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Université Paris VI

Armelle Guillou

Université Paris VI
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1 Introduction

Let X1, ..., Xn be a sample of n independent and identically distributed (i.i.d.)

random variables, distributed according to an unknown distribution function (df)

F . A question of great interest is how to obtain a good estimator for a quantile

F←(1− ε) = inf{y : F (y) ≥ 1− ε},



where ε is so small that this quantile is situated on the border of or beyond the

range of the data. Estimating such extreme quantiles is directly linked to the

accurate modeling and estimation of the tail of the distribution

F (x) := 1− F (x) = P(X > x)

for large thresholds x. From extreme value theory, the behaviour of such extreme

quantile estimators is known to be governed by one crucial parameter of the

underlying distribution, the extreme value index. This parameter is important

since it measures the tail heaviness of F . This estimation has been widely studied

in the literature: we mention for instance Hill (1975), Smith (1987), Dekkers et

al. (1989), and Drees et al. (2004).

However, in classical applications such as the analysis of lifetime data (survival

analysis, reliability theory, insurance) a typical feature which appears is censor-

ship. Quite often, X represents the time elapsed from the entry of a patient, say,

in a follow-up study until death. If at the time that the data collection is per-

formed, the patient is still alive or has withdrawn from the study for some reason,

the variable of interest X will not be available. A convenient way to model this

situation is the introduction of a random variable Y , independent of X, such that

only

Z = X ∧ Y and δ = 1l{X≤Y } (1)

are observed. The indicator variable δ determines whether X has been censored

or not. Given a random sample (Zi, δi), 1 ≤ i ≤ n, of independent copies of (Z, δ),

it is our goal to make inference on the right tail of the unknown lifetime df F ,

while G, the df of Y , is considered to be a nonparametric nuisance parameter.

Statistics of extremes of randomly censored data is a new research field. The

statistical problems in this field are difficult, since typically only a small fraction

of the data can be used for inference in the far tail of F and in the case of

censoring these data are, moreover, not fully informative. The topic has first

been mentioned in Reiss and Thomas (1997, Section 6.1) where an estimator

of a positive extreme value index is introduced, but no (asymptotic) results are

derived. Recently, Beirlant et al. (2006) proposed estimators for the general
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extreme value index and for an extreme quantile. They made a start with the

analysis of the asymptotic properties of some estimators, but only when using

the data above a deterministic threshold. Obviously, in practice, the threshold is

random (typically an order statistic), which renders the proof of the asymptotics

much more complicated.

For almost all applications of extreme value theory, the estimation of the extreme

value index is of primordial importance. Consequently, it is the main aim of

this paper to propose a unified method to prove asymptotic normality for various

estimators of the extreme value index under random censoring. We apply our

estimators to the problem of extreme quantile estimation under censoring. We

illustrate our results with simulations and also apply our methods to AIDS survival

data.

We consider data on patients diagnosed with AIDS in Australia before 1 July 1991.

The source of these data is Dr P. J. Solomon and the Australian National Centre

in HIV Epidemiology and Clinical Research; see Venables and Ripley (2002). The

information on each patient includes gender, date of diagnosis, date of death or

end of observation, and an indicator which of the two is the case. The data set

contains 2843 patients, of which 1761 died; the other survival times are right

censored. We will apply our methodology to the 2754 male patients (there are

only 89 women in the data set). Apart from assessing the heaviness of the right

tail of the survival function 1−F by means of the estimation of the extreme value

index, it is also important to estimate very high quantiles of F , thus getting a

good indication of how long very strong men will survive AIDS.

Another application, that we will not pursue in this paper, is to annuity insurance

contracts. Life annuities are contractual guarantees, issued by insurance compa-

nies, pension plans, and government retirement systems, that offer promises to

provide periodic income over the lifetime of individuals. If we monitor the poli-

cyholders during a certain period, the data are right censored since many policy-

holders survive until the end of the observation period. We are interested in the

far right tail of the future lifetime distribution of the annuitants, since longevity

is an important and difficult risk to evaluate for insurance companies. In the
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case of life annuities it needs to be estimated as accurately as possible for setting

adequate insurance premiums.

We will study estimators for the extreme value index of F , assuming that F and

G are both in the max-domain of attraction of an extreme value distribution.

In Section 2, we introduce various estimators of this extreme value index and

we establish in a unified way their asymptotic behavior; we also introduce an

estimator for very high quantiles. Some examples are given in Section 3 and a

small simulation study is performed. Our estimators are applied to the AIDS data

in Section 4.

2 Estimators and main results

Let X1, ..., Xn be a sequence of i.i.d. random variables from a df F . We denote

the order statistics by

X1,n ≤ . . . ≤ Xn,n.

The weak convergence of the centered and standardized maxima Xn,n, means the

existence of sequences of constants an > 0 and bn and a df G̃ such that

lim
n→∞

P
(Xn,n − bn

an

≤ x
)

= G̃(x), (2)

for all x where G̃ is continuous. The work by Fisher and Tippett (1928), Gnedenko

(1943), and de Haan (1970) answered the question on the possible limits and

characterized the classes of dfs F having a certain limit in (2).

This convergence result is our main assumption. Up to location and scale, the

possible limiting dfs G̃ in (2) are given by the so-called extreme value distributions

Gγ defined by

Gγ(x) =

{
exp(−(1 + γx)−1/γ) if γ 6= 0,

exp(− exp(−x)) if γ = 0.
(3)

We say that F is in the (max-)domain of attraction of Gγ, notation F ∈ D(Gγ).

Here γ is the extreme value index. Knowledge of γ is crucial for estimating the

right tail of F .
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We review briefly some estimators of γ that have been proposed in the literature.

The most famous one is probably the Hill (1975) estimator

γ̂
(H)
X,k,n := M

(1)
X,k,n :=

1

k

k∑
i=1

log Xn−i+1,n − log Xn−k,n, (4)

where k ∈ {1, . . . , n}. However, this estimator is only useful when γ > 0. A

generalization which works for any γ ∈ R is the so-called Moment estimator,

introduced in Dekkers et al. (1989):

γ̂
(M)
X,k,n := M

(1)
X,k,n + SX,k,n := M

(1)
X,k,n + 1− 1

2

(
1− (M

(1)
X,k,n)2

M
(2)
X,k,n

)−1

, (5)

with

M
(2)
X,k,n :=

1

k

k∑
i=1

(log Xn−i+1,n − log Xn−k,n)2.

The Hill estimator can be derived in several ways, one very appealing being the

slope of the Pareto quantile plot, which consists of the points

(
log

n + 1

i
, log Xn−i+1,n

)
, i = 1, . . . , k.

This plot has been generalized in Beirlant et al. (1996) by defining UHi,n =

Xn−i,nγ̂
(H)
X,i,n and by considering the points

(
log

n + 1

i
, log UHi,n

)
, i = 1, . . . , k.

This generalized quantile plot becomes almost linear for small enough k, i.e. for

extreme values. It follows immediately that the slope of this graph will estimate

γ no matter if it is positive, negative or zero. An estimator of this slope is given

by

γ̂
(UH)
X,k,n :=

1

k

k∑
i=1

log UHi,n − log UHk+1,n. (6)

A quite different estimator of γ, is the so-called maximum likelihood (ML) estima-

tor. (Note that the classical, parametric ML approach is not applicable, because
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F is not in a parametric family.) The approach relies on results in Balkema and

de Haan (1974) and Pickands (1975), stating that the limit distribution of the

exceedances Ej = Xj − t (Xj > t) over a threshold t, when t tends to the right

endpoint of F , is given by a Generalized Pareto distribution depending on two

parameters, γ and σ. In practice t is replaced by an order statistic Xn−k,n, and

the resulting ML-estimators are denoted by γ̂
(ML)
X,k,n and σ̂

(ML)
X,k,n.

In the case of censoring, we would like to adapt all these methods. Actually, we

will provide a general adaptation of estimators of the extreme value index and a

unified proof of their asymptotic normality; the four estimators above are special

cases of this. We assume that both F and G are absolutely continuous and that

F ∈ D(Gγ1) and G ∈ D(Gγ2), for some γ1, γ2 ∈ R. The extreme value index of H,

the df of Z defined in (1), exists and is denoted by γ. Let τF = sup{x : F (x) < 1}
(resp. τG and τH) denote the right endpoint of the support of F (resp. G and

H). In the sequel, we assume that the pair (F,G) is in one of the following three

cases:



case 1: γ1 > 0, γ2 > 0, in this case γ = γ1γ2

γ1+γ2

case 2: γ1 < 0, γ2 < 0, τF = τG, in this case γ = γ1γ2

γ1+γ2
.

case 3: γ1 = γ2 = 0, τF = τG = ∞, in this case γ = 0

(7)

(In case 3 we also define for convenient presentation γ1γ2

γ1+γ2
= γ.) The other possi-

bilities are not very interesting. Typically they are very close to the “uncensored

case” (which has been studied in detail in the literature) or the “completely cen-

sored situation” (where estimation is impossible).

The first important point that should be mentioned is the fact that all the pre-

ceding estimators (Hill, Moment, UH or ML) are obviously not consistent if they

are based on the sample Z1, ..., Zn, that means if the censoring is not taken into

account. Indeed, they all converge to γ, the extreme value index of the Z-sample,

and not to γ1, the extreme value index of F . Consequently, we have to adapt all

these estimators to censoring. We will divide all these estimators by the propor-

tion of non-censored observations in the k largest Zs:

γ̂
(c,.)
Z,k,n =

γ̂
(.)
Z,k,n

p̂
where p̂ =

1

k

k∑
j=1

δ[n−j+1,n],
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with δ[1,n], ..., δ[n,n] the δs corresponding to Z1,n, ..., Zn,n, respectively. γ̂
(.)
Z,k,n could

be any estimator not adapted to censoring, in particular γ̂
(H)
Z,k,n, γ̂

(M)
Z,k,n, γ̂

(UH)
Z,k,n or

γ̂
(ML)
Z,k,n . It will be our main aim to study in detail the asymptotic normality of

these estimators.

To illustrate the difference between the estimators, adapted and not adapted

to censoring, we plot in Figure 1(a), γ̂
(UH)
Z,k,n (dashed line) and γ̂

(c,UH)
Z,k,n (full line)

as a function of k for the AIDS survival data. Note that the censoring in the

tail is higher than 70%, much higher than the censoring in the whole sample.

Nevertheless, we see a quite stable plot when k ranges from about 200 (or 350) to

1200 and a substantial difference between both estimators. Similar graphs could

be presented for the other estimators.
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Figure 1: UH-estimator adapted (full line) and not adapted (dashed line) to

censoring (a) for the extreme value index and (b) for the extreme quantile with

ε = 0.001 for the AIDS survival data.

Let us now consider the estimation of an extreme quantile xε = F←(1 − ε).

Denoting with F̂n the Kaplan-Meier (1958) product-limit estimator, we can adapt

the classical estimators proposed in the literature as follows:
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x̂
(c,.)
ε,k = Zn−k,n + â

(c,.)
Z,k,n

(
1− bFn(Zn−k,n)

ε

)bγ(c,.)
Z,k,n − 1

γ̂
(c,.)
Z,k,n

, (8)

where

â
(c,.)
Z,k,n =

Zn−k,n M
(1)
Z,k,n (1− SZ,k,n)

p̂
, for M and UH,

and

â
(c,ML)
Z,k,n =

σ̂
(ML)
Z,k,n

p̂
.

Note that these estimators are defined under the assumption that the two end-

points τF and τG are equal, but possibly infinite. This is true for the three cases

defined in (7). Note also that we have excluded the Hill estimator since it only

works in case 1.

Again, to observe the difference between the adapted and not adapted estimators,

we plot in Figure 1(b), x̂
(UH)
0.001,k (dashed line) and x̂

(c,UH)
0.001,k (full line) for the AIDS

data. The difference between both estimators (for k between 250 and 500) is

about 10 years.

Beirlant et al. (2006) considered asymptotic properties of some of these estima-

tors, but only for a deterministic threshold, that is when Zn−k,n is replaced by t

in the preceding formulas. Note also that the asymptotic bias of these estima-

tors has not been studied. Our aim in this paper is to establish the asymptotic

normality (including bias and variance) of all these estimators based on k upper

order statistics (or equivalently on a random threshold Zn−k,n), using a unified

approach.

To specify the asymptotic bias of the different estimators, we use a second order

condition phrased in terms of the tail quantile function UH(x) = H−1(1 − 1
x
).

From the theory of generalized regular variation of second order outlined in de

Haan and Stadtmüller (1996), we assume the existence of a positive function a

and a second eventually positive function a2 with limx→∞ a2(x) = 0, such that the
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limit

lim
x→∞

1

a2(x)

{
UH(ux)− UH(x)

a(x)
− hγ(u)

}
= k(u) (9)

exists for u ∈ (0,∞), with hγ(u) =
∫ u

1
zγ−1dz. It follows that there exists a c ∈ R

and a second order parameter ρ ≤ 0, for which the function a satisfies

lim
x→∞

{
a(ux)

a(x)
− uγ

}
/a2(x) = cuγhρ(u). (10)

The function a2 is regularly varying with index ρ. As usual, we will assume that

ρ < 0 and we will also assume that the slowly varying part of a2 is asymptotically

equivalent to a positive constant. For an appropriate choice of the function a, the

function k that appears in (9) admits the representation

k(u) = Ahγ+ρ(u), (11)

with A 6= 0; now c in (10) is equal to 0. We denote the class of second order regu-

larly varying functions UH (satisfying (9)-(11) with c = 0) by GRV2(γ, ρ; a(x), a2(x); A).

In Appendix 1, we give an overview of the possible forms of the GRV2 functions

and the corresponding representations for UH .

In the statement of our results, we use the following notation (see Appendix 1):

b(x) =





Aρ[ρ+γ(1−ρ)]
(γ+ρ)(1−ρ)

a2(x) if 0 < −ρ < γ or if 0 < γ < −ρ with D = 0,

− γ3

(1+γ)
x−γL2(x) if γ = −ρ,

− γ3D
(1+γ)

x−γ if 0 < γ < −ρ with D 6= 0,
1

log2 x
if γ = 0,

Aρ(1−γ)
(1−γ−ρ)

a2(x) if γ < ρ,

− γ
1−2γ

`+
τH

xγ if ρ < γ < 0,

γ
1−2γ

[
A(1− γ)− `+

τH

]
xγ if γ = ρ,

and

ρ̃ =




−γ if 0 < γ < −ρ with D 6= 0,

ρ if − ρ ≤ γ or if 0 < γ < −ρ with D = 0, or if γ < ρ,

γ if ρ ≤ γ ≤ 0.
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Before stating our main result, define:

p(z) = P (δ = 1 |Z = z) .

Note that in cases 1 and 2, limz→τH
p(z) exists and is equal to γ2

γ1+γ2
=: p ∈ (0, 1).

Assume that in case 3 this limit also exists and is positive and denote it again by

p. By convention we also define γ2

γ1+γ2
= p for that case.

In the sequel, k = kn is an intermediate sequence, i.e. a sequence such that k →∞
and k

n
→ 0, as n →∞. Our main result now reads as follows.

Theorem 1. Under the assumptions that, for n →∞,

{ √
k a2

(
n
k

) → α1 ∈ R for the ML-estimator√
k b

(
n
k

) → α1 ∈ R for the other three estimators,
(12)

1√
k

k∑
i=1

[
p
(
H−1

(
1− i

n

))
− p

]
−→ α2 ∈ R, (13)

and

√
k sup
{1− k

n
≤t<1,|t−s|≤C

√
k

n
,s<1}

∣∣∣p
(
H−1(t)

)
− p

(
H−1(s)

)∣∣∣ −→ 0 for all C > 0, (14)

we have for the four estimators (for the Hill estimator we assume case 1 holds

and for the ML-estimator γ > −1
2
)

√
k
(
γ̂

(c,.)
Z,k,n − γ1

)
d−→ N

(
1

p

(
α1b0 − γ1α2

)
,
σ2 + γ2

1 p(1− p)

p2

)
,

where α1b0 (resp. σ2) denotes the bias (resp. the variance) of
√

k
(
γ̂

(.)
Z,k,n − γ

)
.

This leads to the following corollary, the proof of which is straightforward using

the expressions for the asymptotic bias-terms of the four “uncensored” estimators,

see Beirlant et al. (2005) and Drees et al. (2004).

Corollary 1. Under the assumptions of Theorem 1, we have

√
k
(
γ̂

(c,H)
Z,k,n − γ1

)
d−→ N

(
µ(c,H),

γ3
1

γ

)
in case 1
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√
k
(
γ̂

(c,M)
Z,k,n − γ1

)
d−→





N
(
µ(c,M),

γ2
1

γ2

(
1 + γ1γ

))
in case 1

N
(
µ(c,M),

γ2
1(1−γ)2(1−2γ)(1−γ+6γ2)

γ2(1−4γ)(1−3γ)
+ γ2

1

(
γ1

γ
− 1

))
in case 2

N
(
µ(c,M),

(
γ1+γ2

γ2

)2)
in case 3

√
k
(
γ̂

(c,UH)
Z,k,n − γ1

)
d−→





N
(
µ(c,UH),

γ2
1

γ2

(
1 + γ1γ

))
in case 1

N
(
µ(c,UH),

γ2
1(1−γ)(1+γ+2γ2)

γ2(1−2γ)
+ γ2

1

(
γ1

γ
− 1

))
in case 2

N
(
µ(c,UH),

(
γ1+γ2

γ2

)2)
in case 3

√
k
(
γ̂

(c,ML)
Z,k,n − γ1

)
d−→ N

(
µ(c,ML),

γ2
1

γ2

[
1 + γ(2 + γ1)

])
in cases 1, 3, and 2 with γ > −1

2

where

µ(c,H) := −γ1α2

p
+

α1

p

γ

ρ̃ + γ(1− ρ̃)

µ(c,M) := −γ1α2

p
+

α1

p
·





1
1−eρ in case 1
2γ−1
eρ(1−eρ)

in case 2, if ρ < γ

1−2γ
(1−γ)(1−3γ)

A(1−γ)2−(γ+1)
`+
τH

A(1−γ)− `+
τH

in case 2, if ρ = γ

1−2γ
1−2γ−eρ in case 2, if γ < ρ

1 in case 3

µ(c,UH) := −γ1α2

p
+

α1

p(1− ρ̃)

µ(c,ML) := −γ1α2

p
+

α1

p

ρ(γ + 1)A

(1− ρ)(1− ρ + γ)
.

Proof of Theorem 1. We consider the following decomposition

√
k
(
γ̂

(c,.)
Z,k,n − γ1

)
=

1

p̂

√
k
(
γ̂

(.)
Z,k,n − γ

)
+

1

p̂

√
k
(
γ − γ1p̂

)

=
1

p̂

√
k
(
γ̂

(.)
Z,k,n − γ

)
+

γ1

p̂

√
k
( γ2

γ1 + γ2

− p̂
)
. (15)

The asymptotic behavior of
√

k
(
γ̂

(.)
Z,k,n − γ

)
is well-known since this estimator is

11



based on the Z-sample, i.e. on the uncensored situation; see Beirlant et al. (2005)

and Drees et al. (2004).

First note that in case 3, γ1 = γ = 0. Therefore, the second term in the decompo-

sition (15) is exactly 0 as long as p̂ > 0. That means that this case follows, since

p̂
P−→ p > 0. Now we focus in detail on the second term of the decomposition in

(15) for the cases 1 and 2.

To this aim, consider the following construction: Let Z be a random variable with

df H. Let U have a uniform-(0, 1) distribution and be independent of Z. Define

now

δ =

{
1 if U ≤ p(Z)

0 if U > p(Z)

and

δ̃ =

{
1 if U ≤ p

0 if U > p.

We repeat this construction independently n times. It is easy to show that the

resulting pairs (Zi, δi), i = 1, . . . , n, have the same distribution as the initial pairs

(Zi, δi), i = 1, . . . , n, for all n ∈ N, so we continue with the new pairs (Zi, δi).

Moreover, clearly Z and δ̃ are independent and

P
(
|δ − δ̃| = 1 |Z = z

)
= |p− p(z)|.

Consider the order statistics Z1,n ≤ . . . ≤ Zn,n and denote the induced order

statistics of the Us by U[1,n], . . . , U[n,n]. We can write p̂ as follows:

p̂ =
1

k

k∑
j=1

1l{U[n−j+1,n]≤p(Zn−j+1,n)},

and similarly

p̃ :=
1

k

k∑
j=1

δ̃[n−j+1,n] =
1

k

k∑
j=1

1l{U[n−j+1,n]≤p}.

Clearly U[1,n], ..., U[n,n] are i.i.d. and independent of the Z-sample.
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We use the following decomposition:

√
k
(
p̂− p

)
=
√

k
(
p̂− p̃

)
+
√

k
(
p̃− p

)
. (16)

Since p̃
d
= 1

k

∑k
j=1 1l{Uj≤p}, we have

√
k
(
p̃− p

)
d−→ N

(
0, p(1− p)

)
.

Now, we are interested in
√

k
(
p̂ − p̃

)
, which turns out to be a bias-term. It can

be rewritten as follows

√
k
(
p̂− p̃

)
d
=

1√
k

k∑
j=1

[
1l{Uj≤p(Zn−j+1,n)} − 1l{Uj≤p}

]

=
1√
k

k∑
j=1

[
1l{Uj≤p(Zn−j+1,n)} − 1l{Uj≤p(H−1(1− j

n
))}

]

+
1√
k

k∑
j=1

[
1l{Uj≤p(H−1(1− j

n
))} − 1l{Uj≤p}

]

=: T1,k + T2,k.

Then, under the assumptions (13) and (14), the convergence in probability of T2,k

to α2 follows from a result in Chow and Teicher (1997), p.356.

So we need now to show that T1,k
P−→ 0. To this aim, write Vi = H(Zi), so that

Zi = H−1(Vi). The Vi are i.i.d. uniform-(0, 1). Write also r(t) = p(H−1(t)). Then

T1,k =
1√
k

k∑
j=1

[
1l{Uj≤r(Vn−j+1,n)} − 1l{Uj≤r(1− j

n
)}

]
.

By the weak convergence of the uniform tail quantile process we have uniformly

in 1 ≤ j ≤ k,

Vn−j+1,n−
(
1− j

n

)
= OP

(√k

n

)
.

13



Let η > 0. Using (14), we have with arbitrarily high probability, for large n,

|T1,k| ≤ 1√
k

k∑
j=1

∣∣∣1l{Uj≤r(Vn−j+1,n)} − 1l{Uj≤r(1− j
n

)}

∣∣∣

d
=

1√
k

k∑
j=1

1l{Uj≤|r(Vn−j+1,n)−r(1− j
n

)|} ≤
1√
k

k∑
j=1

1l{Uj≤ η√
k
}.

Using the aforementioned result in Chow and Teicher (1997), p.356, and the fact

that η > 0 can be chosen arbitrarily small, T1,k
P−→ 0 follows.

Finally, combining (15) and (16) yields

√
k
(
γ̂

(c,.)
Z,k,n − γ1

)
=

1

p̂

(√
k
(
γ̂

(.)
Z,k,n − γ

)
− γ1

√
k
(
p̃− p

))
− γ1α2

p̂
+ oP(1), (17)

with the two terms within the brackets independent, since the first one is based

on the Z-sample and the second one on the U -sample. Therefore, under the

assumptions (12)–(14), we have

√
k
(
γ̂

(c,.)
Z,k,n−γ1

)
d−→ N

(
1

p

(
α1b0−γ1α2

)
,
σ2 + γ2

1 p(1− p)

p2

)
. ¤

3 Examples and small simulation study

In this section we consider two examples: first a Burr distribution censored by

another Burr distribution (so an example of case 1), and second a ReverseBurr

distribution censored by another ReverseBurr distribution (an example of case 2).

We show that these distributions satisfy all the assumptions and calculate the

bias-terms explicitly. In particular, we will see how assumptions (12) and (13)

compare. We also provide simulations to illustrate the behavior of our estimators

for these distributions.

Example 1: X ∼ Burr(β1, τ1, λ1) and Y ∼ Burr(β2, τ2, λ2), β1, τ1, λ1, β2, τ2, λ2 >

0.
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In that case

1− F (x) =
( β1

β1 + xτ1

)λ1

= x−τ1λ1βλ1
1

(
1 + β1x

−τ1
)−λ1

, x > 0;

1−G(x) =
( β2

β2 + xτ2

)λ2

= x−τ2λ2βλ2
2

(
1 + β2x

−τ2
)−λ2

, x > 0.

We can infer that

UH(x) = H−1
(
1− 1

x

)
=

(
βλ1

1 βλ2
2 x

) 1
τ1λ1+τ2λ2

[
1− γη

(
βλ1

1 βλ2
2 x

)ρ

(1 + o(1))

]

with τ = min(τ1, τ2), ρ = −γτ , and η =





λ1β1 if τ1 < τ2

λ2β2 if τ1 > τ2 .

λ1β1 + λ2β2 if τ1 = τ2

The different parameters of interest are the following

γ1 =
1

λ1τ1

, γ2 =
1

λ2τ2

and γ =
1

λ1τ1 + λ2τ2

.

First, we check assumption (14). Using the above approximation of H−1, it follows

for s ≤ t < 1 and s large enough, that

|p(H−1(t))− p(H−1(s))| ≤ C̃ ((1− s)γτ − (1− t)γτ ) ,

for some C̃ > 0. It now easily follows that in case γτ ≥ 1, the left hand side of

(14) tends to 0. In case γτ < 1 the left hand side of (14) is of order
√

k
(√

k
n

)γτ

=√
k

(
n
k

)ρ
kρ/2, which tends to 0 when (13) holds (see below).

The asymptotic bias of
√

k(γ̂
(.)
Z,k,n−γ) can be explicitly computed (from Corollary

1) and is asymptotically equivalent to:

−η
(
βλ1

1 βλ2
2

)ρ√
k

(n

k

)ρ

·





γρ
1−ρ

for the Hill estimator
ρ(1+γ)(γ+ρ)

(1−ρ)(1−ρ+γ)
for the ML-estimator .

ρ[ρ+γ(1−ρ)]
(1−ρ)2

for the Moment and UH-estimators

They are all of the same order.

We obtain another bias-term from assumption (13). Direct computations lead to

p(z)− p =
γ2

γ1γ2

[
− β1z

−τ1(1 + o(1)) + β2z
−τ2(1 + o(1))

]
,

15



when τ1 6= τ2, or τ1 = τ2 and β1 6= β2. Consequently, assumption (13) is equivalent

to

β
γ2

γ1γ2

(
βλ1

1 βλ2
2

)ρ 1

1− ρ

√
k
(n

k

)ρ

−→ α2,

with β =




−β1 if τ1 < τ2

β2 if τ1 > τ2

β2 − β1 if τ1 = τ2

.

So both bias-terms are of the same order. Only, when τ1 = τ2 and β1 = β2 (in

particular when F ≡ G) the biases of the estimators of γ dominate.

Example 2: X ∼ ReverseBurr(β1, τ1, λ1, x+) and Y ∼ ReverseBurr(β2, τ2, λ2, x+),

β1, τ1, λ1, β2, τ2, λ2, x+ > 0.

In that case

1− F (x) =
( β1

β1 + (x+ − x)−τ1

)λ1

= (x+ − x)τ1λ1βλ1
1

(
1 + β1(x+ − x)τ1

)−λ1

, x < x+ ;

1−G(x) =
( β2

β2 + (x+ − x)−τ2

)λ2

= (x+ − x)τ2λ2βλ2
2

(
1 + β2(x+ − x)τ2

)−λ2

, x < x+ .

Define τ and η as in Example 1, but set ρ = γτ now. We can infer that

UH(x) = H−1
(
1− 1

x

)
= x+−

(
βλ1

1 βλ2
2 x

)− 1
τ1λ1+τ2λ2

[
1− γη

(
βλ1

1 βλ2
2 x

)ρ

(1 + o(1))

]
.

The different parameters of interest are the following

γ1 = − 1

λ1τ1

; γ2 = − 1

λ2τ2

; γ = − 1

λ1τ1 + λ2τ2

and τF = τG = τH = x+.

Note that we can easily prove (as in Example 1) that assumption (14) is satisfied

if we assume (13).

The asymptotic bias of
√

k(γ̂
(.)
Z,k,n − γ) can be explicitly computed (again from

Corollary 1) and is asymptotically equivalent with:

• For the UH-estimator:




− γ2τ(1−γ)(1+τ)
(1−γ−γτ)(1−γτ)

η
(
βλ1

1 βλ2
2

)ρ√
k

(
n
k

)ρ

if τ < 1

γ2

(1−γ)(1−2γ)

(
βλ1

1 βλ2
2

)ρ[
− 2η(1− γ) + 1

x+

]√
k

(
n
k

)ρ

if τ = 1

γ2

(1−γ)(1−2γ)x+

(
βλ1

1 βλ2
2

)γ √
k

(
n
k

)γ

if τ > 1
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• For the Moment estimator:




−γ2τ(1−γ)(1+τ)(1−2γ)
(1−γ−γτ)(1−2γ−γτ)

η
(
βλ1

1 βλ2
2

)ρ√
k

(
n
k

)ρ

if τ < 1

− γ2

(1−γ)(1−3γ)

(
βλ1

1 βλ2
2

)ρ [
2 η(1− γ)2 − γ+1

x+

]√
k

(
n
k

)ρ

if τ = 1

− γ
(1−γ)x+

(
βλ1

1 βλ2
2

)γ √
k

(
n
k

)γ

if τ > 1

• For the ML-estimator, if γ > −1
2
:

− γ2τ(1 + γ)(1 + τ)

(1− γτ)(1 + γ − γτ)
η
(
βλ1

1 βλ2
2

)ρ√
k
(n

k

)ρ

.

They are all of the same order if τ ≤ 1, otherwise the biases of the Moment and

UH-estimators dominate the one of the ML-estimator.

Similarly to Example 1: if τ1 6= τ2, or τ1 = τ2 and β1 6= β2, direct computations

lead to

p(z)− p =
γ2

γ1γ2

[
− β1(x+ − z)τ1(1 + o(1)) + β2(x+ − z)τ2(1 + o(1))

]
.

Consequently, assumption (13) is equivalent in that case to

β
γ2

γ1γ2

(
βλ1

1 βλ2
2

)ρ 1

1− ρ

√
k
(n

k

)ρ

−→ α2.

Again, this order is the same as the order of the asymptotic bias-terms of all the

estimators, in case τ ≤ 1 and dominated by the one of the Moment and UH-

estimators, otherwise. When τ1 = τ2 and β1 = β2 the biases of the estimators of

γ dominate.

In order to illustrate these two examples, we simulate 100 samples of size 500 from

the following distributions:

• a Burr(10, 4, 1) censored by a Burr(10, 1, 0.5),

• a ReverseBurr(1, 8, 0.5, 10) censored by a ReverseBurr(10, 1, 0.5, 10).

For both examples p = 8
9
, meaning that the percentage of censoring in the right

tail is close to 11%. In the first case we have γ1 = 1
4
, γ = 2

9
, and ρ = −2

9
, in
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the second case γ1 = −1
4
, γ = −2

9
, and again ρ = −2

9
. In both examples, the

panels (a) and (c) (in Figures 2 and 3) represent the median for the index and

the extreme quantile respectively, whereas the panels (b) and (d) represent the

empirical mean squared errors (MSE) based on the 100 samples. The (very small)

value of ε is 1
5000

; observe that nε = 1
10

. All these estimators plotted are adapted

to censoring. The horizontal line represents the true value of the parameter.

In the first example, we can observe, in the case of the estimation of the index, the

superiority of the Hill estimator adapted to censoring in terms of MSE, the three

others being quite similar. For the extreme quantile estimators, however, there is

much less to decide between all the estimators: they are very stable and close to

the true value of the parameter. A similar observation can be done for the second

example, with a slight advantage for the UH-estimator only, in the case of the

estimation of the index. Note that the medians of the extreme quantile estimates

differ less than 0.1% from the true value.
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Figure 2: A Burr(10, 4, 1) distribution censored by a Burr(10, 1, 0.5) distribution:

UH-estimator (dotted line), Moment estimator (full line), ML-estimator (dashed

line) and Hill estimator (dashed-dotted line); (a) Median and (b) MSE for the

extreme value index; (c) Median and (d) MSE for the extreme quantile with

ε = 1
5000

.
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Figure 3: A ReverseBurr(1, 8, 0.5, 10) distribution censored by a

ReverseBurr(10, 1, 0.5, 10) distribution: UH-estimator (dotted line), Mo-

ment estimator (full line), ML-estimator (dashed line); (a) Median and (b) MSE

for the extreme value index; (c) Median and (d) MSE for the extreme quantile

with ε = 1
5000

.
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4 Application to AIDS survival data

We return to our real data set presented in Section 1 and used in Section 2, i.e.

the Australian AIDS survival data for the male patients diagnosed before 1 July

1991. The sample size is 2754.

First we estimate p = limz→τH
p(z). In Figure 4, we see p̂ as a function of k.

Clearly there is a stable part in the plot when k ranges from about 75 until 175;

for higher k the bias sets in. Note that p̂ is the mean of 0-1 variables, so for a

sample of this size, the estimator is already very accurate. Therefore we estimate

p with the corresponding vertical level in the plot, which is 0.28.
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Figure 4: Estimator of p for the Australian AIDS survival data for the male

patients.

Now we continue with the estimation of the extreme value index γ1 and an extreme

quantile F←(1 − ε), using the UH-method (as in Section 2). We will plot these

estimators again as a function of k, but replace p̂ = p̂(k) already with its estimate

0.28, in order to prevent that the bias plays a dominant role for values of k larger

than 200, say.

In Figure 5(a), the estimator of the extreme value index is presented, whereas

Figure 5(b) shows the extreme quantile estimator for ε = 0.001. The estimator of
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Figure 5: UH-estimator (a) for the extreme value index and (b) for the extreme

quantile with ε = 0.001, for the Australian AIDS survival data for the male

patients.

γ1 is quite stable for values of k between 200 and 300; we estimate it with 0.14.

This indicates that the survival times are heavy tailed. We estimate the extreme

quantile with k-values in the same range, because that range gives again a stable

part in the plot. The corresponding estimated survival time is as high as about

25 years. So, although the estimated median survival time has the low value 1.3

years, due to the somewhat heavy tailed nature of the survival distribution, we

find that exceptionally strong males can survive AIDS for 25 years.
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Appendix 1: Overview of GRV2 functions with ρ < 0

From Vanroelen (2003), we obtain the following representations of UH ; see also the
appendix in Draisma et al. (1999).

• 0 < −ρ < γ: for UH ∈ GRV2(γ, ρ; `+xγ , a2(x);A):

UH(x) = `+xγ
{1

γ
+

A

γ + ρ
a2(x)(1 + o(1))

}
,

• γ = −ρ: for UH ∈ GRV2(γ,−γ; `+xγ , x−γ`2(x);A):

UH(x) = `+xγ
{1

γ
+ x−γL2(x)

}

with L2(x) = B +
∫ x
1 (A + o(1)) `2(t)

t dt + o(`2(x)) for some constant B and some slowly
varying function `2,

• 0 < γ < −ρ: for UH ∈ GRV2(γ, ρ; `+xγ , a2(x);A):

UH(x) = `+xγ
{1

γ
+ Dx−γ +

A

γ + ρ
a2(x)(1 + o(1))

}
,

• γ = 0: for UH ∈ GRV2(0, ρ; `+, a2(x);A):

UH(x) = `+ log x + D +
A`+

ρ
a2(x)(1 + o(1)),

• γ < 0: for UH ∈ GRV2(γ, ρ; `+xγ , a2(x);A):

UH(x) = τH − `+xγ
{ 1
−γ

− A

γ + ρ
a2(x)(1 + o(1))

}
,
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where `+ > 0, A 6= 0, D ∈ R.
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