
  

 

 

Tilburg University

Assessing Credit with Equity

Campi, L.; Polbennikov, S.Y.; Sbuelz, A.

Publication date:
2005

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Campi, L., Polbennikov, S. Y., & Sbuelz, A. (2005). Assessing Credit with Equity: A CEV Model with Jump to
Default. (CentER Discussion Paper; Vol. 2005-27). Finance.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/21b78fcf-8401-4e4d-8224-7dab1cda270c


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2005–27 

 
 

ASSESSING CREDIT WITH EQUITY: A CEV MODEL WITH 
JUMP TO DEFAULT 

 
By Luciano Campi, Simon Polbennikov, Alessandro Sbuelz 

 
February 2005 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



Assessing Credit with Equity: A CEV

Model with Jump to Default

Luciano Campi�, Simon Polbennikovy, and Alessandro Sbuelzz

First version: November, 2004. This version: February 2005.

�Vienna University of Technology, Financial and Actuarial Mathematics, Wiedner

Hauptstraße 8 / 105-1, A-1040 Vienna, Austria, Phone: (+43-1) 58801-10524, Fax: (+43-

1) 58801-10599, Email: campi@ccr.jussieu.fr.
yEconometrics and Operations Research, Tilburg University, The Netherlands, Phone:

+31-13-4663426, E-mail: s.y.polbennikov@uvt.nl.
zCorresponding author. Finance Department, Tilburg University, Room B 917, P.O.

Box 90153, 5000 LE, Tilburg The Netherlands, Phone: +31-13-4668209, Fax: +31-13-

4662875, E-mail: a.sbuelz@uvt.nl.



Assessing Credit with Equity: A CEV Model with Jump to

Default

Abstract

Unlike in structural and reduced-form models, we use equity as a liquid

and observable primitive to analytically value corporate bonds and credit

default swaps. Restrictive assumptions on the �rm�s capital structure are

avoided. Default is parsimoniously represented by equity value hitting the

zero barrier either di¤usively or with a jump, which implies non-zero credit

spreads for short maturities. Easy cross-asset hedging is enabled. By means

of a tersely speci�ed pricing kernel, we also make analytic credit-risk man-

agement possible under systematic jump-to-default risk.

JEL-Classi�cation: G12, G33.

Keywords: Equity, Corporate Bonds, Credit Default Swaps, Constant-

Elasticity-of-Variance (CEV) Di¤usion, Jump to Default.



1 Introduction

Investors have been showing appetite for models that simultaneously handle

credit and equity instruments, which is important in managing a portfolio

of these two instruments. Indeed, cross-asset trading of credit risk has been

gaining momentum among credit hedge funds and banks. The rise of capital

structure arbitrage is a good example (see Yu (2004)). Reduced-form models

are not of great help, as they miss the linkage to the �rm�s capital structure.

Structural models are driven by the value evolution in �rm�s assets. The

assets-value evolution is often assumed to be di¤usive so that the default can

be seen predictably coming by observing changes in the capital structure of

the �rm (see the seminal papers of Merton (1974) and Black and Cox (1976)).

While appealing, structural models su¤er when it comes to applications. The

underlying (the sum of �rm�s liabilities and equity) is illiquid and often non-

tradable. Obtaining accurate asset volatility forecasts and reliable capital

structure leverage data is di¢ cult. Predictability of the default event implies

the counterfactual prediction of zero credit spreads for short maturities1 and,

last but not least, arbitrary use of the structural default barrier is often a

temptation hard to resist-endogenous barriers are impractical because of the

unrealistic capital-structure assumptions under which they are derived.

1Zhou (1997) posits assets-value jumps to overcome default predictability. Du¢ e and

Singleton (2001) explain such jumps with the presence of incomplete accounting informa-

tion.
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We propose a parsimonious credit risk model that does look at the �rm�s

balance sheet but avoids the application mishaps of structural models. We

take as underlying the most liquid and observable corporate security: Eq-

uity. This modelling choice brings in hedging viability and the possibility

of reliable model calibration-leverage information from book values can be

circumvented. We parsimoniously represent default as equity value hitting

the zero barrier either di¤usively or with a jump. The presence of an equity-

value drop to zero has its credit-risk foundation in the incompleteness of

accounting information (see Du¢ e and Lando (2001)) and rules out default

predictability. We assume that the continuous-path part of equity value is a

Constant-Elasticity-of-Variance (CEV) di¤usion2, which enables absorption

at zero, and that the jump to default is driven by an independent Poisson

process. Such distributional assumptions prompt us to obtain closed forms

for Corporate Bond (CB) prices and Credit Default Swap (CDS) fees, from

which hedge ratios can be easily calculated. Those assumptions and a care-

ful speci�cation of the state-price density also empower analytic credit-risk

management-we provide a closed form for the objective default probabili-

2The CEV process has been �rst introduced to �nance by Cox (1975). Among others,

the CEV-based asset-pricing literature includes the works of Albanese, Campolieti, Carr,

and Lipton (2001), Beckers (1980), Boyle and Tian (1999), Cox and Ross (1976), Davydov

and Linetsky (2001), Emanuel and MacBeth (1982), Forde (2005), Goldenberg (1991),

Leung and Kwok (2005), Lo, Hui, Yuen (2000), Lo, Hui, and Yuen (2001), Lo, Tang, Ku,

and Hui (2004), Sbuelz (2004), and Schroder (1989).
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ties in the presence of systematic jump-to-default risk. Albanese and Chen

(2004) and Campi and Sbuelz (2004) also use a CEV-equity model to price

credit instruments but they disregard the default predictability issue. In de-

riving closed-form values, we build upon a CEV result in Campi and Sbuelz

(2004). Brigo and Tarenghi (2004), Naik, Trinh, Balakrishnan, and Sen

(2003) and Trinh (2004) introduce a hybrid debt-equity model that consid-

ers equity as primitive but that, like structural models, necessitates a free

default barrier, which is then left to potentially ad-hoc uses-equity value is

assumed to be a geometric Brownian motion, except in Brigo and Tarenghi

(2004)3. Das and Sundaram (2003) have proposed an equity-based model

that accounts for default risk, interest risk, and equity risk using a lattice

framework. As such, they do not seek hedger-friendly analytic solutions.

Numerical credit risk pricing based on equity has also been suggested by

the convertible bond literature (see, for example, Andersen and Andreasen

(2000), Andersen and Bu¤um (2003), and Tsiveriotis and Fernandes (1998);

McConnell and Schwartz (1986) ignore the possibility of bankruptcy). Linet-

sky (2005) builds upon the convertible bond literature to assess zero-coupon

CB prices within a geometric-Brownian-motion model with jump-like bank-

ruptcy where the hazard rate of bankruptcy is a negative power of the share

price. The dependence of the hazard rate on the share price strongly com-

3Brigo and Tarenghi (2004) and Hui, Lo, and Tsang (2003) employ a �exible time-

varying default barrier. Hui, Lo, and Tsang (2003) do not take equity as the underlying.
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plicates the analysis4.

The rest of the work is organized as follows. Section 2 describes the

underlying equity value process. Section 3 provides analytic results for CBs

and CDSs. Section 4 speci�es a pricing kernel that permits analytic objective

default probabilities. After the conclusions (Section 5), an Appendix gathers

proofs and technical details.

2 The equity value

Under the equivalent martingale measureQ, the reference entity�s share-price

process fSg has the following pre-default jump-di¤usion dynamics:

dSt
St�

= (r � q) dt+ �S��1t� dzt � (dNt � �dt) ;

4The valuation formulae in Linetsky (2005) are spectral expansions that embed sin-

gle integrals with respect to the spectral parameter and calculations imply the use of

numerical-integration routines.
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S0 = S (current share price),

St� = lim"&0 St�" (left time limit),

�� 1 < 0 (constant elasticity of the di¤usive volatility),

Nt = 1ft��g (�rst-jump-stopped Poisson process),

� = inf ft : Nt = 1g (time of jump-like default),

EQ
�
1f�>Tg

�
= exp (��T ) (chance of surviving to jump-like default),

T > 0 (�nite maturity, in years),

� � 0 (jump-to-default intensity),

where r is the constant riskfree rate, q is the constant dividend yield, � (� >

0) is a constant scale factor for the di¤usive volatility, and dz is the increment

of a Wiener process under Q. The processes fzg and fNg are independent.

According to the boundary classi�cation, an inverse relationship between
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volatility and share price (�� 1 < 0) is necessary to have absorption at zero in

the absence of jumps. Such an assumption of inverse relationship is unlikely

to be counterfactual. The time of absorption at zero in the absence of jumps

is �;

� = inf ft : St = 0; Nt = 0g ;

whereas the time of absorption at zero tout court is the minimum between �

and �, that is

� ^ � = inf ft : St = 0g :

We take the point 0 to be the absorbing state of the share-price process fSg,

so that, once default has occurred, the share price remains at zero,

St = 0 , 8t � � ^ � .
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3 Analytic results for CBs and CDSs

Let V Q (S; T; y) be the T -truncated Laplace transform of � ^ ��s probability

density function under Q (Q-p.d.f.) with Laplace parameter y (y � 0),

V Q (S; T; y) = EQ0
�
exp (�y � � ^ �) 1f�^��Tg

�
:

Such a quantity is of great importance, as it is the building block for the

analytic pricing of CBs and CDSs. V (S; T; r) represents the fair present

value of 1 unit of currency at the reference entity�s default if default occurs

within T , while V Q (S; T; 0) represents the risk-neutral probability of default

within T .

The next proposition is a neat and useful result stemming from the in-

dependence between fzg and fNg. It gives an analytic characterization of

V Q (S; T; y). It states that the quantity of interest is the linear convex com-

bination of the adjusted risk-neutral probability of default within T (with

weight �
y+�
) and of the (y + �)-discounted value of 1 unit of currency at the

di¤usive default within T (with weight y
y+�
). The latter is the T -truncated
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Laplace transform of ��s Q-p.d.f. with Laplace parameter y + �

EQ0
�
exp (� (y + �) �) 1f��Tg

�

and its closed form5 has been recently derived by Campi and Sbuelz (2004).

The closed form is provided in the Appendix.

Proposition 1 Under the above assumptions, the T -truncated Laplace trans-

form of � ^ ��s Q-p.d.f. with Laplace parameter y is

V Q (S; T; y) =
�

y + �

�
1� exp (� (y + �)T )

�
1� EQ0

�
1f��Tg

���

+
y

y + �
EQ0

�
exp (� (y + �) �) 1f��Tg

�
:

5Davidov and Linetsky (2001), see pp. 953 and 956, point out that the T -truncated

Laplace transform of ��s Q-p.d.f. with Laplace parameter y + � can be obtained by

numerically inverting the closed-form non-truncated Laplace transform

1

a
EQ0 [exp (� (y + �+ a) �)] ;

where the inversion parameter is a > 0.
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Proof. See the Appendix.

Proposition 1 empowers analytic pricing of CBs and CDSs. Consider a

reference entity�s CB that has face value F and pays an (annualized) coupon

C at regular 1
k
-spaced dates Tj up to its maturity T (k is a positive integer).

For the sake of simplifying notation, we take the maturity T to be a rational

number of the type n
k
, n 2 N . The fair CB price is

PCB (S; T; r) =
kTX
j=1

1

k
exp (�rTj)

�
1� V Q (S; Tj; 0)

�
C

+
�
1� V Q (S; T; 0)

�
F

+V Q (S; T; r) �R � F;

where R is the recovery rate at default, which is a �xed historical data input

in applications. CB�s defaultable part is assessed under the assumption of

Recovery of Face Value at Default (RFV), which bears the value V Q (S; T; r)�

R �F . Under RFV, CB holders receive the same fractional recovery R of the

9



face value F at default for CBs issued by the reference entity regardless

of maturity. Guha and Sbuelz (2003) show that the RFV recovery form

is consistent with typical bond indenture language (for example, the claim

acceleration clause), defaulted bond price data, and stylised facts that are

relevant for interest rate hedging (for example, the low duration of high-yield

bonds).

Consider a CDS related to the CB just described. It o¤ers a protection

payment of (1�R)F in exchange for an (annualized) fee fCDS paid at regular
1
k
-spaced dates up to the contract�s maturity. The fair CDS fee is

fCDS (S; T; r) =
V Q (S; T; r) (1�R)PkT

j=1
1
k
exp (�rTj) [1� V Q (S; Tj; 0)]

:

The holder of a CB can achieve total recouping of the face value F at de-

fault by being long a CDS. Being short @
@S
PCB (S; T; r) shares Delta-hedges6

against the pre-default price shocks driven by di¤usive news. Recent evidence

shows that such equity-based hedges perform reasonably well for high-yield

CBs (see Naik, Trinh, Balakrishnan, and Sen (2003)). Our model also states

that, in the case of a jump to default (� ^ � = �), Delta hedging recoups a
6Parallel shifts of the (�at) term stucture of the interest rates can be hedged by selling

a portfolio of default-free bonds that has interest-rate sensitivity equal to @
@rPCB (S; T; r).

Such a hedge ratio can be easily calculated in our model.
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fraction

@
@S
PCB (S��; T � � ; r)S��

PCB (S��; T � � ; r)�R � F

of the CB loss su¤ered at default. CB�s analytic Delta-hedge ratio @
@S
PCB (S; T; r)

is provided in the Appendix. Also, given analytic CB prices, an easy and

e¤ective measure of the Delta-hedge ratio is

@

@S
PCB (S; T; r) ' PCB (S + "; T; r)� PCB (S � "; T; r)

2"

for a small positive ".

4 The objective default probability

Our equity-based model contributes also to credit risk management by being

conducive to closed forms for the objective default probability, V P (S; T; 0),

with

V P (S; T; y) = EP0
�
exp (�y � � ^ �) 1f�^��Tg

�
;
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where P is the objective probability measure. A parsimonious and closed-

form-conducive way of specifying the dynamics of the share price process fSg

under the objective measure is the following:

dSt
St�

= �Pdt+ �S
��1
t� dzPt �

�
dNP

t � �Pdt
�
;

�P = r � q + � � � + EP [(exp (�)� 1)]�P;

� � � > 0 (premium for the di¤usive risk),

EP [(exp (�)� 1)]�P > 0 (premium for the jump-like default risk).

Such a terse speci�cation of fSg�s P-dynamics makes a neat account of sys-

tematic jump-like default risk. The risk-neutral jump-to-default intensity �

maintains a simple link to the objective jump-to-default intensity �P (�P > 0):

� = EP [exp (�)]�P:

If the jump-like default risk disappears (�P & 0), its premium shrinks to zero

and the risk-neutral jump-to-default intensity does so as well. In the case of

12



a jump to default (� ^ � = �), the state-price-density process f�g that backs

the measure Q jumps from ��� to �� ,

�� = ��� exp (�) :

Since �� provides the fair present value of 1 unit of currency received at the

time of jump-like default per unit probability of such a dislikeable event, it is

reasonable to impose the restriction that �� must always be at least as much

as ��� is. This implies that �, which is a random variable independent from

fzg and fNg, must be non-negative. The criterion of parameter parsimony

suggests to take for � a one-parameter non-negative distribution. One such

distribution is the discrete Poisson distribution with parameter � (� > 0)

and with support f0; 1; 2; :::g, so that the expectation EP [exp (�)] admits a

13



concise closed form,

EP [exp (�)] = exp (� (exp (1)� 1)) > 1;

EP [�] = �;

V arP [�] = �:

As long as jump-like default risk is systematic (� is well above 0), the jump-to-

default intensity under Q is always greater than its level under P (� > �P).

If the state-price density does not jump in the case of a jump to default

(� & 0, that is, � = 0 P-almost surely), the systematic nature of the jump-

like default risk is washed away so that risk-neutral and objective jump-to-

default intensities tend to coincide (�P & �).

As far as di¤usive risk is concerned, if its premium faints, it is either

because such a risk is not priced (� & 0) or because the risk is dimming

(� & 0).

The above speci�cation of fSg�s P-dynamics forces f�g�s P-dynamics to

14



be, for t < � ^ �,

d�t
�t�

= �rdt

��S1��t� dzPt

+
�
(exp (�)� 1) dNP

t � [exp (� (exp (1)� 1))� 1]�Pdt
�
;

and, for t � � ^ �,

�t = ��^� � exp (�r (t� � ^ �)) ;

so that, by virtue of Itô�s Formula, the �-de�ated gain processes generated by

holding one share and by holding one unit of currency in the money-market

15



account are local P-martingales7,

EPt [d (�t � St exp (qt))] = 0;

EPt [d (�t � exp (rt))] = 0;

and, hence, the market is arbitrage-free8.

Since the objective drift is constant (EPt
h
dSt
St�

i
= �P), arguments similar

to those behind Proposition 1 lead to this analytic expression for the quantity

V P (S; T; y):

V P (S; T; y) =
�P

y + �P

�
1� exp (� (y + �P)T )

�
1� EP0

�
1f��Tg

���

+
y

y + �P
EP0
�
exp (� (y + �P) �) 1f��Tg

�
;

7The T -time level of the �-de�ated gain process generated by holding one unit of

currency in the money-market account represents the Radon-Nikodym derivative of Q

with respect to P, �T � exp (rT ) = dQ
dP .

8This indeed rules out arbitrage opportunities involving St exp (qt) and exp (rt), under

natural conditions on dynamic trading strategies. See, for example, Appendix B.2 in Pan

(2000).

16



where the T -truncated Laplace transform of ��s P-p.d.f. with Laplace para-

meter y + �P is analytic (see Campi and Sbuelz (2004)). Its closed form is

provided in the Appendix.

In summary, we achieve analytic objective default probabilities by aug-

menting the original parameter set fr; q; �; �; �g with two preference-based

parameters only, � for the di¤usive risk and � for the jump-like default risk.

5 Conclusions

We present an equity-based credit risk model that, by taking as primitive the

most liquid and observable part of a �rm�s capital structure, overcomes many

of the problems su¤ered by structural models in pricing and hedging appli-

cations. Our parsimonious model avoids any assumption on the �rm�s liabil-

ities. It empowers the analytical pricing of CBs and CDSs and it can match

non-zero short-maturity spreads. Cross-asset hedging is viable and easy to

implement. A careful speci�cation of the state price density enables analytic

credit-risk management in the presence of systematic jump-to-default risk.
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6 Appendix

Proof of Proposition 1

Proof. The time-s-evaluated Q-p.d.f. of the stopping time � ^ � is

f�^� (s) = � d
ds
EQ0

�
1f�^�>sg

�
= � d

ds
EQ0

�
1f�>sg1f�>sg

�
= � d

ds

�
EQ0

�
1f�>sg

�
EQ0

�
1f�>sg

��
= f� (s)E

Q
0

�
1f�>sg

�
+ f� (s)E

Q
0

�
1f�>sg

�

= � exp (��s)EQ0
�
1f�>sg

�
+ f� (s) exp (��s) :

The T -truncated Laplace transform of �^��sQ-p.d.f. with Laplace parameter

18



y is

V Q (S; T; y) = EQ0
�
exp (�y � � ^ �) 1f�^��Tg

�
=

Z T

0

exp (�ys) f�^� (s) ds

= �Y1 + Y2;

Y1 =

Z T

0

exp (� (y + �) s)EQ0
�
1f�>sg

�
ds;

Y2 =

Z T

0

exp (� (y + �) s) f� (s) ds:

Y2 is the T -truncated Laplace transform of ��s Q-p.d.f. with Laplace para-

meter y + �,

Y2 = EQ0
�
exp (� (y + �) � �) 1f��Tg

�
:

Its closed form has been derived by Campi and Sbuelz (2004) and it can be
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found below after this proof. An integration by parts gives

Y1 =
�1
y + �

exp (� (y + �) s)EQ0
�
1f�>sg

�����T
0

�
Z T

0

�1
y + �

exp (� (y + �) s) (�f� (s)) ds

=
1

y + �

�
1� exp (� (y + �)T )EQ0

�
1f�>Tg

��
� 1

y + �
Y2:

This completes the proof.

The discounted value of cash at � within T

The T -truncated Laplace transform of ��s Q-p.d.f. with Laplace parame-

ter w (w � 0) has been shown by Campi and Sbuelz (2004) to be

EQ0
�
exp (�w � �) 1f��Tg

�
= lim

�&0

1X
n=0

an (A;B)
�x
2

�n �(� � n; x
2K
; x
2�
)

�(�)
;

20



�(�) =

Z +1

0

u��1e�udu (Gamma Function),

�(� � n; x
2K
;
x

2�
) =

Z x
2�

x
2K

u�nu��1e�udu (Generalized Incomplete Gamma Function),

an (A;B) = (�1)nC (B; n)An ;

C (B; n) =

Qn
k=1 (B � (k � 1))

n!
1fn�1g + 1fn=0g ;

x = S2(1��) ; � = 1
2(1��) ;

A = 2(r�q+�)
�2(1��) ; K = �2(1��)

2(r�q+�)
�
1� e�2T (r�q+�)(1��)

�
;

B = w
2(r�q+�)(1��) :

The Generalized Incomplete Gamma Function, the Incomplete Gamma Func-

tion, and the Gamma function are built-in routines in many computing soft-

ware like MATLAB and Mathematica, which makes the above expressions
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fully viable.

The objective probability of di¤usive default within T

The replacement of the risk-neutral intensity-added drift r�q+� with the

objective intensity-added drift �P+ �P implies that the T -truncated Laplace

transform of ��s P-p.d.f. with Laplace parameter w (w � 0) has this analytic

expression:

EP0
�
exp (�w � �) 1f��Tg

�
= lim

�&0

1X
n=0

an (AP; BP)
�x
2

�n �(� � n; x
2KP
; x
2�
)

�(�)
;

AP = 2(�P+�P)
�2(1��) ; KP = �2(1��)

2(�P+�P)

�
1� e�2T (�P+�P)(1��)

�
;

BP = w
2(�P+�P)(1��)

:

The analytic expression of the objective probability of di¤usive default within

time T is retrieved by taking w = 0.

The Delta-hedge ratio for a CB
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Simple di¤erentiation gives the following analytic Delta-hedge ratio for a

CB:

@

@S
PCB (S; T; r) = �

kTX
j=1

1

k
exp (�rTj)

@

@S
V Q (S; Tj; 0)C

� @

@S
V Q (S; T; 0)F

+
@

@S
V Q (S; T; r)!F;

@

@S
V Q (S; T; y) =

�

y + �
exp (� (y + �)T ) @

@S
EQ

�
exp (�0 � �) 1f��Tg j S

�

+
y

y + �

@

@S
EQ

�
exp (� (y + �) �) 1f��Tg j S

�
;

@

@S
EQ

�
exp (�w � �) 1f��Tg j S

�
= lim

�&0

1X
n=0

an (A;B)
�x
2

�n 1

�(�)
Zn (x; �)x

0;

Zn (x; �) =

264 n
2

�
x
2

��1
�(� � n; x

2K
; x
2�
)

+
�
gn(

x
2�
) 1
2�
� g( x

2K
) 1
2K

�
375 ;
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x0 = 2(1� �)S2(1��)�1;

gn(u) = u�nu��1e�u:
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