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Abstract 
During metamodel-based optimization three types of implicit errors are typically made. The first error is the 
simulation-model error, which is defined by the difference between reality and the computer model. The second 
error is the metamodel error, which is defined by the difference between the computer model and the metamodel. 
The third is the implementation error. This paper presents new ideas on how to cope with these errors during 
optimization, in such a way that the final solution is robust with respect to these errors. We apply the robust 
counterpart theory of Ben-Tal and Nemirovsky to the most frequently used metamodels: linear regression and 
Kriging models. The methods proposed are applied to the design of two parts of the TV tube. The simulation-
model errors receive little attention in the literature, while in practice these errors may have a significant impact 
due to propagation of such errors. 
 
Keywords: computer simulation, robust counterpart, simulation-model error, metamodel error, implementation error. 
JEL classification: C61, C15 

1 Introduction 
Designers are confronted with the task of designing products and processes. Since physical experimentation is 
often expensive and difficult, computer models are frequently used for simulating physical characteristics. The 
designer often needs to optimize the design, i.e., to find the best settings for a number of design parameters that 
influence the critical quality characteristics of the design. A computer simulation run is usually time-consuming 
and there is a great variety of possible input combinations. For these reasons, a metamodel is constructed, 
modeling the quality characteristics as explicit functions of the design parameters. Such a metamodel, also called 
a global approximation model or surrogate model, is obtained by simulating a number of designs. Well-known 
metamodels are polynomial and Kriging models. Since a metamodel evaluation is much faster than a simulation 
run, in practice such a metamodel is used instead of the simulation model, to get an insight into the 
characteristics of the design and to optimize it. A review of metamodeling applications in structural optimization 
can be found in Barthelemy and Haftka (1993), and in multidisciplinary design optimization in Sobieszczanski-
Sobieski and Haftka (1997). 
 
We define three types of implicit errors which are typically made during a design process in which metamodels 
are used. The first error type is the simulation-model error, which is defined by the difference between reality 
and the computer model. The simulation-model error is a result of the fact that a simulation model by its very 
nature is a simplification of reality. Thus for example, all kinds of environmental conditions present in reality but 
constituting only a minor influence on the aspects to be modeled, are usually not taken into account in the 
computer model. Numerical noise is another source for the simulation-model error.  The second error type is the 
metamodel error, which is defined by the difference between the computer model and the metamodel. The third 
error type is the implementation error.  In real life, design parameters that can take any continuous value can 
never be set at the precise value that was predicted as the best setting. Note that there are usually several factors 
present that influence the critical quality figures of a design, but which cannot be set, for instance, the humidity 
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or temperature during a production process. Errors produced by variation in non-adjustable factors can also be 
modeled as implementation errors in the context of this paper. These factors should then of course be present in 
the simulation and metamodels. Figure 1 shows in which stages of the design process the errors are made. All 
these errors should be taken into account to obtain a robust optimal design.  
 
This paper presents new ideas on how to cope with the simulation-model, the metamodel and the implementation 
errors during optimization. We will apply the robust counterpart theory of Ben-Tal and Nemirovsky (2002) for 
the most frequently used metamodels: linear, quadratic, general linear regression, and Kriging models. Ben-Tal 
and Nemirovsky (2002) approached uncertain parameters in mathematical optimization problems as follows. 
Based on the knowledge of the uncertainties, a so-called uncertainty region is defined and care is taken that the 
constraints should hold for each parameter value in the uncertainty region. This in principle is a semi-infinite 
problem, but Ben-Tal and Nemirovsky (2002) showed that for several important classes of problems and several 
types of uncertainty regions, the resulting robust optimization problem is tractable. Using this theory, we 
formulate a number of mathematical programming models that result in robust solutions with respect to the three 
error sources, and suggest methods to solve these problems.  
 
 
 

 
Figure 1. Three types of errors during the metamodelling process. 

 
Most literature on robust design only deals the implementation error. In these papers, the implementation error is 
described by a known or estimated error distribution (multiplicative/additive). This results in probabilistic 
constraints. Since such problems are difficult to solve, they are reformulated in terms of the expectations and 
variances. The goal is to find a setting of the design parameters for which the expected performance of the 
system is good, and the variance of the system performance is small. See e.g., Mavris, et al. (1996), Sanchez 
(2000), Putko et al. (2001), and Jin et al. (2003), the six sigma approach of Koch et al. (2004), and the DACE 
approach of Bates and Wynn (1996), Bates et al. (1999). So far several techniques have been proposed for 
approximating the response mean and variance, e.g., Taylor’s expansion approximations, DOE-based Monte 
Carlo simulation and the product array approach. See e.g., Koch et al. (1998), Sanchez (2000), Putko et al. 
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(2001), Doltsinis and Kang (2004). Jin et al. (2003) present a comparison of approximate modeling techniques 
and optimization formulations suitable for robust optimization with respect to implementation errors. They 
conclude that the performance of the approximating model is essential to predict the variance and expected 
constraint infeasibility. Kriging, for example, tends to perform better than polynomial models when robustness is 
taken into account. A different approach is taken by Gu et al. (2000) and Su and Renaud (1997), who do not 
work with expectations and variances, but with worst-case uncertainty. This notion is closely related to the 
robust counterpart notion of Ben-Tal and Nemirovsky (2002), which we also use in this paper. 
 
There are only a few papers that deal with robust optimization with respect to metamodel errors. All these papers 
concentrate on robust design problems involving real experiments or stochastic simulations. See e.g. Rajagopal 
and Del Castillo (2005). We do not know of any paper dealing with robust optimization with respect to 
deterministic simulation-model errors. In Watson (2004), robust optimization methodology is used for robust 
fitting: given the uncertainty in the measurements, find the best possible model for all possible realizations of the 
measurement in an uncertainty region. Note that this is a different goal from the one we are trying to reach, 
which is finding the best settings for the design parameters given the errors that we make in designing computer 
simulations and model fitting. In our opinion, robust optimization with respect to simulation errors should 
receive more attention, especially since these errors tend to be quite considerable in practice. This is also 
illustrated by a TV-tube design problem in this paper. 
 
The outline of this paper is as follows. Section 2 concentrates on notation hat we will use throughout the paper. 
In Section 3 we sketch the basic robust counterpart method to find robust solutions. Sections 4, 5 and 6 describe 
mathematical programming methods to cope with the simulation-model, metamodel, and implementation errors, 
respectively. Section 7 presents two practical cases, in which techniques from Sections 4, 5, and 6 are used. 
Finally, in Section 8 we draw conclusions and give some recommendations for further research. 
 

2 Notation 
In this section, we introduce the notation used in the remainder of this paper.  
 

Ν∈n     : Number of design parameters 
Ν∈m     : Number of response parameters 
Ν∈p     : Number of computer experiments 
Ν∈r     : Number of constraints on design and response parameters 
Ν∈t     : Number of terms in a linear regression model 

nx ℜ∈     : Vector of design parameter values 
nxnX ℜ∈    : Diagonal matrix with the elements of x on the main diagonal 
n

j ℜ∈χ    : Simulated design parameter settings for the j –th computer experiment  
tng ℜ→ℜ:    : The ‘basis’ functions for a linear regression model 

tpD ×ℜ∈    : Design matrix for a linear regression model 
pmry ×ℜ∈    : Real response parameter values 
pmsy ×ℜ∈    : Simulated response parameter values 

mxms
iY ℜ∈    : Diagonal matrix with the elements of s

iy on the main diagonal 
mnf ℜ→ℜ:    : The ‘real’ functional behavior of the responses (simulation model) 
mnf ℜ→ℜ:ˆ    : The metamodels, i.e. the approximated functional behavior of the simulation  

  model. 



 4

 
Note that  
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and the approximated function can be written as 
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in which ℜ∈ijα are the coefficients. Linear regression models like linear and quadratic functions are usually 
created by least squares fitting techniques; see e.g. Montgomery et al. (2001). In the general linear regression 
case, we use the notation defined above. In the case of linear models, we have: 
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The metamodels have the following format for linear models: 
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in which ., n
ii ba ℜ∈ℜ∈  In the case of quadratic models, we first have to define the interaction and 

quadratic terms that we want to include in the model. Sometimes automatic selection procedures are used like 
stepwise regression (Montgomery et al. (2001)). The notation of this selection is given by the selection of j and k 
in the basis functions for the linear regression: 
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The quadratic metamodel can be written in the following format: 
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The Kriging metamodel has the following format:  
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in which ikθ and ikρ are the maximum likelihood estimators, and ijδ  are constants calculated from the data. 

Often 2=ikρ  is taken in practice. This Kriging model is interpolating in the design points. Since the Kriging 
metamodel is also a Best Linear Unbiased Predictor (BLUP), it can also be written as (Sacks et al. (1989)) 
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and ne is the n –dimensional all-one vector, and 
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and    
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and  
 

 
∑
=

−−

=
n

k
ikkxkwik

exwRi
1),(

ρθ

. ( 13 ) 
 
Usually, there are a priori known bounds on design parameters which have to be satisfied. We therefore define 
the design space Γ by all combinations of design parameters that satisfy these constraints. We assume that the 
design space is bounded.  
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3 Basic robust counterpart method 
Since we want to find the best design, i.e. the settings of x in the design space for which the objective f0 is 
minimal and all constraints on fi are satisfied, the initial problem to solve is 
 

 { }ixfxf iix
∀≤

Γ∈
,)()(min 0 γ ,                   ( 14 ) 

 
in which γ  is the upper bound for the i -th response. After the metamodels have been constructed, we replace 
the responses by the approximations and solve the following optimization problem: 

 

 { }.,)(ˆ)(ˆmin 0 ixfxf iix
∀≤

Γ∈
γ .  ( 15 ) 

 
Note, that in this optimization problem the simulation-model, metamodel and implementation error are not taken 
into account. Consequently, the final solution may not be robust. We therefore add some information on these 
errors to obtain robust solutions. We enforce that the constraints in ( 15 ) should hold for all reasonably speaking 
possible scenarios of the errors. This set of scenarios is called the uncertainty region. Note that the user can 
specify his own uncertainty region, which may be a pessimistic or optimistic one. We will describe the robust 
counterpart approach in more details for the three possible errors. In the sequel of this paper we will omit Γ∈x , 
for simplicity of notation. 
 
Simulation-model error 
The simulation-model error is the difference between the reality and the simulation-model prediction. Often, a 
simulation tool not only gives a predicted value, but also a tolerance, indicating e.g., that a simulated value is 
somewhere between a lower and an upper bound. We define multiplicative errors and additive errors on the 
simulation tool results (for each response variable i and for each simulation run j) with the symbols m

ijε  and a
ijε , 

respectively, such that  
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sm

ij
r

ijij yy εε ++= 1 . ( 16 ) 
 
Suppose the uncertainty regions are defined by m

i
m
i U∈ε and a

i
a
i U∈ε . We will treat both box and ellipsoidal 

constrained uncertainty regions. So, the robust counterpart to solve is: 
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Note that the approximations )(ˆ xfi depend on the real response parameter values ry . In Section 4, we will show 
how this problem can be reformulated to solvable mathematical programming problems for different metamodel 
classes and different uncertainty regions. 
 
Metamodel error 
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The metamodel error is the difference between the simulation-model prediction and the metamodel prediction. 
Suppose that )(xerror u

i is the upper level of the approximated interval for the real error )(xerrori for the i -th 
metamodel. Then to get a robust solution we propose to solve the following problem: 
 
 { },),()(,)()(ˆ),()(ˆmin 0,

ixerrorxerrorxerrorxfxerrorxfzz u
iiiiiixz

∀≤∀≤++≥ γ  ( 18 ) 

 
which is equivalent to 

 

 { }ixerrorxfxerrorxfzz i
u

ii
u

xz
∀≤++≥ ,)()(ˆ),()(ˆmin 00,

γ . ( 19 ) 

 
We will sketch in Section 5 how to obtain good estimates for these error upper levels. 
 
Implementation error 
We consider two types of implementation errors: additive and multiplicative. We define additive implementation 
errors U∈ε such that jjj xx ε+a . Then the robust counterpart of problem ( 15 ) becomes: 
 
 { }Uixfzxfz iixz

∈∀∀≤+≤+ εγεε ,,)(ˆ,)(ˆmin 0,
. ( 20 ) 

 
We define multiplicative implementation errors U∈ε such that )1( jjj xx ε+a . Then the robust counterpart 
of problem ( 15 ) becomes: 
 
 { }UiXxfzXxfz iixz

∈∀∀≤+≤+ εγεε ,,)(ˆ,)(ˆmin 0,
. ( 21 ) 

 
In Section 6, we will show how this problem can be reformulated to solvable mathematical programming 
problems for different metamodel classes and different types of uncertainty regions. 
 

4 Simulation-model error 
The simulation-model error is the difference between the reality and the simulation-model prediction. Often, a 
simulation tool not only gives a predicted value, but also a tolerance, indicating e.g., that a simulated value is 
somewhere between a lower and an upper bound.  In this section we describe how to obtain optimal solutions 
which are robust with respect to simulation-model errors for linear, quadratic, linear regression and Kriging 
models.  

4.1 Linear models 
In case all metamodels are linear, design optimization problem ( 15 ) can be rewritten as: 
 

 { }ixbaxba i
T
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T

x
∀≤++ ,min 00 γ   ( 22 ) 

 
We discuss two types of uncertainty regions: box and ellipsoidal constrained regions. 
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Box constrained uncertainty region 
We define multiplicative errors and additive errors on the simulation tool results as in ( 16 ). Suppose the 
uncertainty regions are defined by: m

ij
m
ij

m
ij σεσ ≤≤−  and a

ij
a
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a
ij σεσ ≤≤− , in which m

ijσ  and a
ijσ are given positive 

constants. If we use least squares approximation to fit the linear models, the nominal coefficients (indicated by a 
bar) can be calculated (see Montgomery et al. (2001)): 
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where D  is the corresponding design matrix ( 4 ). Note that in case of interpolation [ ] DDDT 1−
 reduces to 1−D , 

hence our robust counterpart method can also be used for interpolation. Substituting the additive and 
multiplicative errors in this formula gives 
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So, the robust counterpart of ( 22 ) is: 
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Now, we can rewrite each constraint i in ( 25 ) as 
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So, the robust counterpart problem ( 25 ) can be written as: 
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which is again a linear programming problem, but now with 1)1( +++ pmn  variables and 
pmm )1(2 ++ constraints. 

 
Ellipsoidal constrained uncertainty region 
Suppose again, that we have an additive error and a multiplicative error in the simulation data as in ( 16 ). We 
now assume that the uncertainty can be defined by an ellipsoid instead of a box. This is the case, e.g., when the 
simulation output is not an uncertainty interval, but an expected value and a variance. In that case, we have: 
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where Qi and Pi are positive definite matrices, and Fi and G are as defined in ( 27 ) and ( 28 ), and m

iσ and 
a
iσ are given positive constants. We can rewrite each constraint in ( 25 ) by maximizing the left-hand side with 

respect to m
iε and a

iε (see also Ben-Tal and Nemirovsky (2002)): 
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Since 0,0 ff ii QP ,  and using Sylvester’s law of inertia, we have 01 fT

iii FQF − and 01 fT
i GGP− . Hence, 

we can rewrite the robust counterpart problem ( 25 ) as the following Second-order Cone Optimization (SOCO) 
problem: 
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with 1+n variables and m constraints. Such SOCO problems can be efficiently solved nowadays; see for 
example Sturm (2002). 
 

4.2 Quadratic models 
If we have chosen to use quadratic metamodels, the design optimization problem becomes a (not necessarily 
convex) quadratic programming problem: 
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We will not treat quadratic models as a separate case, but as a special case of general linear regression in Section 
4.3. 
 

4.3 General linear regression models 
For general linear regression models, problem ( 15 ) can be written as: 
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Box constrained uncertainty region 
Consider the case that the uncertainty region is a box: 
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i
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m
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i

a
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m
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s
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p
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YDDD

σεσσεσεεααα

σεσσεσεεααα

≤≤−≤≤−++=ℜ∈=

≤≤−≤≤−++=ℜ∈=Ω
−

 ( 36 ) 

. 
in which Fi and G defined as in ( 27 ) and ( 28 ) respectively. Hence, the robust counterpart problem of ( 35 ) 
becomes: 
 

 ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∀Ω∈∀≤≥ ∑∑ ixgxgzz iii
j

jij
j

jjzx
αγαα ,,min 0,

. ( 37 ) 
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As for the linear case, we can rewrite every constraint of ( 37 ) as follows: 
 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) .,,

,,

,,,

wxgGwvxgFvwvxg

GxgFxgxg
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i

T
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i
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i
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i
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i

a
i

m
ii

a
i

Tm
ii

TT
i

a
i

m
ii
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i

m
iiiiii

T
i

≤≤−≤≤−≤++

⇔∀≤++

⇔∀≤++⇔Ω∈∀≤

γσσα

εεγεεα

εεγεεααγα

  ( 38 ) 

 
Thus the robust counterpart ( 37 ) can be rewritten as: 
 

 z
zwvx ,,,

min  

   

( )
( )

.)(
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,

.. 0000

wxgGw

ivxgFv

iwvxg
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i

Tm
i

T
i

T
i

aTmTT

≤≤−

∀≤≤−

∀≤++

≤++

γσσα

σσα

  ( 39 ) 

Note that for the linear case this problem is equivalent to problem ( 30 ). For the quadratic case this problem is a 
quadratically constrained quadratic programming problem (not necessarily convex).  
 
Ellipsoidal constrained uncertainty region 
Suppose that the uncertainty region is ellipsoidal. Following the same reasoning as in Section 4.1, it is easy to 
see that we can formulate the uncertainty region for a constraint i in ( 35 ) as: 
 

 ( ) ( ) ( ) ( ){ }22 ,, a
i

a
ii

Ta
i

m
i

m
ii

Tm
i

a
i

m
iiii

p
ii PQGF σεεσεεεεααα ≤≤++=ℜ∈=Ω . ( 40 ) 

 
As above, we can reformulate each constraint as follows: 
 

 ( ) ( ) ( ) ( ) ( ) i
T
iii

Ta
i

T
iii

Tm
i

T
i xgGPGxgxgFQFxgxg γσσα ≤++ −− 11 .  ( 41 ) 

 
We can rewrite the robust counterpart of the mathematical programming problem ( 35 ) as follows: 
 

 z
zx,

min  

  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .

..
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T
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T
i
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≤++

−−

−−

γσσα

σσα
 ( 42 ) 
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Unfortunately, in contrast to the linear case, in general we cannot prove any special properties of this problem, 
not even for the quadratic case. Suppose, for example, that the original problem when quadratic metamodels are 
used is (by coincidence) a convex problem, then the robust counterpart is likely not to be convex.  

4.4 Kriging models 
The  Kriging metamodel for the i -th response can be written as (see ( 43 )) 
 

 ( )∑
=

=
p

j

s
ijiji yxxf

1
)(ˆ β ,  ( 44 ) 

 
in which )(xijβ  is given in ( 10 ). Substituting this model format, we can rewrite the i -th constraint of ( 17 ) as 
follows: 
 

 ( ) i
r
ii

r
i

T
i yyx Ω∈∀≤ ,γβ .  ( 45 ) 

 
Box constrained uncertainty region 
Suppose the uncertainty region is defined as a box: 
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m
i

s
i

s
i
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i
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ii Yyyy σεσσεσεε ≤≤−≤≤−++=ℜ∈=Ω ,,   ( 46 ) 

 
Then, we can rewrite the constraint ( 45 ) as 
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ββγσσβ
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 ( 47 ) 

 
The resulting robust counterpart becomes: 
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zwvx ,,,

min  

   

( )
( )
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β
β

γσσβ

σσβ

 ( 48 ) 

 
This problem has 12 ++ mpn variables and mpm 4+ constraints. However, the 12 +mp extra variables appear 
only linearly in the constraints and objective. 
 
Ellipsoidal constrained Uncertainty region 
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Suppose the uncertainty region is defined as: 
 

 ( ) ( ) ( ) ( ){ }22 ,, a
i

a
ii

Ta
i

m
i

m
ii

Tm
i
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i

m
i

s
i

s
i
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ii PQYyyy σεεσεεεε ≤≤++=ℜ∈=Ω . ( 49 ) 

Then, we can rewrite the constraint as 
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 ( 50 ) 

 
Note that s

ii
s

i YQY 1−  and 1−
iP are positive definite. The robust counterpart problem can be written as: 

 
z

zx,
min  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .,
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ixPxxYQYxyx
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m
i

s
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i
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−−

−−

γββσββσβ

ββσββσβ
 ( 51 ) 

 
As the original problem ( 15 ), this problem has to be solved with global optimization methods.  
 

5 Metamodel error 
In this section we describe how the metamodel error can be taken into account in ( 15 ) to obtain a robust 
solution. Since the treatment for linear and quadratic models is the same as for general linear regression models, 
we only describe the latter case. For Kriging models we describe another special way.  

5.1 General linear regression models 
In a stochastic setting, we can estimate the error that we make when using a linear regression model (see 
Montgomery et al. (2002), Xu and Albin (2003)). However, in the deterministic setting that we are looking at in 
this paper, this theory makes no sense. In the special case of interpolation, we may use the Kowaleckski-Ciarlet-
Wagschal formula to obtain an upper bound for the interpolation error (see Waldron (1998)). In the more general 
regression case, cross-validation or bootstrap statistics may be used to estimate the mean-squared-error of the 
metamodel (see Efron and Tibshirani (1993), Kleijnen and Van Beers (2004)). Disadvantage of this method is 
that it predicts non-zero errors in the simulation points themselves, even when an interpolating model is used. In 
fact, we observed that the error may even be predicted to be the largest in these points, when of course it should 
be exactly zero. Rajagopal and Del Castillo (2005) describe a Bayesian approach to obtain an expression for the 
model-averaged posterior predictive density, which can also be used as an approximation for the metamodel 
error. Given the expressions for the metamodel error, we have to solve ( 19 ). 
 

5.2 Kriging models 
In the literature it is described how to estimate the Mean Squared Error (MSE) for a Kriging model. Then, 
according to the Kriging variance formula (Sachs et al. (1989), Lophaven et al. (2002)), the error that is made by 
using a Kriging model )(ˆ xf can be calculated by: 
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 ( )[ ] ( )( ) ( ) ( ) ( )( )xrRxrxueRexuxfMSE T
n

T
n

T 1112 1ˆ −−− −+= σ  , ( 52 ) 

 
where 2σ  is the process variance, and ( ) ( ) .1

n
T

n exrRexu −= −  
 
We propose to use the upper bound of the )1( ω− confidence interval to obtain a robust solution: 
 

⎭
⎬
⎫

⎩
⎨
⎧ ∀≤++≥ ixfMSEtxfxfMSEtxfzz iiixz

,))(ˆ()(ˆ,))(ˆ()(ˆmin 00,
γωω , ( 53 ) 

 
where ωt is the )1( ω− quantile of the t-distribution. These confidence intervals are also used by Jones (2001) to 
obtain global optimal solutions.  
 

6 Implementation error 
 
In this section we show how the implementation error can be taken into account while optimizing. For each class 
of models we will formulate solvable robust counterpart problems. 

6.1 Linear models 
We consider four cases: additive and multiplicative errors, with box or ellipsoidal constrained uncertainty 
regions. In case all models are linear, design optimization problem ( 20 ), the additive case, can be defined as: 
  
 { }Uibxbazbxbaz i

T
i

T
ii

TT

xz
∈∀∀≤++≤++ εγεε ,,,min 000,

 ( 54 ) 

 
and problem ( 21 ), the multiplicative case, can be defined as  
 
 { }UiXbxbazXbxbaz i

T
i

T
ii

TT

xz
∈∀∀≤++≤++ εγεε ,,,min 000,

. ( 55 ) 

 
 
Box constrained uncertainty with additive errors 
We consider additive errors, and suppose the uncertainty region is defined by the following box constraints: 

jj j σεσ ≤≤− . Then it is easy to see that the robust counterpart problem ( 54 ) becomes the following linear 
programming problem: 
 

 { }ibxbabzxbaz T
ii

T
ii

TT

zx
∀−≤+−≤+ ,||,||min 000,

σγσ  ( 56 ) 

in which || ib  is the component wise absolute value of the vector ib . 
 
Box constrained uncertainty with multiplicative errors 
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We consider multiplicative errors and assume that the uncertainty region is defined by the following box 
constraints: jj j σεσ ≤≤− . Then it is easy to verify that the robust counterpart problem ( 55 ) becomes the 
following linear programming problem: 
 

 

.,
,)(

)(..

min

000

,,

ivXbv
ivxba

zvxbats

z

iii

i
T

i
T
ii

TT

zvx

∀≤≤−
∀≤++

≤++

γσ

σ  ( 57 ) 

 
This problem is again a linear programming problem.  
 
Ellipsoidal constrained uncertainty with additive errors 
Since box constrained uncertainty is often too pessimistic, we therefore analyze ellipsoidal constrained 
uncertainty. The motivation is as follows. Suppose that iε is a random variable with mean 0 and variance 2

iσ , 
then it is unlikely that all random variables will have values close to the extremes. We therefore restrict the 
uncertainty region to the confidence interval: 2σεε ≤QT , in which Q  is a positive definite matrix. Now it is 
easy to verify that the robust counterpart (for additive errors) becomes the following linear programming 
problem: 
 

 

.,

..

min

1

0
1

000

,

ibQbxba

bQbzxbats

z

i
T
ii

T
ii

TT

zx

∀−≤+

−≤+
−

−

σγ

σ  ( 58 ) 

 
Note that the resulting problem is again a linear programming problem. Another derivation for the same robust 
counterpart can be obtained by adding confidence intervals for the linear functions. To be more precise, for the 
variance we have ,)cov())(var( i

T
i

T
i bbxb εε =+ and the upper confidence intervals for the linear functions are 

.)cov( i
T
i

T
i bbtxb εϖ+   

 
Ellipsoidal constrained uncertainty with multiplicative errors 
 
For this case it can easily be shown that the robust counter part is the following optimization problem: 
 

 

,,

..

min

1

0
1

000

,

iXbXQbxba

zXbXQbxbats

z

ii
T
i

T
ii

TT

zx

∀≤++

≤++
−

−

γσ

σ  ( 59 ) 

 
which is a second-order cone optimization problem. Such problems can efficiently be solved nowadays.  



 16

 

6.2 Quadratic models 
 
Box constrained uncertainty with additive errors 
 
In the case of box constrained uncertainty and additive errors the robust counterpart problem ( 20 ) becomes the 
following problem: 
 

 

.,)2(

.,)2(..

min

000000

,

UiCxCbxCxxba

UzCxCbxCxxbats

z

ii
TT

iii
TT

ii

i
TTTT

zx

∈∀∀≤+++++

∈∀≤+++++

εγεεε

εεεε  ( 60 ) 

 
Note that normally speaking iC is not positive semi-definite. In fact in Den Hertog et al. (2002) it is shown that 
even if the underlying true function is convex, then the least squares quadratic approximation is not necessarily 
convex. They also showed how to obtain a quadratic regression model which is convexity preserving. One can 
show that the maximum of a convex quadratic function over a box constrained region attains its maximum in one 
of the corners. So, when all iC are positive semi-definite, then problem ( 60 ) can be formulated as: 
 

,,)2(

,)2(..

min

000000

,

ViCxCbxCxxba

VzCxCbxCxxbats

z

ii
TT

iii
TT

ii

TTTT

zx

∈∀∀≤+++++

∈∀≤+++++

εγεεε

εεεε  ( 61 ) 

 
in which V is the set of vertices of the box constrained region. Note that although the number of variables in 
simulation-based optimization is often restricted, still the number of corners nV 2|| = can be very large. 
Formulation ( 61 ) is only useful for very small values of n . Suppose now that the iC are not positive semi-
definite. Then, a practical way of dealing with ( 60 ) is to ignore the second-order term for ε , since this is 
normally speaking very small. Then, ( 60 ) becomes the following quadratically constrained problem: 
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 ( 62 ) 

 
We can also get accurate lower and upper bounds for the optimal value. It can easily be seen that the optimal 
value of the following problem is a lower bound for the optimal value of ( 60 ): 
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in which )(minmin εετ

ε
i

T

U
i C

∈
=  and ))2((min

,

min εεεκ
ε

i
TT

ii
xU

i CxCb ++=
∈

. On the other hand, the optimal value of 

the following problem is an upper bound for the optimal value of ( 60 ): 
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in which )(maxmax εετ

ε
i
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U
i C

∈
= and ))2((max

,

max εεεκ
ε

i
TT

ii
xU

i CxCb ++=
∈

.  

 
Box constrained uncertainty with multiplicative errors 
In the case of multiplicative errors, the robust counterpart problem ( 21 ) becomes the following problem: 
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When all iC are positive semi-definite (and hence XXCi are positive semi-definite), this can be rewritten as in 
the previous case: 
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in which V is the set of vertices of the box constrained region. This is again a quadratic programming problem. 
When n is too large or when iC is not positive semi-definite, we can again neglect the second-order term forε , 
and then ( 65 ) becomes  
 

 

,,2

.,

..

min

0000

,,

ivxXCXbv

ivxCxxba

zvxCxxbats

z

iiii

i
T

ii
TT

ii

TTT

zvx

∀≤+≤−

∀≤+++

≤+++

γσ

σ
 ( 67 ) 

 
which is again a quadratic programming problem. Of course, we can also formulate equivalent problems as ( 63 ) 
and ( 64 ) to obtain lower and upper bounds for the optimal value of ( 65 ). 
 
Ellipsoidal constrained uncertainty with additive errors 
In this case the robust counterpart problem becomes ( 60 ), but now the uncertainty region is the ellipsoid 

.2σεε ≤QT  By ignoring the second-order terms it can easily be shown that the problem becomes the following 
second-order cone optimization problem: 
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Of course, we can also formulate equivalent problems as ( 63 ) and ( 64 ) to obtain lower and upper bounds for 
the optimal value of ( 60 ). 
 
 
Ellipsoidal constrained uncertainty with multiplicative errors 
In this case the problem becomes ( 60 ), but now the uncertainty region is the ellipsoid .2σεε ≤QT  By ignoring 
the second-order terms it can easily be shown that the problem becomes: 
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Note that this problem is not a second-order cone optimization problem, and even if the original problem is 
convex, this problem may be non convex. Of course, we can also formulate equivalent problems as ( 63 ) and  
( 64 ) to obtain lower and upper bounds for the optimal value of ( 60 ). 
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6.3 General linear regression models 
 
Again, we consider four cases: additive and multiplicative errors, with box or ellipsoidal constrained uncertainty 
regions. In case all models are general linear regression models, problem ( 20 ) is very difficult to solve. Since we 
may assume that the error is relatively small, we therefore linearize with respect to ε . For the additive case ( 20 ) 
we obtain: 
  
 { },,,)(ˆ)(ˆ,)(ˆ)(ˆmin 00,

Uixfxfzxfxfz ii
T

i
T

xz
∈∀∀≤∇+≤∇+ εγεε  ( 70 ) 

 

in which ( )∑
=

∇=∇
t

j
jiji xgxf

1
)(ˆ α . For the multiplicative case ( 21 ) we get 

 
 { }UixfXxfzxfXxfz ii

T
i

T

xz
∈∀∀≤∇+≤∇+ εγεε ,,)(ˆ)(ˆ,)(ˆ)(ˆmin 00,

. ( 71 ) 

 
 
Box constrained uncertainty with additive errors 
We consider additive errors, and suppose the uncertainty region is defined by the following box constraints: 

jj j σεσ ≤≤− . Then it is easy to see that the robust counterpart problem ( 70 ) becomes the following linear 
programming problem: 
 

 { }Uixfxfzxfxfz ii
T

i
T

xz
∈∀∀≤∇+≤∇+ εγσσ ,,|)(ˆ|)(ˆ,|)(ˆ|)(ˆmin 00,

, ( 72 ) 

 
in which |)(ˆ| xfi∇  is the component wise absolute value of the vector )(ˆ xfi∇ . This problem can be rewritten 
as: 

 

.,)(ˆ
,)()(ˆ

)()(ˆ..

min

00

,,

ivxfv

ivxf

zvxfts

z

iii

i
T

ii

T

zvx

∀≤∇≤−

∀≤+

≤+

γσ

σ
 ( 73 ) 

 
 
Box constrained uncertainty with multiplicative errors 
We consider multiplicative errors and assume that the uncertainty region is defined by the following box 
constraints: jj j σεσ ≤≤− . Then it is easy to verify that problem ( 71 ) becomes the following nonlinear 
programming problem: 
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Ellipsoidal constrained uncertainty with additive errors 
We restrict the uncertainty region to the confidence interval: 2σεε ≤QT , in which Q  is a positive definite 
matrix. Now it is easy to verify that problem ( 70 ) becomes the following nonlinear programming problem: 
 

 

.,)(ˆ)(ˆ)(ˆ

,)(ˆ)(ˆ)(ˆ..

min

1

0
1

00

,

ixfQxfxf

zxfQxfxfts

z

ii
T

ii

T

zx

∀≤∇∇+

≤∇∇+

−

−

γσ

σ  ( 75 ) 

 
Ellipsoidal constrained uncertainty with multiplicative errors 
For this case it can easily be shown that problem ( 71 ) becomes  the following nonlinear optimization problem: 
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6.4 Kriging models 
We can treat Kriging metamodels ( 77 ) in the same way as we described for linear regression models. Note that 
for Kriging functions we have 
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7 Application: robust optimization of several parts of the TV tube 
 
In this section we will apply some of the robust optimization techniques of the previous sections to the design of 
several parts of the TV tube. The metamodel approach has been successfully applied to the design of several 
parts of the TV tube; see Den Hertog and Stehouwer (2002) for a detailed treatment on these projects. In this 
section we apply the robust counterpart methodology to get robust solutions. 
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7.1 Robust optimization of furnace profile 
The first application concerns the optimization of the enameling process. Given the geometry of the screen and 
the cone, the thermal stresses during the enameling process can be influenced by imposing the right oven 
temperature profile on the screen and cone. Figure 2 gives an example of a temperature profile. When the 
stresses on some specified critical area are too high, there is much scrap due to implosions. To minimize the 
scrap, the designer is interested in the optimal temperature profile such that: 

• The temperature values are between certain specified lower and upper bounds. 
• The temperature differences between nearby temperature locations on the screen are physically 

realizable, i.e., not too big. 
• The maximal stress at the specified critical area is minimized. 
 
 

Min: -50
-42
-34
-26
-19
-11
-3
3
11
19
26
34
42
Max: 50

 
Figure 2. An example of a temperature profile. 

 
The temperature on 23 locations on the screen defines the profile. A FEM model is developed to calculate the 
210 thermal stresses for a given temperature profile. A typical simulation run takes several hours. The 
temperature profile optimization problem is to find values for the 23 temperatures such that the three 
requirements mentioned above are fulfilled. We refer to Den Hertog and Stehouwer (2002) for a more detailed 
treatment of this project. The optimization problem can be described as: 
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min

maxmax

max

max

TAxT
uxl

ixssts
s

i

∆≤≤∆−
≤≤

∀≥
 ( 79 ) 

 
with variables maxs  representing the maximum stress, )(xsi  representing the stress on node i, x representing the 
vector of temperatures. The vectors l and u denote the lower and upper bounds, respectively. The parameter 

maxT∆  represents the maximal allowed temperature differences; the last linear constraints are to enforce that the 
temperatures on nodes that are close to each other should not differ more than maxT∆ in an absolute sense.  
 
As described in Den Hertog and Stehouwer (2002) the stresses are modeled as linear functions in x . 
Substituting the regression model and rewriting the mathematical program in standard form gives: 
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In fact, this problem was solved in Den Hertog and Stehouwer (2002) to obtain big improvements. We now 
assume that the simulation tool gives a result within accuracy of 4% and we look at the robust counterpart of this 
problem. So, we have a multiplicative error with 04.0=m

iσ for each simulation outcome. So, we suppose that 
the worst case relative errors for all response parameters (stresses) and all experiments are equal. Then, the 
robust version of the furnace optimization problem becomes (see ( 30 )): 
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in which [ ] .1 s
i

TT
i YDDDF −

=  We have solved this linear programming problem, and we have compared this 
robust solution with the nominal solution, i.e., the solution of ( 80 ). In Figure 3 the effect of robust optimization 
is visualized. We have simulated a number of error realizations. The errors were assumed to be uniformly 
distributed and independent. Given a realization of the possible simulation-model outcome, the effect on the 
metamodels has been calculated. Using these metamodels, the maximum stress is predicted in the nominal 
optimum and in the robust optimum. The left graph in Figure 3 shows the distribution of the maximum stress 
given the uncertainty in the simulation tool output in the nominal optimum; the right graphs shows the situation 
in the robust optimum. For the robust optimum, both the mean and the variance are significantly smaller than for 
the nominal optimum. This proves the applicability of our approach. The optimal value for the nominal solution 
is 14.16. Note that all objective values in the left graph in Figure 3 are worse. This is due to the fact that the 
objective is the maximum of many stresses, and the fact that the error 04.0=m

iσ  is multiplied by elements of 
the matrix iF (propagation of errors). 
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Figure 3:The effect of uniformly distributed noise (4%) on the objective value (100 samples); left in the nominal 

solution of  ( 80 ), right in the robust solution of  ( 81 ). 

 
Ellipsoidal uncertainty region 
Suppose the uncertainty is defined as an ellipsoid. This is a more natural situation, since it is usually very 
unlikely that all errors in the simulations would take an extreme value. Now, we assume the errors to be 
normally distributed and independent. Suppose we would like to take 99% of all possible situations into account, 
then the uncertainty region can be defined as:  
 

 ( ) ( ) ( ) ,3,, 2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ℜ×ℜ∈=Ω m

i
m
i

Tm
i

m
ii

i

i

i

in
iii F

b
a

b
a

ba σεεε  ( 82 ) 

 
This region is much less conservative than the previous one. Then, the robust version of the furnace optimization 
problem becomes (see ( 33 )): 
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in which [ ] .1 s
i

TT
i YDDDF −

=  We have solved this second-order cone problem, and we have compared this 
robust solution with the nominal solution, i.e., the solution of ( 80 ).  
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Figure 4: The effect of normally distributed noise (4%) on the objective value (100 samples); left in the nomimal 

solution of  ( 80 ), right in the robust solution of  ( 83 ). 

 
In Figure 4 the effect of robust optimization is visualized. We have simulated a number of error realizations, as 
in the box constaint case. However, here the errors were assumed to be normally distributed and independent. 
The left graph in Figure 4 shows the distribution of the maximum stress given the uncertainty in the simulation 
tool output in the nominal optimum; the right graphs shows the situation in the robust optimum. Again, for the 
robust optimum, both the mean and the variance are significantly smaller than for the nominal optimum. This 
proves the applicability of our approach. 
 

7.2 Case 2: robust optimization of the shadow mask 
The second application concerns the optimization of the shadow mask design. The essence of shadow mask 
design is to find the right mask geometry; see the above picture of a shadow mask. In this case, the mask has a 
doubly curved surface with a geometry that is described by three parameters 1η , 2η , and 3η . The mask surface is 
given by the following polynomial:  
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1),( yxyxyxz ηηη ++= . ( 84 ) 
 
In Figure 5 the mask surface for some combination of 1η , 2η , and 3η  is shown. 

 
Figure 5. Example of the geometry of a shadow mask 

 
The mask geometry should be optimized with respect to the following three aspects: 

• The mask should fit well within the given screen. This means that the given screen geometry restricts the 
set of possible mask geometries. Table 1 gives upper and lower bounds for each geometry parameter.  
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• Moreover, the shadow mask height given by 321 ηηη ++  must be between 20 and 32 mm, that is,  
 3220 321 ≤++≤ ηηη  ( 85 ) 

• Drop test – High accelerations due to impacts may cause a shadow mask to buckle. The buckling load is 
defined as the minimal force (Newton) on the convex side of the mask such that the mask buckles. To 
optimize its drop resistance, the buckling load of a mask should be as high as possible. 

• Picture quality – The third aspect concerns the picture quality of the final TV tube. Mask displacements 
due to heating of the mask negatively influence the picture quality of a tube. Therefore, the maximal 
mask displacement under heating should be minimal. In this case, the picture quality is expressed as the 
ratio of the predefined allowed displacement and the actual displacement. This picture quality ratio has 
obviously to be larger than 1.0.  

 
 

Geometry parameter Lower bound Upper bound Std. deviation 
1η  9.40 17.40 0.1 

2η  5.17 11.17 0.1 

3η  1.79 7.79 0.1 

Table 1. Bounds and distribution on geometry parameters. 

 
A FEM model of the mask is used to evaluate mask designs. Mask displacements and buckling loads are 
calculated using a thermal analysis and a linear Eigenvalue analysis, respectively. Computation time of a typical 
simulation run is about one hour of CPU time on a workstation. We note that these two analyses are done by two 
different groups of DCE. The mask geometry optimization problem is to find values for the five mask geometry 
parameters such that the three requirements mentioned above are fulfilled. We refer to Stehouwer and Den 
Hertog (1999) and Den Hertog and Stehouwer (2002) for more detailed treatments of this project. 
 
When an optimal design is produced, an implementation error occurs. So, a design defined by the setting of 
parameters 1η , 2η , and 3η  will in practice have a slightly different geometry, defined by a perturbed setting of 
these parameters. We assume that this effect can be simulated by drawing the implementation error from a 
normal distribution with a standard deviation as given in Table 1. 
 
Since the relationship of Drop test and Picture quality expressed in terms of the design parameters are highly 
nonlinear, the approximating model type that was used is a Kriging model. First, we calculated the nominal 
solution. Then, we have applied the technique described in Section 6.4 to calculate a robust solution. To compare 
the resulting robust solution to the nominal one we have simulated a number of implementation error 
realizations. Given a realization of the implementation error, the maximum stresses in the nominal optimum and 
in the robust optimum are predicted. The results are depicted in Figure 6 and Figure 7. 
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Figure 6. The objective values (left) and sum of constraint violations (right) of the nominal mask optimization 

problem in 10.000 samples. 

 
 
 

 
Figure 7. The objective values (left) and sum of constraint violations (right) of the nominal mask optimization 

problem in 10.000 samples.  

 
It appeared that when the nominal optimal design is used, only 13.1% of the designs are feasible. When the 
robust optimal design is used, 99.7 % of the designs are feasible. Note however, that the robust solution leads to 
a reduction in the objective value.  
 

8 Conclusions and further research 
In this paper we have argued that there are three types of errors made when metamodels are used to optimize a 
design or process. The simulation-model error receives little attention in the literature, while in practice this error 
may have a significant impact. The robust counterpart methodology can be used to obtain robust solutions, i.e., 
solutions which are less sensitive with respect to the errors. For several metamodels (i.e. linear, quadratic, linear 
regression and Kriging models) and for different types of errors we have developed solvable robust counterpart 
optimization problems. For an overview, see Table 2. Finally, we have shown that these techniques can 
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successfully be applied to find robust solutions for two TV tube design problems. The effect of the simulation 
error appeared to be significant, and the robust solutions found in this paper are much better than the nominal 
optimal solution.  
 
In this paper, we treated the three errors (simulation error, metamodel error, and implementation error) 
separately. An interesting subject for further research is to analyze how all these errors can be modeled in one 
robust counterpart problem simultaneously. 
 
 
 Error type                        Metamodel →  
      ↓  

Linear Quadratic Lin. 
Regression 

Kriging 

Box  LP QP NLP NLP Simulation- 
model error Ellipsoid SOCO NLP NLP NLP 
Meta model error NLP NLP NLP NLP 

Multiplicative LP QP NLP NLP Box 
Additive LP QP NLP NLP 
Multiplicative SOCO NLP NLP NLP 

Implementation 
error 

Ellipsoid 
Additive LP NLP NLP NLP 

Table 2: Overview of optimization problem classes for all robust counterpart problems. 
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