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Abstract: The inverse probability weighted Generalised Empirical Likelihood (IPW-GEL) 
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tion or attrition. The estimator is applied to the estimation of the firm size elasticity of product 
and process R&D expenditures using a panel of German manufacturing firms, which is af-
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Introduction 
 
Assume we are concerned with estimating the unknown qx1 parameter vector , which de-
scribes some characteristics of the distribution of the random vector  satisfying 
the orthogonality condition 

0β
( X,YZ1 ′′=′ )

( )[ ] 0,ZE 011 =βψ  where ( )βψ ,Z11  is a rx1 vector of unconditional 
moment functions (the use of the subscript 1 becomes obvious later). These moment func-
tions may be derived from a structural or reduced form model of an economic theory of inter-
est and are general enough to cover multiple equation models of linear and non-linear form. 
Suppose we have a random sample { Z1i: i = 1,...,n } of Z1 and the equation system is exactly 
identified, i.e. r = q. Then a method of moments estimator  of MMβ̂ 0β  can be derived from an 
application of the analogy principle outlined by Manski (1988) by solving  
 

( )∑
=

=βψ
n

1i
MMi11 0ˆ,Z

n
1 . (1) 

 
The estimator is consistent and asymptotically normal under mild regularity conditions. As-
sume now that instead of observing a random sample of Z1, we observe a random sample of  
{ (Z1i,Wi,A i): i = 1,...,n } from the distribution of Z1 given A = 0 with mean ( )[ ]0A|,ZE 011 =βψ . 
A is an indicator variable which indicates selection by A = 0 and non-selection by A ≠ 0. W is 
a vector of attributes that is observed for any outcome of A. The sample average (1) com-
puted on the basis of selected observations will not uniformly converge to the population 
moment of interest unless selection occurs independent of Z1, i.e. ( ) ( 0APrZ|0APr 1 )=== . 
However, working under the conditional independence assumption (CIA) that selection oc-
curs independent of Z1 given W, i.e. ( ) ( )W|0APrW,Z|0APr 1 === , implies that the popu-
lation moments can be identified from ( )[ ] ( ) ( ) ( )[ ]W|0APr0A1,ZE,ZE 011011 ==βψ=βψ  and 
suggests an inverse probability weighted (IPW) moment estimator  of  solving  IPW

MMβ̂ 0β
 

( ) ( )∑
=

==βψ
n

1i
i

IPW
MMi11

i
00A1ˆ,Z

p̂
1

n
1 , (2) 

 
where  denotes a consistent estimator of ip̂ ( )ii W|0APr = . In Section 1 we will discuss CIA 
in more detail and provide references. For (2) the assumption is maintained that r = q. If we 
give up this assumption in favour of an over-identified equation system, i.e. r > q, (2) cannot 
be solved but an inverse probability weighted GMM estimator  (see Wooldridge (2002) 
for a general treatment of IPW-M estimators) follows straightforwardly. However, an IPW 
Generalised Empirical Likelihood (GEL) estimator  of 

IPW
GMMβ̂

IPW
GELβ̂ 0β  can be obtained from (2) by 

replacing the empirical distribution probabilities 1/n with probabilities iπ̂  satisfying  
 

( ) ( )∑
=

==βψ
πn

1i
i

IPW
GELi11

i

i 00A1ˆ,Z
p̂
ˆ . (3) 

 
Since there may be a large number of iπ̂  for i = 1,...,n satisfying (3) a further criterion for se-
lecting the probabilities is needed which consists of minimising an information criterion be-
tween  and 1/n (see, e.g., Newey and Smith (2004)). Section 2 overviews the recent litera-
ture on GEL estimation and emphasises possible advantages of GEL over GMM.  

iπ̂
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The econometric framework described so far is motivated by our attempt to estimate the rela-
tionship between firm size and R&D expenditures from the Mannheim Innovation Panel (MIP) 
of German manufacturing firms. In particular, we are concerned with a test of the Klepper 
(1996) and Cohen and Klepper (1996a, b) hypothesis that the firm size elasticity of R&D ex-
penditures related to process innovations (in short: process R&D) should exceed the corre-
sponding elasticity of R&D expenditures devoted to product innovations (product R&D). Sec-
tion 3 introduces to the application, describes the data and the empirical specification. For 
the moment we note that selection affects the second wave of the MIP, where A = 0 de-
scribes firms observed in the first wave which stay in the panel and remain engaged in R&D. 
 
The paper contributes to both the econometric literature on IPW and GEL estimators and the 
empirical industrial organisation literature on R&D, firm size and exit by 
• introducing IPW-GEL estimators as a natural alternative to IPW-GMM estimators, 
• comparing IPW-GEL and IPW-GMM estimators in an application to firm panel data, 
• comparing outcomes under CIA and the stronger independence assumption (IA), 
• mixing CIA and IA in an environment of sequential selection for a sensitivity analysis,  
• investigating the joint distribution of the estimated probabilities  and  in (3), ip̂ iπ̂
• testing the Cohen and Klepper hypothesis regarding size and process and product R&D.   
Estimation results are presented and discussed in Section 4. It turns out that 
• GEL and GMM estimates are almost identical with slight efficiency advantages to GEL. 
• Outcomes under CIA, IA and mixtures of both assumptions are very similar.  
• Firms with a high conditional selection probability  tend to receive a slightly higher ip̂ iπ̂ .  
• The Cohen and Klepper hypothesis is clearly rejected in all empirical specifications.    
We conclude in Section 5 with a discussion of the findings and an outlook on future research.  
 
 
1. Identification: Conditional Independence Assumption  
 
As already pointed out in the introduction, sample selection may not be harmful for any 
econometric analysis if one has reasons to assume that selection occurs independent of the 
variables of interest entering the orthogonality conditions ( )[ ] 0,ZE 011 =βψ , i.e.  

. It has become standard to use the following notation for independence 
( )1Z|0APr =

( 0APr == )
 
C 0AZ1 = .  (4) 

 
This assumption is implicitly maintained in all empirical studies, which are based on selected 
observations only. In particular, all panel data applications, which do not address attrition as 
a selection mechanism, implicitly assume that unit non-response is independent of the vari-
ables of interest. This certainly applies to the overwhelming majority of panel data applica-
tions. Notable exceptions are the monographs by Lechner (1995), Rendtel (1995) and 
Schnell (1997) as well as work to which we will refer below. In a panel data framework, (4) is 
compatible with both balanced and unbalanced panel data analysis. The former simply con-
ditions on sample units that are observed in all waves, while the latter conditions on ob-
served units in each wave separately. The argument for using an unbalanced panel is one of 
achieving (asymptotic) efficiency gains not one of imposing weaker identification assump-
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tions in the presence of sample selection. In panel data applications as well as in cross-
sectional analysis, the independence assumption (IA) (4) usually appears to be very strong. 
 
In order to weaken (4) econometricians increasingly refer to the statistics literature, in par-
ticular to Rubin (1976, 1977, 1978) and consider identification of the moments (and finally 
parameters) of interest on the basis of the conditional independence assumption (CIA) 

, or equivalently using the notation from (4)( ) ( W|0APrW,Z|0APr 1 === )  1

 
W|0AZ1C = .  (5) 

 
Under CIA independence is achieved by conditioning on a vector of conditioning variables or 
attributes (Holland (1986)) affecting both selection and the variables Z1. Depending on the 
area of application CIA is also referred to as a Missing at Random assumption (Rubin 
(1976)), ignorability (Little and Rubin (1987)), unconfoundedness (Rubin (1978), Rosenbaum 
and Rubin (1983)) and selection on observables (Fitzgerald, Gottschalk and Moffitt (1998)).  
 
The latter designation emphasises the fact that W has to be observed for both selected and 
non-selected units, which demands for rich data sets in many applications, and also serves 
to separate CIA from more traditional econometric techniques in the selection on unobserv-
ables framework of Heckman (1979) and Hausman and Wise (1979). CIA rules out correla-
tion between the error terms of the selection equation and the equations of interest after 
conditioning on W. Identification on the basis of the selection on unobservable assumption, 
however, depends either on the functional form (Heckman (1979)) or on exclusion restric-
tions (Newey (1999)). These requirements are certainly not without problems as well. An-
other frequently cited argument against CIA (e.g. Heckman (2001)) is the problem that CIA is 
usually not testable. Hirano, Imbens, Ridder and Rubin (2001), however, present a test for 
CIA with respect to attrition in panel data that can be applied if refreshment samples are 
available. A strong argument in favour of CIA against selection on unobservables is the lim-
ited applicability of the latter assumption in more complicated non-linear and multiple equa-
tion models as multi-period panel data models (see Ridder (1990) and Verbeek and Nijman 
(1996)). As already noted in the introduction and shown below in more detail, CIA suggests 
feasible estimators in a general non-linear multiple equation modelling framework.2   
 
These estimators make use of the conditional selection probability3 ( )W|0APr =  which has 
been central to the analysis of Rosenbaum and Rubin (1983) who show that 
 

( )W|0APr|0AW ==C   (6) 

( W|0APr|0AZ ==C )

                                                

. (7) 

 

 
1 See Dawid (1979), Holland (1986) and Angrist (1997) for a statistics perspective on CIA.  
2 Since we emphasise CIA’s applicability to non-linear functions of Z, we refrain from describing the conditional 
mean independence assumption (CMIA, see, e.g. Hirano, Imbens, and Ridder (2003)) as a somewhat weaker 
identification condition in models based on orthogonality conditions which are linear in Z.   
3 Also known as the propensity score or balancing score (Rosenbaum and Rubin, 1983). 
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The so-called balancing property (6) of the conditional selection probability is sometimes 
used to assess the quality of an estimator of ( )W|0APr =  in applied work (see Dehejia and 
Wahba (1999)) but follows mechanically from the definition of the conditional selection prob-
ability. (7) is implied by CIA and reduces the dimension of the conditioning set in (5) to one.  
  
As noted in the introduction CIA and the conditional selection probability  can 
be used to derive the following important result 

( )W|0APr =

 

( ) ( )
( ) ( ) ( )

( )
( )

( ) ( )

( )
( ) ( ) ( )[ ] 0,ZEW|0APrW|

W|0APr
,ZEE

W|0APr0A,W|
W|0APr

,ZEE

W|
W|0APr

0A1,ZEE
W|0APr

0A1,ZE

011
011

011

011011

=βψ=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

βψ
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

=
βψ

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

=
βψ=⎥

⎦

⎤
⎢
⎣

⎡
=

=
βψ

 (8) 

 
where CIA is exploited in the transition to the last row. Thus, the orthogonality conditions of 
interest are recovered from weighting the selected unconditional moment functions with the 
inverse of the conditional selection probability. This result has led to a large number of publi-
cations advocating the use of inverse probability weighting (IPW) approaches – in the tradi-
tion of Horvitz and Thompson (1952) – to correct for sample selection and unit non-response 
bias under CIA as practised in equation (2). Examples include Robins and Rotnitzky (1995), 
Robins, Rotnitzky and Zhao (1995), Fitzgerald, Gottschalk and Moffitt (1998), Horowitz and 
Manski (1998), Hirano, Imbens, Ridder and Rubin (2001), Abowd, Crepon and Kramarz 
(2001) and Wooldridge (2002).4

 
 
2. Estimation: IPW Generalised Empirical Likelihood  
 
If the moment functions  are exactly identified, i.e. r = q, the result (8) can be used to 
construct the IPW-MM estimator described in (2) by replacing the unknown conditional selec-
tion probabilities 

( βψ ,Z11 )

)( W|0APr =  with a consistent parametric or non-parametric first step esti-
mator p . If there are over-identifying restrictions, i.e. r > q, a GMM (Hansen (1982)) estimator 
follows straightforwardly from using the same weighted moment functions as in (2). In both 
cases, the first step estimator  affects the variance-covariance matrix of the limiting distribu-
tion of the stabilising transformation of the second step IPW estimator of . The necessary 
variance-covariance adjustments are described by Newey (1984) and Newey and McFadden 
(1994) for a parametric first estimation step and by Newey (1994) and Newey and McFadden 
(1994) for a non-parametric first estimation step. Wooldridge (2002) considers a class of 
IPW-M estimators, which are based on a first step Maximum Likelihood (ML) estimator  and 
shows that the unadjusted variance-covariance matrix is larger (in a matrix sense) than the 
correctly adjusted matrix.

ˆ

p̂

0β

p̂

5  

                                                 
4 A closely related literature considers IPW estimation of average treatment effects using an estimator of the pro-
pensity score (see, e.g., Hirano, Imbens, and Ridder (2003)). 
5 Wooldridge argues that the resulting conservative inference may be desirable. It may also be misleading. 
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Wooldridge also shows that using an estimator of the conditional selection probability instead 
of the true (but usually unknown) probability ( )W|0APr =  helps improving upon the asymp-
totic efficiency of the IPW-M estimator. The semi-parametric efficiency bound for a class of 
IPW-GEE estimators (Generalised Estimating Equations; GMM estimators, which employ a 
particular set of instruments) suggested by Robins, Rotnitzky and Zhao (1995), which also 
rely on a first step ML estimator of the conditional selection probability, is derived by Robins 
and Rotnitzky (1995).6 Robins, Rotnitzky and Zhao (1995) and Wooldridge (2002) show that 
the bound can be approached by enlarging the parametric model of the conditional selection 
probability with additional variables (like quadratic terms of continuous variables and interac-
tions), even if they have a true coefficient of zero.7 Robins, Rotnitzky and Zhao (1995) pro-
pose first step ML logit estimators, Fitzgerald, Gottschalk and Moffitt (1998) first step ML 
probit estimators for the conditional selection probability in order to correct for attrition in a 
panel data framework using an IPW estimator exploiting (8). The parametric approach is 
maintained in the following discussion by specifying ( ) ( )0WpW|0APr γ′== , where a logit 
(probit) model results for p(.) equal to the c.d.f. of the logistic (standard normal) distribution.8

 
Instead of sequentially estimating  and 0γ 0β  we follow Newey (1984) and consider joint es-
timation of ( 000 ,γ )′β′=θ′  by stacking the weighted moments of interest with the vector of mo-
ment functions describing the first estimation step. Let ( )γψ ,Z22  be the score for the ML es-
timator of  where 0γ ( W,AZ2 ′= )′ . The score satisfies ( )[ ] 0,ZE 022 =γψ  which suggests com-
puting a moment based estimator of 0θ  from a random sample of ( 21 Z,ZZ ′′ )=′  on the basis 
of the following extended set of moment functions  
 

( ) ( ) ( )
( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

γψ
γ′

=
βψ

=θψ
,Z

Wp
0A1,Z

,Z

22

11 . (9) 

 
As a result of this joint estimation approach, the variance-covariance formula of the estimator 
being used (e.g. GMM for r > q) automatically performs the necessary variance-covariance 
matrix adjustment for the estimator of 0β  which we discussed before. Abowd, Crepon and 
Kramarz (2001) consider an IPW-GMM estimator on the basis of (9) in a multi-period panel 
data framework. In such an application moment functions like (9) are defined for each period 
and stacked in one vector, which is used for the GMM estimator.9

                                                 
6 See Newey (1990) for an introduction to the concept of semi-parametric efficiency. In our context, a semi-
parametric efficient estimator reaches the Cramér-Rao bound for any consistent and asymptotically normal (regu-
lar) estimator of a parametric sub-model satisfying the orthogonality conditions. 
7 Hahn (1998) derives the semi-parametric efficiency bound for the related class of propensity score weighted 
estimators of average treatment effects and Hirano, Imbens and Ridder (2003) and Wang, Linton, and Härdle 
(2004) propose estimators, which attain this bound.  
8 Semi- and non-parametric estimators of binomial choice models are discussed in Horowitz (1993). Hahn (1998) 
and Hirano, Imbens and Ridder (2003) employ non-parametric first step estimators of the propensity score, Wang, 
Linton and Härdle (2004) discuss semi-parametric estimation of the propensity score.  
9 In this framework, the estimator of the conditional response probabilities usually cannot be interpreted as a ML 
estimator unless selection is independent across time. The score of a ML estimator, which allows for correlation 
over time may become computationally unattractive. Bertschek and Lechner (1998) and Inkmann (2000) propose 
computationally less demanding alternative specifications of unconditional moment functions for binary choice 
panel data models. Robins, Rotnitzky, and Zhao (1995) propose conditioning on lagged response in multi-period 
panel data applications. In this case the conditional selection probability for period t factorises into a product of 
lagged probabilities of the form Pr(At = 0| At-1 = 0, W)Pr(At-1 = 0| At-2 = 0, W) ... Pr(A0 = 0| W) where W consists of 
time-invariant attributes. A similar specification will be used in Section 3 to account for sequential selection.  

 6



Recently, a number of different moment based estimators have been proposed as an alter-
native to GMM estimation. These include the Empirical Likelihood (EL) estimator of Owen 
(1988), Qin and Lawless (1994) and Imbens (1997), the Exponential Tilting (ET) estimator of 
Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998) and the Continuous 
Updating (CU) estimator of Hansen, Heaton, Yaron (1996).10 It has been noted by Smith 
(1997), Brown, Newey and May (1998), Imbens, Spady and Johnson (1998) and Newey and 
Smith (2004) that all these estimators belong to the same family of estimators meanwhile 
known as Generalised Empirical Likelihood (GEL) estimators. Like GMM, these estimators 
require a set of orthogonality conditions ( )[ ] 0,ZE 0 =θψ  as the only substantial prerequisite for 
the consistent estimation of . The reason for considering alternatives to GMM is the some-
times unsatisfying small sample performance of the semi-parametric efficient GMM estimator 
for the given set of unconditional moment conditions, which employs an inefficient first step 
estimator to construct an optimal weight matrix used in the second estimation step. These 
small sample shortcomings become increasingly serious with an increasing number of over-
identifying restrictions 

0θ

qr −  (see Inkmann (2001), ch. 7, for a review of the extensive litera-
ture on small sample properties of GMM). Newey and Smith (2004) show that the GEL esti-
mators share the first order asymptotic properties of the efficient GMM estimator, while im-
proving upon the higher order asymptotic bias properties of GMM. The authors show that the 
reasons are twofold: in contrast to GMM, GEL does not require a first step weight matrix es-
timator and GEL implies a semi-parametric efficient estimator of the first derivative of the 
population moments with respect to the unknown parameter vector, which eliminates the cor-
relation between the Jacobian and the moment functions, which both appear in the first order 
conditions of the optimisation programme. Since the dimension of the Jacobian matrix in-
creases with an increasing number of moment conditions, GEL is expected to perform better 
than GMM if qr −  is large.11

 
The GEL estimator is defined by solving the information-theoretic optimisation problem (see 
Corcoran (1998), Newey and Smith (2004)) 
 

( )∑
=

τ
ππΘ∈θ

π=θ
n

1i
i

...,,
hminargˆ

n1

       subject to   (10) ∑
=

=π
n

1i
i 1

  (11) ( )∑
=

=θψπ
n

1i
ii 0Z

 
where ( ) ( ) ( ) n/1)n(h 112 −πτ+τ=π +τ−

τ  is a member of the family of power divergence statistics 
indexed by τ (see Cressie and Read (1984)) between the scalar probability πi and the empiri-
cal distribution weights n/1 . The interpretation of the GEL optimisation program is very intui-
tive: simultaneously chose θ and πi, for i = 1,...,n, such that the weighted sample counterpart 
(11) of the population orthogonality condition is satisfied and the probabilities12 πi are as simi-
lar as possible to the empirical distribution according to some information criterion. Note that 

                                                 
10 See Inkmann (2001), ch. 7, for an introduction to these estimators. 
11 Note, however, that the argument refers to a higher order asymptotic result for GEL while the GMM short-
comings are known to exist in small samples.   
12 Interpreting the weights π as probabilities requires that they are non-negative. This is satisfied for small λ’ψ(Z,θ) 
in equations (12) and (13) below as pointed out by Newey and Smith (2004). All weights estimated for the applied 
part of this paper fall into the interval (0,1).    
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(11) is solved regardless of the presence of over-identifying restrictions. The EL  (ET) and 
CU estimators result from (10) and (11) with τ = 0 (τ = 1− ) and τ = 1, respectively, using limit 
representations for τ = 0 (τ = ) to obtain 1− π−=πτ ln)(h  ( ππ=πτ ln)(h ).  
 
Newey and Smith (2004) show that the solution to the program (10) and (11) is identical to 
the solution to the following saddle point problem in θ and the rx1 parameter vector λ 
 

( )
((∑

=θΓ∈λΘ∈θ
θψλ′ρ=θ

n

1i
i,Zsupminargˆ ))

}

 (12) 

 
where  is a function in ν which is concave over its domain V and 

. The EL (ET) and CU estimators result from (12) from 
choosing 

( ) ( ) )1/(1 /11 τ+τν+−=νρ τ+

( ) ( ){ n,,1i,V,Z: i K=∈θψλ′λ=θΓ
( ) ( )ν+=νρ 1ln  ( ) ( )( )ν−=νρ exp  and ( ) ( )21 ν+−=νρ . Since the dimension of the op-

timisation problem is reduced from n + q to r + q, solving (12) in applied work should be 
computationally more attractive than solving (10) and (11), in particular using the penalty 
function optimisation approach suggested by Imbens, Spady and Johnson (1998). Newey 
and Smith (2004) derive an explicit solution for the estimators iπ̂  of the probabilities πi, i = 
1,...,n, in (10) and (11) in terms of the estimators  and  satisfying (12), which can be writ-
ten as (using the notation 

θ̂ λ̂
( ) ν∂ρ∂=νρ∇ / )  

 
( )( )

( )( )∑
=

θψλ′ρ∇

θψλ′ρ∇
=π n

1j
j

i
i

ˆ,Zˆ

ˆ,Zˆ
ˆ . (13) 

 
The CU estimator is a computationally particularly attractive special case of (12) and (13) be-
cause an explicit solution for the optimal  in (12) is available  λ̂
 

ψ−=λ −1V̂ˆ           with     ( ) ( )∑
=

′
θψθψ=

n

1i
ii

ˆ,Zˆ,Z
n
1V̂           and     (∑

=

θψ=ψ
n

1i
i

ˆ,Z
n
1 ), (14) 

 
which simplifies the optimisation problem (12) from a saddle point problem to a more stan-
dard minimisation problem for  and implies the following probability estimators from (13) θ̂
 

( )
( )ψψ′−

θψψ′−
=π

−

−

1
i

1

i V̂1n

ˆ,ZV̂1ˆ  (15) 

 
for i = 1,...,n, which were formerly derived by Back and Brown (1993). Brown and Newey 
(1998) show that an estimator of any expectation, which is based on a weighted sample 
equivalent using probabilities (15), is efficient. Brown, Newey and May (1998) extend this re-
sult to any estimator based on probabilities (13).  
 
The IPW-GEL estimator results from using the particular moment functions (9). Evaluated at 
the GEL estimator, (11) collapses to equation (3) in the introduction if the estimators , for    
i = 1,...,n, of the conditional selection probabilities are obtained in a first estimation step. We 
are aware of two references discussing IPW estimators in relation the GEL: Hirano, Imbens 

ip̂
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and Ridder (2003) interpret an IPW estimator that is based on an estimated propensity score 
as an empirical likelihood estimator, which efficiently incorporates the information about the 
propensity score. Nevo (2002) derives a weighted estimator, which is identical to an ET esti-
mator if based on a representative sample and to an IPW moment estimator if based on a 
selected sample. Previous work discussing an estimator like (3) and its extension using the 
moment functions (9) considered in this section, which makes use of both estimated condi-
tional selection probabilities  and estimated empirical distribution weights  is not known 
to us. This IPW-GEL estimator is applied in the remaining part of the paper to estimate the 
firm size elasticity of product and process R&D and compared to the IPW-GMM estimator 
using (9) proposed by Abowd, Crepon and Kramarz (2001). We will use the CU version of 
GEL with weights (15) for this purpose because the saddle point problem simplifies to a 
minimisation problem in this case and work by Donald, Imbens and Newey (2002) indicates 
that CU has higher order asymptotic efficiency advantages over competing GEL estimators.     

ip̂ iπ̂

 
 
3. Application: Firm Size and R&D Expenditures 
 
Studying the relationship between firm size and R&D input and output variables has a long 
tradition in theoretical and empirical industrial organisation, which dates back to the claim, 
usually attributed to Schumpeter, that large firms have advantages over small firms in con-
ducting successful research and development (see Cohen and Klepper, 1996b for an over-
view of the literature). This literature was enriched in the 1990s by distinguishing separate 
types of R&D, namely process R&D, which is targeted to cost-reducing process innovations, 
and product R&D, which is conducted with the goal to introduce product innovations that may 
lead to temporary monopoly gains until imitation occurs. Klepper (1996) shows in a theoreti-
cal model that different types of R&D may be predominantly associated with different stages 
of a product life-cycle and correspondingly, with firms of a certain age and size. The model 
implies that early and new entrants compete in heterogeneous product innovations in an 
emerging product market but engage increasingly in cost-reducing process R&D with in-
creasing size to create a cost advantage that prevents possible competitors from entry. Since 
at the same time unsuccessful innovators are forced to leave the market, a mature market 
will involve a small number of producers with stable market shares. This model as well as the 
related models of Cohen and Klepper (1996a, b) depend on two main assumptions: product 
innovations are heterogeneous, which leads to firms producing variants of the same product 
at the same time, and most importantly, that the returns to process innovations are propor-
tional to output and size since process innovations can be spread over a larger number of 
applications. These assumptions are responsible for the implication that the share of process 
R&D in the sum of process and product R&D increases with increasing firm size, which we 
will call the Cohen and Klepper hypothesis in short. The empirical analysis of Scherer (1991), 
which precedes the theoretical contributions of Cohen and Klepper, provides support for this 
hypothesis on the basis of US data.  
 
A simple way of testing the Cohen and Klepper hypothesis was suggested by Fritsch and 
Meschede (2001) who estimate the firm size elasticity of process and product R&D. A firm 
size elasticity of process R&D exceeding the corresponding elasticity of product R&D would 
confirm the Cohen and Klepper hypothesis. The elasticities can be readily estimated from a 
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linear model of log R&D expenditures in log firm size as measured by the number of employ-
ees. This empirical approach is adopted in the following. Fritsch and Meschede report the 
results from separate OLS estimations of the firm size elasticity of process and product R&D 
using a cross section of 627 German manufacturing firms (on enterprise level). They show 
that R&D increases less than proportional with firm size and that the firm size elasticity of 
process R&D (0.706) slightly exceeds the corresponding elasticity of product R&D (0.689). 
Fritsch and Meschede refer to a Wald test of the equality of both elasticities, which does not 
reject the null.13 Hence, the results neither provide support for the Cohen and Klepper hy-
pothesis nor reverse its content. Firm size has the same impact on both process and product 
R&D, a result which is in line with findings by Arvanitis (1997) for Swiss firms. We enrich the 
specification of Fritsch and Meschede by a) treating process and product R&D equations as 
seemingly unrelated regression, b) adding a random effects error term structure which de-
mands for panel data, c) accounting for possible sample selection bias. The latter extension 
is the one of main interest for an application of the IPW-GEL estimator, course.  
  
Separate information on R&D expenditures related to process and product innovations is 
available in the first two waves of the Mannheim Innovation Panel (MIP, 1993-1994), which is 
collected by the Centre for European Economic Research (ZEW) in Mannheim (see Harhoff 
and Licht (1994) for details on this data source, which serves as Germany’s contribution to 
the European Community Innovation Surveys, CIS). We define the population of interest as 
consisting of firms, which engage in R&D activities in 1993 because the Cohen and Klepper 
theory does not apply to firms, which do not attempt to innovate.14 The sample includes 1063 
firms from this population observed in the first wave with full information.   
 
The source of sample selection becomes obvious from investigating these firms in the sec-
ond wave. Figure 1 provides an overview of the 1994 sample decomposition. More than 50% 
((180+374)/1063) of the original 1993 sample is missing in 1994 because of (unit) non-
response or attrition. Among the respondents, 60 firms were not engaged in R&D activities in 
1994, which leaves a number of 449 firms with full information on R&D and firm size. Figure 
1 also sheds some light on the decomposition of non-respondents: following their traces 
throughout the waves 1995 to 1997, it turns out that 180 non-responding firms return in later 
waves while 374 firms do not come back. Without further information, it cannot be ruled out 
that the latter group includes true market exits and not only panel exits.15

 
Figure 1 also defines the indicator variable A used before in Sections 1 and 2. Only firms with 
A = 0 are observed with full information while firms with A = 1 do not perform R&D and firms 
with A = 2 or A = 3 do not respond. Thus, there are three selection mechanisms denoted At-
trition, R&D and Exit in the figure. They are related to each other in a hierarchical structure 

                                                 
13 It remains somewhat unclear, however, how the test statistic was computed since separate OLS regressions 
were performed to estimate the size elasticity of process and product R&D. Most likely, the Wald test was based 
on a diagonal variance-covariance matrix of the two elasticity estimators, which may be misleading. Given the 
magnitude of the parameter and standard deviation estimates in the present case, however, it is very likely that 
equality cannot be rejected.   
14 More precisely, these firms pass the so called innovation filter asking for realised and expected innovative ac-
tivities in the three years preceding the interview and the three years following the interview, respectively.  
15 See Abowd, Crepon and Kramarz (2001) for another attempt to gain information on non-responding firms. 
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since R&D conditions on Attrition = 0 and Exit conditions on Attrition = 1. Thus, the denomi-
nator in (8) factorises into ( ) ( ) ( )W|1A0APrW|1A0A|0APrW|0APr =∨==∨==== . 
 

Figure 1: Second Period Sample Decomposition   
  (n =1063)   

       
   Attrition    
 0 1  
 

R&D 
   

Exit 
 

    
1 0  0 1 A = 0 

 
A = 1 

 
A = 2 

 
A = 3 

(n0 = 449)  (n1 = 60)  (n2 = 180)  (n3 = 374) 
 
Notes: Numbers in parentheses refer to (sub-) sample sizes. 
 

We consider a number of alternative identification assumptions based on the discussion in 
Section 1. As a reference, we assume in Model A that selection occurs independent of the 
variables of interest, i.e. ( ) ( )0APrZ|0APr === . The independence assumption is dropped 
in Model D in favour of conditional independence, i.e. ( ) ( W|0APrW,Z|0APr = )== . In ad-
dition, we consider two specifications in between the pure IA and CIA models, which exploit 
the sequential structure of selection depicted in Figure 1: Model B assumes that attrition is 
independent of Z and the decision to engage in R&D is independent on Z given W, Model C 
reverses Model B’s order of CIA and IA with respect to the two selection stages. In both 
cases, one of the right hand side probabilities in ( ) ( )W|1A0A|0APrW|0APr =∨====  

 can be extracted from the expectation (8) without affecting the orthogo-
nality condition. The idea behind Models B and C is to gain more insight into the relevance of 
IA versus CIA and to provide a kind of sensitivity analysis for the two more extreme models, 
A and B. The Appendix contains a proof that the specification employed by Models B and C 
identifies the moment conditions of interest along the lines of the result (8). Table 1 summa-
rises the identification assumptions employed in Models A-D.   

( W|1A0APr =∨= )

 

Table 1: Model Specifications  

Model IA/ CIA Selection Probabilities 
IA ( ) ( )1A0A|0APrZ,1A0A|0APr =∨====∨==  A 
IA ( ) ( )1A0APrZ|1A0APr =∨===∨=  

CIA ( ) ( )W,1A0A|0APrW,Z,1A0A|0APr =∨====∨==  B 
IA ( ) ( )1A0APrZ|1A0APr =∨===∨=  
IA ( ) ( )1A0A|0APrZ,1A0A|0APr =∨====∨==  C 

CIA ( ) ( )W|1A0APrW,Z|1A0APr =∨===∨=  
CIA ( ) ( )W,1A0A|0APrW,Z,1A0A|0APr =∨====∨==  D 
CIA ( ) ( )W|1A0APrW,Z|1A0APr =∨===∨=  

Notes: IA: independence assumption, CIA: conditional independence assumption. Indicator A defined in Figure 1. 
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Apart from the moment functions ( )βψ ,Z11  representing the seemingly unrelated regressions 
(SUR) of (log) product and process R&D in the 1994 wave of the panel ( )proc

94
prod
94 Y,Y  and the 

moment functions ( )γψ ,Z22  representing the score of the (relevant for the respective model 
of interest from Table 1) conditional selection probability in terms of the 1994 indicator A and 
the 1993 attributes W, the set of moment functions contains ( )βψ ,Z10  representing the SUR 
of product and process R&D in the 1993 wave of the panel ( )proc

93
prod
93 Y,Y . We employ a log 

linear model for the R&D equations and a logit model with ( ) ( )( )γ′−+=γ′ Wexp1/1Wp  for the 
selection equation, which results in the over-identified system of moment functions   
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⎠
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⎛
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11
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 with ( )
( ) ( )( )[ ] ( )
( ) ( )( )
( ) ( )( )⎪

⎩

⎪
⎨

⎧

γ′−=
γ′−=∨=

=∨=γ′−=
=γψ

Wp0A1W
forWp1A0A1W
1A0A1Wp0A1W

,Z22   
.DModel

CModel
BModel

 
The parameter and data vectors of main interest are defined as ( )procprod,β′β′=β′  and 

( )94
proc
94

prod
9493

proc
93

prod
931 X,Y,Y,X,Y,YZ ′′=′ . Note that the distinction between A = 2 and A = 3 in 

Figure 1 is not exploited in any specification. The reason for differentiating between these 
temporary and permanent non-response categories is purely motivated by the economic the-
ory outlined at the beginning of this section: since we cannot rule out that A = 3 firms are no 
longer operating in their market, and the product life-cycle theory predicts that exit occurs 
because of unsuccessful innovation attempts, it seems natural to exclude that non-response 
is independent of the residuals of the product and process R&D equations. In this case, 
Models C and D would be appropriate if we are able to find the relevant attributes W. 
  

Table 2: Descriptive Statistics for R&D and Firm Size Variables  

1993 (n = 1063) 1994 (n0 = 449) 
Product 

R&D 
Process 

R&D 
Firm  
size 

R&D 
dept. 

Product 
R&D 

Process 
R&D 

Firm  
size 

R&D 
dept. 

-0.9133 -1.8733 5.4381 0.5513 -0.7494 -1.7798 5.3476 0.5969 
(2.271) (1.918) (1.634) (0.498) (2.219) (1.859) (1.641) (0.491) 

Notes: Means with standard deviations in parentheses. R&D and firm size in logs, R&D department is binary. 

 

Descriptive statistics for the variables entering the R&D equations are given in Table 2. Com-
paring the 1993 sample to the 1994 sub-sample with A = 0 it turns out that firms in 1994 tend 
to be slightly smaller and invest slightly less in both product and process R&D. The share of 
firms with a dedicated R&D department, however, increases. The latter variable will be in-
cluded into the R&D equations to account for abnormal R&D expenditures of high tech com-
panies. Apart from this variable we keep the R&D equations as simple as possible. We ex-
perimented with ten industry dummies and with a dummy indicating a firm’s location in the 
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Eastern part of Germany (the area of the former GDR). Both extensions were clearly rejected 
in all specifications by the D-test of Newey and West (1987). 16  
 
The East German indicator is included in the set of attributes. Remember that attributes have 
to be observed for both respondents and non-respondents in the second wave. Thus, we are 
left with time-invariant information and variables observed in the first wave. Given our argu-
ment that non-response may be explained in part by market exits, which are caused by un-
successful innovation attempts, a lagged R&D expenditures (sum of process and product 
R&D) variable and the R&D department indicator, are obvious candidates for W. Since the 
product life-cycle theory predicts that this argument is weakened once firm size is controlled 
for, 1993 firm size is included as well in W. In addition, we consider a dummy variable with 
value one, if the firm reports in 1993 that it is constrained in its innovation activities by the 
lack of qualified staff as an attribute. The variable might capture a trivial cause for attrition, 
namely that non-response simply occurs because of a high opportunity cost of filling out the 
questionnaire. It also should affect R&D efforts, although is turns out insignificant, when in-
cluded among the regressors of the R&D equations, regardless of the specification being 
used. Finally, we try to approximate demand expectations by a variable with value one if a 
firm expects in 1993 a serious decline in demand, which should influence both R&D efforts 
and the willingness to participate in surveys. Table A1 in the Appendix displays summary sta-
tistics of the conditioning variables W for all relevant sub-samples defined by the outcome of 
the selection indicator A. Comparing responding (Attrition = 0 in Figure 1) and non-respon-
ding firms (Attrition = 1) it turns out that the latter are more likely to be located in the Western 
part of Germany, constrained by the lack of qualified staff and affected by negative demand 
expectations. Both groups of companies are of similar average size and have very similar 
R&D characteristics. However, these variables help to differentiate between A = 0 and A = 1 
companies (conditional on Attrition = 0) and between A = 2 and A = 3 firms (conditional on 
Attrition = 1). Responding firms, which no longer engage in R&D efforts in 1994, are much 
smaller than the responding R&D performing companies, have much smaller R&D expendi-
tures in 1993 and are much less likely to have a specialized R&D department. Similarly, 
permanent non-respondents spent much less on innovative activities in 1993 than temporary 
non-respondents. Overall, the descriptive statistics certainly support the reasons outlined 
above for considering these variables as attributes. The estimation results presented in the 
next section will show if these variables are sufficiently informative to obtain substantially dif-
ferent results under IA and CIA identification. 
 
 
4. Estimation Results  
 
We focus on the estimated firm size elasticity of process and product R&D since these vari-
ables are relevant for a test of the Cohen and Klepper hypothesis, which suggests that the 
firm size elasticity of process R&D should exceed the corresponding elasticity of product 
R&D. Table 3 presents estimation results for Models A-D in combination with the CU version 
of the IPW-GEL estimator and the IPW-GMM estimator. 

                                                 
16 Inclusion of the latter dummy variable even led to a rejection of the over-identifying restrictions. 
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Table 3: Estimated Firm Size Elasticity of Product and Process R&D Expenditures 

 GEL GMM 
Model A B C D A B C D 
Product  0.7691 0.7683 0.7763 0.7711 0.7674 0.7682 0.7759 0.7704 
R&D (20.48) (20.52) (20.89) (20.80) (20.42) (20.52) (20.87) (20.77) 

Process 0.6773 0.6770 0.6824 0.6795 0.6757 0.6769 0.6824 0.6794 
R&D (18.13) (18.21) (18.29) (18.31) (18.08) (18.20) (18.29) (18.32) 

χ2(1) 7.6064 7.6238 7.8776 7.6391 7.5764 7.6375 7.8305 7.5308 
(equality) (0.006) (0.006) (0.005) (0.006) (0.006) (0.006) (0.005) (0.006) 

Notes: χ2(1) refers to the Wald test statistic for the null hypothesis of equal firms size elasticity of process and 
product related R&D. Numbers in parentheses are t-values except for the Wald test row where the numbers refer 
to p-values. Complete estimation results are given in Table A2 in the Appendix. Model specifications A-D are de-
fined in Table 1. 

 

Without going into the details for the moment, it becomes immediately obvious from Table 3 
that the firm size elasticity of product R&D (around 0.77) exceeds the firm size elasticity of 
process R&D (around 0.68), which serves as clear evidence against the Cohen and Klepper 
hypothesis in this sample of German manufacturing firms. A Wald test of the hypothesis of 
an equal elasticity rejects the null in all specifications at the 1% level as obvious from the last 
row of the table. We also note that R&D expenditures increase less than proportional with an 
increase in firm size contrary to the findings of many studies overviewed by Cohen and Klep-
per (1996b). The average estimate of the firm size elasticity of process R&D is very similar to 
the cross-section estimate of 0.706 obtained by Fritsch and Meschede (2001) for German 
companies using another data source. The average estimate of the firm size elasticity of 
product R&D, however, significantly exceeds the Fritsch and Meschede estimate of 0.689.   
 
The striking result from Table 3 is certainly the stability of the parameter estimates across 
model specifications A-D and estimators GEL/ GMM. A comparison of the GEL elasticity es-
timates under pure IA identification (A) with those obtained under pure CIA identification (D) 
reveals completely negligible differences in the magnitude of 0.002. The difference of the 
corresponding GMM estimates is slightly larger but still below 0.004. The results of the mixed 
IA/ CIA models B and C are again very similar. The only notable difference between IPW-
GEL and IPW-GMM concerns the transition from Model A to Model B: weakening IA in Model 
A in favour of CIA in Model B with respect to the decision to engage in R&D leads to a slight 
decrease of the GEL parameter estimates, but to a slight increase of the GMM estimates. A 
substitution of IA in Model A with CIA in Model C with respect to the attrition stage in Figure 1 
slightly increases the elasticity estimates for both GEL and GMM.   
 
Full estimation results are presented in Table A2 in the Appendix. The last row of this table 
contains p-values from a Hansen-Sargan test of the over-identifying restrictions, which 
emerge from imposing the usual panel data parameter restriction, that  is the same in the 
moment functions 

β
( )βψ ,Z10  for the 1993 wave and in the moment functions  for the 

1994 wave. This restriction is not rejected regardless of the model specification and the esti-
mator being used. It should be emphasised again that this test is not a test of the identifica-
tion conditions underlying the different specifications. Table A2 also reveals that all parame-

( βψ ,Z11 )
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ters of the R&D equations remain largely unaffected from different specifications and estima-
tors, not only the firm size elasticity. Overall, the CU version of GEL is slightly more efficient 
than GMM as suggested by Donald, Imbens and Newey (2002).   
 
The parameter estimates of the logit selection equation do, of course, vary between specifi-
cations B-D because they refer to different selection events: ( )W,1A0A|0APr =∨==  in 
Model B,  in Model C and ( W|1A0APr =∨= ) ( )W|0APr =  in Model D. It turns out that 
lagged information on the R&D department, R&D expenditures, an East German location, the 
dummy variable indicating lack of qualified staff and the dummy variable indicating negative 
demand expectations serve as significant predictors for the probability to engage in R&D 
given response, ( W,1A0A|0APr )=∨== , in Model B. The R&D variables have a positive 
sign, the staff missing and demand expectation indicators a negative sign as one would ex-
pect. Less obvious, East German firms are more likely to engage in R&D. Predicting the re-
sponse probability, ( )W|1A0APr =∨= , in Model C seems more difficult. Smaller firms are 
significantly less likely to respond than larger firms, while the impact of R&D expenditures is 
only positive significant at the 10% level and the demand indicator negative significant at the 
same level. With the exception of the R&D department indicator, all variables turn out signifi-
cant at the 5% level with the aforementioned signs in the prediction of the joint conditional 
probability of response and continued engagement in R&D, ( )W|0APr = , in Model D.  
 

Figure 2: Estimated Empirical Distribution and Selection Probabilities (GEL/ Model D) 

 
 

Finally, we would like to investigate the joint distribution of the estimates  in (15) and  for 
i = 1,...,n in order to get more insight into the way the IPW-GEL estimator works in this appli-
cation and solves, e.g., equation (3) in the introduction. Figure 2 depicts the joint distribution 

iπ̂ ip̂
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for the pure CIA specification in Model D. The weights iπ̂  were multiplied with the sample 
size 1063 and the conditional selection probabilities  were divided by the unconditional se-
lection probability 449/1063. Thus, an observation with both probabilities equal to one is av-
erage with respect to its conditional selection propensity and receives an empirical distribu-
tion weight of 1/n. Figure 2 suggests a random distribution of firms around this (1,1) point, 
although the coefficient of correlation in the magnitude of 0.11 reveals that firms with a high 
conditional selection probability tend to receive a slightly higher weight. The variation in the 
vertical (selection probability) dimension is larger than the variation in the horizontal (empiri-
cal probability) dimension with the exception of a few companies, who receive either a very 
low or very high empirical weight. The two extreme observations which are closest to the left 
and right hand side borders of the chart (say, company L and company R) receive weights of 
0.44 and 1.55 times 1/n. Company L is a respondent with R&D activities (A = 0) while com-
pany R is a permanent non-respondent (A = 3). Although company L belongs to the A = 0 
group, its predicted selection probability is only 0.61 times the unconditional selection prob-
ability 449/1063 while the non-responding company R achieves 0.89 times 449/1063. Look-
ing at the characteristics of these firms, Company L (a relatively large firm) is exceptional in 
reducing its process R&D expenditures from well above average to well below average from 
1993 to 1994 while company R (a relatively small firm) is exceptional in reporting a zero to all 
dummy variables in W.   

ip̂

 
 
5. Conclusion 
 
The paper introduces the IPW-GEL estimator of the parameters of a vector of possibly non-
linear unconditional moment functions from a selected sample under the assumption that se-
lection occurs conditionally independent of the variables of interest. The estimator has been 
motivated by an attempt to estimate the firm size elasticity of product and process R&D from 
a sample of German manufacturing firms that is affected from both attrition and selection into 
R&D activities. Underlying this application is a test of the Cohen and Klepper hypothesis that 
process R&D should increase with increasing firm size to a larger extent than product R&D. 
The IPW-GEL estimator is applied and compared to an IPW-GMM estimator. The estimates 
turn out to be very similar with very slight efficiency advantages to IPW-GEL. The Cohen and 
Klepper hypothesis is clearly rejected in all specifications of the two estimators.   
 
A comparison of the IA and CIA identification assumptions and mixtures of these assump-
tions is conducted. Despite an obvious availability of good predictors of the respective selec-
tion probabilities, IA and CIA outcomes are hardly distinguishable. One may ask if this is 
good news or bad news for the outcome of the empirical analysis. On the one hand, one 
might argue that the result should be interpreted as good news because selection does not 
seem to affect the variables of interest in any notable magnitude. On the other hand, one 
might argue that we were not able to identify the relevant attributes W, which would be bad 
news. Remember that the task of these variables is not prediction of the selection indicator 
but providing conditioning information, which achieves independence between selection and 
the variables of interest. Unfortunately, the identification assumptions are not subject to a 
conventional hypothesis test, which renders it difficult to decide on the success of the empiri-
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cal specifications. However, since all attributes were carefully chosen, we certainly have 
gained trust in the magnitude of the parameter estimates and the rejection of the Cohen and 
Klepper hypothesis.  
 
Further trust may be gained in future work by considering a more general semi- or non-
parametric specification of the conditional selection probability in order to rule out a possible 
source of misspecification. Using replacement samples as suggested by Hirano, Imbens, 
Ridder and Rubin (2001) to test the identification assumptions employed in this paper is an-
other worthwhile task for future research. Finally, it should be interesting to apply the asymp-
totic bias corrections derived by Newey and Smith (2004) for GEL and GMM estimators.  
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Appendix: Proofs  
 
 
Moment identification in Model B: 
 
Assumptions:  
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Moment identification in Model C: 
 
Assumptions:  
(IA):  ( ) ( )1A0A|0APrZ,1A0A|0APr =∨====∨==  
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Appendix: Tables 
 
 
Table A1: Descriptive Statistics for 1993 Conditioning Variables W 

A ∈ 0 1 0 1 0 1 2 3 2 3  2 3 

R&D expenditures -0.1439 -1.5153 -0.3055 -0.2988 -0.2925 -0.0141 -0.4265
 (2.204) (2.162) (2.241) (2.177) (2.118) (2.118) (2.012)

Firm size 5.4301 4.7686 5.3522 5.4381 5.5171 5.7246 5.4173
 (1.672) (1.640) (1.680) (1.634) (1.588) (1.588) (1.590)

R&D department 0.5880 0.2667 0.5501 0.5513 0.5523 0.5944 0.5321
 (0.493) (0.446) (0.498) (0.498) (0.498) (0.498) (0.500)

East German firm 0.3341 0.2000 0.3183 0.2935 0.2708 0.2111 0.2995
 (0.472) (0.403) (0.466) (0.456) (0.445) (0.445) (0.459)

Qualified staff missing 0.2004 0.4000 0.2240 0.2399 0.2545 0.2722 0.2460
 (0.401) (0.494) (0.417) (0.427) (0.436) (0.436) (0.431)

Demand decreasing 0.2227 0.3500 0.2377 0.2690 0.2978 0.2889 0.3021
 (0.417) (0.481) (0.426) (0.444) (0.458) (0.458) (0.460)
Sub-sample size 449 60 509 1063 554 180 374 
Notes: Means with standard deviations in parentheses. R&D and firm size in logs, all other variables are binary. 
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Table A2: GEL and GMM Estimation Results (n = 1063) 

 GEL GMM 
Product  A B C D A B C D 
Intercept -5.81 -5.81 -5.85 -5.84 -5.80 -5.81 -5.85 -5.83 
 (-32.3) (-32.5) (-32.9) (-32.9) (-32.2) (-32.5) (-32.9) (-33.0) 

Firm size 0.77 0.77 0.78 0.77 0.77 0.77 0.78 0.77 
 (20.5) (20.5) (20.9) (20.8) (20.4) (20.5) (20.9) (20.8) 

R&D dept. 1.52 1.51 1.51 1.50 1.52 1.51 1.51 1.51 
 (16.6) (16.5) (16.5) (16.3) (16.6) (16.5) (16.5) (16.4) 
Process A B C D A B C D 
Intercept -5.87 -5.87 -5.90 -5.89 -5.86 -5.87 -5.90 -5.89 
 (-33.0) (-33.1) (-33.2) (-33.3) (-32.9) (-33.1) (-33.2) (-33.3) 

Firm size 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 
 (18.1) (18.2) (18.3) (18.3) (18.1) (18.2) (18.3) (18.3) 

R&D dept. 0.64 0.63 0.64 0.63 0.64 0.63 0.64 0.63 
 (7.97) (7.81) (7.86) (7.73) (7.94) (7.80) (7.85) (7.74) 
Probability A B C D A B C D 
Intercept - 1.90 0.68 0.36 - 1.94 0.68 0.35 
  (2.63) (1.93) (1.00)  (2.66) (1.93) (0.96) 

Firm size - 0.01 -0.12 -0.12 - 0.01 -0.12 -0.12 
  (0.11) (-2.14) (-2.06)  (0.06) (-2.13) (-2.01) 

R&D dept. - 0.83 -0.04 0.13 - 0.83 -0.04 0.13 
  (2.51) (-0.29) (0.88)  (2.48) (-0.27) (0.89) 

R&D exp. - 0.27 0.08 0.13 - 0.27 0.08 0.13 
  (2.56) (1.69) (2.56)  (2.56) (1.70) (2.53) 

East - 1.01 0.16 0.35 - 1.00 0.16 0.35 
  (2.80) (1.13) (2.38)  (2.75) (1.11) (2.35) 

Staff miss. - -0.79 -0.15 -0.32 - -0.78 -0.14 -0.31 
  (-2.69) (-0.99) (-2.12)  (-2.65) (-0.98) (-2.08) 

Demand - - -0.45 -0.24 -0.33 - -0.45 -0.23 -0.32 
  (-1.48) (-1.65) (-2.21)  (-1.47) (-1.61) (-2.16) 
J-test A B C D A B C D 

χ2(6) 6.78 6.22 6.00 6.63 6.49 6.23 6.03 6.67 
 (0.34) (0.40) (0.42) (0.36) (0.37) (0.40) (0.42) (0.35) 

Notes: Numbers in parentheses are t-values except for the J-test row where the numbers refer to p-values. The J-
test is the Hansen-Sargan Test of over-identifying restrictions. For full length variable names confer to Table A1. 
Model specifications A-D are defined in Table 1. The “product” part of the table refers the product R&D equation, 
the “process” part to the process R&D equation and the “probability” part to the conditional selection probability. 
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