
  

 

 

Tilburg University

Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing

Siem, A.Y.D.; den Hertog, D.; Hoffmann, A.L.

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Siem, A. Y. D., den Hertog, D., & Hoffmann, A. L. (2005). Multivariate Convex Approximation and Least-Norm
Convex Data-Smoothing. (CentER Discussion Paper; Vol. 2005-132). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420788594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/ad31ef2c-fc29-46c1-9b8f-603f3df39e83


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2005–132 

 

MULTIVARIATE CONVEX APPROXIMATION AND  
LEAST-NORM CONVEX DATA-SMOOTHING 

 

By A.Y.D. Siem, D. den Hertog, A.L. Hoffmann 
 

December 2005 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



Multivariate convex approximation and least-norm convex

data-smoothing

A.Y.D. Siem∗ D. den Hertog‡ A.L. Hoffmann§

December 15, 2005

Abstract

The main contents of this paper is two-fold. First, we present a method to approximate

multivariate convex functions by piecewise linear upper and lower bounds. We consider a

method that is based on function evaluations only. However, to use this method, the data

have to be convex. Unfortunately, even if the underlying function is convex, this is not

always the case due to (numerical) errors. Therefore, secondly, we present a multivariate

data-smoothing method that smooths nonconvex data. We consider both the case that

we have only function evaluations and the case that we also have derivative information.

Furthermore, we show that our methods are polynomial time methods. We illustrate this

methodology by applying it to some examples.

Keywords: approximation, convexity, data-smoothing.

JEL Classification: C60.

1 Introduction

In the field of discrete approximation, we are interested in approximating a function y : R
q 7→ R,

given a discrete dataset {(xi, yi) : 1 ≤ i ≤ n}, where xi ∈ R
q and yi = y(xi), and n is the

number of data points. It may happen that we know beforehand that the function y(x) is

convex. However, many approximation methods do not make use of the information that y(x) is

convex and construct approximations that do not preserve the convexity. For the univariate case

there is some literature on convexity preserving functions; see e.g. Kuijt (1998) and Siem et al.

(2005). In Kuijt (1998), Splines are used, and in Siem et al. (2005), polynomial approximation is
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considered. For the multivariate case, Den Hertog et al. (2002), use convex quadratic polynomials

to approximate convex functions. Furthermore, there is a lot of literature on so-called Sandwich

algorithms; see e.g. Burkard et al. (1991), Fruhwirth et al. (1989), Rote (1992), Siem et al.

(2005), and Yang and Goh (1997). In these papers, upper and lower bounds for the function

y(x) are constructed, based on the discrete dataset, and based on the knowledge that y(x) is

convex.

A problem that may occur in practice is that one may have a dataset that is subject to noise,

i.e., instead of the data yi we have ỹi = y(xi)+εi
y, where εi

y is (numerical) noise. There may also

be noise in the input data, i.e., x̃i = xi + εi
x, and if derivative information is available, it could

also be subject to noise, i.e., ∇̃yi = ∇yi + εi
g, where ∇yi = ∇y(xi). Note that we assume y(x)

to be convex. However, due to the noise, the perturbed data might loose the convexity of y(x),

i.e., the noise could be such that it is not possible to fit a convex function through the perturbed

data. Therefore, we are interested in data-smoothing, i.e., in shifting the data points, such that

they obtain convexity, and such that the amount of movement of the data is minimized. This

problem has already been tackled in literature for the univariate case; see e.g. Cullinan (1990),

Demetriou and Powell (1991a), and Demetriou and Powell (1991b). Also in isotonic regression,

this problem is dealt with for the univariate case; see Barlow et al. (1972).

In this paper, we will consider two problems. First, we consider how to construct piecewise

linear upper and lower bounds to approximate the output for the multivariate case. This extends

the method in Siem et al. (2005) for the univariate case. If derivative information is available

it is easy to construct upper and lower bounds. However, derivative information is not always

available, e.g., in the case of black-box functions. In this paper, it turns out that these upper

and lower bounds can be found by solving linear programs (LPs).

Second, we will consider the multivariate data-smoothing problem. We consider both the

case that we have only function evaluations and the case that we also have derivative information.

We will show that, if we only consider errors in the output data, the first problem can be solved

by using techniques, which are from linear robust optimization; see Ben-Tal and Nemirovski

(2002). It turns out that this problem can be tackled by solving an LP. If we also have derivative

information, we can also consider errors in the gradients and in the input variables. We then

obtain a nonlinear optimization problem. However, if we assume that there are only errors in

the gradients and in the output data, we obtain an LP. Also, if we assume that there are only

errors in the input data and in the output data, we also obtain an LP.

The remainder of this paper is organized as follows. In Section 2, we consider the problem

of constructing upper and lower bounds. In Section 3, we consider multivariate data-smoothing,

and in Section 4, we give some examples of the application of the data-smoothing techniques,

considered in Section 3. Finally, in Section 5, we present possible directions for further research.

2 Bounds preserving convexity

In this section we assume that y(x) is convex and that the data (xi, y(xi)) for i = 1, . . . , n are

convex as well, i.e., there is are no (numerical) errors, and there exists a convex function that
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fits through the data points.

2.1 Upper bounds

We are interested in finding the smallest upper bound for y(x), given convexity, and the data

(xi, y(xi)), for i = 1, . . . , n. Let x =
∑n

i=1 αix
i, where

∑n
i=1 αi = 1, and 0 ≤ αi ≤ 1, i.e., x is

a convex combination of the input data xi. Then, it is well-known that convexity gives us the

following inequality:

y(x) = y

(
n∑

i=1

αix
i

)
≤

n∑

i=1

αiy(xi). (1)

This means that
∑n

i=1 αiy(xi) is an upper bound for y(x). To find the smallest upper bound we

should therefore solve

u(x) := min
α1,...,αn

n∑

i=1

αiy(xi)

s.t. x =
n∑

i=1

αix
i

0 ≤ αi ≤ 1
n∑

i=1

αi = 1.

(2)

We will now show that the upper bound u(x) is a continuous, convex, and piecewise linear

function. Note that u(x) is an optimal value function. Then it follows immediately from Theorem

IV.51 in Roos et al. (1998) that u(x) is continuous, convex and piecewise linear. Note that this

upper bound is in fact the lower part of the convex hull of the data points (xi, yi), for i = 1, . . . , n.

2.2 Lower bounds

If we have derivative information, it is easy to construct a lower bound. It is well-known that if

y(x) is convex, we have that

y(x) ≥ y(xi) + ∇y(xi)T (x − xi), ∀x ∈ R
q,∀i = 1, . . . , n.

Therefore, ℓ(x) = max
i=1,...,n

(
y(xi) + ∇y(xi)T (x − xi)

)
is a lower bound.

If we do not have derivative information, we have to do something else. We are interested in

finding the largest lower bound for y(x), given convexity and the data (xi, y(xi)), for i = 1, . . . , n.

Let xk =
∑

i6=k αk
i x

i + αkx, where
∑

i6=k αk
i + αk = 1, with 0 ≤ αk

i ≤ 1, and 0 < αk ≤ 1, for all

k = 1, . . . , n, i.e., xk is a convex combination of xi, i 6= k, and x. Then the following holds for

all k ∈ {1, . . . , n}:

y(xk) = y



∑

i6=k

αk
i x

i + αkx


 ≤

∑

i6=k

αk
i y(xi) + αky(x). (3)
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Without loss of generality we may assume that αk > 0. Then we can rewrite (3) as

y(x) ≥
y(xk) −

∑
i6=k αk

i y(xi)

αk
, for k = 1, . . . , n.

This inequality gives us a lower bound for y(x). To obtain the largest lower bound we should

solve the following problem:

max
k=1,...,n





max
αk,αk

i

y(xk)−
P

i6=k αk
i y(xi)

αk

s.t. xk =
∑

i6=k

αk
i x

i + αkx

∑

i6=k

αk
i + αk = 1

0 ≤ αk
i ≤ 1

0 < αk ≤ 1





. (4)

This comes down to solving n nonlinear optimization problems, and taking the value of the

largest solution. Note that the nonlinear optimization problems have linear constraints and

a fractional objective with linear numerator and denominator. These kinds of optimization

problems can be rewritten into an LP; see Charnes and Cooper (1962).

This can be done as follows. Define tk := 1/αk. We can now rewrite the inner optimization

problem in (4) as

max
αk ,αk

i ,tk
tky(xk) −

∑
i6=k αk

i tky(xi)

s.t. xktk =
∑

i6=k

αk
i t

kxi + αktkx

∑

i6=k

αk
i tk + αktk = tk

αk
i t

k ≥ 0

αktk = 1,

where we multiplied all constraints by tk. Now we define zk
i := αk

i t
k and zk := αktk. We then

get

max
zk,zk

i ,tk
tky(xk) −

∑
i6=k zk

i y(xi)

s.t. xktk =
∑

i6=k

zk
i xi + zkx

∑

i6=k

zk
i + zk = tk

zk
i ≥ 0

zk = 1.

(5)
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Note that (5) is an LP. Therefore, for the lower bound ℓ(x) we obtain the following:

ℓ(x) := max
k=1,...,n





max
zk,zk

i ,tk
tky(xk) −

∑
i6=k zk

i y(xi)

s.t. xktk =
∑

i6=k

zk
i xi + zkx

∑

i6=k

zk
i + zk = tk

zk
i ≥ 0

zk = 1.





. (6)

Note that the number of constraints in (6) is q + 1. The number of variables in (6) is also q + 1.

Therefore it takes polynomial time to find the lower bound. A direct approach, i.e., an approach

by enumeration of all possible binding inequalities in (3) would give n ×

(
n − 1

q

)
= O(nq+1)

calculations. Note that such a direct approach is not polynomial in q, the dimension of the

problem.

We can now show that the lower bound ℓ(x) is continuous and piecewise linear. Denote the

optimal value of the k-th inner optimization problem in (6) as a function of x by fk(x). Then

we can write ℓ(x) = max
k=1,...,n

fk(x). Note that fk(x) is an optimal value function. From Roos

et al. (1998), Theorem IV.50, it follows that fk(x) is continuous, concave, and piecewise linear.

If we take the maximum of continuous, and piecewise linear functions, we obtain a continuous,

piecewise linear function. Therefore, ℓ(x) is continuous and piecewise linear.

3 Convex data-smoothing

If the dataset is not convex, we first have to smooth the data such that it becomes convex. We

distinguish between the case that we only have function evaluations and the case that we also

have derivative information.

3.1 Function value information

We only consider movement of the output data ỹi. So, we want to minimally shift the perturbed

output data ỹi such that they become convex. In the following optimization problem, we min-

imize the upward shifts (δ+
y )i and the downward shifts (δ−y )i such that the new shifted output

data points yi
s become convex:

min
δ+
y ,δ−y ,ys

n∑

i=1

(
(δ+

y )i + (δ−y )i
)

s.t. yi
s = ỹi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n

yi
s ≤

∑

k 6=i

λi
ky

k
s (∀λi

k ∈ [0, 1]|xi =
∑

k 6=i

λi
kx

k,
∑

k 6=i

λi
k = 1),∀i = 1, . . . , n

δ+
y ∈ R

n
+, δ−y ∈ R

n
+.

(7)
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We minimize the ℓ1-norm. It is easy to see that in the optimum either (δ+
y )i = 0 or (δ−y )i = 0.

The second constraint forces the shifted output data points yi
s to become convex. Note that (7)

is an LP with infinitely many constraints, i.e., it is a semi-infinite LP, which can also be seen as

a robust linear programming problem. We can solve this problem with methods from Ben-Tal

and Nemirovski (2002). Since the ”uncertainty region”: {∀λi
k ∈ [0, 1]|xi =

∑

k 6=i

λi
kx

k,
∑

k 6=i

λi
k = 1}

of the second constraint in (7) is a polytope, we can rewrite this semi-infinite programming

constraint as a collection of linear constraints without an uncertainty region. We follow the

reasoning of the proof of Theorem 1 in Ben-Tal and Nemirovski (2002) to show this. Let us

consider the second constraint for a certain value of i. We can write this constraint as

∑

k 6=i

λi
ky

k
s − yi

s ≥ 0 ∀(λi
k ∈ [0, 1]|xi =

∑

k 6=i

λi
kx

k,
∑

k 6=i

λi
k = 1). (8)

Note that this constraint is satisfied if and only if the solution of the minimization problem

min
λi

k

∑

k 6=i

λi
ky

k
s − yi

s

s.t. xi =
∑

k 6=i

λi
kx

k

∑

k 6=i

λi
k = 1

λi
k ∈ [0, 1]

(9)

is nonnegative. The dual of this LP is given by:

max
ri,vi,wi

(xi)T ri + vi + eT
n−1w

i − yi
s

s.t. (xk)T ri + vi + wi
k ≤ yk

s ∀k 6= i

wi ≤ 0

ri ∈ R
q, vi ∈ R, wi ∈ R

n−1,

(10)

where en−1 is the (n−1)-dimensional all-one vector. Since (10) is the dual of (9), both LP’s have

the same optimal solution. Note that (10) is nonnegative if and only if there exists a feasible

solution for (10) such that the objective function of (10) is nonnegative. We can now conclude

that (8) is satisfied if and only if there exist ri, vi, and wi, which are feasible for (10) and have

a nonnegative objective, i.e. if the following inequalities are satisfied:





(xi)T ri + vi + eT
n−1w

i ≥ yi
s

(xk)T ri + vi + wi
k ≤ yk

s ∀k 6= i

wi ≤ 0

ri ∈ R
q, vi ∈ R, wi ∈ R

n−1.

(11)
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We can now finally rewrite the second constraint in (7) as (11) for every i = 1, . . . , n. This

means that we can rewrite (7) as

min
δ+
y ,δ−y ,ys,ri,vi,wi

n∑

i=1

(
(δ+

y )i + (δ−y )i
)

s.t. yi
s = ỹi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n

(xi)T ri + vi + eT
n−1w

i ≥ yi
s ∀i = 1, . . . , n

(xk)T ri + vi + wi
k ≤ yk

s ∀k 6= i,∀i = 1, . . . , n

wi ≤ 0 ∀i = 1, . . . , n

δ+
y ∈ R

n
+, δ−y ∈ R

n
+,

wi ∈ R
n−1, ri ∈ R

q, vi ∈ R ∀i = 1, . . . , n,

(12)

which is an LP. Note that, after substituting the equality constraints for yi
s, the number of

constraints in (12) is n(n − 1) + n = n2. The number of variables in (12) is n2 + (q + 2)n.

A direct approach, i.e., an approach by enumeration of possible binding constraints for the

uncertainty region in (7), would give n ×

(
n − 1

q + 1

)
= O(nq+2) constraints, which is certainly

a lot more. However, a direct approach would give 2n variables. Note also that such a direct

approach is not polynomial in q, the dimension of the problem. However, since (12) is an LP,

and the number of constraints and variables are polynomial in n and q, the proposed method is

polynomial.

Above, we minimized the sum of the absolute values of the shifts, i.e. the ℓ1-norm. However,

we can also choose to minimize other norms, such as e.g., the ℓ∞-norm or the ℓ2-norm. Using

the ℓ∞-norm, we also obtain an LP, which is similar to (12). Using the ℓ2-norm, we obtain a

convex quadratic program. This quadratic program has a quadratic objective with the same

constraints as in (12).

3.2 Derivative information

Next, we consider the case in which we also have gradient information. Suppose that the

underlying function is convex, but the data are not convex, due to (numerical) errors. Again,

we are interested in shifting the data such that they become convex. We consider perturbed

output values ỹi, perturbed gradients ∇̃y(xi), and perturbed input values x̃i. Therefore in this

case we want to minimize the shifts in the output values, in the gradients, and in the inputs.

So, in the following optimization problem, we minimize the sum of upward and downward shifts

(δ+
y )i and (δ−y )i of the output values, the upward and downward shifts (δ+

g )i and (δ−g )i of the

gradient, and the upward and downward shifts (δ+
x )i and (δ−x )i of the input values such that the

7



data become convex:

min
(δ+

y )i,(δ−y )i,(δ+
g )i,

(δ−g )i,(δ+
x )i,(δ−x )i,

xi
s,yi

s,(∇yi)s

n∑

i=1

(
(δ+

y )i + (δ−y )i + eT
q (δ+

g )i + eT
q (δ−g )i + eT

q (δ+
x )i + eT

q (δ−x )i
)

s.t. (∇yi)s = ∇̃yi + (δ+
g )i − (δ−g )i ∀i = 1, . . . , n

xi
s = x̃i + (δ+

x )i − (δ−x )i ∀i = 1, . . . , n

yi
s = ỹi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n

(∇yi)Ts (xj
s − xi

s) + yi
s ≤ yj

s ∀i, j = 1, . . . , n, i 6= j

(δ+
y )i ∈ R+, (δ−y )i ∈ R+, (δ+

g )i ∈ R
q
+ ∀i = 1, . . . , n

(δ−g )i ∈ R
q
+, (δ+

x )i ∈ R
q
+, (δ−x )i ∈ R

q
+ ∀i = 1, . . . , n,

(13)

where ∇yi = ∇y(xi), and eq is the q-dimensional all-one vector. The 4-th constraint in (13)

is a necessary and sufficient condition for convexity of the data; see page 338 in Boyd and

Vandenberghe (2004). However optimization problem (13) is a nonconvex optimization problem,

and therefore not tractable.

If there is no uncertainty in the input values x1, . . . , xn, we obtain

min
(δ+

y )i,(δ−y )i,(δ+
g )i,

(δ−g )i,(∇yi)s,yi
s

n∑

i=1

(
(δ+

y )i + (δ−y )i + eT
q (δ+

g )i + eT
q (δ−g )i

)

s.t. (∇yi)s = ∇̃yi + (δ+
g )i − (δ−g )i ∀i = 1, . . . , n

yi
s = yi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n

(∇yi)Ts (xj − xi) + yi
s ≤ yj

s ∀i, j = 1, . . . , n, i 6= j

(δ+
y )i ∈ R+, (δ−y )i ∈ R+, (δ+

g )i ∈ R
q
+, (δ−g )i ∈ R

q
+ ∀i = 1, . . . , n,

(14)

which is an LP.

If we may assume there is no uncertainty in the values of the gradients, but only in the input

data and the output data we obtain

min
(δ+

y )i,(δ−y )i,(δ+
x )i,

(δ−x )i,yi
s,xi

s

n∑

i=1

(
(δ+

y )i + (δ−y )i + eT
q (δ+

x )i + eT
q (δ−x )i

)

s.t. yi
s = ỹi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n

xi
s = x̃i + (δ+

x )i − (δ−x )i ∀i = 1, . . . , n

(∇yi)T (xj
s − xi

s) + yi
s ≤ yj

s ∀i, j = 1, . . . , n, i 6= j

(δ+
y )i ∈ R+, (δ−y )i ∈ R+, (δ+

x )i ∈ R
q
+, (δ−x )i ∈ R

q
+ ∀i = 1, . . . , n,

(15)

which is an LP. An example of a problem, where the gradient information is exact, and we only

have errors in the input variables and output variables is in the field of multiobjective optimiza-

tion. In the so-called weighted sum method, to determine a point on the Pareto curve/surface

the weights determine the exact value of the gradient, whereas due to numerical errors of the
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Table 1: Data and results of smoothing in Example 4.1.

number x1 x2 y ỹ ys

1 -0.0199 -1.9768 3.9081 6.1588 6.1588
2 0.0925 1.3411 1.8071 0.4628 0.4628
3 1.4427 0.3253 2.1872 2.7214 2.7214
4 -1.8056 -1.1961 4.6908 4.6208 4.6208
5 -0.4435 -0.3444 0.3153 2.2718 2.0578

6 -1.2952 0.8811 2.4539 3.7644 3.7644
7 1.7826 1.6795 5.9984 5.7807 5.7807
8 0.8074 -1.3585 2.4974 0.0899 0.4842

9 -0.8714 0.5089 1.0183 2.6254 2.6254
10 0.5779 -0.7205 0.8531 0.5766 0.5766

solver, the input value and the output value might be subject to noise.

Note that in the formulation of (13), (14), and (15), we have minimized the shifts (δ+
y )i,

(δ−y )i, (δ+
g )i, (δ−g )i, (δ+

x )i, (δ−x )i, and have given them all equal importance. However, we might

want to give the error in the gradient more weight.

4 Numerical Examples

In this section we will consider some examples of the theory discussed in Section 3.

Example 4.1 (artificial, no derivative information)

In this example we apply the theory that we developed in Section 3.1. We consider the function

y : R
2 7→ R, given by y(x1, x2) = x2

1 + x2
2. We take a sample of 10 input data points x1, . . . , x10

from [−2, 2] × [−2, 2], and calculate the output values y(x1), . . . , y(x10). Furthermore, we add

some noise to it, i.e., we add a noise εi
y, where the εi

y’s are independent and uniformly distributed

on [−2.5, 2.5], such that the data become nonconvex. We obtain values ỹi = yi + εi
y. The values

are given in Table 4.1. We solved (12) for this problem, and the shifted data yi
s are also given

in Table 4.1. The values that are really shifted, are shown in italics.

Example 4.2 (radio therapy, no derivative information)

In radiotherapy the main goal is to give the tumour enough radiation dose, such that the sur-

rounding organs do not receive too much radiation dose. This problem can be formulated

mathematically by a multiobjective optimization problem. With the tumour and each healthy

surrounding organ, an objective function is associated. One of the problems is that the calcula-

tion of a point on the Pareto surface can be very time-consuming. Therefore, we are interested

in approximating the Pareto surface; see e.g. Hoffmann et al. (2005). Under certain conditions,

we may assume that this Pareto surface is convex. However, due to numerical errors, the Pareto

points may not be convex. Therefore we should first smooth them to make them convex.

We have data from a patient of the Radboud University Nijmegen Medical Centre, in Ni-

jmegen, the Netherlands. This data is from a multiobjective optimization problem with 3
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Figure 1: The exact function, the perturbed data, and the smoothed data of Example 4.1.

objectives, and has 69 data points. The data are shown in Figure 2. The Pareto surface is a

convex and decreasing function. However, it turned out that the data is not convex. By solving

(12), the data is smoothed such that the data becomes convex. The smoothed data points are

also shown in Figure 2.

Example 4.3 (artificial, derivative information)

In this example we apply the theory of Section 3.2. We consider the function y : R 7→ R, given

by y(x) = 1/x. We assume that we have derivative information, and that there are errors in

the outputs and in the gradients. We take 9 equidistant input points and calculate the function

value y(x) and its derivative y′(x) = −1/x2 in these 9 input points, and perturb the data such

that we get the data ỹ, and ỹ′. Then, to smooth the data we have to solve the LP (14). Note that

the method can also be used for multivariate functions, however the results can be visualized

clearer for the univariate case. The data is given in Table 4.3 and also shown in Figure 3. After

solving (14), we obtain the shifted data ys and y′s, which are given in Table 4.3, and also shown

in Figure 3. The values that are really shifted, are shown in italics.

5 Further Research

As interesting topics for further research we mention several possible applications of the methods

developed in this paper.

Possible applications for the construction of the bounds in Section 2 are:
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Figure 2: The the perturbed data and the smoothed data of Example 4.2.

Table 2: Data and results of smoothing in Example 4.3.

number x y y′ ỹ ỹ′ ys y′s
1 0.2 5.0000 -25.0000 5.2701 -25.3226 5.2701 -25.3226
2 0.3 3.3333 -11.1111 3.3974 -11.1279 3.3974 -11.1279
3 0.4 2.5000 -6.2500 2.7348 -5.9355 2.7348 -5.9355
4 0.5 2.0000 -4.0000 1.9739 -4.5778 2.1413 -4.5778
5 0.6 1.6667 -2.7778 1.8595 -2.8441 1.8568 -2.8441
6 0.7 1.4286 -2.0408 1.4978 -1.6905 1.5724 -1.6905
7 0.8 1.2500 -1.5625 1.5031 -1.2767 1.4418 -1.3058

8 0.9 1.1111 -1.2346 0.9169 -1.3477 1.3113 -1.3058

9 1 1.0000 -1.0000 1.2613 -0.4997 1.2613 -0.4997
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of Example 4.3.

• Extend the Sandwich algorithms as exist for the approximation of univariate convex func-

tions to the multivariate case by using the lower and upper bounds. More specifically,

this may be useful for approximating convex Pareto curves and black-box functions (e.g.

deterministic computer simulation).

• Use the lower bounds in convex optimization. For each new candidate proposed by the

nonlinear programming solver, we can calculate the lower bound, and if this lower bound

is larger than the best known objective value up to now, we reject the candidate before

evaluating its function value. This may reduce computation time, especially when the

function evaluation is time-consuming. In Den Boef and Den Hertog (2004) promising

results are shown for the univariate case.

Possible applications for the data smoothing method of Section 3 are:

• Apply data smoothing before applying Sandwich type algorithms. This may be necessary

because of (numerical) noise. This noise occurs e.g., when we want to estimate a Pareto

surface in the field of multiobjective optimization. For the so-called weighted sum method

(see Miettinen (1999)), formulation (15) can be used, since in this method the derivatives

are exact. For the so-called ε-constraint method (see again Miettinen (1999)) formulation

(14) can be used, since in this method the x values are exact.

• Apply data smoothing to multivariate isotonic regression problems.
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