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Abstract

In this paper we experimentally investigate the extended game with observable delay of

Hamilton and Slutsky (Games Econ. Beh., 1990). Firms bindingly announce a production

period (one out of two periods) and then they produce in the announced sequence. Theory

predicts simultaneous production in period one but we �nd that a substantial proportion of

subjects choose the second period.
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1 Introduction

There is substantial interest in the theoretical literature on endogenous timing in games. This

literature started with Saloner (1987), Hamilton and Slutsky (1990), and Robson (1990) and in-

cludes recent contributions by Amir and Grilo (1999), Matsumura (2002), Normann (2002) and van

Damme and Hurkens (2004). The basic questions these models try to answer is simple but signi�-

cant. When are �rms likely to play either a simultaneous-move game or a sequential-move game?

In models with endogenous sequencing, the order of output or price decisions is not exogenously

speci�ed. Instead, it is derived from �rms�decisions in a timing game.

Several recent experiments have attempted to validate the theory empirically1 but support

for the theory was by and large not found. In these experiments, simultaneous-move Cournot

outcomes are modal� in contrast to the prediction. Even when sequential moves occur, Stackel-

berg leaders produce less than predicted while followers produce more (see also Huck, Müller and

Normann, 2001).

Why does theory perform rather poorly in experiments? The theory underlying the exper-

iments predicts the emergence of Stackelberg equilibria and typically there exist two Stackelberg

equilibria. This causes two problems. First, coordination problems occur in the experimental mar-

kets since either �rm may emerge as the Stackelberg leader. Neither Stackelberg equilibrium is

preferable to the other and subjects �nd it di¢ cult to coordinate on one.2 Second, it is di¢ cult

to see from a behavioral perspective why players should coordinate on an equilibrium with large

payo¤ di¤erences (as it is the case in a Stackelberg leader-follower outcome). It is well known

that many subjects in experiments exhibit an aversion against disadvantageous inequality. Such

inequality aversion might render the Stackelberg equilibria unappealing candidates for convergence

in an experiment.

In this paper, we want to further explore the reasons for the failure of the theory by inves-

tigating a timing game with a unique and symmetric equilibrium. The basis of the experiments is

1Huck, Müller and Normann (2002) investigate Hamilton and Slutsky (1990)�s action commitment game. Müller�s

(2005) experiments are on Saloner�s (1987) model, extended by Ellingsen (1995). Fonseca, Huck and Normann (2005)

analyze endogenous timing with asymmetric cost, as modelled by van Damme and Hurkens (1999).
2Most of the theoretical literature has ignored the coordination problem �rms face in a duopoly with endogenous

timing. An exception are van Damme and Hurkens (1999, 2004) who analyze a timing game with cost di¤erences

between �rms. In their models, a unique Stackelberg equilibrium with the e¢ cient �rm as the Stackelberg leader is

selected. However, Fonseca, Huck and Normann (2005) still observe simultaneous play as the modal case in related

experiments.
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Hamilton and Slutsky�s (1990) extended game with observable delay in a quantity-setting frame-

work. The equilibrium of this extended timing game is in simultaneous moves and has equal

quantities as �rms have symmetric costs. Hence, in our experiments, neither coordination failure

nor inequality aversion should hinder the predictive power of the theory. Our conjecture is that

the theory will be con�rmed in the new experiments. If symmetric outcomes fuelled by inequality

aversion have been previously observed even though they were not predicted, then it seems likely

that the theory will be vindicated if symmetric outcomes are predicted.

A second novelty is that we run experimental sessions both with randomly matched par-

ticipants as well as with participants in �xed duopoly pairs. Previous experiments have simulated

one-shot interaction (random matching) between participants since the endogenous timing models

are based on static games. However, repeated interaction is always a possibility in the �eld. Since

we want to investigate the behavioral forces supporting or contradicting the prediction of the tim-

ing game, it seems intriguing to analyze �xed matching as well. With �xed matching, collusion

becomes a possibility and then the timing of duopoly decisions may have an entirely di¤erent na-

ture (on which we elaborate in the next section). Further, �rms should be better able to resolve

coordination failure problems with �xed matching.

As with previous studies, our results do not fully support the theory. Many timing decisions

are out of equilibrium. Subjects often delay their output decisions though producing early is the

dominant strategy. This suggests that additional forces not captured in the endogenous timing

models in�uence participants�decisions. In particular, we argue below that our results are consistent

with recent �ndings of Tykocinski and Ru e (2003). Their results suggest that subjects often have

a preference to delay their decisions even when waiting does not provide any additional information.

2 Model and predictions

In Hamilton and Slutsky�s (1990) extended game with observable delay two �rms can produce in

one of two possible periods (period 1 or 2). A pure strategy for �rm i = 1; 2 is a choice of a

production period ti 2 f1; 2g and a set of functions � i : f(1; 1); (1; 2), (2; 1) � R+; (2; 2)g ! R+

which is �rm i�s quantity choice as a function of production periods, (t1; t2), and the output of �rm

j 6= i when �rm i is the Stackelberg follower. Given the decisions to produce in period 1 or 2, �rms

will not mix over outputs.
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In the experiments we used the following linear inverse demand function

p(q1 + q2) = maxf30� (q1 + q2); 0g (1)

where qi denotes �rm i�s output. Linear costs of production in both periods were given by

Ci(qi) = 6qi; i = 1; 2: (2)

Pro�ts are denoted by �i = p(q1 + q2)qi � 6qi:

Consider the predictions in the static game �rst. We start with the second stage. In the

subgame with t1 = 1 and t2 = 1; �rms play the simultaneous-move Cournot equilibrium in period

1 with qi = 8 and resulting in payo¤s of �i = 64 (i = 1; 2). The same holds in the subgame with

t1 = 2 and t2 = 2: In the subgame with t1 = 1 and t2 = 2; �rms play the Stackelberg equilibrium

with �rm 1 choosing qL1 = 12 in period 1 whereas �rm 2, the Stackelberg follower, chooses qF2 = 6

in period 2. This implies payo¤s of �L1 = 72 and �
F
2 = 36. Outputs and payo¤s for the subgame

with t1 = 2 and t2 = 1 are qL2 = 12; q
F
1 = 6 and �

L
2 = 72 and �

F
1 = 36. Then we go back to the �rst

stage. From �Li = 72 > �i = 64 (if tj = 2) and �i = 64 > �Fi = 36 (if tj = 1); choosing period 1

is a dominant strategy and thus we have t1 = t2 = 1 in the unique subgame perfect equilibrium.

With repeated interaction in the �xed matching sessions, it is well known that collusion

can occur (Selten and Stoecker, 1986). It is easy to verify that qi = 6 is the symmetric joint-pro�t

maximizing strategy which results in payo¤s of �i = 72 (i = 1; 2). Given both �rms collude, the

timing decisions are immaterial. However, if there is some uncertainty about the other players�

willingness to collude, timing decisions may play an important role. For example, producing at

ti = 2 may resolve the uncertainty whether the other player colludes, and at ti = 2 non-colluding

rivals may also be punished. Producing at ti = 1 provides an opportunity to signal collusive intents.

Note that if these incentives for moving �rst or second materialize, they would be rather di¤erent

from those in the static endogenous timing models.

3 Experimental design and procedures

The experimental markets were designed so as to implement the extended game with observable

delay one-to-one. The game was repeated over 30 rounds in order to allow for learning both with

random and �xed matching.

A minor di¤erence to the game as formally stated above is that subjects had to choose their

quantities from a truncated and discretized strategy space, yielding a standard payo¤ bi-matrix.
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Subjects had to choose integer quantities between 3 and 15.3

In both treatments, subjects got individual feedback about what happened in their market

at the end of each round. That is, the computer screen4 showed the production period, the quan-

tity, and the pro�t of both duopolists. In sessions with random matching (henceforth Random),

subjects were rematched by the computer at the beginning of each round. We conducted �ve ses-

sions with ten participants each. The two sessions with �xed matching (henceforth Fixed) had

ten participants as well, so there were �ve �xed duopoly pairs in each session. Treatments were

conducted in an identical way, except for the matching scheme.

The experiments were conducted at Royal Holloway, University of London, in spring and

summer 2002. Altogether 70 subjects participated in the experiment. They were students from

various departments, many from �elds other than economics or business administration.

In the instructions (see Appendix A) subjects were told that they would act as a �rm which,

together with another �rm, serves one market, and that in each round both were to choose when

and how much to produce. After having read the instructions, participants could privately ask

questions.

Before the �rst round was started subjects were asked to answer two control questions

(which were checked) in order to make sure that everybody had full understanding of the payo¤

table.

The monetary payment was computed by using an exchange rate of 300 �points� for one

pound sterling and adding a �at payment of £ 4.5 Subjects�average earnings were $13:02 ($19:53

at the time) including the �at payment. The sessions lasted about 60 to 90 minutes.

4 Experimental results

We report the results of treatments Random and Fixed separately. When discussing the results,

we often refer to third 1 (rounds 1-10), third 2 (rounds 11-20), and third 3 (last ten rounds).

4.1 Random matching

Table 1 shows the evolution of the relative frequency of t=1 choices over time. In Random the

relative frequency of t=1 decisions increases from 57% to 72% (from third 1 to third 3). This is

3We used the same matrix as in Huck, Müller and Normann (2001).
4We are grateful to Urs Fischbacher for letting us use his software toolbox �z-Tree�(Fischbacher, 1999).
5This payment was made since subjects could have made losses in the game.
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third 1 third 2 third 3

Random 57 69 72

Fixed 50 51 53

Table 1: Relative frequency of period 1 choices

third 1 third 2 third 3

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Random t = 1 9.0; 9.0 10.6; 7.8 9.0; 9.0 10.3; 8.9 8.7; 8.7 9.3; 9.0

t = 2 7.8; 10.6 8.3; 8.3 8.9; 10.3 9.1; 9.1 9.0; 9.3 8.5; 8.5

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Fixed t = 1 9.0; 9.0 9.2; 8.4 9.4; 9.4 9.0; 8.0 9.7; 9.7 8.5; 7.7

t = 2 8.4; 9.2 9.0; 9.0 8.0; 9.0 9.2; 9.2 7.7; 8.5 7.6; 7.6

Table 2: Average individual quantities in the subgames over time

a clear trend towards equilibrium timing behavior. However, the relative frequency of t=1 choices

is still below the equilibrium prediction of 100% towards the end of the experiment. Moreover the

increase slows down considerably from third 2 to third 3.

Since we have random matching, the relative frequency of timing decisions immediately

imply the relative frequencies of the timing outcomes. The equilibrium prediction with both �rms

choosing t=1, occurs with only 55% (third 3). Simultaneous play in t=2 occurs with 10% and

sequential play with the remaining 35% (third 3). Since t=1 choices increase over time, the relative

frequency of the subgame where both �rms choose t=1 increases whereas the frequency of the other

two subgames decreases.

Once �rms have made their timing choices, they know in which sequence they choose their

outputs. How do �rms behave in the subgames? Table 2 shows average individual quantities across

thirds contingent on the timing decisions. In Random, we observe that after a short learning

phase (third 1) the t1=t2=1 and t1=t2=2 subgames are virtually identical. They are also close to

the Cournot prediction. However, in the asymmetric subgame, attempts to exploit a �rst-mover

advantage by choosing a higher than Cournot quantity of 8 is punished by followers.6 Note, for

6 Interestingly, the fraction of subjects (9) who choose to delay 22 times or more are more competitive Stackelberg
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instance, that the best response to a �rst mover�s quantity of 10 and 9 is 7 and 8 respectively.

Moreover, �rst-movers�output is smaller than predicted (12 units).

As a consequence, both Stackelberg leaders� and followers� payo¤s are smaller than the

payo¤s in the two simultaneous subgames7. In fact, the payo¤s in the Cournot subgame in t=1

are higher than in any other subgame.8 This provides an incentive for the subjects to avoid the

sequential-move subgame by coordinating on the t=1 Cournot subgame, thus avoiding to choose

production in t = 2. Note also that, over time, Stackelberg leaders become less competitive and

Stackelberg followers less punitive such that payo¤ di¤erences become less extreme and, thus, the

incentive to avoid the sequential-move game gets weaker. This might explain why the increase of

t=1 choices gets slower over time. We also note that subjects choosing period 1 earn on average

higher payo¤s over time than subjects choosing period 2.9 The pro�t �gures are 51.6 and 47.3 (third

1), 48.9 and 41.6 (third 2), and 54.4 and 49.9 (third 3) after t=1 and t=2 choices respectively.

It is instructive to compare these results to those reported in Huck, Müller and Normann,

2002 (henceforth HMN). Their experimental design is identical to ours but the one major di¤er-

ence is the timing game. HMN used Hamilton and Slutsky�s (1990) extended game with action

commitment. In this game, a �rm can move �rst only by committing to an output. When doing

so, the �rm does not know what its competitor is doing. By waiting until the second period, a

�rm can observe the other �rm�s �rst period action. Theory predicts the emergence of Stackelberg

equilibria.10

The surprising insight from the comparison to HMN is that results di¤er only marginally�

though predictions based on subgame perfectness oppose each other. In HMN, the relative frequency

of t=1 decisions is 56%, 65% and 62% across thirds. These numbers are very close to ours in the

�rst two thirds and only somewhat smaller towards the end of the experiment. Note that in our

experiment �rms have a strict incentive to choose t=1 (they can only lose by choosing t=2) while,

followers than the overall average.
7Signi�cant at the 5% level using a Wilcoxon signed ranks test, where each observation corresponds to the average

pro�ts across players from a session.
8The di¤erence between Cournot in period 1 and Stackelberg leader and Stackelberg follower, respectively, is

signi�cant at the 5% and 10% level, respectively, using a one-tailed Wilcoxon signed ranks test. The di¤erence

between the two Cournot outcomes is not testable, due to an insu¢ cient number of observations.
9This is, however, not signi�cantly di¤erent at any conventional level of signi�cance (two-tailed Wilcoxon signed

ranks test).
10More precisely, there exist two Stackelberg equilibria and one �rst-period Cournot equilibrium, but only the two

Stackelberg equilibria are in undominated strategies.
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in the extended game with action commitment, �rms have a weak incentive to delay (as they can

play a best reply to whatever the rival �rm did in t=1). Nevertheless, aggregate t=1 choices are

rather similar in both studies.

The similarity of market outcomes in both experiments is also illustrated by a look at the

frequency of Cournot outcomes (that is, both �rms choosing quantity 8, regardless of the timing

decisions). In Random we �nd 16.0% and in HMN 14.4% Cournot outcomes. Another telling

statistic is the ratio of market shares. We calculate the number s := maxfq1; q2g=minfq1; q2g for

each individual market and for each round. The average s for the markets in HMN is 1.27 (standard

deviation 0.36) and 1.33 (standard deviation 0.48) in Random. Thus, the ratio of market shares

in the current study (in which symmetric Cournot outcomes are predicted) is not smaller than in

the previous experiment where asymmetric Stackelberg outcomes are predicted.

4.2 Fixed matching

Let us now consider treatment Fixed. Table 1 above also shows the evolution of the relative

frequency of period-1 choices in Fixed. In contrast to Random, period-1 choices stay roughly

constant at a level of 50%. The frequency of timing outcomes is not immediate from Table 1 as

they depend on individual duopoly pairs. We �nd that the frequency of the predicted t1=t2=1

subgame increases from 17% to 32% (from third 1 to third 3). Surprisingly, the frequency of the

t1=t2=2 subgame increases, too, from 17% to 26%. As in treatment Random, the frequency of

the sequential subgame decreases from 66% to 42%, but it is modal in all thirds.

Table 2 reports average quantities. With the exception of the t=1 Cournot subgame, outputs

are generally smaller compared to Random, indicating a tendency to collude. We note that output

produced in the �rst-period simultaneous subgame is always slightly higher than the Cournot

quantity of 8. Whilst the Cournot output in t=1 appears to be larger in Fixed,11 we observe that

average outputs in the sequential subgame, as well as in the t=2 Cournot subgame are smaller in

the Fixed treatment (and also smaller than the predicted output of 8.) Third, both Stackelberg

leaders and followers in treatment Fixed are less competitive than those in treatment Random12

but they do not appear to collude (on average). This implies that in treatment Fixed there is less

of an incentive to avoid the sequential subgame by choosing t=1.

11This di¤erence is not signi�cant (one-tailed Mann-Whitney U test).
12This is signi�cant at the 1% level regarding the Stackelberg followers, but not regarding the Stackelberg leaders

(one-tailed Mann-Whitney U test).
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As expected from the lower quantities, pro�ts are generally higher in Fixed. More precisely,

average pro�ts after choosing period 1 and period 2, respectively, are 50.8 and 49.4 (third 1), 50.1

and 49.3 (third 2), and 50.3 and 60.3 (third 3), respectively. Hence, timing decisions do not seem

to a¤ect pro�ts very much in the �rst two thirds but towards the end of the experiment subjects

seem to coordinate more e¤ectively in the t1=t2=2 subgame. The fact that the frequency of both

simultaneous subgames rises over time can by and large be explained by observing that some pairs

tend to coordinate on t=1 whereas others tend to coordinate on t=2. Recall that production costs

are the same in both periods.

5 Discussion

Hamilton and Slutsky�s (1990) extended game with observable delay has a unique and symmetric

subgame perfect equilibrium in which both players choose to produce in the �rst period, implying

symmetric Cournot quantities. In this paper we report on an experimental test of this prediction.

We run the game both with a random and a �xed matching scheme. With random-matching, we

�nd that timing choices move in the right direction but they do not converge to the predicted level

as nearly one third of all subjects still chooses to delay toward the end of the experiment. With a

�xed-matching scheme we �nd that the subgame perfect equilibrium has no predictive power with

regard to timing choices as throughout the experiment only half of the timing observations are

period one choices. The di¤erences in timing choices in the two treatments can to some extent be

explained by the di¤erences observed in the asymmetric subgames. In the treatment with random

matching more competitive behavior in the asymmetric subgames provides an incentive to avoid it

by choosing to produce early. This is not the case in the treatment with �xed matching as here the

behavior in the asymmetric subgames is less competitive.

The �nding that timing choices do not converge to the predicted level suggests that there

must be preferences that cause subjects to delay their decisions. Recently, Tykocinski and Ruf-

�e (2003) documented that such preferences exist. Their study is about �reasonable reasons for

waiting�. Experimental subjects had to choose between two options in a certain scenario and an

uncertain scenario. It turned out that subjects often prefer to delay their decisions even when

waiting does not provide any additional information at all.

While it is di¢ cult to compare these individual decision experiments to our strategic context,

one can draw parallels. Our results indicate that subjects sometimes prefer to wait even when
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doing so puts them at a strategic disadvantage. When choosing period two, our subjects can

�nd out which action the rival �rm has chosen, provided this rival chose the �rst period. Even

though they become the Stackelberg follower in this case, they prefer to wait, perhaps to resolve

the strategic uncertainty about the other player�s action. Once subjects are more familiar with

the experimental environment, this preference to wait is getting weaker in the random-matching

treatment. Nevertheless many subjects still delay towards the end of the experiment.

With �xed matching, these considerations may be less relevant since subjects face less

ambiguity regarding choices of their opponent. As argued above, timing choices may not re�ect

the incentives suggested by non-cooperative game theory. Instead, timing choices may turn out to

be an instrument to support collusion. While we observe only little collusion in our experiments,

our results suggest that timing decisions do not a¤ect pro�ts by very much with �xed matching

(except towards the end of the experiment).

We found that our results with random matching are similar in many respects to those in

Huck, Müller and Normann (2002) where, however, Stackelberg equilibria are predicted. Gener-

ally, previous work13 found that endogenous timing models predicting asymmetric outcomes are of

limited behavioral relevance due to coordination failure and inequality aversion. The results in this

study show that there are forces su¢ ciently strong to prevent play from converging to a unique

equilibrium of an endogenous timing model even if the equilibrium is symmetric.
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Appendix

A Instructions (not for publication)

Welcome to our experiment! Please read these instructions carefully! Do not talk to your neighbours

and keep quiet during the entire experiment. If you have any questions, please give us a sign. We

will answer your question privately.

In our experiment you can earn di¤erent amounts of money, depending on your behaviour

and that of other participants matched with you. All participants read identical instructions.

You have the role of a �rm which produces the same product as a second �rm in the

market. First you have to decide, at which time you want to produce. Afterwards, you decide on

the quantity you want to produce.

Regarding the time when to produce, you can choose either the �rst or the second production

period. As the other �rm has the same choice, there are four possibilities. Both �rst, both second,

you �rst and the other �rm second, and you second and the other �rm �rst. In all cases, you will

be informed about the timing decision of the other �rm before choosing your quantity.

The quantity decisions are made in the sequence resulting from the timing decisions. If

both �rms choose �rst or both choose second, quantity decisions are made simultaneously. In those

cases, you and the other �rm have to make the quantity decisions not knowing what the other one

chooses. If you choose �rst and the other �rm second, then the other �rm will learn your quantity

decision before making its own decision. Likewise, if you choose second and the other �rm �rst,

then you will learn the other �rm�s output decision before making your own decision.

Note that the pro�t in each round depends only on the chosen quantities, not on the choice

of production periods. In the attached payo¤ table, you can see the resulting pro�ts of both �rms

for all possible choices of quantity. The table reads as follows: At the head of a row the quantity

of your �rm is indicated, at the head of a column the quantity of the other �rm is stated. In the

cell at which row and column intersect, your pro�t is noted in the lower left and the other �rm�s

pro�t is stated in the upper right. All pro�ts are expressed in a �ctional currency, which we call

�Points�.

The experiment lasts 30 rounds. After each round, you will be informed about the quantity

choice of the other �rm, your pro�t and the other �rm�s pro�t.
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You do not know with which participant you serve the market. You will be randomly

matched with a participant each round. This random move is done by the computer.

Anonymity is kept among participants and instructors, as your decisions will only be iden-

ti�ed with a code number. You will discreetly receive your payment at the end of the experiment.

Concerning the payment note the following. At the end of the experiment, your earnings

in Points determine your payment in pounds sterling. For every 300 Points you will receive 1 £ . In

addition to this payment, you will receive the show-up fee of 4 £ independently of your earnings

during the thirty rounds.
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B Payo¤ table (not for publication)

Quant. 3 4 5 6 7 8 9 10 11 12 13 14 15

3
54

54

68

51

80

48

90

45

98

42

104

39

108

36

109

33

110

30

108

27

104

24

98

21

90

18

4
51

68

64

64

75

60

84

56

91

52

96

48

99

44

100

40

99

36

96

32

91

28

84

24

75

19

5
48

80

60

75

70

70

78

65

84

60

88

55

89

50

90

45

88

40

84

35

78

29

70

25

60

20

6
45

90

56

84

65

78

72

72

77

66

80

60

81

54

80

48

77

41

72

36

65

30

24

56

18

45

7
42

98

52

91

60

84

66

77

70

70

72

63

71

55

70

49

66

42

60

35

52

28

42

21

30

14

8
39

104

48

96

55

88

60

80

63

72

64

64

63

56

60

48

55

40

48

32

39

24

28

16

15

8

9
36

108

44

99

50

89

54

81

55

71

56

63

54

54

50

45

44

36

36

27

26

18

14

9

0

0

10
33

109

40

100

45

90

48

80

49

70

48

60

45

50

40

40

33

30

24

20

13

10

0

0

-10

-15

11
30

110

36

99

40

88

41

77

42

66

40

55

36

44

30

33

22

22

12

11

0

0

-11

-14

-22

-30

12
27

108

32

96

35

84

36

72

35

60

32

48

27

36

20

24

11

12

0

0

-13

-12

-24

-28

-36

-45

13
24

104

28

91

29

78

30

65

28

52

24

39

18

26

10

13

0

0

-13

-12

-26

-26

-39

-42

-52

-60

14
21

98

24

84

25

70

24

56

21

42

16

28

9

14

0

0

-14

-11

-28

-24

-42

-39

-56

-56

-70

-75

15
18

90

19

75

20

60

18

45

14

30

8

15

0

0

-15

-10

-30

-22

-45

-36

-60

-52

-75

-70

-90

-90

The head of the row represents one �rm�s quantity and the head of the column represents the

quantity of the other �rm. Inside the box at which row and column intersect, one �rm�s pro�t matching this

combination of quantities stands up to the left and the other �rm�s pro�t stands down to the right.
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