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The Bird core for minimum cost spanning
tree problems revisited: monotonicity and

additivity aspects

Stef Tijs1, Stefano Moretti2, Rodica Branzei3, Henk Norde4

December 21, 2004

Abstract

A new way is presented to define for minimum cost spanning tree (mcst-)
games the irreducible core, which is introduced by Bird in 1976. The Bird
core correspondence turns out to have interesting monotonicity and additivity
properties and each stable cost monotonic allocation rule for mcst-problems
is a selection of the Bird core correspondence. Using the additivity property
an axiomatic characterization of the Bird core correspondence is obtained.

Key-words: cost allocation, minimum cost spanning tree games, Bird core,
cost monotonicity, cone additivity.

JEL classification: C71.

1 Introduction

One of the classical problems in Operations Research is the problem of find-
ing a minimum cost spanning tree (mcst) in a connected network. For al-
gorithms solving this problem see Kruskal (1956) and Prim (1957). Claus
and Kleitman (1973) discuss the problem of allocating costs among users in
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a minimum cost spanning tree. This inspired independently Bird (1976) and
Granot and Claus (1976) to construct and use a cooperative game to tackle
this cost allocation problem.

In the seminal paper of Bird (1976) a method is indicated how to find
a core element of the minimum cost spanning tree game (mcst game) when
a minimum cost spanning tree is given. Further he has introduced, using a
fixed mcst, the irreducible core of an mcst game, which is a subset of the
core of the game, and which we will call in this paper the Bird core. The
Bird core is central in this paper. First, we will give a new “tree free” way
to introduce the Bird core by constructing for each mcst-problem a related
problem, where the weight function is a non-Archimedean semimetric. The
Bird core correspondence turns out to be a crucial correspondence if one is
interested in stable cost monotonic allocation rules for mcst-problems. In
fact, the Bird core is the “largest” among the correspondences which are
cost monotonic and stable. The Bird core has also an interesting additivity
property i.e. the Bird core correspondence is additive on each Kruskal cone
in the space of mcst-problems with a fixed number of users. The additivity
on Kruskal cones can be used to find an axiomatic characterization of the
Bird core correspondence.

The outline of the paper is as follows. Section 2 settles notions and
notations. In Section 3 the non-Archimedean semimetric is introduced and
used to define in a canonical (tree independent) way the reduced game and
the Bird core. The relations between stable cost monotonic rules and the
Bird core are discussed in Section 4. An axiomatic characterization of the
Bird core is given in Section 5. Section 6 concludes.

2 Preliminaries and notations

An (undirected) graph is a pair < V,E >, where V is a set of vertices or
nodes and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j.
The complete graph on a set V of vertices is the graph < V,EV >, where
EV = {{i, j}|i, j ∈ V and i 6= j}. A path between i and j in a graph < V,E >
is a sequence of nodes (i0, i1, . . . , ik), where i = i0 and j = ik, k ≥ 1, and
such that {is, is+1} ∈ E for each s ∈ {0, . . . , k − 1}. A cycle in < V,E > is
a path from i to i for some i ∈ V . A path (i0, i1, . . . , ik) is without cycles if
there do not exist a, b ∈ {0, 1, . . . , k}, a 6= b, such that ia = ib.

Two nodes i, j ∈ V are connected in < V,E > if i = j or if there exists a
path between i and j in < V,E >. A connected component of V in < V,E >
is a maximal subset of V with the property that any two nodes in this subset
are connected in < V,E >. Given a path P = (i0, i1, . . . , ik) between i and
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j in a graph < V,E >, k ≥ 1, we say that v ∈ V is a node in P if v = im
for some m ∈ {0, . . . , k}; we say that an edge {r, t} ∈ E is on the path P
or, equivalently, that i is connected to j via the edge {r, t} in the path P , if
there exists m ∈ {0, . . . , k − 1} such that r = im and t = im+1 or t = im and
r = im+1.

Now, we consider minimum cost spanning tree (mcst) situations. In an
mcst situation a set N = {1, . . . , n} of agents is involved willing to be con-
nected as cheap as possible to a source (i.e. a supplier of a service) denoted
by 0. In the sequel we use the notation N ′ for N ∪ {0}. An mcst situation
can be represented by a tuple < N ′, EN ′ , w >, where < N ′, EN ′ > is the com-
plete graph on the set N ′ of nodes or vertices, and w : EN ′ → IR+ is a map
which assigns to each edge e ∈ EN ′ a nonnegative number w(e) representing
the weight or cost of edge e. We call w a weight function. If w(e) ∈ {0, 1}
for every e ∈ EN ′ , the weight function w is called a simple weight function,
and we refer then to < N ′, EN ′ , w > as a simple mcst situation. Since in
our paper the graph of possible edges is always the complete graph, we sim-
ply denote an mcst situation with the set of users N , source 0, and weight
function w by < N ′, w >. Often we identify an mcst situation < N ′, w >
with the corresponding weight function w. We denote by WN ′

the set of all
mcst situations < N ′, w > (or w) with node set N ′. For each S ⊆ N one
can consider the mcst subsituation < S ′, w|S′ >, where S ′ = S ∪ {0} and
w|S′ : ES′ → IR+ is the restriction of the weight function w to ES′ ⊆ EN ′ ,
i.e. w|S′(e) = w(e) for each e ∈ ES′ .

Let < N ′, w > be an mcst situation. Two nodes i and j are called
(w,N ′)-connected if i = j or if there exists a path (i0, . . . , ik) from i to j,
with w({is, is+1}) = 0 for every s ∈ {0, . . . , k − 1}. A (w,N ′)-component of
N ′ is a maximal subset of N ′ with the property that any two nodes in this
subset are (w,N ′)-connected. We denote by Ci(w) the (w,N ′)-component
to which i belongs and by C(w) the set of all the (w,N ′)-components of N ′.
Clearly, the collection of (w,N ′)-components forms a partition of N ′.

We define the set ΣEN′
of linear orders on EN ′ as the set of all bijections

σ : {1, . . . , |EN ′ |} → EN ′ , where |EN ′ | is the cardinality of the set EN ′ . For
each mcst situation < N ′, w > there exists at least one linear order σ ∈ ΣEN′

such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′ |)). We denote by wσ the

column vector
(
w(σ(1)), w(σ(2)), . . . , w(σ(|EN ′ |))

)t
.

For any σ ∈ ΣEN′
we define the set

Kσ = {w ∈ IR
EN′

+ | w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′ |))},

which we call the Kruskal cone with respect to σ. One can easily see that⋃
σ∈ΣE

N′

Kσ = IR
EN′

+ . For each σ ∈ ΣEN′
the cone Kσ is a simplicial cone
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with generators eσ,k ∈ Kσ, k ∈ {1, 2, . . . , |EN ′ |}, where

eσ,k(σ(1)) = eσ,k(σ(2)) = . . . = eσ,k(σ(k − 1)) = 0
and

eσ,k(σ(k)) = eσ,k(σ(k + 1)) = . . . = eσ,k(σ(|EN ′ |)) = 1.
(1)

[Note that eσ,1(σ(k)) = 1 for all k ∈ {1, 2, . . . , |EN ′ |}]. This implies that each
w ∈ Kσ can be written in a unique way as non-negative linear combination
of these generators. To be more concrete, for w ∈ Kσ we have

w = w(σ(1))eσ,1 +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k. (2)

Clearly, we can also write WN ′

=
⋃

σ∈ΣE
N′

Kσ, if we identify an mcst situa-

tion < N ′, w > with w.
Any mcst situation w ∈ WN ′

gives rise to two problems: the construction
of a network Γ ⊆ EN ′ of minimal cost connecting all users to the source, and
a cost sharing problem of distributing this cost in a fair way among users.
The cost of a network Γ is w(Γ) =

∑
e∈Γw(e). A network Γ is a spanning

network on S ′ ⊆ N ′ if for every e ∈ Γ we have e ∈ ES′ and for every
i ∈ S there is a path in Γ from i to the source. Given a spanning network
Γ on N ′ we define the set of edges of Γ with nodes in S ′ ⊆ N ′ as the set
EΓ

S′ = {{i, j}|{i, j} ∈ Γ and i, j ∈ S ′}.
For any mcst situation w ∈ WN ′

it is possible to determine at least
one spanning tree on N ′, i.e. a spanning network without cycles on N ′, of
minimum cost; each spanning tree of minimum cost is called an mcst for N ′ in
w or, shorter, an mcst for w. Two famous algorithms for the determination
of minimum cost spanning trees are the algorithm of Prim (Prim (1957))
and the algorithm of Kruskal (Kruskal (1956)). The cost of a minimum cost
spanning network Γ on N ′ in a simple mcst situation w equals |C(w)|−1 (see
Lemma 2 in Norde et al. (2004)).

Now, let us introduce some basic game theoretical notations. A coopera-
tive cost game is a pair (N, c) where N = {1, . . . , n} is a finite (player -)set
and the characteristic function c : 2N → IR assigns to each subset S ∈ 2N ,
called a coalition, a real number c(S), called the cost of coalition S, where
2N stands for the power set of the player set N , and c(∅) = 0. The core of a
game (N, c) is the set of payoff vectors for which no coalition has an incentive
to leave the grand coalition N , i.e.

C(c) = {x ∈ IRN |
∑

i∈S

xi ≤ c(S) ∀S ∈ 2N \ {∅};
∑

i∈N

xi = c(N)}.
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Note that the core of a game can be empty. A game (N, c) is called a concave
game if the marginal contribution of any player to any coalition is more than
his marginal contribution to a larger coalition, i.e. if it holds that

c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ). (3)

for all i ∈ N and all S ⊆ T ⊆ N \ {i}.
An order τ of N is a bijection τ : {1, . . . , |N |} → N . This order is denoted

by τ(1), . . . , τ(n), where τ(i) = j means that with respect to τ , player j is in
the i-th position. We denote by ΣN the set of possible orders on the set N .

Let (N, c) be a cooperative cost game. For τ ∈ ΣN , the marginal vector
mτ (c) is defined by

mτ
i (c) = c([i, τ ])− c((i, τ)) for all i ∈ N,

where [i, τ ] = {j ∈ N : τ−1(j) ≤ τ−1(i)} is the set of predecessors of i with
respect to τ including i, and (i, τ) = {j ∈ N : τ−1(j) < τ−1(i)} is the set of
predecessors of i with respect to τ excluding i. In a coherent way with respect
to previous notations, we will indicate the set [i, τ ] ∪ {0} and (i, τ) ∪ {0}
as [i, τ ]′ and (i, τ)′, respectively. For instance, for each k ∈ {1, . . . , |N |}
and for each l ∈ {2, . . . , |N |}, the set [τ(k), τ ]′ = {0, τ(1), . . . , τ(k)} and
(τ(l), τ)′ = {0, τ(1), . . . , τ(l − 1)}, which will be denoted shorter as [τ(k)]′

and (τ(l))′, respectively.
Let < N ′, w > be an mcst situation. The minimum cost spanning tree

game (N, cw) (or simply cw), corresponding to < N ′, w >, is defined by

cw(S) = min{w(Γ)|Γ is a spanning network on S ′}

for every S ∈ 2N\{∅}, with the convention that cw(∅) = 0.
We denote byMCST N the class of all mcst games corresponding to mcst

situations inWN ′

. For each σ ∈ ΣEN′
, we denote by Gσ the set {cw | w ∈ K

σ}

which is a cone. We can express MCST N as the union of all cones Gσ, i.e.
MCST N =

⋃
σ∈ΣE

N′

Gσ, and we would like to point out thatMCST N itself

is not a cone if |N | ≥ 2.
The core C(cw) of an mcst game cw ∈MCST N is nonempty (Granot and

Huberman (1981), Bird (1976)) and, given an mcst Γ (with no cycles) for
N ′ in mcst situation w, one can easily find an element in the core looking at
the Bird allocation in w corresponding to Γ, i.e. the cost allocation where
each player i ∈ N pays the edge in Γ which connects him with his immediate
predecessor in < N ′,Γ >.

We call a map F : WN ′

→ IRN assigning to every mcst situation w a
unique cost allocation in IRN a solution. A solution F is efficient if for each
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w ∈ WN ′

∑

i∈N

Fi(w) = w(Γ),

where Γ is a minimum cost spanning network on N ′ for w.

3 The non-Archimedean semimetric

corresponding to an mcst situation

Let w ∈ WN ′

. For each path P = (i0, i1, . . . , ik) from i to j in the graph
< N ′, EN ′ > we denote the set of its edges by E(P ), that is E(P ) =
{{i0, i1}, {i1, i2}, . . . , {ik−1, ik}}. Moreover, we call maxe∈E(P )w(e) the top
of the path P and denote it by t(P ). We denote by PN ′

ij the set of all paths
without cycles from i to j in the graph < N ′, EN ′ >.

Now we define the key concept of this section, namely the reduced weight
function.

Definition 1 Let w ∈ WN ′

. The reduced weight function w̄ is given by

w̄(i, j) = min
P∈PN′

ij

max
e∈E(P )

w(e) = min
P∈PN′

ij

t(P ) (4)

for each i, j ∈ N ′, i 6= j.

Now, extending w̄ by putting w̄(i, i) = 0 for each i ∈ N ′, we obtain a
nonnegative function on the set of all pairs of elements in N ′. The obtained
reduced weight function w̄ is a semimetric on N ′ with the sharp triangle
inequality, i.e. a non-Archimedean (NA-)semimetric. In formula, for each
i, j, k ∈ N ′

w̄(i, j) ≥ 0 and w̄(i, i) = 0 (non-negativity);
w̄(i, j) = w̄(j, i) (symmetry);
w̄(i, k) ≤ max{w̄(i, j), w̄(j, k)} (sharp triangle inequality).

The proof is left to the reader. If w > 0, then w̄ is a non-Archimedean metric
on the set N ′.

For the reduced weight function w̄ we have a special property related to
triangles, as the next lemma shows.

Proposition 1 (The isoscele triangle property) Let w̄ be the reduced
weight function corresponding to w ∈ WN ′

and i, j, k ∈ N ′ such that w̄(i, j) ≤
w̄(i, k) and w̄(i, j) ≤ w̄(k, j). Then w̄(i, k) = w̄(j, k).
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Proof By the sharp triangle inequality w̄(i, k) ≤ max{w̄(i, j), w̄(j, k)} =
w̄(j, k) and w̄(j, k) ≤ max{w̄(j, i), w̄(i, k)} = w̄(i, k).

So w̄(i, k) = w̄(j, k).

This property for NA-semimetrics will be useful in proving that there are
many minimum cost spanning trees for (N ′, w̄), as we see in Theorem 1.

Unless otherwise clear from the context, in the sequel we simply refer
to w̄ as the mcst situation which assigns to each edge {i, j} ∈ EN ′ the
reduced weight value as defined in equality (??). Further, we will denote by
W̄N ′

⊂ WN ′

the set of all NA-semimetric mcst situations which assign to
each edge {i, j} ∈ EN ′ the distance w̄(i, j) provided by a NA-semimetric w̄
on N ′.

Example 1 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 1. Note that w ∈ Kσ, with σ(1) = {1, 2},
σ(2) = {1, 0}, σ(3) = {1, 3}, σ(4) = {3, 0}, σ(5) = {2, 0}, σ(6) = {2, 3}.
The corresponding mcst situation w̄ is depicted in Figure 2.

¡
¡

¡¡

@
@

@@

¢
¢
¢
¢
¢
¢
¢¢

A
A

A
A

A
A

AA

i

i

ii

1

2 3

0

12 12

8

5 10

16

Figure 1: An mcst situation with three agents.
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Figure 2: The mcst situation w̄ corresponding to w.

One main result in this section, Proposition 2, concerns an interesting relation
which can be established between the mcst situation w̄ and a minimal mcst
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situation wΓ as defined by Bird (1976), where Γ is an mcst for N ′ in w.
Recall that given an mcst situation w ∈ WN ′

and an mcst Γ for N ′ in w,
the minimal mcst situation wΓ is defined (cf. Bird, 1976) by wΓ({i, j}) =
maxe∈PΓij

w(e) = t(P Γ
ij), where P

Γ
ij ∈ P

N ′

ij is the unique path in Γ from i to j.

Proposition 2 Let w ∈ WN ′

and i, j ∈ N ′. Let Γ be an mcst for N ′ in w
and P Γ

ij be the unique path in Γ from i to j. Then

t(P Γ
ij) = min

P∈PN′

ij

t(P ). (5)

Proof Let P ∗ ∈ argminP∈PN′

ij
t(P ) and let e∗ be an edge on P ∗ such that

t(P ∗) = w(e∗). Let ê = {m,n} be an edge on P Γ
ij with w(ê) = t(P Γ

ij).
We have to prove that w(ê) = w(e∗). If so, then it follows immediately that
minP∈PN′

ij
t(P ) = w(e∗) = w(ê) = t(P Γ

ij).

If e∗ = ê, then of course w(e∗) = w(ê).
Otherwise, first note that by definition of e∗

w(ê) ≥ w(e∗). (6)

Let Sm be the set of all nodes r ∈ N ′ such that n is not on the path from
r to m in < N ′,Γ >; let Sn be the set of nodes r ∈ N ′ such that m is not on
the path from r to n in < N ′,Γ >, i.e.

Sm = {r ∈ N ′|n /∈ P Γ
mr}

and
Sn = {r ∈ N ′|m /∈ P Γ

nr}.

Note that {Sn, Sm} is a partition of N ′ and nodes in Sn are connected in
< N ′,Γ > to nodes in Sm via edge {m,n}. Moreover, by the definition
of a path without cycles, i, j must belong to different sets of the partition
{Sn, Sm}. So without loss of generality we suppose that i ∈ Sm and j ∈ Sn.

Consider the set of edges E+ = {{t, v}|t ∈ Sm, v ∈ Sn}. Then,

w({m,n}) = w(ê) ≤ w(e), for each e ∈ E+. (7)

In order to prove inequality (7), suppose on the contrary that w({m,n}) >
w(e) for some e ∈ E+. Then the graph Γ+ = (Γ \ {ê}) ∪ {e} would be a
spanning network in N ′ cheaper than Γ, which yields a contradiction.

By the definition of a path, for each P ∈ PN ′

ij there exists at least one
edge e ∈ E+ such that e is on the path P . By inequality (7), it follows
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that t(P ) ≥ w(e) ≥ w(ê). This implies that w(e∗) = minP∈PN′

ij
t(P ) ≥ w(ê).

Together with inequality (6) we have finally w(e∗) = w(ê).

As a direct consequence of Proposition 2 we have that the mcst situation
w̄ coincides, for each mcst Γ for w, with the minimal mcst situation wΓ intro-
duced by Bird (1976). So wΓ = wΓ′

for each pair of mcst Γ,Γ′, a fact which
is already known (cf. Aarts (1994), Feltkamp (1995), Feltkamp et al.(1994)),
but with a complicated proof.

Let w ∈ WN ′

and let Γ be an mcst for w. Let τ ∈ ΣN . We say that
Γ and τ fit (or, also, that τ fits with Γ) if EΓ

[τ(1)]′ , E
Γ
[τ(2)]′ , . . ., E

Γ
[τ(|N |)]′ are

spanning networks on sets of nodes [τ(1)]′, [τ(2)]′, . . . , [τ(|N |)]′, respectively.

Example 2 In Figure 3 is depicted an mcst, denoted by Γ, for the mcst
situation w̄ of Figure 2. Consider τ1, τ2 ∈ ΣN such that τ1(1) = 1, τ1(2) = 2,

¡
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Figure 3: An mcst Γ for the mcst situation w̄ of Figure 2.

τ1(3) = 3 and τ2(1) = 1, τ2(2) = 3, τ2(3) = 2. Note that both τ1 and τ2 fit
with Γ but none of the other four elements of ΣN fit with Γ.

Remark 1 Let w ∈ WN ′

, let Γ be an mcst for w and let τ ∈ ΣN be an order
such that Γ and τ fit. Then,

∑

e∈EΓ
[τ(r)]′

w(e) = cw([τ(r)]) (8)

for each r ∈ {1, . . . , |N |}. So EΓ
[τ(r)]′ is an mcst for the mcst situation

< [τ(r)]′, w|[τ(r)]′ >.

Remark 2 Let w ∈ WN ′

, let Γ be an mcst for w and let τ ∈ ΣN be an
order such that Γ and τ fit. The marginal vector mτ (cw) of the mcst game
cw coincides with the Bird allocation in w corresponding to Γ and therefore
mτ (cw) ∈ C(cw), as is proved in Granot and Huberman (1981).
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Remark 3 For each σ ∈ ΣEN′
there exists a tree Γ which is an mcst for

every w ∈ Kσ; further, there exists a τ ∈ ΣN such that Γ and τ fit.

These remarkable considerations together with the next lemma prelude to
Theorem 1.

Lemma 1 Let w ∈ W̄N ′

, let Γ be an mcst for w and let τ ∈ ΣN be such
that Γ and τ fit. Let r ∈ {1, . . . , |N | − 1} and let τ ′ ∈ ΣN be such that
τ ′(r) = τ(r + 1), τ ′(r+1) = τ(r) and τ ′(i) = τ(i) for each i ∈ {1, . . . , |N |} \
{r, r+1} (i.e. τ ′ is obtained from τ by a neighbor switch of τ(r) and τ(r+1)).
Then there is an mcst Γ′ for w such that τ ′ and Γ′ fit.

Proof If τ(r) is not the immediate predecessor of τ(r + 1) in Γ then take
Γ′ = Γ and then τ ′ and Γ fit.
If τ(r) is the immediate predecessor of τ(r + 1) in Γ, then let k ∈ [τ(r − 1)]′

be the immediate predecessor of τ(r) in Γ.
First, note that

w({k, τ(r + 1)}) ≥ w({k, τ(r)}) (9)

and
w({k, τ(r + 1)}) ≥ w({τ(r), τ(r + 1)}) (10)

because Γ is an mcst for w.
Consider two cases:

c.1) w({k, τ(r)}) ≤ w({τ(r), τ(r+1)}). Take Γ′ = (Γ\{{τ(r), τ(r+1)}})∪
{{k, τ(r + 1)}}. By inequality (9) and the isoscele triangle property
w({k, τ(r+1)}) = w({τ(r), τ(r+1)}) and then Γ′ is an mcst in w and
Γ′ and τ ′ fit.

c.2) w({τ(r), τ(r + 1)}) < w({k, τ(r)}). Take Γ′ = (Γ \ {{k, τ(r)}}) ∪
{{k, τ(r + 1)}}. By inequality (10) and the isoscele triangle property
w({k, τ(r)}) = w({k, τ(r+1)}) and then Γ′ is an mcst in w and Γ′ and
τ ′ fit.

Theorem 1 Let w ∈ W̄N ′

.Then

i) for each τ ∈ ΣN there exists an mcst Γ such that Γ and τ fit.
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ii) Let cw be the mcst game corresponding to w. Then m
τ (cw) ∈ C(cw) for

all τ ∈ ΣN and cw is a concave game.

Proof

i) Let Γ̂ be an mcst for w. Then there is at least one τ̂ ∈ ΣN such
that Γ̂ and τ̂ fit. Further each τ can be obtained from τ̂ by a suitable
sequence of neighbor switches and so, by applying Lemma 1 repeatedly,
we obtain the proof.

ii) Let Γ be an mcst in N ′ for w and let τ ∈ ΣN such that Γ and τ fit.
By Remark 2, it follows that mτ (cw) coincides with the Bird allocation
corresponding to Γ. Hence, again by Remark 2, mτ (cw) ∈ C(cw). Fi-
nally, by the Ichiishi theorem (Ichiishi (1981)) telling that a game is
concave iff all marginal vectors are in the core of the game, it follows
that cw is a concave game.

Let w ∈ WN ′

. We call the core of the mcst game cw̄ the Bird core of the
mcst game cw and denote it by BC(w). By Theorem 1 it directly follows that
the Bird core BC(w) of the mcst game cw is the convex hull of all the Bird
allocations corresponding to the minimum cost spanning trees for w̄. Note
also that BC(w) ⊆ C(cw), since cw̄(S) ≤ cw(S) for each S ∈ 2N \ {∅} and
cw̄(N) = cw(N) (cf. Feltkamp (1995)).

Example 3 Consider the mcst situation w of Figure 1 and the corresponding
reduced mcst situation w̄ of Figure 2. Then

{1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}

cw 8 12 12 13 24 18 23
cw̄ 8 8 10 13 18 18 23

There are six minimum cost spanning trees for w̄. Three of them lead to the
Bird allocation (8, 5, 10) and the other three to the Bird allocation (5, 8, 10).
Further, mτ (cw̄) = (8, 5, 10) for τ ∈ {(1, 2, 3), (1, 3, 2), (3, 1, 2)} andmτ (cw̄) =
(5, 8, 10) for τ ∈ {(2, 1, 3), (2, 3, 1), (3, 2, 1)}. The Bird core BC(w) is the con-
vex hull of the marginal vectors of the game cw̄, that is BC(w) = conv{(8, 5, 10),
(5, 8, 10)} ⊂ C(cw).

4 Monotonicity properties

In Tijs et al.(2004) a class of solutions for mcst situations which are cost
monotonic is introduced: the class of obligation rules. Roughly speaking, we
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define a cost monotonic solution for mcst situations as a solution such that, if
the costs of some edges increase, then no agent will pay less. More precisely:

Definition 2 A solution F :WN ′

→ IRN is a cost monotonic solution if for
all mcst situations w,w′ ∈ WN ′

such that w(e) ≤ w′(e) for each e ∈ EN ′ , it
holds that F (w) ≤ F (w′).

In this section we introduce a related concept of cost monotonicity for mul-
tisolutions on mcst situations. We call a correspondence G : WN ′

³ IRN

assigning to every mcst situation w a set of cost allocations in IRN a multi-
solution.

Definition 3 A multisolution M :WN ′

³ IRN is a cost monotonic multiso-
lution if for all mcst situations w,w′ ∈ WN ′

such that w(e) ≤ w′(e) for each
e ∈ EN ′ , it holds that

M(w) ⊆ compr−(M(w′)) and M(w′) ⊆ compr+(M(w)),

where compr−(B) = {x ∈ IRN |∃b ∈ B s.t. xi ≤ bi ∀i ∈ N} and compr
+(B) =

{x ∈ IRN |∃b ∈ B s.t. bi ≤ xi ∀i ∈ N}, for each B ⊂ IRN .

Before discussing properties of the Bird core as multisolution for mcst situ-
ations, we introduce the following propositions dealing with mcst situations
originated by NA-semimetrics.

Proposition 3 Let w ∈ W̄N ′

and let Γ be an mcst for w and τ ∈ ΣN be
such that Γ and τ fit. Then

mτ
τ(j)(cw) = min

k∈(τ(j))′
w(k, τ(j)),

for each j ∈ {2, . . . , |N |}.

Proof Let j ∈ {2, . . . , |N |}. Note that by Remark 1

mτ
τ(j)(cw) = cw([τ(j)])− cw((τ(j))) =

∑

e∈EΓ
[τ(j)]′

w(e)−
∑

e∈EΓ
(τ(j))′

w(e). (11)

Since Γ and τ fit, we have EΓ
[τ(j)]′ \E

Γ
(τ(j))′ = {{τ(j), s}}, for some s ∈ (τ(j))′.

Because EΓ
[τ(j)]′ is an mcst for w|[τ(j)]′ , we have s ∈ argmink∈(τ(j))′ w({k, τ(j)}).

So ∑

e∈EΓ
[τ(j)]′

w(e)−
∑

e∈EΓ
(τ(j))′

w(e) = min
k∈(τ(j))′

w(k, τ(j)). (12)

From (11) and (12) follows the proposition.
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Proposition 4 Let w,w′ ∈ W̄N ′

be NA-semimetric mcst situations such
that w(e) ≤ w′(e) for each e ∈ EN ′. Then it holds that

mτ (cw) ≤ mτ (cw′) for each τ ∈ ΣN .

Proof Let τ ∈ ΣN . By Theorem 1 there exist two mcst’s Γ and Γ′ for w
and w′, respectively, such that they both fit with τ . First note that

mτ
τ(1)(cw) = w(0, τ(1)) ≤ w′(0, τ(1)) = mτ

τ(1)(cw′).

Further
mτ

τ(j)(cw) = mink∈(τ(j))′ w(k, τ(j))

≤ mink∈(τ(j))′ w
′(k, τ(j))

= mτ
τ(j)(cw′),

for each j ∈ {2, . . . , |N |}, where the first and the second equality follow by
Proposition 3 and the inequality follows from w(e) ≤ w′(e) for each e ∈ EN ′ .

Theorem 2 The correspondence BC is a cost monotonic multisolution.

Proof Let w,w′ ∈ WN ′

be such that w(e) ≤ w′(e) for each e ∈ EN ′ . By
Theorem 1 and properties of concave games, BC(w) is a convex set whose
extreme points are the marginal vectors of the game cw̄, i.e. each element
of BC(w) is a convex combination of marginal vectors of the game cw̄. Let
x ∈ BC(w). There exist numbers ατ , τ ∈ ΣN , with 0 ≤ ατ ≤ 1 for each
τ ∈ ΣN ,

∑
τ∈ΣN

ατ = 1 and

x =
∑

τ∈ΣN

ατ mτ (cw̄). (13)

Hence
x =

∑
τ∈ΣN

ατ mτ (cw̄)
≤

∑
τ∈ΣN

ατ mτ (cw̄′)
= x′ ∈ BC(w′),

(14)

where the inequality follows by Proposition 4 and the fact that w̄(e) ≤ w̄ ′(e)
for each e ∈ EN ′ and the second equality by Theorem 1, which proves
BC(w) ⊆ compr−(BC(w′)). Using a similar argument the other way around
in relations (14), it follows that BC(w′) ⊆ compr+(BC(w)), which concludes
the proof.

To connect the cost monotonicity of the Bird core with cost monotonicity of
obligation rules, we need Proposition 5.
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Proposition 5 Let F :WN ′

→ IRN be a cost monotonic and efficient solu-
tion. Then

i) F (w̄) = F (w) for every w ∈ WN ′

;

ii) If F is also stable (i.e. F (w′) ∈ C(cw′) for every w′ ∈ WN ′

), then
F (w) ∈ BC(w) for every w ∈ WN ′

.

Proof Let w ∈ WN ′

. First note that by Definition 1,

w̄(e) ≤ w(e) for each e ∈ EN ′ . (15)

Let Γ be an mcst for w.

i) By inequality (15) and cost monotonicity of F , F (w̄) ≤ F (w). On the
other hand Γ is an mcst for w̄ too and by efficiency of F

∑

i∈N

Fi(w̄) =
∑

i∈N

Fi(w) = w(Γ).

So, F (w̄) = F (w).

ii) By inequality (15),

cw̄(S) ≤ cw(S) for all S ⊆ N,

and by Definition 1

cw̄(N) = cw(N) = w(Γ).

Then by stability of F , F (w̄) ∈ C(cw̄) = BC(w) ⊆ C(cw) and by result
(i) F (w) ∈ BC(w) too.

Remark 4 Proposition 5 can be extended to multisolutions which are cost
monotonic and efficient (Property 1 in next section) multisolutions. From
this follows that BC is the “largest” cost monotonic stable multisolution.

Remark 5 As previously said, in Tijs et al.(2004) we introduced the class
of obligation rules and proved that they are both cost monotonic and stable
solutions for mcst situations. So, by Proposition 5 it follows that for each
w ∈ WN ′

, the set F(w) = {φ(w) | φ is an obligation rule} is a subset of the
Bird core BC(w) and F(w) = F(w̄).



15

5 An axiomatic characterization of the Bird

core

In order to introduce an axiomatic characterization of the Bird core, we need
to prove the following fact for NA-semimetric mcst situations.

Lemma 2 Let w,w′ ∈ WN ′

and let σ ∈ ΣEN′
be such that w,w′ ∈ Kσ. Let

α, α′ ≥ 0. Then αw̄, α′w̄′, αw + α′w′ ∈ K σ̂ for some σ̂ ∈ ΣEN′
.

Proof By formula (4), for each edge e ∈ EN ′ , there is an edge ē ∈ EN ′ such
that w̄(e) = w(ē): given that e = {i, j}, ē is such that w(ē) = minP∈PN′

ij
t(P ).

Note that for each w1 in the same cone Kσ as w we have w̄1(e) = w(ē). This
implies that for all pairs of edges e1, e2 ∈ EN ′ :

w̄(e1) ≤ w̄(e2)⇔ w(ē1) ≤ w(ē2)⇔ w̄1(e1) ≤ w̄1(e2).

So, for each σ̄ ∈ ΣEN′
we have:

w̄ ∈ K σ̄ ⇔ w̄′ ∈ K σ̄.

Using this fact, respectively, for αw, α′w′ and αw+α′w′ ∈ Kσ in the role
of w1, we obtain:

w̄ ∈ K σ̄ ⇔ αw̄, α′w̄′, αw + α′w′ ∈ K σ̄,

for each σ̄ ∈ ΣEN′
.

Proposition 6 Let w,w′ ∈ WN ′

and let σ ∈ ΣEN′
be such that w,w′ ∈ Kσ.

Let α, α′ ≥ 0. Then

i) αw + α′w′ = αw̄ + α′w̄′;

ii) cαw+α′w′ = αcw̄ + α′cw̄′.

[The NA-semimetric mcst situations w̄, w̄′, αw + α′w′ are obtained via reduc-
tion of the weight functions w,w′, αw + α′w′, respectively.]

Proof

i) Note that

αw + α′w′({i, j}) = minP∈PN′

ij
maxe∈E(P )

(
αw(e) + α′w′(e)

)

= αminP∈PN′

ij
maxe∈E(P )w(e)

+ α′minP∈PN′

ij
maxe∈E(P )w

′(e)

= αw̄({i, j}) + α′w̄′({i, j}),
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where the second equality follows from the fact that w,w′ and αw+α′w′

all belong to Kσ;

ii) Note that, by Lemma 2, αw̄, α′w̄′, αw + α′w′ ∈ K σ̄ for some σ̄ ∈ ΣEN′
.

For each S ∈ 2N \{∅}, there is, according to Remark 3, a common mcst
ΓS for αw̄, α′w̄′ and αw + α′w′. Hence

αcw̄(S) + α′cw̄′(S) =
∑

e∈ΓS
αw̄(e) +

∑
e∈ΓS

α′w̄′(e)

=
∑

e∈ΓS

(
αw̄′(e) + α′w̄(e)

)

=
∑

e∈ΓS

(
αw + α′w′(e)

)

= cαw+α′w′(S),

where the third equality follows by (i).

Some interesting properties for multisolutions on mcst situations are the
following.

Property 1 The multisolution G is efficient (EFF) if for each w ∈ WN ′

and
for each x ∈ G(w) ∑

i∈N

xi = w(Γ),

where Γ is a minimum cost spanning network for w on N ′.

Property 2 The multisolution G has the positive (POS) property if for
each w ∈ WN ′

and for each x ∈ G(w)

xi ≥ 0

for each i ∈ N .

Property 3 The multisolutionG has theUpper Bounded Contribution (UBC)
property if for each w ∈ WN ′

and every (w,N ′)-component C 6= {0}
∑

i∈C\{0}

xi ≤ min
i∈C\{0}

w({i, 0})

for each x ∈ G(w).

Property 4 The multisolutionG has the Cone-wise Positive Linearity (CPL)
property if for each σ ∈ ΣEN′

, for each pair of mcst situations w, ŵ ∈ Kσ

and for each pair α, α̂ ≥ 0, we have

G(αw + α̂ŵ) = αG(w) + α̂G(ŵ).

[Here we denote by αG(w) + α̂G(ŵ) the set {αx+ α̂x̂|x ∈ G(w), x̂ ∈ G(ŵ}.]
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Proposition 7 The Bird core BC satisfies the properties EFF, POS, UBC
and CPL.

Proof Let w ∈ WN ′

and let σ ∈ ΣEN′
be such that w ∈ Kσ. Since

BC(w) = C(cw̄), the following considerations hold:

i) For each allocation x ∈ BC(w),
∑

i∈N xi = w(Γ) for some mcst Γ by
the efficiency property of the core of the game cw̄. So BC has the EFF
property.

ii) For each allocation x ∈ BC(w), xi ≥ 0 for each i ∈ N since the Bird
core is the convex hull of all Bird allocations in the mcst w̄, which are
vectors in IRN

+ . So BC has the POS property.

iii) For each (w,N ′)-component C 6= {0} and each x ∈ BC(w)

∑

i∈C\{0}

xi ≤ cw̄(C \ {0}) = min
i∈C\{0}

w({i, 0})

by coalitional rationality of the core of the game cw̄. So BC has the
UBC property.

iv) Let σ ∈ ΣEN′
, let w,w′ ∈ WN ′

be such that w,w′ ∈ Kσ and let
α, α′ ≥ 0. The core is in fact additive on the class of concave games
(see Dragan et al.(1989)). So,

BC(αw+α′w′) = C(cαw+α′w′) = αC(cw̄)+α
′C(cw̄′) = αBC(w)+α′BC(w′).

Hence BC has the CPL property.

Inspired by the axiomatic characterization of the P -value (Branzei et al.(2004))
we provide the following theorem.

Theorem 3 The Bird core BC is the largest multisolution which satisfies
EFF, POS, UBC and CPL, i.e. for each multisolution F which satisfies
EFF, POS, UBC and CPL, we have F (w) ⊆ BC(w), for each w ∈ WN ′

.

Proof We already know by Proposition 7 that the Bird core BC satisfies the
four properties EFF, POS, UBC and CPL.
Let Ψ :WN ′

³ IRN be a multisolution satisfying EFF, POS, UBC and CPL.
Let w ∈ WN ′

and σ ∈ ΣEN′
be such that w ∈ Kσ. We have to prove that
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Ψ(w) ⊆ BC(w).
First, note that by the CPL property of Ψ

(
w(σ(1))Ψ(eσ,1) +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
Ψ(eσ,k)

)
= Ψ(w). (16)

Let x ∈ ψ(w). According to (16) there exists xeσ,k ∈ Ψ(eσ,k) for each k ∈
{1, . . . , |EN ′ |} such that

x = w(σ(1))xeσ,1 +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
xeσ,k .

By the UBC property, for each k ∈ {1, . . . , |EN ′ |} and for each (eσ,k, N ′)-
component C 6= {0} we have

∑

i∈C\{0}

xeσ,k

i ≤ min
i∈C\{0}

eσ,k({i, 0}) =





0 if 0 ∈ C

1 if 0 /∈ C
(17)

implying that

∑

i∈N

xeσ,k

i =
∑

C∈C(eσ,k)

∑

j∈C\{0}

xeσ,k

j ≤ |C(eσ,k)| − 1 = eσ,k(Γ),

where Γ is a minimum spanning network on N ′ for mcst situation eσ,k. By
the EFF property, we have

∑
i∈N x

eσ,k

i = eσ,k(Γ), and then inequalities in
relation (17) are equalities, that is

∑

i∈C\{0}

xeσ,k

i =





0 if 0 ∈ C

1 if 0 /∈ C.
(18)

Now, consider the game c
eσ,k

corresponding to the simple mcst situation eσ,k.
Note that for each S ∈ 2N \ {∅},

c
eσ,k

(S) = |{C : C is a (eσ,k, N ′)− component, C ∩ S 6= ∅, 0 /∈ C}|,

which is the number of (eσ,k, N ′)-components not connected to 0 in eσ,k with
at least one node in the player set S.
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By (18) and the POS property, it follows that
∑

i∈S x
eσ,k

i ≤ c
eσ,k

(S) and

together with the EFF property we have xeσ,k ∈ C(c
eσ,k

) = BC(eσ,k). More-
over, from Proposition 6 it follows

x =
(
w(σ(1))xeσ,1 +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
xeσ,k

)
∈ C(cw̄) = BC(w).

(19)
Keeping into account relation (16), we have Ψ(w) ⊆ BC(w).

6 Final remarks

This paper deals mainly with the monotonicity and additivity properties of
the Bird core. The attention to monotonicity properties of solutions for cost
and reward sharing situations is growing in the literature.

In Sprumont (1990) attention is paid to population monotonic allocations
schemes (pmas), in Branzei et al.(2001) and Voorneveld et al.(2002) to bi-
monotonic allocation schemes (bi-mas) and in Branzei et al.(2002) to type
monotonic allocation schemes. For mcst-situations, the existence of popula-
tion monotonic allocation schemes was established in Norde et al.(2004). For
special directed mcst-situations also pmas-es exists as is shown in Moretti et
al.(2002).

In Tijs et al.(2004) so called obligation rules for mcst-situations turn out
to be cost monotonic and induce also a pmas. A special obligation rule is
the P -value discussed in Branzei et al.(2004) (see also Feltkamp et al.(1994),
Feltkamp (1995)). The P -value can be seen as a special selection of the
Bird core: it corresponds to the barycenter of the Bird core (cf. Moretti et
al.(2004), Bergañtinos and Vidal-Puga (2004)).

For additivity properties of solutions we refer to Branzei and Tijs (2001),
Tijs and Branzei (2002).
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