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Solving SDP’s in non-commutative algebras

Part I: the dual-scaling algorithm

E. de Klerk∗ D.V. Pasechnik†

January 27, 2005

Abstract

Semidefinite programming (SDP) may be viewed as an extension of
linear programming (LP), and most interior point methods (IPM’s) for LP
can be extended to solve SDP problems. However, it is far more difficult
to exploit data structures (especially sparsity) in the SDP case. In this
paper we will look at the data structure where the SDP data matrices
lie in a low dimensional matrix algebra. This data structure occurs in
several applications, including the lower bounding of the stability number
in certain graphs and the crossing number in complete bipartite graphs.
We will show that one can reduce the linear algebra involved in an iteration
of an IPM to involve matrices of the size of the dimension of the matrix
algebra only. In other words, the original sizes of the data matrices do
not appear in the computational complexity bound. In particular, we will
work out the details for the dual scaling algorithm, since a dual method
is most suitable for the types of applications we have in mind.

JEL code: C61 - Optimization Techniques; Programming Models; Dynamic
Analysis
Key words: semidefinite programming, matrix algebras, dual scaling algo-
rithm, exploiting data structure

1 Introduction

We consider the semidefinite program in standard form:

(P ) : p∗ := inf
X

{
Tr (Ã0X) : Tr (ÃiX) = bi (i = 1, . . . ,m), X � 0

}
,
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which has the associated dual problem:

(D) : d∗ := sup
y,S

{
bT y :

m∑
i=1

yiÃi + S = Ã0, S � 0, y ∈ IRm

}
.

We assume throughout that both (P ) and (D) satisfy the Slater condition.
Although semidefinite programming (SDP) is an extension of linear pro-

gramming (LP), there has been much less progress on solving large scale SDP’s
using interior point methods than in the LP case; see e.g. [2].

In this paper we show how one can exploit problem structure if the matrices
Ãi generate a (low dimensional) matrix algebra. Such SDP’s arise, for example,
from the estimation of the size of minimal distance binary codes [9], [4], and the
lower bounding of the crossing numbers of complete bipartite graphs [5].

We will first describe the data structure we will consider, and then describe
how it arises in applications, and subsequently how it can be exploited by interior
point algorithms.

The algebraic data structure

We consider a subalgebra A of Mn(C) spanned (as a vectorspace) by matrices
{A1, . . . , Ad}, where A1 = I. In addition,

1. the Ai’s are pairwise orthogonal with respect to the coordinate-wise scalar
product

A ◦B :=
∑
i,j

AijBij .

2. For any Ai there exists Ai′ so that Ai = AT
i′ .

3. the Ai’s have non-negative entries;

Let Λ = (λk
ij) denote the tensor of structure constants of Ã, that is

AiAj =
∑

k

λk
ijAk for 1 ≤ i, j ≤ d. (1)

If one defines matrices Bi (i = 1, . . . , d) via

[Bi]jk = λk
ji

then the regular representation of A is an algebra isomorphism defined via

φ : Ai 7→ Bi (i = 1, . . . , d).

Given an Z ∈ A, the spectra of Z and φ(Z) are the same (ignoring multiplicities
of eigenvalues). This relation allows us to check if a (symmetric) matrix in
Z = ZT ∈ A is positive semidefinite by computing the smallest eigenvalue of
the d× d matrix φ(Z).
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How the data structure arises

Assume that the symmetric data matrices Ãi (i = 0, . . . ,m) are invariant under
the action of a transitive finite group G of permutation matrices, in the sense
that

PT ÃiP = Ãi ∀P ∈ G, i = 0, . . . ,m.

The so-called centralizer ring of G:

A :=

{
Y ∈ IRn×n | Y =

1
|G|

∑
P∈G

PT XP, X ∈ IRn×n

}
,

is a matrix algebra, i.e. a subspace of IRn×n that is also closed under matrix
multiplication.

This algebra has a basis A1, . . . , Ad of (non-symmetric) {0, 1} matrices that
meet the conditions 1,2, and 3 on page 2. A matrix algebra with such a basis is
also called a (non-commutative) association scheme.

The case where the Ai’s commute reduces to a linear programming problem,
and has important applications (see Schrijver [8], and Goemans and Rendl [3]).
In this paper, we will only study the non-commutative case. Gaterman and
Parillo [1] discuss the setting described here (and more general ones) in detail,
giving proofs or references to the results only mentioned here.

Exploiting the data structure

If S is an optimal solution of problem (D), then so is 1
|G|
∑

P∈G PT SP . In other
words, we may restrict the optimization to the intersection of AG with the space
of symmetric p.s.d. matrices, as opposed to the entire cone of p.s.d. matrices.
Since we assume that the dimension of A is small, this leads to a reduction in
problem size.

There are two obvious ways to reduce the problem size even further:

1. compute the irreducible block diagonal factorization (or any less fine block
factorization) of the basis of A;

2. work with the regular representation, or any other (low-dimensional) faith-
ful representation, of A as opposed to A itself.

The first option is appealing since primal–dual interior point solvers like SeDuMi
[10] can exploit block diagonal data structure. The drawback is that there is no
simple relationship between the dimension of A and the sizes of the blocks. It is
possible, in certain applications, that the block sizes are too large to work with,
even though the dimension of A is modest. Moreover, it is not easy in general
to compute the irreducible block factorization of A.

In [9] good results were obtained for minimal distance codes using the block
diagonalization approach by finding (as opposed to numeric or symbolic com-
puting) of the factorization needed. The latter was also used later in [4]. In [5]
a partial (i.e. not the finest) block factorization was used.
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This paper is concerned with the second option. We will show that an interior
point algorithm can be implemented in such a way that the linear algebra only
involves matrices of the size d (the dimension of A). To fix our ideas, we will
discuss only the dual-scaling algorithm (see e.g. Ye [11]). The reason is three-
fold:

• the computation for the dual-scaling method is simple compared to that
of a primal–dual method;

• for many (combinatorial) applications the optimal values of (P ) and (D)
give a lower bound on a quantity of interest. A feasible dual solution will
yield such a bound.

• for the applications we have in mind, a dual (strictly) feasible starting
point is readily available.

2 The dual scaling method

In what follows we describe how the computations of the dual scaling method
for an SDP with matrix data being symmetric linear combinations of the Aj ’s
can be implemented.

In particular, we assume that the symmetric SDP data matrices are given
as Ãi =

∑d
k=1 β

(i)
k Ak (i = 0, . . . ,m), where the β

(i)
k are given constants, a part

of Λ that is also given.
Let y ∈ IRm define a strictly feasible solution of (D) via S := Ã0−

∑m
i=1 yiÃi �

0.
The dual scaling method indeed only uses a dual feasible iterate to construct

the search direction, but it can be interpreted as a method that also attempts
to form a feasible primal solution at each iteration.

For a given µ > 0, define

X(S, µ) := arg min
X

{∥∥∥∥∥S
1
2 XS

1
2

µ
− I

∥∥∥∥∥
∣∣∣∣∣ Tr ÃiX = bi, i = 1, . . . ,m

}
,

and

δd(S, µ) :=

∥∥∥∥∥S
1
2 X(S, µ)S

1
2

µ
− I

∥∥∥∥∥ .

Note that, if X(S, µ) � 0, then it is primal feasible. Moreover, if δd(S, µ) = 0
then (X(S, µ), S) are on the primal-dual central path with parameter µ.

It is easy to show that — if δd(S, µ) < 1, then X(S, µ) � 0.
The first–order optimality conditions which yield X(S, µ) are

S

[
XS

µ
− I

]
−

m∑
i=1

∆yiÃi = 0 (2)

Tr (ÃiX) = bi, i = 1, . . . ,m. (3)
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Pre- and post-multiplying the first equation with S−1 and subsequently using
the second equation yields:

m∑
i=1

∆yiTr
(
ÃiS

−1ÃjS
−1
)

= − 1
µ

bj + Tr
(
ÃjS

−1
)

, j = 1, . . . ,m. (4)

The dual scaling method uses the search direction ∆y that is obtained by solving
(4), and ∆S follows from

∆S = −
m∑

i=1

∆yiÃi.

In order to ensure that the update of S is positive definite, we choose a value
of α > 0 such that

S + α∆S � 0.

A suitable choice is given by the Dikin ellipsoidal condition

α <
1∥∥∥S− 1

2 ∆SS−
1
2

∥∥∥ =
1√

∆yT M∆y
, (5)

where M is the matrix defined by Mij := Tr
(
ÃiS

−1ÃjS
−1
)
.

An important observation is that it is not necessary to form X(S, µ) explicitly
in order to decide whether or not it is positive definite, or to subsequently
calculate the duality gap if it is indeed positive definite: by (2) we know that

X(S, µ) � 0 ⇐⇒ S +
m∑

i=1

∆yiÃi � 0.

Moreover, note that if X(S, µ) � 0, then the duality gap at (X(S, µ), S) is given
by

Tr (X(S, µ)S) = µTrS−1 (S −∆S) , (6)

by (2). Another important observation is that — in our setting — we will not
store the iterates S as matrices, we only store the vectors y.

The dual scaling method uses a dynamic updating strategy for µ, namely

µ :=
Tr (XS)
n + ν

√
n

,

where S is the current dual iterate, X is the best-known primal solution, and
ν ≥ 1 is a given parameter.
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Dual scaling algorithm

Input
A strictly feasible primal-dual pair (X(0), S(0));

Parameters
An accuracy parameter ε > 0;
A parameter ν ≥ 1;

begin
while Tr

(
X(k)S(k)

)
> ε do for k = 0, 1, . . .

µk := Tr (X(k)S(k))
n+ν

√
n

;

Obtain ∆y(k) by solving (4);
if X

(
S(k), µk

)
� 0 (i.e. if S(k) +

∑m
i=1 ∆y

(k)
i Ãi � 0) then

X(k+1) := X
(
S(k), µk

)
, else X(k+1) := X(k);

Choose αk > 0 to satisfy (5);
Let y(k+1) = y(k) + αk∆y(k);
S(k+1) := S(k) − αk

∑m
i=1 ∆y

(k)
i Ãi;

end
end

Again, the steps in the algorithm that involve X(S(k), µk) should be inter-
preted in light of our previous remarks: we do not have to form X(S(k), µk)
explicitly in order to do the dual update, or to decide whether X(S(k), µk) � 0.
Moreover, the role of the matrix X(k) in the statement of the algorithm is also
symbolic — we do not need to store this matrix in an implementation of the
algorithm, since we only need the value of the duality gap Tr

(
X(k)S(k)

)
. We

can compute the duality gap from (6) if X(k) 6= X(k−1), or from

Tr
(
X(k)S(k)

)
= Tr Ã0X

(k) − bT y(k),

if X(k) = X(k−1).

The following complexity result is known for the dual scaling method.

Theorem 2.1 (Ye [11]). The dual scaling method stops after at most

O

(
ν
√

n log

(
Tr
(
X0S0

)
ε

))
iterations. The output is a primal-dual feasible pair (X(S, µ), S) such that
Tr (X(S, µ)S) ≤ ε.
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We will now discuss the number of operations required per iteration of the
dual scaling method, for the case where the data matrices Ãi are known to be
elements of a (low dimensional) matrix algebra.

3 Summary of the computations per iteration

The computation per iteration can be performed using the following number of
flops:

1. Compute S−1 in O(d3) flops;

2. Form the matrix Mij := Tr
(
S−1ÃiS

−1Ãj

)
(i, j = 1, . . . ,m) in O(m2d2)

flops;

3. Solve the linear system (4) in O(m3) flops.

4. Check if X(S, µ) � 0 in O(d3) flops.

Notice that the size n of the data matrices does not appear here. This is
very important for the applications we have in mind, since we will typically have
m � d � n.

3.1 Computing the inverse of S

Let S =
∑

` ρ`A` be of full rank. Then S−1 =
∑

q zqAq can be computed as
follows.

A1 = I = SS−1 = (
∑

`

ρ`A`)(
∑

q

zqAq) =

=
∑
q,`

ρ`zq(
∑

k

λk
`qAk) =

∑
k

Ak(
∑
q,`

ρ`zqλ
k
`q). (7)

Thus the equations defining z are∑
q

zq

∑
`

ρ`λ
k
`q = 0 for k = 2, . . . , d, (8)

and ∑
q

zq

∑
`

ρ`λ
1
`q = 1.

Due to the condition 1, λ1
`q = 0 for all ` 6= q′, and the latter equation

simplifies to ∑
q

zqρq′λ1
qq′ = 1. (9)

To summarize, S−1 can be found by solving the d× d linear system (8)-(9)
in O(d3) flops.
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3.2 Computing the search direction

Here we describe how to form and solve the linear system (4) to obtain the
search direction.

First we describe computing, for 1 ≤ i, j ≤ d̃,

Mij = Mij(S) := TrS−1ÃiS
−1Ãj .

Keeping the notation S−1 =
∑

q zqAq, we get

S−1AiS
−1Aj = (

∑
k

(
∑

q

zqλ
k
qi)Ak)(

∑
p

(
∑

`

z`λ
p
`j)Ap) =

=
∑
k,p

(
∑

q

zqλ
k
qi)(
∑

`

z`λ
p
`j)(
∑

r

λr
kpAr). (10)

As TrAr = 0 for all r > 1, only r = 1 in the formula above will contribute
to the trace, i.e.

TrS−1AiS
−1Aj =

 d∑
l,k=1

β
(l)
j β

(k)
i

Tr
∑
k,p

(
∑

q

zqλ
k
qi)(
∑

`

z`λ
p
`j)λ

1
kpI) =

=

 d∑
l,k=1

β
(l)
j β

(k)
i

n
∑

k

(
∑

q

zqλ
k
qi)(
∑

`

z`λ
k′

`j)λ
1
kk′ = zT Φijz, (11)

where the second line follows from the first by observing that λ1
kp = 0 for all

k 6= p′, and
(Φij)q` := n

∑
k

λ1
kk′λk

qiλ
k′

`j .

Using Ãi =
∑d

k=1 β
(i)
k Ak (i = 0, . . . , d), we have that

S−1ÃiS
−1Ãj = S−1

(
d∑

k=1

β
(i)
k Ak

)
S−1

(
d∑

l=1

β
(j)
l Al

)
=

d∑
l,k=1

β
(i)
k β

(j)
l S−1AkS−1Al.

(12)

It follows that

Mij := Tr
(
S−1ÃiS

−1Ãj

)
=

d∑
l,k=1

β
(i)
k β

(j)
l zT Φklz = zT

 d∑
l,k=1

β
(i)
k β

(j)
l Φkl

 z.

(13)

8



Note that the matrices
∑d

l,k=1 β
(i)
k β

(j)
l Φkl can be computed beforehand.

Thus Mij can be computed in O(d2) flops, and the entire matrix M in
O(m2d2).

Next we need to form the right hand side of the linear system involving M ,
namely (4). The components of the right hand side vector are given by

− 1
µ

bj + Tr
(
ÃjS

−1
)

= − 1
µ

bj + Tr
d∑

k,q=1

β
(j)
k zqAkAq

= − 1
µ

bj + Tr
d∑

k,q=1

β
(j)
k zq

∑
l

λl
kqAl

= − 1
µ

bj + n
d∑

k,q=1

β
(j)
k zqλ

1
kq, (j = 1, . . . ,m)

where we have again used that Tr (A1) = n and Tr (Ai) = 0 (i 6= 1).

3.3 Computing the step length α

We use the step length
α =

γ√
∆yT M∆y

where γ < 1 is a fixed positive constant (see (5)). Note that, by (4),

∆yT (M∆y) =
∑

j

∆yj

(
− 1

µ
bj + Tr

(
ÃjS

−1
))

=
∑

j

∆yj

− 1
µ

bj + n
d∑

k,q=1

β
(j)
k zqλ

1
kq

 .

3.4 Checking if X(S, µ) � 0

Recall that

X(S, µ) � 0 ⇐⇒ S +
m∑

i=1

∆yiÃi � 0.
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Using S =
∑

` ρ`A` and Ãi =
∑d

k=1 β
(i)
k Ak, we get

S +
m∑

i=1

∆yiÃi =
∑

`

ρ`A` +
m∑

i=1

(
∆yi

d∑
k=1

β
(i)
k Ak

)

=
d∑

k=1

(
ρk +

(
m∑

i=1

∆yiβ
(i)
k

))
Ak.

We now use the regular representation of A as follows:

φ

(
d∑

k=1

(
ρk +

(
m∑

i=1

∆yiβ
(i)
k

))
Ak

)
=

d∑
k=1

(
ρk +

(
m∑

i=1

∆yiβ
(i)
k

))
Bk.

Since φ preserves the spectrum (up to multiplicities), we only need to check if
the smallest eigenvalue of the d× d matrix

∑d
k=1

(
ρk +

(∑m
i=1 ∆yiβ

(i)
k

)
Bk

)
is

nonnegative.

3.5 Updating the duality gap

Case 1: X(S, µ) � 0

If X(S, µ) � 0, then X(S, µ) is a feasible solution of the primal problem and
the duality gap at (X(S, µ), S) is given by

Tr (X(S, µ)S) = µTr
(
S−1 (S −∆S)

)
= µn− µTr

(
S−1∆S

)
= µn + µTr

(∑
i

ziAi

∑
k

∆ykÃk

)

= µn + µTr

∑
i

ziAi

∑
k

∆yk

d∑
j=1

β
(k)
j Aj


= µn + µTr

∑
i,j,k

zi∆ykβ
(k)
j AiAj


= µn + µTr

∑
i,j,k

zi∆ykβ
(k)
j

∑
t

λt
ijAt


= µn + µn

∑
i,j,k

zi∆ykβ
(k)
j λt

ij ,

where we have again used that Tr (A1) = n and Tr (Ai) = 0 (i 6= 1).
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Case 2: X(S, µ) 6� 0

In this case the duality gap is computed by updating the dual objective value
only. The change in dual objective value is bT ∆y.

4 Conclusion

We have shown that the dual scaling method for semidefinite programming
can be implemented to exploit the particular data structure where the SDP
data matrices come from a low dimensional matrix algebra. In this case the
computational complexity per iteration only depends on the dimension of the
algebra, and not on the sizes of the original data matrices.

In the second part of this paper, we will present computational results for
SDP’s that arise from the lower bounding of the crossing numbers of complete
bipartite graphs, as described in [5].
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