a similar procedure as the method in Section 3 is followed. Due to equation (4.3) we will restrict

our study to connected coalitions. Let S ⊂ N be a connected coalition, S = {j, j + 1, . . . , k − 1, k}. To

find the optimal order for S we will generate orders σ̂S
j , . . . , σ̂S

k in the following way: σ̂S
j := σu and σ̂S

i is

obtained from σ̂S
i−1 as follows. If for every r it follows that A

σ̂S
i−1

r ∩ {j, . . . , i − 1} does not contain any

new-max job according to σ̂S
i−1, then i and j belong to the same segment and j is not a new-max job.

10



In this case, σ̂S
i = σu by Lemma 2.3. If A

σ̂S
i−1

r ∩ {j, . . . , i − 1} contains a new-max job according to σ̂S
i−1

for some r, then we define ri = min{r |Aσ̂S
i−1

r ∩ {j, . . . , i − 1} contains a new-max job according to σ̂S
i−1},

ti = max{r |Aσ̂S
i−1

r ∩{j, . . . , i−1} contains a new-max job according to σ̂S
i−1}, and si = ti−ri+1. Analogously

than in the method described in Section 3, we define AS(i, 1), . . . , AS(i, si) as AS(i, 1) = A
σ̂S

i−1
ti

∩{j, . . . , i−1},
AS(i, r) = A

σ̂S
i−1

ti−r+1 for r = 2 . . . si. Subsequently, σ̂S
i is obtained by placing i in position j or in between two

consecutive segments or remain in its initial position. The decision will be taken in such a way that

cN (σ̂S
i ) is minimal and max

k∈P̄ (σ̂S
i ,i)
{pk} is maximal. (4.4)

Note that Lemma 2.2 and Lemma 2.3 are still applicable in S. Hence, job i may be placed in j-th position

only if A
σ̂S

i−1
ri ∩ {j, . . . , i− 1} = A

σ̂S
i−1

ri , otherwise Lemma 2.2 would be violated. Hence, the value of coalition

S can be written as

v(S) =
k∑

i=j

(cN (σ̂S
i−1)− cN (σ̂S

i ))

with σ̂S
j−1 := σu. We define GS

i := cN (σ̂S
i−1)− cN (σ̂S

i ) for i ∈ S. Here, GS
i denotes the cost savings obtained

after reordering job i ∈ S in S. Hence,

v(S) =
∑

i∈S

GS
i .

Note that as a consequence of Lemma 2.2 it follows that if j ∈ P (σu, a), then j ∈ P (σ̂S
i , a) with a a

new-max job according to σu.

Next, we provide some lemmas that will be used in the proofs of our main results. Their proofs can be

found in the appendix. The first lemma states that, in a PFS problem, the new-max jobs according to the

urgency order remain new-max jobs during the proposed process of finding an optimal order for an arbitrary

coalition S.

Lemma 4.1. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Let S ⊂ N . Then, every

new-max job according to σu is also new-max job according to σ̂S
i for every i ∈ S.

Next, we provide a result on the “monotonicity” of new-max jobs and cost savings.

Lemma 4.2. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Let S, T ⊂ N , with

S ⊂ T ⊂ N , be connected coalitions. Let S = {iS , . . . , jS} with iS < . . . < jS , and let a be the new-max job

according to σu such that pa = maxk∈P (σu,iS){pk}. Then, the following assertions hold.

(i) σ̂T
i (i) = σ̂S

i (i) for every i ∈ S with pi ≥ pa.

(ii) σ̂T
i (i) ≤ σ̂S

i (i) for every i ∈ S with pi < pa. Moreover, if σ̂T
i (i) < σ̂S

i (i), then σ̂T
i (i) < σ̂T

i (a).

(iii) Every new-max job according to σ̂S
i is also a new-max job according to σ̂T

i .

11



(iv) GS
i ≤ GT

i . Moreover, if pi ≥ pa, then GS
i = GT

i .

The following lemma states that the cost savings achievable for a coalition by the reallocation of job i

are at most the total cost savings that job i can achieve for the grand coalition during its reallocation.

Lemma 4.3. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Let S ⊂ N be a connected

coalition. Then,

GS
i =

∑

r:N(i,r)⊂S

hN(i,r)

for all i ∈ S.

Next, we will show that the γ-rule leads to a core element of the associated PFS game.

Theorem 4.4. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Then, the γ-rule provides

a core element of the associated PFS game.

Proof. Efficiency holds by definition. Let S ⊂ N be a connected coalition, then

∑

i∈S

γi(M, N, p, α) = (eS)t
∑

i∈N

si∑
r=1

(
hN(i,r)

2
e{i} +

hN(i,r)

2|N(i, r)|e
N(i,r)

)

=
1
2

∑

i∈S

si∑
r=1

hN(i,r) +
1
2
(eS)t

∑

i∈N

si∑
r=1

hN(i,r)

|N(i, r)|e
N(i,r)

≥ 1
2

∑

i∈S

si∑
r=1

hN(i,r) +
1
2
(eS)t

∑

i∈S

si∑
r=1

hN(i,r)

|N(i, r)|e
N(i,r)

≥ 1
2

∑

i∈S

si∑
r=1

hN(i,r) +
1
2
(eS)t

∑

i∈S

∑

r:N(i,r)⊂S

hN(i,r)

|N(i, r)|e
N(i,r)

=
1
2

∑

i∈S

si∑
r=1

hN(i,r) +
1
2

∑

i∈S

∑

r:N(i,r)⊂S

hN(i,r)

≥
∑

i∈S

∑

r:N(i,r)⊂S

hN(i,r)

=
∑

i∈S

GS
i = v(S),

where (eS)t is the transposed matrix of eS . The first, second, and third inequalities follow because hN(i,r) ≥ 0

and the last equality is a consequence of Lemma 4.3. 2

The next result gives the decomposition into unanimity games of a PFS game. We denote by {a1, . . . , as},
with a1 < . . . < as, the set of new-max jobs according to σu. For i ∈ N we denote by r(i) either the index

of the new-max job which precedes i if i is not a new-max job according to σu, or the index of i if i is a

new-max job according to σu (i.e., i = ar(i)). Consequently, par(i) = maxk∈P̄ (σu,i){pk}.
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Theorem 4.5. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Let (N, v) be the associated

PFS game. Then,

v(T ) =
∑

k∈N

r(k)∑
r=1

(
G
{ar,...,n}
k −G

{ar+1,...,n}
k

)
u{ar,...,k}(T )

for every T ⊂ N , where G
{ar(k)+1,...,n}
k is defined as 0.

Proof. Let T ⊂ N be a connected coalition and set T = {i, . . . , j}. We will distinguish between two cases.

Case 1: T ∩ {a1, . . . , as} = ∅. Then, σ̂T
k (k) = k for all k ∈ T by Lemma 2.3 and therefore GT

k = 0 for all

k ∈ T . Hence, v(T ) = 0. Moreover, {ar, . . . , k} 6⊂ T for every new-max job ar and every k ≥ ar. Hence,

u{ar,...,k}(T ) = 0 and

∑

k∈N

r(k)∑
r=1

(
G
{ar,...,n}
k −G

{ar+1,...,n}
k

)
u{ar,...,k}(T ) = 0 = v(T ).

Case 2: T ∩ {a1, . . . , as} = {av, . . . , aw} with av ≤ . . . ≤ aw. Then, σ̂T
k (k) = k for all k < av by Lemma 2.3

and σ̂T
k (k) = σ̂

{av,...,n}
k (k) for all k ≥ av by the mechanism of the algorithm. Hence, GT

k = 0 for all i ≤ k < av

and GT
k = G

{av,...,n}
k for all k ≥ av. Therefore, v(T ) =

∑j
k=av

G
{av,...,n}
k . Moreover,

∑

k∈N

r(k)∑
r=1

(
G
{ar,...,n}
k −G

{ar+1,...,n}
k

)
u{ar,...,k}(T ) =

j∑

k=av

r(k)∑
r=v

(
G
{ar,...,n}
k −G

{ar+1,...,n}
k

)
u{ar,...,k}(T )

=
j∑

k=av

[(
G
{av,...,n}
k −G

{av+1,...,n}
k

)

+
(
G
{av+1,...,n}
k −G

{av+2,...,n}
k

)

+ . . .

+
(
G
{ar(k)−1,...,n}
k −G

{ar(k),...,n}
k

)

+ G
{ar(k),...,n}
k

]

=
j∑

k=av

G
{av,...,n}
k = v(T ),

where the first equality follows because if k and r are such that

(i) ar < av ≤ k, then {ar, . . . , k} 6⊂ {i, . . . , j} = T and u{ar,...,k}(T ) = 0,

(ii) k > j and ar ≤ k, then {ar, . . . , k} 6⊂ {i, . . . , j} = T and u{ar,...,k}(T ) = 0.

The second equality is satisfied because if k and r are such that av ≤ ar ≤ ar(k), ar ≤ k ≤ j, then

{ar, . . . , k} ⊂ {i, . . . , j} = T and u{ar,...,k}(T ) = 1.
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Let T ⊂ N . If T is unconnected, then v(T ) =
∑

U∈T/σ0
v(U) and

∑

k∈N

r(k)∑
r=1

(
G
{ar,...,n}
k −G

{ar+1,...,n}
k

)
u{ar,...,k}(T ) =

∑

U∈T/σ0

∑

k∈N

r(k)∑
r=1

(
G
{ar,...,n}
k −G

{ar+1,...,n}
k

)
u{ar,...,k}(U)

since the unanimity games are defined for connected coalitions. 2

As a direct consequence of Lemma 4.2 (iv) and Theorem 4.5 we have that PFS games are convex.

Corollary 4.6. PFS games are convex if the initial order is the urgency order.

Proof. By Theorem 4.5 and by Lemma 4.2 (iv) we know that PFS games are decomposed in non-negative

linear combination of unanimity games. Hence, PFS games are convex. 2

If the initial order is an urgency order, PFS games are convex and the Shapley value belongs to the core.

The next result provides a game independent expression of the Shapley value for PFS games.

Theorem 4.7. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Then, the Shapley value

of the associated PFS game (N, v) is given by

Φi(v) =
n∑

k=i

r(i)∑
r=1

G
{ar,...,n}
k −G

{ar+1,...,n}
k

|{ar, . . . , k}|

for every i ∈ N .

The Shapley value of PFS games can be interpreted as follows: player i ∈ N needs the players

ar(i), . . . , i − 1 in order to obtain some cost savings, and the Shapley value shares the gain G
{ar(i),...,i}
i =

G
{ar(i),...,n}
i equally among all the players involved, i.e., ar(i), . . . , i. If a new segment is added to the left of

this group of jobs, i.e., if ar(i)−1, . . . , ar(i), . . . , i−1 cooperate with i, extra gains, G
{ar(i)−1,...,i}
i −G

{ar(i),...,i}
i =

G
{ar(i)−1,...,n}
i −G

{ar(i),...,n}
i ≥ 0 can be obtained by Lemma 4.2 (iv). The Shapley value shares equally these

extra gains among all the players involved, i.e., ar(i)−1, . . . , ar(i), . . . , i. Step by step, additive-gains are shared

equally among all who are responsible.

Appendix

Proof of Lemma 4.1. Let a be a new-max job according to σu and let i ∈ S. Then,

pa >maxj∈P (σu,a){pj}. We have to show that a is a new-max job according to σ̂S
i , i.e., pa >maxj∈P (σ̂S

i ,a){pj}.
Note that P (σu, a) ⊂ P (σ̂S

i , a). Moreover, pj < pa for all j ∈ P (σ̂S
i , a) \ P (σu, a) by Lemma 2.2. Hence,

pa > max{ max
j∈P (σu,a)

{pj}, max
j∈P (σ̂S

i ,a)\P (σu,a)
{pj}} = max

j∈P (σ̂S
i ,a)

{pj}.
14



2

For the proof of Lemma 4.2, we need the following additional lemmas. The first lemma is an immediate

consequence of Lemma 2.2 and the definition of new-max job and therefore the proof will be omitted. It

states that a new-max job a according to σu does not change its initial position in σ̂S
a , for all coalition S ⊂ N ,

a ∈ S.

Lemma A.1. Let (M, N, p, α) be a PFS problem and let σu be the initial order. Let S ⊂ N and let a ∈ S

be a new-max job according to σu. Then, σ̂S
a (a) = a.

The following result is a direct consequence of the algorithm. It says that the set of predecessors of a

certain job once reordered can only increase with the consecutive application of the algorithm.

Lemma A.2. Let (M,N, p, α) be a PFS problem and let σu be the initial order. Let S ⊂ N and i, j ∈ S

with j < i. Then, P (σ̂S
j , j) ⊂ P (σ̂S

i , j).

Next, we will show that if a job becomes new-max job during its reordering, then it will remain new-max

job during the successive application of the algorithm.

Lemma A.3. Let (M,N, p, α) be a PFS problem and let σu be the initial order. Let S ⊂ N and i, j ∈ S

with j < i. Then, j is new-max job according to σ̂S
i if and only if j is new-max job according to σ̂S

j .

Proof. If j is new-max job according to σu, then j is new-max job according to σ̂S
k for all k ∈ S by Lemma 4.1

and the result follows. Hence, we may assume that j is not new-max job according to σu.

We will first show the only if part. Let j be a new-max job according to σ̂S
i . Then,

pj > max
k∈P (σ̂S

i ,j)
{pk} ≥ max

k∈P (σ̂S
j ,j)

{pk}

where the first inequality follows since j is new-max job according to σ̂S
i and the second one by Lemma A.2.

Hence, j is a new-max job according to σ̂S
j .

Next, we show the if part. Let j be a new-max job according to σ̂S
j . By Lemma A.2 we have that

P (σ̂S
j , j) ⊂ P (σ̂S

i , j). Hence, we can write P (σ̂S
i , j) = P (σ̂S

j , j) ∪ P (σ̂S
i , j) \ P (σ̂S

j , j). Observe that pj > pk

for all k ∈ P (σ̂S
j , j) since j is a new-max job according to σ̂S

j by assumption. Besides, pj > pk for all

k ∈ P (σ̂S
i , j) \ P (σ̂S

j , j) by Lemma 2.2. Hence, j is a new-max job according to σ̂S
i . 2

For the proof of Lemma 4.2 we need some additional notation. Let S ⊂ N , S = {iS , . . . , jS}, with

iS < . . . < jS , and i ∈ S. We define BS(i, 1), . . . , BS(i, si) as BS(i, r) = AS(i, si − r + 1) for every

r ∈ {1, . . . , si}. We denote by a(i, S) the new-max job according to σ̂S
i−1 such that i is placed at the tail of
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the segment defined by a(i, S) after being reordered. Note that pa(i,S) = maxk∈P (σ̂S
i ,i){pk}. Let i ∈ S and

let a ∈ S be a new-max job according to σ̂S
i−1. We denote by r(i, a) the index of the segment defined by a

according to σ̂S
i−1, i.e., r(i, a) ∈ {1, . . . , si} such that a ∈ BS(i, r(i, a)). Moreover, we denote by gBS(i,r)i the

gains obtained when, starting from σ̂S
i−1, we change i from the tail of segment BS(i, r) to the tail of segment

BS(i, r − 1). Formally, it can be written as

gBS(i,r)i :=
∑

j∈BS(i,r)

(αipj − αjpi) + αi(m− 1)( max
j∈BS(i,r)∪{i}

{pj} − max
j∈BS(i,r−1)∪{i}

{pj}), (A.1)

with r ∈ {1, . . . , si} and BS(i, 0) :=




∅ if iS = 1

A
σ̂S

i−1

r(i,a∗) if iS > 1
, where a∗ is the new-max job according to σu

such that pa∗ = maxk∈P (σu,iS){pk}.
Recall that {a1, . . . , as}, with a1 < . . . < as, is the set of new-max jobs according to σu. Let S ⊂ N be a

connected coalition, S = {iS , . . . , jS}, satisfying:

(i) S ∩ {a1, . . . , as} = {au, . . . , av}, with au ≤ . . . ≤ av and au 6= a1;

(ii) there exists l1 ∈ S verifying the following three conditions

pl1 < pau−1 (A.2)

au−1 6= a(l1, S) (A.3)

au−1 = a(l, S) for every l ∈ S with l < l1 and pl < pau−1 . (A.4)

Consider the following partition of S

{{iS , . . . , l1 − 1}, {l1}, {l1 + 1, . . . , l2 − 1}, {l2}, . . . , {lm}, {lm + 1, . . . , jS}
}

(A.5)

where pj ≥ pa(lk,S) for every j ∈ {lk + 1, . . . , lk+1 − 1} and every k ∈ {1, . . . , m} (with lm+1 − 1 := jS), and

lk satisfying plk < pa(lk−1,S), with l0 := au−1.

Lemma A.4. The two following assertions hold

(i) for every k, k̃ ∈ {1, . . . ,m} with k̃ > k we have

gBS(lk̃,r)lk̃
≤ plk̃

plk

gBS(lk,r)lk

for every r ∈ {r(lk̃, a(lk−1, S)) + 1, . . . , r(lk̃, a(lk, S))} with r(lk̃, a(l0, S)) := 0;

(ii) σ̂S
lk̃

(lk̃) > σ̂S
lk̃

(lk̃−1) for every k̃ ∈ {2, . . . , m}.

16



Proof. First, we prove the result for k̃ = 2. Since pj ≥ pa(l1,S) for every j ∈ {l1 + 1, . . . , l2 − 1} we have

σ̂S
j (j) > σ̂S

j (l1) by Lemma 2.2 and Lemma 2.3. Therefore,

σ̂S
l2−1(j) > σ̂S

l2−1(l1) for every j ∈ {l1 + 1, . . . , l2 − 1}.

Hence, the set of new-max jobs preceding a(l1, S) according to σ̂S
l1−1 and σ̂S

l2−1 coincide. Consequently,

r(l2, a(l1, S)) = r(l1, a(l1, S))

and we will denote r(a(l1, S)) = r(l1, a(l1, S)). Moreover,

BS(l2, r) = BS(l1, r) for every r ∈ {1, . . . , r(a(l1, S))− 1} (A.6)

and

BS(l2, r(a(l1, S))) = BS(l1, a(l1, S)) ∪ {l1}. (A.7)

We first show (i). For r ∈ {1, . . . , r(a(l1, S))− 1}

gBS(l2,r)l2 =
∑

j∈BS(l2,r)

(αl2pj − αjpl2) + αl2(m− 1)( max
j∈BS(l2,r)∪{l2}

{pj} − max
j∈BS(l2,r−1)∪{l2}

{pj})

=
∑

j∈BS(l1,r)

(αl2pj − αjpl2) + αl2(m− 1)( max
j∈BS(l2,r)∪{l2}

{pj} − max
j∈BS(l2,r−1)∪{l2}

{pj})

≤
∑

j∈BS(l1,r)

(αl2pj − αjpl2) + αl2(m− 1)( max
j∈BS(l2,r)

{pj} − max
j∈BS(l2,r−1)

{pj})

=
∑

j∈BS(l1,r)

(αl2pj − αjpl2) + αl2(m− 1)( max
j∈BS(l1,r)∪{l1}

{pj} − max
j∈BS(l1,r−1)∪{l1}

{pj})

≤
∑

j∈BS(l1,r)

(
pl2

pl1

αl1pj − αjpl2) +
pl2

pl1

αl1(m− 1)( max
j∈BS(l1,r)∪{l1}

{pj} − max
j∈BS(l1,r−1)∪{l1}

{pj})

=
pl2

pl1

( ∑

j∈BS(l1,r)

(αl1pj − αjpl1) + αl1(m− 1)( max
j∈BS(l1,r)∪{l1}

{pj} − max
j∈BS(l1,r−1)∪{l1}

{pj})
)

=
pl2

pl1

gBS(l1,r)l1

(A.8)

where the second equality follows by equation (A.6). For the first inequality note that

max
j∈BS(l2,r−1)

{pj} < max
j∈BS(l2,r)

{pj}.

Hence, if pl2 ≥ maxj∈BS(l2,r){pj} > maxj∈BS(l2,r−1){pj}, then

max
j∈BS(l2,r)∪{l2}

{pj} − max
j∈BS(l2,r−1)∪{l2}

{pj} = 0 < max
j∈BS(l2,r)

{pj} − max
j∈BS(l2,r−1)

{pj};

if maxj∈BS(l2,r){pj} > pl2 ≥ maxj∈BS(l2,r−1){pj}, then

max
j∈BS(l2,r)∪{l2}

{pj} − max
j∈BS(l2,r−1)∪{l2}

{pj} ≤ max
j∈BS(l2,r)

{pj} − max
j∈BS(l2,r−1)

{pj};
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finally, if maxj∈BS(l2,r){pj} > maxj∈BS(l2,r−1){pj} ≥ pl2 , then

max
j∈BS(l2,r)∪{l2}

{pj} − max
j∈BS(l2,r−1)∪{l2}

{pj} = max
j∈BS(l2,r)

{pj} − max
j∈BS(l2,r−1)

{pj}.

The third equality is a consequence of equation (A.6) together with the fact that l1 does not become new-

max job since pl1 < pau−1 < pa(l1,S) by definition of l1. The second inequality follows since l1 < l2, then:

ul1 = αl1
pl1

≥ αl2
pl2

= ul2 and therefore pl2
pl1

αl1 ≥ αl2 .

Analogously, one can see that gBS(l2,r(a(l1,S)))l2 ≤
pl2
pl1

gBS(l1,r(a(l1,S)))l1 . The only difference is that the

second equality becomes an inequality by equation (A.7) and the fact that αl2pl1−αl1pl2 ≤ 0 since ul1 ≥ ul2 .

Next, we will show (ii). Note that by definition of r(a(l1, S)) and assumption (4.4) we have

r(a(l1,S))∑
r=r̄

gBS(l1,r)l1 ≤ 0 for every r̄ ∈ {1, . . . , r(a(l1, S))}. (A.9)

Then,
r(a(l1,S))∑

r=r̄

gBS(l2,r)l2 ≤
pl2

pl1

r(a(l1,S))∑
r=r̄

gBS(l1,r)l1 ≤ 0 for every r̄ ∈ {1, . . . , r(a(l1, S))},

where the first inequality holds by (i) and the second one by equation (A.9). Therefore, σ̂S
l2

(l2) > σ̂S
l2

(l1) by

assumption (4.4) and Lemma 2.3.

Now, let k̃ > 2 and suppose that the result is true for l1, . . . , lk̃−1. Then,

σ̂S
lk̃−1(l1) < σ̂S

lk̃−1(l2) < . . . < σ̂S
lk̃−1(lk̃−1). (A.10)

Since pj ≥ pa(lk,S) for every k ∈ {1, . . . , k̃−1} and every j ∈ {lk+1, . . . , lk+1−1}, we have that σ̂S
j (j) > σ̂S

j (lk)

by Lemma 2.2 and Lemma 2.3. Therefore, for every k ∈ {1, . . . , k̃ − 1} it follows

σ̂S
lk̃−1(j) > σ̂S

lk̃−1(lk) for every j ∈ {lk + 1, . . . , lk+1 − 1}. (A.11)

Hence, for every k ∈ {2, . . . , k̃ − 1} we have that the set of new-max jobs in between a(lk−1, S) and a(lk, S)

according to σ̂S
lk

and σ̂S
lk̃

coincide. Therefore, for k ∈ {1, . . . , k̃ − 1} we have

r(lk̃, a(lk, S)) = r(lk, a(lk, S)) (A.12)

then, we can denote r(a(lk, S)) = r(lk, a(lk, S)). Moreover, for every k ∈ {1, . . . , k̃ − 1} we have

BS(lk̃, r) = BS(lk, r) (A.13)

for every r ∈ {r(a(lk−1, S)) + 1, . . . , r(a(lk, S))− 1} and,

BS(lk, r(a(lk, S))) ⊂ BS(lk̃, r(a(lk, S)))
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with

BS(lk̃, r(a(lk, S))) \BS(lk, r(a(lk, S))) ⊂ {lk, . . . , lk̃−1}. (A.14)

In order to show (i) take k ∈ {1, . . . , k̃ − 1} and r ∈ {r(a(lk−1, S)) + 1, . . . , r(a(lk, S))}, then one can see

that

gBS(lk̃,r)lk̃
≤ plk̃

plk

gBS(lk,r)lk

by using the same kind of arguments as in equation (A.8).

Next, we will show (ii). Note that by definition of r(a(lk, S)), k ∈ {1, . . . , k̃ − 1}, and assumption (4.4)

we have
r(a(lk,S))∑

r=r̄

gBS(lk,r)lk ≤ 0 (A.15)

for every r̄ ∈ {r(a(lk−1, S)) + 1, . . . , r(lk, a(lk, S))}. Then, for every k∗ ∈ {1, . . . , k̃ − 1} and every

r̄ ∈ {r(a(lk∗−1, S)) + 1, . . . , r(a(lk∗ , S))} we have

r(a(lk̃−1,S))∑
r=r̄

gBS(lk̃,r)lk̃
=

k̃−1∑

k=k∗+1

r(a(lk,S))∑

r=r(a(lk−1,S))+1

gBS(lk̃,r)lk̃
+

r(a(lk∗ ,S))∑
r=r̄

gBS(lk̃,r)lk̃

≤
k̃−1∑

k=k∗+1

plk̃

plk

r(a(lk,S))∑

r=r(a(lk−1,S))+1

gBS(lk,r)lk +
plk̃

plk∗

r(a(lk∗ ,S))∑
r=r̄

gBS(lk∗ ,r)lk∗

≤ 0

where the first inequality holds by (i) and the second one by equation (A.15). Therefore, σ̂S
lk̃

(lk̃) > σ̂S
lk̃

(lk̃−1)

by assumption (4.4) and Lemma 2.3. 2

Proof of Lemma 4.2. Recall that σ0 = σu = (1 . . . n) and {a1, . . . , as} is the set of new-max jobs according

to σu with a1 < . . . < as. We distinguish three cases.

Case 1: S∩{a1, . . . , as} = ∅. Then, σ̂S
i = σu for every i ∈ S and assertions (i) and (ii) are direct consequence

of the definition of σ̂T
i , assertion (iii) follows by Lemma 4.1, and assertion (iv) follows since GT

i ≥ 0 = GS
i

by definition of GT
i .

Case 2: S ∩ {a1, . . . , as} = {au, . . . , av} and T ∩ {a1, . . . , as} = {au, . . . , aw} with au ≤ . . . ≤ av ≤ . . . ≤ aw.

Then, we have σ̂S
i = σ̂T

i = σu for every i ∈ S with i < au and σ̂S
i = σ̂T

i for every i ∈ S with i ≥ au. Hence,

assertions (i), (ii), (iii), and (iv) are immediate.

Case 3: S ∩ {a1, . . . , as} = {au, . . . , av} and T ∩ {a1, . . . , as} = {aũ, . . . , aṽ} with aũ < au ≤ av ≤ aṽ. Let

S = {iS , . . . , jS} and partition S according to (A.5). Let i ∈ S and let a be a new-max job according
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to σ̂S
i−1 (σ̂T

i−1). During the remaining of this proof we will denote by rS(i, a) (rT (i, a)) the index of the

segment defined by a according to σ̂S
i−1 (σ̂T

i−1). Moreover, by si(S) we denote the number of segments before

reordering player i in S.

Note that for every i ∈ {iS , . . . , au} we have σ̂S
i = σu and therefore assertions (i), (ii), (iii), and (iv)

follow using the same kind of reasoning as in Case 1.

Subsequently, assume that the result holds for {iS , . . . , lk − 1} for some k ∈ {1, . . . , m}. Then, we have

BT (lk, rT (lk, au−1) + r) = BS(lk, r) (A.16)

for every r ∈ {1, . . . , slk(S)} \ {rS(lk, a(l1, S)), . . . , rS(lk, a(lk−1, S))}.
Besides, BT (lk, rT (lk, au−1) + r) ⊂ BS(lk, r) for every r ∈ {rS(lk, a(l1, S)), . . . , rS(lk, a(lk−1)) with

BS(lk, r) \BT (lk, rT (lk, au−1) + r) ⊂ {l1, . . . , lk−1}. (A.17)

Note that it may be the case that a(lk, S) = a(lk+1, S) for some k ∈ {1, . . . , k− 2}. We define recursively

k∗w, with w ∈ {1, . . . , t}, as

k∗w = min{k̄ ∈ {k∗w−1 + 1, . . . , k − 1} | a(lk̄, S) 6= a(lk̄−1, S)} (A.18)

where k∗0 = 0. Note that σ̂S
lk−1(lk∗w−1

) < σ̂S
lk−1(lk∗w) for every w ∈ {2, . . . , t} by Lemma A.4 (ii).

Then, by equation (A.16) it follows

gBT (lk,rT (lk,au−1)+r)lk = gBS(lk,r)lk (A.19)

for every r ∈ {1, . . . , slk(S)} \ {rS(lk, a(l1, S)), . . . , rS(lk, a(lk−1, S))}.
Besides, one can see analogously as in equation (A.8) that

gBT (lk,rT (lk,au−1)+rS(lk,a(lk∗w ,S)))lk ≤
plk

plk∗w

gBS(lk∗w ,rS(lk∗w ,a(lk∗w ,S)))lk∗w
(A.20)

for every w ∈ {1, . . . , t}.
By definition of rS(lk∗w , S), w ∈ {1, . . . , t}, and assumption (4.4) we know that

rS(lk∗w ,a(lk∗w ,S))∑
r=r̄

gBS(lk∗w ,r)lk∗w
≤ 0 (A.21)

for every r̄ ∈ {rS(lk∗w , a(lk∗w−1
, S)) + 1, . . . , rS(lk∗w , a(lk∗w , S))}. Then,

rS(lk,a(lk∗t ,S))∑
r=r̄

gBT (lk,rT (lk,au−1)+r)lk =
t∑

w=w̄+1

rS(lk,a(lk∗w ,S))∑

r=rS(lk,a(lk∗
w−1

,S))

gBT (lk,rT (lk,au−1)+r)lk +

rS(lk,a(lk∗̄w ,S))∑
r=r̄

gBT (lk,rT (lk,au−1)+r)lk

≤
t∑

w=w̄+1

plk

plk∗w

rS(lk,a(lk∗w ,S))∑

r=rS(lk,a(lk∗
w−1

,S))

gBS(lk∗w ,r)lk∗w
+

plk

plk∗̄w

rS(lk,a(lk∗̄w ,S))∑
r=r̄

gBS(lk∗̄w ,r)lk∗̄w

≤ 0

(A.22)
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for every w̄ ∈ {1, . . . , t} and every r̄ ∈ {rS(lk, a(lk∗w̄−1
, S))+1, . . . , rS(lk, a(lk∗w̄ , S))}. Here, the first inequality

holds by equation (A.20) and the second one by equation (A.21).

First, suppose that plk ≥ pau
. Then, σ̂T

lk
(lk) > σ̂T

lk
(au) by Lemma 2.2. Hence, σ̂T

lk
(lk) = σ̂S

lk
(lk) by

equations (A.19) and (A.22), and by assumption (4.4).

Second, suppose that plk < pau
. Then, it may be the case that for some r̂ ∈ {1, . . . , rT (lk, au−1)}

we have
∑rT (lk,a(lk,S))

r=r̂ gBT (lk,r)lk > 0. In such a case σ̂T
lk

(lk) < σ̂S
lk

(lk) and σ̂T
lk

(lk) < σ̂T
lk

(au), otherwise

σ̂T
lk

(lk) = σ̂S
lk

(lk) by equation (A.19) and assumption (4.4).

Hence (i) and (ii) are satisfied. Assertion (iii) is an immediate consequence of Lemma A.3, and the

fact that lk is not a new-max job according σ̂S
lk

since plk < pa(lk−1,S) < pa(lk,S). Assertion (iv) is a direct

consequence of (ii) together with equation (A.19).

Finally, suppose that the result is true for {iS , . . . , i− 1} with lk < i < lk+1. Then, we have

BT (i, rT (lk, au−1) + r) = BS(i, r) (A.23)

and

gBT (i,rT (lk,au−1)+r)i = gAS(i,r)i (A.24)

for every r ∈ {1, . . . , r(i, a(lk, S))− 1}.
Moreover, σ̂T

i (i) > σ̂T
i (au) by Lemma 2.2. Hence, σ̂T

i (i) = σ̂S
i (i) by equation (A.24) and assumption (4.4).

Assertion (iii) follows by induction together with Lemma A.3, and (i). Assertion (iv) is a direct consequence

of (i) together with equation (A.24). 2

Proof of Lemma 4.3. Recall that σ0 = σu = (1 . . . n) and {a1, . . . , as} is the set of new-max jobs according

to σu with a1 < . . . < as. We will distinguish three cases.

Case 1: S ∩ {a1, . . . , as} = ∅. Then, σ̂S
i = σu for every i ∈ S and

GS
i = 0 =

∑

r:N(i,r)⊂S

hN(i,r)

by definition of hN(i,r).

Case 2: a1 ∈ S . Then, we have σ̂S
i = σ̂N

i for every i ∈ S and

GS
i = GN

i =
∑

r:N(i,r)⊂S

hN(i,r).

Case 3: a1 6∈ S, S ∩ {a1, . . . , as} = {au, . . . , av} with au ≤ . . . ≤ av. Let S = {iS , . . . , jS} and consider the

partition (A.5). Let k ∈ {1, . . . , m} and let i ∈ {lk + 1, . . . , lk+1 − 1}. By Lemma 4.2 (i) and (iv) we know
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that σ̂N
i (i) = σ̂S

i (i) and GN
i = GS

i . Hence,

GS
i = GN

i =
∑

r:N(i,r)⊂S

hN(i,r)

where the second equality follows by σ̂N
i (i) = σ̂S

i (i) and the fact that hN(i,r) = 0 for every r ≥ r(i, a(i, S)).

Next, consider lk with k ∈ {1, . . . , m}. If σ̂N
lk

(lk) = σ̂S
lk

(lk) we are in the previous situation. Assume that

σ̂N
lk

(lk) < σ̂S
lk

(lk). Then,

GS
i =

r(i,a(S,i))−1∑
r=1

gAS(i,r)i =
r(i,a(S,i))−1∑

r=1

gAN (i,r)i =
r(i,a(S,i))−1∑

r=1

hN(i,r) =
∑

r:N(i,r)⊂S

hN(i,r)

where the first equality follows by definition of GS
i and r(i, a(S, i)), the second one by equation (A.19) with

T = N and the fact that BS(i, r) = AS(i, si − r + 1), the third equality is a direct consequence of the

definition of hN(i,r) and the last one follows by equation (A.22) with BS(i, r) = AS(i, si − r + 1) and the

definition of hN(i,r). 2
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Calleja, P., Estévez-Fernández, A., Borm, P. and Hamers, H. (2006), ‘Job scheduling, cooperation, and

control’, Operations Research Letters 34, 22–28.

Cheng, T. C. E. and Shakhlevich, N. (1999), ‘Proportionate flow shop with controllable processing times’,

Journal of Scheduling 2(6), 253–265.

22



Curiel, I., Hamers, H. and Klijn, F. (2002), Sequencing games: a survey, in P. Borm and H. Peters, eds,

‘Chapters in Game Theory: in Honor of Stef Tijs’, Kluwer Academic Publishers, Boston, pp. 27–50.

Curiel, I., Pederzoli, G. and Tijs, S. H. (1989), ‘Sequencing games’, European Journal of Operational Research

40(3), 344–351.

Curiel, I., Potters, J., Prasad, R., Tijs, S. and Veltman, B. (1994), ‘Sequencing and cooperation’, Operations

Research 42, 566–568.
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