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Abstract

A general equilibrium model is considered with multiple divisible and multiple indivisible

commodities. In models with indivisibles it is always assumed that an indivisible com-

modity, called money, is present that is used to transfer the value of certain amounts of

indivisible goods. For these economies with a finite number of divisible and indivisible

goods and money and without producers it is well understood that a general equilibrium

exists if the individual demands and supplies for the indivisibele goods belong to a same

class of discrete convexity.

In this paper we a model with multiple divisible and multiple undivisible commodities,

in which none of the divisible goods may serve as money. Moreover, there are a finite

number of producers owning a non-increasing returns to scale technology. One of the

producesrs is assumed to have a linear production technology in order to produce divisible

goods. Individual endowments being sufficienly large for production and discrete convexity

guarantees the existence of a competitive equilibrium.

Key words: indivisible commodities, divisible commodities, discrete convexity, competitive

equilibrium

JEL-code: D2, D4, D5, D6.



1 Introduction

Indivisible commodities have constituted a prominently important part of commercial com-

modities in most of the markets. Typical indivisible commodities are, to name a few,

houses, cars, employees, airplanes, ships, trains, computers, machinery, and arts. Nowa-

days, even many divisible commodities are sold in indivisible quantities such as oil being

sold in barrel as its smallest unit. Modelling economies with indivisibilities is therefore

meaningful and realistic. However, studying such discrete economies stands in general a

daunting challenge; see for example Koopmans and Beckman [13], Debreu [6], Henry [10],

Kelso and Crawford [12], Gale[7], Quinzii [18], Shapley and Scarf [22], and Scarf [19, 20, 21],

and more recently Kaneko and Yamamoto [11], Yamamoto [24], Shell and Wright [23], Gar-

ratt [8], Garratt and Qin [9], Ma [17], Bevia et al. [1], Bikhchandani and Mamer [2], van der

Laan et al. [15], Yang [26]. In Danilov et al. [5] it was shown that discrete convex analysis

is an appropriate tool to deal with indivisibles. Specifically, economies with indivisibles,

money and no other perfectly divisible goods can be studied as continuous economies with

divisible goods when individual demands and supplies for the indivisible goods belong to

a same class of discrete convexity. Van der Laan et al. [16] consider economies with mul-

tiple divisible and indivisible goods and money. In their model the divisible goods are

being produced from money by a unique linear production technology, while there are no

other producers. Koshevoy and Talman [14] consider a model with multiple indivisible and

divisible goods and money but without production.

In this paper we consider a general equilibrium model with multiple indivisibles and

multiple divisible goods without money. Instead of money there is at least one producer

with a production technology being linear for the divisible goods. Initial endowments

should be large enough for production and the divisible goods are all desirable. Preferences

and production sets are pseudoconvex and the individual demands and supply for the

indivisibles should all belong to a same class of discrete convexity. The former again

guarantees that the convexified economy has a competitive equilibrium and the latter that

this equilibrium induces a competitive equilibrium of the discrete economy.

The plan of the paper is as follows. In Section 2 the concept of discrete convexity

is reviewed. Section 3 the economic model with multiple divisible and indivisible goods

without money is introduced. The existence proofs are given in Section 4.

2 Discrete convexity

In this section a survey of the results by Danilov and Koshevoy [3] about discrete convexity

is given. A first idea on convexity of discrete sets is to consider the convex hull co(X) of a

subset X ⊂ Z
K , and require that X = co(X)∩ZK. Such sets are called pseudoconvex. The
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reason, why such sets are called pseudoconvex and not convex, is that they may not satisfy

the separation property, the cornerstone of Convex Analysis (and therefore, of Equilibrium

Analysis). Consider the following example.

Example 1. Consider the two two-points pseudoconvex sets A = {(0, 0), (1, 1)} and

B = {(0, 1), (1, 0)}. These sets do not intersect, but their convex hulls intersect at the

interior point (1/2, 1/2). Thus the sets can not be separated by a linear functional on R
2.

�

The discrete convexity theory is constituted of classes of subsets of ZK that are closed

under Minkowski summation. The Minkowski sum of two subsets A and B in RK is given

by A +B = {a+ b|a ∈ A, b ∈ B}.

Definition 2.1 A class D of subsets of ZK is a class of discrete convex sets if the following

properties hold:

DC1. For any A ∈ D it holds that A is pseudoconvex, −A ∈ D, and co(A) is a polyhedron;

DC2. For any A and B ∈ D it holds that A +B ∈ D.

One can easily check that sets of a class of discrete convexity D are well behaved with

respect to the separation property. In fact, let A, B ∈ D and A ∩ B = ∅. Then 0K �∈

A + (−B), A + (−B) ∈ D, and so 0K �∈ co(A + (−B)). Since the convex hull commutes

with the Minkowski sum, we have 0K �∈ co(A) + co(−B). Hence, co(A) and co(B) can be

separated and so A and B.

In the previous example, with A = {(0, 0), (1, 1)} and B = {(0, 1), (1, 0)}, we have 0K �∈

A + (−B), but A + (−B) is not a pseudoconvex set, and so the convex hulls co(A) and

co(B) can not be separated. Therefore, there does not exist a class of discrete convexity

which contains both sets.

Classes of discrete convexity are constructed as integer points of integral polyhedra. A

polyhedron P ⊂ R
K is said to be an integral polyhedron if P = co(P ∩ Z

K).

Let P be a class of polyhedra with the following properties:

DCP1. Any polyhedron P ∈ P is integral.

DCP2. For any polyhedra P , Q ∈ P, we have P ±Q ∈ P and

(P ±Q) ∩ Z
K = (P ∩ Z

K)± (Q ∩ Z
K). (1)

A class of polyhedra P with properties DCP1 and DCP2 is said to be a class of discrete

convexity. Because taking the convex hull commutates with adding up and substracting

sets and the sum of polyhedra is again a polyhedron, for any class P of discrete convex
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polyhedra it holds that the class D of subsets of ZK of the form P ∩ Z
K , P ∈ P, satisfies

DC1 and DC2.

When |K| = 1, the class of integral polyhedra, being segments with integral endpoints, is

the only class of discrete convexity. This is, of course, not the case in higher dimensions.

Example 2. Hexagons. Consider a class H of polyhedra in R2, which consists of hexagons

defined by inequalities a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, c ≤ x1 + x2 ≤ d with integral a1,

a2, b1, b2, c and d (such a hexagon can be degenerated to a polyhedron with less than six

vertices). It is easy to check that the vertices of such a hexagon are integral. Because

the intersection of hexagons is again a hexagon, we conclude that H is a class of discrete

convexity. �

Observe, that the edges of the hexagons in Example 2 are parallel to the vectors e1, e2

or e1 − e2. These vectors have the following property: any pair of these vectors form a

basis of the lattice Z2. As we have seen in Example 1, if a class of integral polyhedra in R2

contains polyhedra having edges being parallel to e1 − e2 and to e1 + e2, such a class fails

to be a class of discrete convexity. The reason is that the pair of vectors e1− e2 and e1+ e2

does not form a basis of Z2. For example, points of the form (2n + 1)e1, n ∈ Z, can not

be obtained as combinations of vectors e1 − e2 and e1 + e2 with integer coefficients. The

property that every set of |K| linearly independent primitive vectors being parallel edges

of polytopes of some class of polyhedra forms a basis of the abelian group (lattice) ZK is

the decisive property for a class of polyhedra to be a class of discrete convexity.

A collection R of vectors of RK is said to be a unimodular system if, for any subset R ⊂ R,

the abelian group Z(R) = {
∑

i airi | ri ∈ R, ai ∈ Z} coincides with the lattice R(R) ∩ Z
K ,

where R(R) = {
∑

i airi | ri ∈ R, ai ∈ R}. Now we have the following result (see Danilov

and Koshevoy [3]).

Theorem 2.2 Let P be a collection of pointed integral polyhedra of RK. Let R(P) denote

the set of vectors in Z
K being parallel to edges of polyhedra of P1). Then P is a class of

discrete convexity if and only if R(P) is a unimodular system.

The next example is a well-known unimodular system.

Example 3. The set AK := {±ei, ei − ej, i, j ∈ K} of vectors of ZK is a unimodular

system. Because AK contains the standard basis, we need to show that any |K| linear

independent vectors of AK form a basis of ZK. Let B ⊂ AK be a basis of RK. Check

that B is a basis of ZK. One of ±ei, i ∈ K, belongs to B, otherwise B is a subset of the

hyperplane
∑

i∈K xi = 0, and, hence, B cannot be a basis of RK . Let e1 ∈ B. If none of

the vectors ±(ei − e1) belongs to B, then the set B \ {e1} is a subspace of the hyperplane

{x ∈ R
K, |x1 = 0}. By induction B \ {e1} forms a basis of ZK\{1}. Hence B is a basis of

1A vector r belongs to R(P) if and only if there is a polyhedron P ∈ P which has an edge of the form

[x, x+ ar] for some a ∈ N or {y|y = x+ br, b ∈ R} for some x ∈ ZK .
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Z
K . If ej − e1 belongs to B for some j �= 1, then, changing ej − e1 to ej = e1 + (ej − e1),

we obtain a new basis B′. Obviously, B and B′ are either both bases or both not bases

of ZK. Repeating the same argument, we may assume that none of the vectors ±(ei − e1)

belongs to B′. Therefore, B′ is a basis of ZK , and, hence, so is B. �

The discrete convexity corresponding to the unimodular system of Example 3 is called

polymatroidal discrete convexity. It is interesting to note here, that nearly all known

existence results with indivisibles fit into the polymatroidal discrete convexity (see Danilov

et al. [4]).

3 The model

In this paper we deal with the problem of the existence of a competitive equilibrium in

an exchange economy E with consumption and production and with multiple divisible

and multiple indivisible commodities. There is a finite set K of k discrete (indivisible)

commodities and a finite set L of l perfectly divisible commodities. Bundles of commodities

are denoted by elements of the set ZK × R
L. The set J denotes the finite set of producers

and H denotes the finite set of consumers. A producer j ∈ J is described by its input-

output production set Cj ⊂ Z
K×R

L. A vector (Y, y) ∈ Cj means that producer j, j ∈ J , is

able to produce the output vector (Y, y)+, being the positive part of (Y, y), from the input

vector −(Y, y)−, being minus the negative part of (Y, y). Standard assumptions on Cj are

Cj ∩ Z
K
+ × R

L
+ = {0K+L}, Cj = Cj − (ZK+ × R

L
+) and Cj is a closed set, for all j ∈ J .

The preferences of consumer h, h ∈ H, are described by a preference relation �h, being a

monotone, continuous weak order on the consumption set ZK+ × R
L
+. Consumer h ∈ H has

a vector of initial endowments ωh = (Wh, wh) ∈ Z
K
+ ×R

L
+ and is endowed with shares in the

production: θjh ≥ 0, j ∈ J , is consumer h’s share in the production of producer j, where
∑

h∈H θjh = 1 for all j ∈ J .

Agents are assumed to be price takers. Given a price vector p, being a linear functional on

R
K × R

L, producer j ∈ J solves the following maximization program:

max
(Y,y)∈Cj

p(Y, y). (2)

The number πj(p) = max(Y,y)∈Cj
p(Y, y) is the profit of producer j and

Sj(p) = Argmax(Y,y)∈Cj
p(Y, y)

is producer j’s supply at price p. Consumer h ∈ H seeks a best element with respect to

his preference �h in the budget set

Bh(p) = {(X,x) ∈ Z
K
+ × R

L
+| p(X,x) ≤ βh(p)},
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where at price vector p consumer h’s income, βh(p), is defined by

βh(p) = p(Wh, wh) +
∑

j∈J

θjhπj(p).

The demand of consumer h, h ∈ H, is the set Dh(p) of best elements in the set Bh(p) with

respect to the preference �h.

Definition 3.1 An equilibrium is a tuple (p, (Xh, xh)h∈H , (Yj, yj)j∈J) of a price vector p,

individual demands (Xh, xh) ∈ Dh(p), h ∈ H, and individual supplies (Yj, yj) ∈ Sj(p),

j ∈ J, such that all markets clear:

∑

h∈H

(Xh, xh) =
∑

j∈J

(Yj, yj) +
∑

h∈H

(Wh, wh).

To guarantee the existence of an equilibrium we assume that there at least one of the

producers owns a production technology being linear in the divisible goods.

Assumption T1. There is one production technology being linear in the divisible part,

i.e. there exists a producer, say j = 1, such that for any p ∈ R
L
+, S1(p) = Sind

1 (p) × T ,

where T ⊂ R
L is a linear subspace of codimension 1. �

In the model of van der Laan et al. [16] it is assumed that there is also money in the model

and that there is only one producer and this producer produces the divisible non-money

goods using money as an input.

Because of Assumption T1 the equilibrium prices of the divisible goods are completely

determined by the rule pdiv(x) = 0 for any x ∈ T . Because of our assumptions it holds

that pdiv ∈ R
L
+. Therefore, only the appropriate prices of indivisible goods can equili-

brate demands and supplies. Let us normalize the prices of the divisible goods such that

pdiv(1L) = 1.

The preferences of the consumers are such that the divisible goods are more desirable than

the indivisible goods.

Assumption T2. For each (X,x) ∈ Z
K
+ × R

L
+ and h ∈ H there exists xh ∈ R

L such that

(X, x) �h (0
K, xh). �

Furthermore, we assume that all production sets and preferences are pseudoconvex and

that production sets have no asymptotes.

Assumption T3. For every h ∈ H and any tuple of bundles (X, x) ∼h (X1, x1) ∼h . . . ∼h

(Xr, xr) in Z
K
+ × R

L
+ such that X =

∑
i αiXi ∈ Z

K
+ ,
∑

i αi = 1, αi ≥ 0, i = 1, . . . , r, it holds

that (X, x) 
h (X,
∑

i αixi). For every j ∈ J and any tuple of bundles (Y1, y1), . . ., (Yr, yr)

in Cj and Y ∈ Z
K such that Y =

∑
i αiYi,

∑
i αi = 1, αi ≥ 0, i = 1, . . . , r, there exists

y ∈ R
L such that (Y, y) ∈ Cj and pdiv(y) ≥

∑
i αip

div(yi). Moreover, the production sets

coCj, j ∈ J , have no asymptotes (in all codimensions). �
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The next assumption requires that total endowment is strictly positive and that each

consumer has enough initial endowment.

Assumption T4. The total endowment is strictly positive:
∑

h∈H(Wh, wh) > (1K, 1L).

For every h, h ∈ H, it is possible to produce from the initial endowment (Wh, wh) a vector

of goods which is strictly preferred by consumer h to any vector without divisible goods.

�

The convexified economy co(E) of E is obtained by replacing demands and supplies of E

by their convex hulls. In Section 3 it will be shown that under the Assumptions T1—T4 a

competitive equilibrium in the convexified economy exists.

Proposition 3.2 Let E be a discrete economy and let the Assumptions T1—T4 hold, then

there exists a competitive equilibrium in the convexified economy co(E).

To guarantee that the discrete economy E itself has a competitive equilibrium we have to

assume that the individual demands and supplies for the indivisibles belong to a same class

of discrete convexity.

Assumption T5. The sets Dind
h (p), h ∈ H, and Sind

j (p), j ∈ J , belong for every p ∈

R
K
+ × R

L
+ all to the same class of discrete convexity D. �

For a price system p ∈ R
K × R

L, let Sind
j (p) = {Y ∈ Z

K |∃ y ∈ R
L : (Y, y) ∈ Sj(p)} be

the projection of producer j’s supply Sj(p) along the divisible goods coordinates, j ∈ J .

Similarly, let Dind
h (p) = {X ∈ Z

K
+ |∃x ∈ R

L
+ : (X, x) ∈ Dh(p)} be the projection of

consumer h’s demand Dh(p) along the divisible goods coordinates, h ∈ H.

Theorem 3.3 Let Assumptions T1—T5 be satisfied. Then there exists a competitive equi-

librium in the economy E.

Example 4. Suppose the preferences of consumer h, h ∈ H, can be represented by

a utility function uh satisfying uh(X, x) = uh1(X) + uh2(x), where uh1(·) satisfies stepwise

gross-substitutability and uh2(·) is a concave function. The production set of firm j, j ∈ J ,

is specified by the cost function cj(Y, y) = cj1(Y ) + cj2(y), where −cj1(·) satisfies stepwise

gross-substitutability and cj2(·) is a convex function. In this case the demand functions and

the supply functions belong to the same class of discrete convexity with unimodular sys-

tem of Example 3 and therefore Assumption T5 is satisfied. For the definition of stepwise

gross-substitutability and for the proof of this claim see Danilov et al. (2003).

In the next section the proposition and theorem of this section are proved.

4 Proof of Existence

In this section we prove Proposition 3.2 and Theorem 3.3.
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4.1 Proof of Proposition 3.2

First we construct an auxiliary economy. Because of Assumption T4, the production set
∑

j Cj of the aggregate producer is a closed convex set.2 Now, we explain how to aggregate

consumers. Pick some price p ∈ R
K
+ . For each h ∈ H, we consider an indifference level

“touching” the budget set Bh(p, p
div). Denote by Ih(p) this indifference level. First we

set the preference �̃h of the hth consumer such that the indifference levels are parallel

translations of the “touching” level by the vector λ(0K, 1L), λ ∈ [λh,+∞), where λh is such

that the translation of the indifference level by the vector λh(0
K , 1L) passes through the

endowment vector (Wh, wh). Note that λh ≤ 0. Now set indifference levels of a preference

� (p) of the aggregate consumer, endowed with the aggregate vector (W,w) =
∑

h(Wh, wh),

by the rule
∑

h

(Ih(p)− λht(0
K, 1L)), if t ∈ [−1, 0],

and
∑

h

(Ih(p) + t(0K , 1L)), if t ≥ 0.

Because there exists an indifference level of � (p) which is passing through (W,w), this list

of indifference levels suffices to set up the preference due to individual rationality. Note

also that any indifference level is well defined since all Ih(p) belong to the cone RK+ × R
L
+.

We define P (p) as the set of equilibrium prices in the economy E(p) with one producer

with production set C =
∑

j Cj and one consumer with preference relation � (p). The

equilibrium prices come of the form of the separating functionals between the set C and

a translation on the vector −(W,w) of the set being the sum of the indifference level of

� (p) passing through the point (W,w) + y(p) and the positive orthant RK+ × R
L
+, where

y(p) ∈ Argmaxy∈C(p, p
div)(y), i.e., we translate the set with respect to vectors of the form

a(0K, 1L), a ≥ −1, such that the production set and the translated set touch each other.

In order to get a fixed point of P , we take a cube Q = {p ∈ R
K | 0 ≤ pk ≤ M} for some

M > 0 such that P maps every p ∈ Q to a subset of Q. The number M is determined

as follows. Given the initial endowments, there exist bounds for the maximal production

of each good due to Assumptions T4 (we may exclude the linear producer, having fixed

pdiv). Let (B, b) ∈ R
K
+ × R

L
+ be a vector which is in every coordinate larger than the

maximal production of the good corresponding to this coordinate, and for h ∈ H let Th

be the cost pdiv(xh) of producing at price pdiv the vector (0K, xh) ∈ R
K
+ × R

L
+ satisfying

(0K, xh) ∼h (Wh +B,wh + b). Then we take M equal to
∑

h Th.

Because any p′ ∈ P (p) is a separating functional, we have that M ≥ p′(W ), and since

W ≥ 1K , we obtain p′k ≤ M for every k ∈ K. Clearly, P has compact convex images and is

2In general, the sum of convex closed sets might not be closed, but because of our assumptions the sum∑
j Cj is a closed set.
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a closed mapping. Therefore, by Kakutani fixed point theorem, P has a fixed point. Since

due to Walras’ law at a fixed point p∗ of P the vector p∗ supports the indifference level
∑

h Ih(p
∗), a fixed point of P yields an equilibrium of the convexified economy. Q.E.D.

4.2 Proof of Theorem 3.3

In Proposition 3.2 we proved the existence of an equilibrium in the convexified economy.

Now let us assume we have an equilibrium in co(E), that is a tuple of prices p∗ : RL+ → R,

supplies (z∗j , y
∗
j ) ∈ co(Sj(p

∗)), j ∈ J , and demands (t∗h, x
∗
h) ∈ co(Dh(p

∗)), h ∈ H, satisfying
∑

h t
∗
h +
∑

j z
∗
j =
∑

hWh and
∑

h x
∗
h +
∑

j y
∗
j =
∑

hwh. Therefore, we have

∑

h∈H

Wh ∈
∑

h∈H

co(Dind
h (p∗)) +

∑

j∈J

co(Sind
j (p∗)).

By Assumption T5, there exist T ∗
h ∈ Dind

h (p∗)), h ∈ H, and Z∗
j ∈ Sind

j (p∗), j ∈ J , satisfying
∑

h T
∗
h +
∑

j Z
∗
j =
∑

hWh. Let xh, h ∈ H, and yj, j ∈ J , be such that (T ∗
h , xh) ∈ Dh(p

∗),

h ∈ H, and (Z∗
j , yj) ∈ Sj(p

∗), j ∈ J .

By Walras’ law we have

∑

h∈H

(p∗(T ∗
h ) + pdiv(xh)) =

∑

h∈H

p(Wh, wh) +
∑

j∈J

(p∗(Z∗
j ) + pdiv(yj)).

Because of the balance of the indivisible goods,
∑

h T
∗
h+
∑

j Z
∗
j =
∑

hWh, we have p
div(
∑

h xh−∑
j yj) = 0. Define the new production plan of the producer 1 as (Z∗

1 , y
′
1), where y′1 :=

∑
h(xh − wh) −

∑
j �=1 yj. By Assumption T3, (Z∗

1 , y
′
1) belongs to S1(p

∗), and with this

modification for the first producer, we obtain a competitive equilibrium of the economy E .

Q.E.D.

References

[1] C. Bevia, M. Quinzii and J. Silva, Buying several indivisible goods, Mathematical

Social Science 37 (1999) 1-23.

[2] S. Bikhchandani and J.W. Mamer, Competitive equilibrium in an exchange economy

with indivisibilities, Journal of Economic Theory 74 (1997) 385-413.

[3] V. Danilov and G. Koshevoy, Discrete convexity and unimodularity. I. Advances in

Mathematics 189 (2004) 301-324.

[4] V. Danilov, G. Koshevoy, and C. Lang, Gross substitution, discrete convexity, and

sumodularity source, Discrete Applied Mathematics 131 (2003) 283-298.

8



[5] V. Danilov, G. Koshevoy and K. Murota, Discrete convexity and equilibria in

economies with indivisible goods and money, Mathematical Social Sciences 41 (2001)

251—273.

[6] G. Debreu, Theory of Value, Yale University Press, New Haven, 1959.

[7] D. Gale, Equilibrium in a discrete economy with money, International Journal of

Game Theory 13 (1984) 61-64.

[8] R. Garratt, Decentralizing lottery allocations in markets with indivisible commodities,

Economic Theory 5 (1995) 295-313.

[9] R. Garratt and C.-Z. Qin, Cores and competitive equilibria with indivisibilities and

lotteries, Journal of Economic Theory 68 (1996) 531-543.

[10] P.C. Henry, Indivisibilités dans une Economie d’Echanges, Econometrica 38 (1972)

542-558.

[11] M. Kaneko and Y. Yamamoto, The existence and computation of competitive equilib-

ria in markets with indivisible commodities, Journal of Economic Theory 38 (1986)

118-136.

[12] A.S. Kelso and V.P. Crawford, Job matching coalition formation and gross substitutes,

Econometrica 50 (1982) 1483-1504.

[13] T.C. Koopmans and M.J. Beckman, Assignment problems and the location of eco-

nomic activities, Econometrica 25 (1957) 53-76.

[14] G. Koshevoy and A.J.J. Talman, Competetive equilibria in economies with multiple

indivisible and multiple divisible commodities, Journal of Mathematical Exonomics

42 (2006) 217-226.

[15] G. van der Laan, A.J.J. Talman and Z. Yang, Existence of an equilibrium in a com-

petitive economy with indivisibilities and money, Journal of Mathematical Economics

28 (1997) 101-109.

[16] G. van der Laan, A.J.J. Talman and Z. Yang, Existence and welfare properties of equi-

librium in an exchange economy with multiple divisible and indivisible commodities

and linear production technologies, Journal of Economic Theory 103 (2002) 411-428.

[17] J. Ma, Competitive equilibria with indivisibilities, Journal of Economic Theory 82

(1998) 458-468.

9



[18] M. Quinzii, Core and competitive equilibria with indivisibilities, International Journal

of Game Theory 13 (1984) 41-60.

[19] H. Scarf, Production sets with indivisibilities-part I: generalities, Econometrica 49

(1981) 1-32.

[20] H. Scarf, Neighborhood systems for production sets with indivisibilities, Econometrica

54 (1986) 507-537.

[21] H. Scarf, The allocation of resources in the presence of indivisibilities, Journal of

Economic Perspectives 4 (1994) 111-128.

[22] L.S. Shapley and H. Scarf, On cores and indivisibilities, Journal of Mathematical

Economics 1 (1974) 23-37.

[23] K. Shell and R. Wright, Indivisibilities, lotteries, and sunspot equilibria, Economic

Theory 3 (1993) 1-17.

[24] Y.Yamamoto, Competitive equilibria in a market with indivisibility, in: A.J.J. Talman

and G. van der Laan, eds., The Computation and Modelling of Economic Equilibria,

North-Holland, Amsterdam, 1987, pp. 193-204.

[25] Z. Yang, Computing Equilibria and Fixed Points, Kluwer Academic Publishers, Dor-

drecht. 1999.

[26] Z. Yang, Equilibria in an exchange economy with multiple indivisible commodities

and money, Journal of Mathematical Economics 33 (2000) 353-365.

10


