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On the Core of Routing Games with Revenues∗

Arantza Estévez-Fernández1, 2 Peter Borm1 Marc Meertens1 Hans Reijnierse1

Abstract

Traveling salesman problems with revenues form a generalization of traveling salesman problems. Here,

next to travel costs an explicit revenue is generated by visiting a city. We analyze routing problems with

revenues, where a predetermined route on all cities determines the tours along subgroups. Corresponding

routing games with revenues are analyzed. It is shown that these games have a nonempty core and a

complete description of the core is provided.

Keywords: Routing problems, revenues, core.

JEL Classification Numbers: C71

1 Introduction

In a traveling salesman (TS) situation a salesman, starting in his home city, has to visit a set of cities exactly

once and has to come back to its home city at the end of the journey. Associating travel costs to connections

the problem is how to find a tour with minimal cost. It is known that TS problems are NP-hard in general.

For a survey on TS problems we refer to Lawler, Lenstra, Kan, Shmoys and Hurkens (1997).

Fishburn and Pollak (1983) introduced the cost allocation problem that arises when each city (except the

home city) corresponds to a player. The cost allocation is concerned with a fair allocation of the joint costs

of the cheapest tour. This cost allocation problem was first studied within the framework of game theory by

Potters, Curiel and Tijs (1992) by introducing TS games. In a TS game, the value of a coalition of cities is the

∗The authors thank Herbert Hamers for his helpful discussion and comments.
1CentER and Department of Econometrics & OR, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
2Corresponding author.

E-mail addresses: A.E.Fernandez@uvt.nl (Arantza Estévez-Fernández), P.E.M.Borm@uvt.nl (Peter Borm),

marcindie@yahoo.com (Marc Meertens), J.H.Reijnierse@uvt.nl (Hans Reijnierse).
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value of the cheapest tour in the TS problem associated to the coalition. Here, only (and exactly) the cities in

the coalition will be visited. If the triangular inequalities are satisfied every 3-, 4-, and 5-person TS game has

a nonempty core (cf. Potters et al. (1992), Tamir (1989), and Kuipers (1993)). In the same setting however

Tamir (1989) provides an example of a 6-person TS game with an empty core. In Estévez-Fernández, Borm

and Hamers (2003) it is seen that these results can be generalized to multiple (longest) traveling salesman

(M(L)TS) games. In an MTS problem the salesman has to visit each city exactly once except for the home

city which can be revisited as many times as desired. In a longest traveling salesman (LTS) problem there

are profits associated to connections instead of travel costs. Hence, the objective of an LTS problem is to

find a tour with maximal profit.

In Potters et al. (1992) also the class of fixed routing games is introduced. Here, the route along all cities

is predetermined (e.g. by restrictions in the agenda of the salesman) and this tour determines the tours along

all possible coalitions. The value of a coalition of a routing game is defined as the cost associated to the tour

that visits the members of the coalition in the same relative order as in the predetermined tour. Potters

et al. (1992) show that routing games have a nonempty core if the predetermined tour is an optimal tour for

the related TS problem. Derks and Kuipers (1997) give a time efficient algorithm to provide core elements

of a routing game.

This paper studies routing problems with revenues (RR-problems): next to travel costs and a predeter-

mined route on all cities, revenues of a visit are explicitly modeled and taken into account. Note that since

the revenues obtained by the visit of a salesman are explicitly given, it might be the case that some of the

cities will not be visited by the salesman if the objective is to maximize total joint profit. We will assume

that the predetermined route is optimal in this sense and indeed visits all cities. Still, it might be optimal

for a coalition not to visit all its cities in the prescribed relative order. Hence, the value of the associated

routing game for a specific coalition is defined as the maximum attainable profit by one of its subcoalitions

if the salesman visits all cities in this subcoalition in the relative order given by the predetermined route on

all cities. We will show that every routing game has a nonempty core. Moreover, a complete description of

the core is provided.

The idea of analyzing cost problems arising from a general service facility by taking explicitly into account

the profits that the service will generate is not new. It was first studied in Littlechild and Owen (1976) within

the framework of airport problems, with a more recent follow up in Brânzei, Iñarra, Tijs and Zarzuelo (2003).

Meertens and Potters (2004) consider fixed tree games with revenues. Suijs, Borm, Hamers, Quant and Koster

(2005) study the sharing of costs and revenues within a public network communication structure.
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2 Routing games with revenues

In this section we introduce routing games with revenues.

Let N = {1, 2, . . . , n} denote the set of cities that a traveling salesman has to visit. Let N0 := N ∪ {0}

where 0 denotes the traveling salesman’s home city. Let C = (cij) be an N0×N0-matrix where cij represents

the costs to go from city i to city j. Throughout this article we will assume that:

(i) cii = 0 for all i ∈ N0,

(ii) cij = cji for all i, j ∈ N0, (symmetry)

(iii) cij ≤ cik + ckj for all i, j, k ∈ N0. (triangle inequalities)

Whenever city i ∈ N is visited by the traveling salesman, a revenue bi ≥ 0 is obtained. Due to the explicit

modeling of the revenues we assume that the salesman, who starts from city 0, will visit each city at most

once, and only returns to city 0 at the end of the journey.

Let R ⊂ N and set R0 := R ∪ {0}. A bijection π : R0 → R0 is called a cyclic permutation if

min{t ∈ N |πt(i) = i} = |R| + 1 for every i ∈ R0. We will denote by Π(R) the set of all cyclic permutations

on R0. A cyclic permutation π corresponds to a tour along R: it starts in 0 and visits each city in R exactly

once returning to 0 at the end of the trip. Here, π(i) is the city immediately visited after city i for all i ∈ R0.

For convenience, we will sometimes denote city 0 also by n + 1 and in particular π(i) = n + 1 means that i

is the last city on the tour. For π ∈ Π(R), we denote by c(π,R) the cost associated to the tour induced by

π, i.e., c(π,R) =
∑

i∈R0
ciπ(i). Consequently, the minimal cost c(R) of a tour along R is given by

c(R) := min
π∈Π(R)

{c(π,R)}.

The total profit p(R) obtained when the salesman has visited all cities in R according to a tour with minimal

cost is

p(R) := b(R) − c(R),

where b(R) :=
∑

i∈R bi.

Due to the revenue structure it may be more profitable for N not to make a (complete) tour on N itself

but on a subset R ⊂ N , leaving N \ R unvisited. Therefore, the optimization problem for N boils down to

finding a subset of cities R such that p(R) is maximal. We denote the maximal profit for N by v(N), i.e.,

v(N) := max
R⊂N

{p(R)}.
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From now on we will assume that it is optimal to visit all cities in N via the cyclic permutation π̂ ∈ Π(N).

We will also assume without loss of generality that

the optimal order π̂ for N is given by 0 − 1 − 2 − . . . − n − 0. (2.1)

Hence, v(N) = p(N).

Associating each city in N with a player, the question we would like to address is how to share v(N)

among the players. For this we choose the “routing” approach, where π̂ determines the order in which

potential subcoalitions are visited.

For S ⊂ N , the cyclic permutation π̂S ∈ Π(S) induced by π̂ is obtained from π̂ by skipping the cities in

N \ S and leaving the order of the remaining cities unchanged. Formally, π̂S is given by

π̂S(i) = π̂t(i)(i) for every i ∈ S0

where t(i) := min{t ∈ N | π̂t(i) ∈ S0}. With a minor abuse of notation we will denote c(π̂S , S) by c(π̂, S).

A coalition S ⊂ N need not decide on the complete tour π̂S on S: a tour π̂R on a subset R ⊂ S may be

more profitable. Hence, we define the value vπ̂(S) in the routing game (N, vπ̂) by

vπ̂(S) = max
R⊂S

{b(R) − c(π̂, R)}

Note that vπ̂(N) = v(N).

Example 2.1. Consider the routing problem with revenues represented in Figure 1 where the numbers at

the edges represent the travel costs and the boldface numbers at the nodes represent the revenues.

1 2

0

3

7 3

5

2

1

2

2

1

2

Figure 1: The routing problem with revenues in Example 2.1.

Note that assumption (2.1) is satisfied. The associated routing game with revenues has values: vπ̂({1}) = 3,

vπ̂({2}) = 0, vπ̂({3}) = 3, vπ̂({1, 2}) = 5, vπ̂({1, 3}) = 7, vπ̂({2, 3}) = 3 and vπ̂(N) = 9. 3
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Note that if the revenues are so high that the salesman will visit all cities of every coalition, then the

routing game with revenues is strategically equivalent1 to a routing game à la Potters et al. (1992) and Derks

and Kuipers (1997).

3 The Core

In this section we will study the core of routing games with revenues. We will show that routing games with

revenues have a nonempty core. Moreover, we will give an intuitive interpretation of all core elements.

Let (N, v) be a cooperative game. Recall that the core of (N, v) is given by

Core(v) = {x ∈ R
N |x(N) = v(N), x(S) ≥ v(S) for all S ∈ 2N},

i.e., the core is the set of efficient allocations of v(N) such that there is no coalition with an incentive to

split off.

In the following example we illustrate that taking into account revenues has a definite impact on the

structure of the core.

Example 3.1. Consider the routing problem with revenues represented in Figure 2.

1 2

0

3

2 4

4

1

3

3

4

2

2

Figure 2: The routing problem with revenues in Example 3.1.

It is readily checked that assumption (2.1) is satisfied and that vπ̂(S) = 0 for every S ⊂ N , S 6= N , and

vπ̂(N) = 2. Therefore,

Core(vπ̂) = conv{(2, 0, 0), (0, 2, 0), (0, 0, 2)}.

1Here, we make a slight abuse of language when we say that a routing game with revenues is strategically equivalent to a (cost)

routing game. We mean that there exist k ∈ R++, a ∈ R
N and (N, c), a (cost) routing game, such that vπ̂(S) = a(S) − kc(S)

for every S ⊂ N .
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Consider now the associated (cost) routing game à la Potters et al. (1992) and Derks and Kuipers (1997) in

which the revenues are explicitly not considered: they are high enough. One readily verifies that cπ̂({1}) = 2,

cπ̂({2}) = 6, cπ̂({3}) = 6, cπ̂({1, 2}) = 6, cπ̂({1, 3}) = 8, cπ̂({2, 3}) = 8 and c(N) = 8. Here,

Core(cπ̂)2 = conv{(2, 0, 6), (0, 2, 6), (0, 6, 2), (2, 4, 2)}.

Hence, there is not an obvious relation between Core(cπ̂) and Core(vπ̂). Moreover, it is readily checked that

the above routing game with revenues is not strategically equivalent to any routing game à la Potters et al.

(1992) and Derks and Kuipers (1997). 3

Next, we will show that a routing game with revenues, (N, vπ̂), corresponding to travel cost matrix

C ∈ R
N0×N0 and revenue vector b ∈ R

N has a nonempty core.

For every S ⊂ N we define the linear programming problem LP(S) by:

maximize

n
∑

i=0

n+1
∑

j=i+1

(bj − cij)xij (3.1)

s.t.
i−1
∑

k=0

xki ≤ eS
i for all i ∈ {1, . . . , n}; (3.2)

i−1
∑

k=0

xki −
n+1
∑

j=i+1

xij = 0 for all i ∈ {1, . . . , n}; (3.3)

xij ≥ 0 for all i, j ∈ {0, 1, . . . , n, n + 1} with i < j. (3.4)

with b0 = bn+1 := 0 and cin+1 := ci0 and where eS ∈ R
N is a vector of zeros and ones with eS

i = 1 if i ∈ S

and eS
i = 0 otherwise.

It is readily checked that LP(S) is feasible and bounded. Here, xij can be interpreted as the “amount

of flow that goes from i to j”. The profit obtained per unit of flow from i to j is bj − cij for every i and

j such that 1 ≤ i < j ≤ n + 1 and the objective function is to maximize the total profit as represented in

(3.1). Equation (3.2) indicates that the total flow “arriving” at city i can not exceed one unit of flow, i.e.,

one can think of this as a capacity restriction on the nodes. Equation (3.3) makes sure that the amount of

flow “arriving” at i equals the amount of flow “leaving” i.

Note that the game (N,u) with u(S) defined as the optimal value of LP(S) for S ⊂ N , is a linear pro-

duction game and therefore it has a nonempty core (cf. Owen (1975)).

2The core of a cost game is defined as Core(c) = {x ∈ R
N | x(N) = v(N), x(S) ≤ c(S) for all S ∈ 2N}.
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Lemma 3.1.

(i) u(S) ≥ vπ̂(S) for every S ⊂ N .

(ii) u(N) = vπ̂(N).

Proof: (i) Let S ⊂ N and R ⊂ S such that

vπ̂(S) = b(R) − c(π̂, R).

If R = ∅ , then vπ̂(S) = 0 ≤ u(S). Otherwise, R := {i1, . . . , ir} with i1 < . . . < ir. Define

xij :=







1 if i ∈ {0, i1, . . . , ir−1} and j = π̂R(i), or i = ir and j = n + 1,

0 otherwise.

Then, (xij)0≤i<j≤n+1 is a feasible solution of LP(S) and

u(S) ≥
n

∑

i=0

n+1
∑

j=i+1

(bj − cij)xij = bi1 + . . . + bir
− (c0i1 + ci1i2 + . . . + cir−1ir

+ c0ir
) = vπ̂(S).

(ii) By (i) it suffices to show that u(N) ≤ vπ̂(N). Note that LP(N) is a transportation problem with

{0, 1, . . . , n} the set of sources, {1, . . . , n, n + 1} the set of sinks, and such that there are no links going from

a source i to a sink j with i > j and the reward when going from i ∈ N to itself is zero. Then, there exists

an integral optimal solution, x̄ = (x̄ij)0≤i<j≤n+1, for LP(N) (see Nemhauser and Wolsey (1988), Chapter

I.3, Corollary 5.2). Moreover,

(i) x̄ij ∈ {0, 1} for every i, j with 0 ≤ i < j ≤ n + 1 by equations (3.2) and (3.4).

(ii) If
∑i−1

k=0 x̄ki = 1, then there exists a unique k(i) ∈ {0, . . . , i − 1} such that x̄k(i)i = 1 by (i).

(iii) If
∑i−1

k=0 x̄ki = 1, then there exists a unique j(i) ∈ {i + 1, . . . , n + 1} such that x̄ij(i) = 1 by equation

(3.3).

(iv)
∑n

i=1 x̄0i =
∑n

i=1 x̄in+1 by equation (3.3).

Let N(x̄) := {i ∈ N |
∑i−1

k=0 x̄ki = 1} and let {i1, . . . , ir} = {i ∈ N(x̄) | x̄0i = 1}. Let t(il) be the smallest

integer such that j t(il)(il) = n + 1. We define

Nl(x̄) = {j t(il) | t ∈ {1, . . . , t(il) − 1}

for l ∈ {1, . . . , r}. It is readily checked that N1(x̄), . . . , Nr(x̄) is a partition of N(x̄). Moreover, note that this

partition implies that r tours, π1 ∈ Π(N1(x̄)), . . . , πr ∈ Π(Nr(x̄)), will be followed in the optimal solution,

where tour πl is given by 0 − il − . . . − j t(il)−1(il) − (n + 1) for l ∈ {1, . . . , r}.
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3 5
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1 7

0

i1

i2

i3

Figure 3: Representation of the tours given by πl.

Define π̃ ∈ Π(N(x̄)) by 0− i1− . . .− j t(i1)−1(i1)− i2− . . .− j t(i2)−1(i2)− . . .− ir − . . .− j t(ir)−1(ir)− (n+1).

4

3 5

2 6

1 7

0

i1

i2

i3

Figure 4: Representation of π̃.

Hence,

u(N) =
n+1
∑

i=0

n+1
∑

j=i+1

(bj − cij)x̄ij

=
r

∑

l=1

∑

i∈Nl(x̄)∪{0}

(bπl(i) − ciπl(i))

=

r
∑

l=1

b(Nl(x̄)) −
r

∑

l=1

c(πl, Nl(x̄))

≤ b(∪r
l=1Nl(x̄)) − c(π̃,∪r

l=1Nl(x̄))

≤ b(∪r
l=1Nl(x̄)) − c(∪r

l=1Nl(x̄))

≤ b(N) − c(N) = vπ̂(N)

where the first inequality holds by the triangular inequalities, the second one holds by definition of

c(∪r
l=1Nl(x̄)) and the last one by assumption (2.1). 2

Note that if two games (N, v) and (N,u) are such that v(S) ≤ u(S) for every S ⊂ N , v(N) = u(N), and

Core(u) 6= ∅, then Core(v) 6= ∅ and Core(u) ⊂ Core(v). Hence, as a direct consequence of Lemma 3.1 we have
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that a routing game with revenues has a nonempty core.

Theorem 3.2. Any routing game with revenues has a nonempty core.

The following result gives a full description of the core of a routing game with revenues. It states that an

allocation x belongs to the core of the game if each coordinate xi can be written as xi = bi−ci−1i +zi−1−zi.

This can be interpreted in the following way: First of all, player i obtains the revenue bi when the salesman

visits its city and has to pay the travel costs ci−1i from city i − 1 to city i. Next, since player i − 1 also

gets revenues from the visit, it will help player i with the travel costs by paying a compensation zi−1. In a

similar way, player i will help player i + 1 with the travel costs of the trip from city i to city i + 1 with zi.

Equation (3.6) below reflects that player i will never compensate i + 1 more than the total amount he gets

once i − 1 has paid the compensation. Equation (3.7) reflects the fact that player j + 1 indeed prefers that

the salesman comes from player j instead of another player i(< j).

Theorem 3.3. Let (N, vπ̂) be a routing game with revenues corresponding to travel cost matrix C ∈ R
N0×N0

and revenue vector b ∈ R
N . Then, the following three assertions are equivalent.

(i) x ∈ Core(vπ̂).

(ii) x ≥ 0, x(N) = vπ̂(N), and x(N \ S) ≥ vπ̂(N \ S) for every S ⊂ N with S = {i, i + 1, . . . , j} and i ≤ j.

(iii) xi := bi − ci−1i + zi−1 − zi for all i ∈ {1, . . . , n} with

z0 := 0, zn := c0n (3.5)

zi − zi−1 ≤ bi − ci−1i for all i ∈ {1, . . . , n} (3.6)

zj − zi ≥ cjj+1 − cij+1 for all i, j ∈ {0, 1, . . . , n} with i < j. (3.7)

Proof: (i)⇒(ii) is immediate and therefore omitted.

(ii)⇒(iii) Let x ∈ R
N satisfy the conditions mentioned in assertion (ii) of the theorem. Define the vector

z ∈ R
N0 as follows:

z0 := 0

zi := bi − ci−1i + zi−1 − xi for every i ∈ {1, . . . , n}.

It is readily checked that zi =
∑i

k=1 bk −
∑i

k=1 ck−1k −
∑i

k=1 xk for all i ∈ {1, . . . , n}. Hence,

zn = b(N) −
n

∑

k=1

ck−1k − x(N) = b(N) −
n

∑

k=1

ck−1k − (b(N) −
n+1
∑

k=1

ck−1k) = cnn+1 = c0n

9



where the second equality follows from x(N) = vπ̂(N). Consequently, equation (3.5) holds.

With respect to equation (3.6), clearly x ≥ 0 implies zi − zi−1 ≤ bi − ci−1i.

Next, we will show equation (3.7), i.e., zj−zi ≥ cjj+1−cij+1 for all i, j ∈ {0, 1, . . . , n} with i < j. Suppose

there exist i, j ∈ {0, 1, . . . , n} with i < j be such that zj−zi < cjj+1−cij+1. Define S = {i+1, . . . , j}. Clearly,

if we can show that x(N \ S) < vπ̂(N \ S) we will arrive at a contradiction with one of the assumptions in

(ii). Indeed,

x(N \S) = b(N \S) − [c01 + . . . + ci−1i + cjj+1 + . . . + cn−1n]

+[z0 + . . . + zi−1 + zj + . . . + zn−1] − [z1 + . . . + zi + zj+1 + . . . + zn]

= b(N \S) − [c01 + . . . + ci−1i + cjj+1 + . . . + cn−1n] + zj − zi − zn

= b(N \S) − [c01 + . . . + ci−1i + cjj+1 + . . . + cn−1n + cn0] + zj − zi

< b(N \S) − [c01 + . . . + ci−1i + cjj+1 + . . . + cn−1n + cn0] + cjj+1 − cij+1

= b(N \S) − [c01 + . . . + ci−1i + cij+1 + . . . + cn−1n + c0n]

= b(N \S) − c(π̂N\S , N \S)

≤ vπ̂(N \S),

where the second equality follows from z0 = 0, the third one is a consequence of zn = c0n, the strict inequality

follows from the assumption and the weak inequality is by definition of vπ̂.

(iii)⇒(i) Let z ∈ R
N0 satisfy the conditions (3.5), (3.6), and (3.7) mentioned in assertion (iii) of the theorem.

Define xi := bi − ci−1i + zi−1 − zi for all 1 ≤ i ≤ n. It is readily checked that x(N) = vπ̂(N). Let S ⊂ N

be a coalition, and let R := {i1, . . . , ir} ⊂ S be such that vπ̂(S) = b(R) − c(π̂R, R). It suffices to prove that

x(S) ≥ vπ̂(S). For this, note that

x(S) ≥ x(R) = b(R) −
r

∑

k=1

cik−1ik
+

r
∑

k=1

zik−1 −
r

∑

k=1

zik

= b(R) −
r

∑

k=1

cik−1ik
+

r
∑

k=2

zik−1 −
r−1
∑

k=1

zik
− z0 + zi1−1 − zir

+ zn − c0n

≥ b(R) −
r

∑

k=1

cik−1ik
+

r
∑

k=2

zik−1 −
r−1
∑

k=1

zik
+ ci1−1i1 − c0i1 − c0ir

= b(R) −
r

∑

k=1

cik−1ik
+

r−1
∑

k=1

zik+1−1 −
r−1
∑

k=1

zik
+ ci1−1i1 − c0i1 − c0ir

= b(R) −
r

∑

k=2

cik−1ik
+

r−1
∑

k=1

[zik+1−1 − zik
] − c0i1 − c0ir

≥ b(R) −
r

∑

k=2

cik−1ik
+

r−1
∑

k=1

[cik+1−1ik+1
− cikik+1

] − c0i1 − c0ir
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= b(R) −
r−1
∑

k=1

cikik+1
− c0i1 − c0ir

= b(R) − c(π̂R, R)

= vπ̂(S).

Here, the first inequality is a consequence of equation (3.6) which implies xi ≥ 0 for every i ∈ N , the second

inequality follows by applying equation (3.7) to j = i1 − 1, i = 0 and to j = n, i = ir and the second one is

also an immediate consequence of equation (3.7). 2

Consider the vector x ∈ R
N defined recursively by

xi = vπ̂(N) − max
k≤i

{vπ̂(N \ {k, . . . , i}) + x({k, . . . , i − 1})}. (3.8)

for i ∈ {1, . . . , n}. This allocation can be interpreted as follows. Assume only connected coalitions (i.e.,

coalitions {k, k + 1, . . . , i}) are allowed to step out of the negotiations on the allocation of vπ̂(N) and

stepping out is decided recursively by the individual players. Consider that player i wants to step out. If the

coalition {k, k + 1, . . . , i} decides to step out, the players in N \ {k, k + 1, . . . , i} will further negotiate the

allocation of vπ̂(N \ {k, k +1, . . . , i}) and each player j ∈ {k, k +1, . . . , i− 1} already got xj . Hence, player i

will be left with vπ̂(N)− [vπ̂(N \{k, . . . , i})+x({k, . . . , i−1})]. Having no influence on “earlier” stepping out

player i can only claim the minimum compensation over the set of all possible connected coalitions {k, . . . , i}

with 1 ≤ k ≤ i which is reflected in (3.8).

It turns out that the allocation x defined by equation (3.8) is a core element of vπ̂. This result is an

immediate consequence of the description of the core by coalitions N \ {k, . . . , i} given in Theorem 3.3 and

Theorem 4 in Derks and Kuipers (1997). Hence, the proof is omitted.

Theorem 3.4. Let (N, vπ̂) be a routing game with revenues corresponding to travel cost matrix C ∈ R
N0×N0

and revenue vector b ∈ R
N . Let x be defined as in equation (3.8). Then, x ∈ Core(vπ̂).

4 Conclusions

In this paper we have analyzed the core of routing games with revenues in which the predetermined route

is optimal for the associated combinatorial problem and visits all cities in N . Next, we provide an example

that illustrates that our assumption (2.1) (i.e., the salesman visits all cities) is not restrictive. It turns out

that if the salesman only visits some of the cities, those that are unvisited will receive a payoff of zero in any

core allocation and the various results provided in the previous sections are still valid.
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Example 4.1. Consider the routing problem with revenues represented in Figure 5 where the numbers at

the edges represent the traveling costs and the boldface numbers at the nodes represent the revenues.

2 3

1 4

0
1 2

2 1

2

1 1 1 1

1

3

5 2

1

Figure 5: The routing problem with revenues in Example 4.1.

It is readily seen that the optimal tour for this situation only visits the cities 1, 2, and 3 in the order 0−1−2−

3−0 denoted by π̂. Hence the coalitional values of the routing game are: vπ̂({1}) = 1, vπ̂({2}) = 1, vπ̂({3}) =

0, vπ̂({4}) = 0, vπ̂({1, 2}) = 4, vπ̂({1, 3}) = 2, vπ̂({1, 4}) = 1, vπ̂({2, 3}) = 3, vπ̂({2, 4}) = 1, vπ̂({3, 4}) = 0,

vπ̂({1, 2, 3}) = 6, vπ̂({1, 2, 4}) = 4, vπ̂({1, 3, 4}) = 2, vπ̂({2, 3, 4}) = 3 and vπ̂(N) = 6. Here, player 4 is a zero

player and the core of the game is Core(vπ̂) = conv{(3, 3, 0, 0), (3, 1, 2, 0), (2, 4, 0, 0), (1, 4, 1, 0), (1, 3, 2, 0)}.

Note that the core can still be described by means of the cost of the tour, the vector of revenues, and a

vector of compensations as in Theorem 3.3. 3
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