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Abstract. We propose a dynamic version of the bundle method to get approximate solutions
to semidefinite programs with a nearly arbitrary number of linear inequalities. Our approach
is based on Lagrangian duality, where the inequalities are dualized, and only a basic set of
constraints is maintained explicitly. This leads to function evaluations requiring to solve a
relatively simple semidefinite program.

Our approach provides accurate solutions to semidefinite relaxations of the Max-Cut and
the Equipartition problem, which are not achievable by direct approaches based only on
interior-point methods.
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AMS Subject Classification: 90C22, 90C27.

1. Introduction

Many combinatorial optimization problems have a natural formulation in 0-1
variables, leading to either linear or quadratic problems in binary variables.
To get tractable relaxations, one can use a (partial) description of the convex
hull of integer solutions (polyhedral approach), or more recently, semidefinite
programming.

After having formulated some basic semidefinite relaxation, it is usually possi-
ble to tighten it by adding additional linear inequalities valid for all 0-1 solutions.
These combinatorially derived ‘cutting planes’ pose a serious challenge even to
state of the art software for semidefinite programming, because the potential
number of these constraints can be prohibitively large.

The most reliable methods to solve semidefinite programs are based on the
interior-point idea, which means applying the Newton method to some variant
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of parameterized optimality conditions. The primal-dual path-following variants
seem to yield the most reliable computational results, see [40].

The computational effort for one interior-point iteration is determined by the
following factors:

– Maintaining positive definite matrices of some given order n.
– Linear algebra operations with matrices of order n, such as matrix multipli-

cation or forming the inverse explicitly.
– Solving a linear system of order given by the number m of constraints of the

problem.

The first two factors can be bounded by O(n3) operations, independent of
the number of constraints. The last factor depends heavily on the number m of
constraints, and is at least O(m3) plus the effort to determine the matrix of the
linear system to be solved. The main conclusion is therefore that the number m
of constraints has to be limited, if interior-point methods are used to solve the
relaxation.

In this paper we investigate alternative algorithmic approaches, where we
still assume that the order n of the matrix space is reasonably small (n ≤ 1000),
but the number of constraints can be significantly larger.

Recently, Barahona and Anhil [5] and Barahona and Ladanyi [7] revived the
idea of working with the Lagrangian dual to handle constraints Ax ≤ b only
indirectly. The Lagrangian dual functional is nonsmooth, so one can use the
algorithmic machinery from nonsmooth optimization to deal with it. In [5,7] a
simple version of the subgradient iteration scheme of Polyak [36] is refined to
carry out the iterations. The key point with these methods is that they rely on a
subroutine, which carries out a function and subgradient evaluation of the dual
functional. Using the subgradient information, a new trial point is determined,
and the process is iterated.

Contrary to the setup in [5,7], we have a more general framework in mind,
where the function evaluation itself may be nontrivial. Therefore it is important
to provide an algorithmic tool, which works well even if the number of func-
tion evaluations is limited (to a few dozen function evaluations). We will use
the bundle method instead of the subgradient scheme, to make efficient use of
subgradient information, gathered during the computational process. It was re-
cently shown [3] that the approach from [5,7] can in fact be viewed as a simple
variant of the bundle method.

It is the main purpose of this paper to show that a dynamic version of the
bundle method provides an efficient machinery to approximately solve semidef-
inite problems with a nearly arbitrary number of inequalities. More precisely,
we will concentrate on the Max-Cut and the Equipartition problem. For both
these problems there exists a rather ‘simple’ semidefinite relaxation which can
be refined by including additional cutting planes (O(n3) triangle inequalities
for Max-Cut or O(n2) sign constraints for Equipartition). We demonstrate that
these problems can be solved rather accurately for problems of medium size
(number of vertices of the graphs no more than 500). To the best of our knowl-
edge, such results are currently not available using other methods. We explain
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the main features of our version of the bundle method, which consists of re-
peatedly identifying new interesting constraints and removing old unimportant
constraints. We also describe other types of problems where we think that the
present approach might work well. We finally also show the practical limits of
our approach.

Notation: We use standard notation for semidefinite programming. tr(A)
denotes the trace of the square matrix A. The vector of all ones is e.

2. Large Semidefinite programs from combinatorial optimization

We develop our ideas on the following two graph optimization problems. Both are
defined on an undirected edge-weighted graph G on vertex set V := {1, . . . , n}.
The relevant data are conveniently expressed through the weighted adjacency
matrix A = (aij), where

aij = aji = we for edge e = [ij] ∈ E,

aij = 0 if [ij] /∈ E.

Given A, we also introduce the Laplacian matrix L = LA, associated to A, which
is defined as

lii =
∑

k

aik, ∀i, lij = −aij i 6= j.

The Max-Cut Problem (MC) asks to partition V into S and V \ S in
such a way that the total weight of the edges joining S and V \ S is maximized.
(If S = ∅ or S = V , the weight of the cut is defined to be 0, since no edges are
cut in this case.)

Let us encode S ⊆ V by setting xi = 1 ∀i ∈ S and xi = −1 ∀i /∈ S. It is
a well-known fact, easy to verify, that the weight of the cut, given by S ⊆ V ,
cut(S, V \ S) is given by

cut(S, V \ S) =
1

4
xT Lx.

Hence Max-Cut is equivalent to

zmc := max{xT Lx : x ∈ {−1, 1}n}. (1)

In case of the k-Equipartition Problem (k-EP) we make the assumption
that the number n of vertices is a multiple of a given (integer) parameter k,
n = mk. The problem now consists in partitioning V into k sets of cardinality
m, so as to minimize the total weight of edges joining different partition blocks.
Now we represent k-partitions S1, . . . , Sk by 0− 1 matrices X of size n× k with
xij = 1 if vertex i ∈ Sj , and xij = 0 otherwise. The problem now amounts to
the following, see e.g. [14].

zep = min{trXT LX : Xe = e, XT e =
n

k
e, xij ∈ {0, 1}}. (2)
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2.1. Semidefinite Relaxations

The formulation (1) of Max-Cut gives rise to the following relaxation, which has
attracted a lot of attention due to the famous approximation analysis of Goemans
and Williamson [16]. It is most easily derived through the trivial identity

xT Lx = tr L(xxT ).

We replace xxT by a new matrix variable X and observe that x ∈ {−1, 1}n

implies in this case that X � 0 and diag(X) = e. Hence we obtain the following
basic relaxation of (1):

zmc−basic = max{tr LX : diag(X) = e, X � 0}. (3)

This is a semidefinite program in the matrix variable X of order n, and n equality
constraints. This relaxation was introduced by Delorme and Poljak [13] in a dual
form. The primal version (3) can be found in [35]. In [16] it is shown that this
relaxation has an error of no more than 13.82 %, i.e.

zmc−basic

zmc

≤ 1.1382,

if all aij ≥ 0. Nesterov [33] provides a weaker bound for a larger class of instances
with L � 0 by showing that

zmc−basic

zmc

≤ 1.57.

It is not too difficult to see that the relaxation (3) can be strengthened
by requiring X to satisfy the triangle inequalities, X ∈ MET, see [35,22]. By
definition, X ∈ MET if and only if

xij + xik + xjk ≥ −1,
xij − xik − xjk ≥ −1,

−xij + xik − xjk ≥ −1,
−xij − xik + xjk ≥ −1, ∀i < j < k.

Hence we get

zmc−met = max{tr LX : diag(X) = e, X ∈ MET, X � 0}. (4)

This is again a semidefinite program, but it has 4
(

n
3

)

triangle inequalities in ad-
dition to the n equations fixing the main diagonal of X to e. The computational
effort to solve this problem is nontrivial, even for small n like n ≈ 100, see e.g.
[21].

Turning to k−equipartition, we find a similar situation. Linearizing again
using trXT LX = trL(XXT ) and introducing a new variable Y for XXT , we
observe, see e.g. [1,23] that Y has to satisfy the constraints Y � 0, diag(Y ) =
e, Y e = n

k
e.
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Table 1. Computation times (seconds) to solve the SDP relaxation (3) on a PC (Pentium 4,
1.7 Ghz).

n seconds

200 1.84

400 8.92

600 24.10

800 51.45

1000 99.27

1500 314.99

2000 714.21

This gives rise to the following basic semidefinite relaxation for k−EP, intro-
duced in [23].

zep−basic := min{tr LY : Y e =
n

k
e, diag(Y ) = e, Y � 0}. (5)

In [23] it is observed that the condition Y e = n
k
e can be eliminated by param-

eterizing Y as Y = 1

k
eet + V RV T . Here V is an arbitrary n × (n − 1) matrix

with its columns spanning the orthogonal complement of e, and R is symmetric
of order n − 1. This representation insures that Y has the eigenvector e to the
eigenvalue n

k
and all the other eigenvectors are orthogonal to e. Since Le = 0 by

the definition of the Laplacian L, we obtain the following equivalent formulation,
see [23]:

zep−basic = min{tr (V T LV )R : diag(V RV T ) =
k − 1

k
e, R � 0}.

This basic relaxation is again a problem in the matrix variable R of order n− 1
with n equations.

In [23], several refinements of this model are discussed. The simplest one
includes the additional constraint Y ≥ 0 elementwise.

zep−nonneg := min{tr LY : Y e =
n

k
e, diag(Y ) = e, Y ≥ 0, Y � 0}. (6)

Including all
(

n
2

)

sign constraints yij ≥ 0 directly is computationally prohibitive
for problems of medium size, like n ≈ 200.

In both cases we have the situation that the basic semidefinite relaxation
can be solved with reasonable effort for problem sizes n rather large. A Matlab
routine to compute zmc−basic is for instance contained in [22]. (It is also available
on the following web-site: http://www-math.uni-klu.ac.at/or/software/).
Typical computation times with this routine on randomly generated problems
of various sizes are given in Table 1.

A Matlab routine that computes zep−basic is given in [23]. The computation
times are similar to Table 1. The situation is different, once we include additional
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Table 2. Computation times (seconds) on a PC (Pentium 4, 1.7 GHz) to compute the semidef-
inite relaxation of Max-Cut for a graph with n nodes and m triangle inequalities. The number
of interior point iterations is given in parentheses.

n = 100 n = 200 n = 300

m = 500 21 (19) 34 (20) 49 (19)

m = 1000 103 (21) 136 (22) 164 (21)

m = 1500 304 (24) 358 (24) 422 (24)

m = 2000 643 (25) 763 (26) 816 (24)

m = 2500 1090 (24) 1313 (26) 1360 (24)

constraints such as the triangle inequalities for Max-Cut or the sign constraints
for k-EP. We conclude this section with a discussion of the limitations of standard
interior-point methods to deal with semidefinite relaxations like (4) or (6).

2.2. Limitations of Interior-Point methods

Let us consider solving (4) directly by interior point methods, as proposed e.g.
in [19,21]. The total number of inequalities in (4) is roughly 2

3
n3, hence impos-

sible to include directly for problems of interest (n ≥ 100). On the other hand,
there are only

(

n
2

)

variables in (4), so the ‘right’ choice of active inequalities

should not contain more than
(

n
2

)

of the triangle inequalities. Unfortunately,
this number is still too big. To illustrate how the number of triangle inequalities
influences the computation times, we provide in Table 2 computation times to
solve (4) with n ∈ {100, 200, 300} vertices and m ∈ {500, 1000, 1500, 2000, 2500}
triangle constraints by interior point methods. The computation times clearly
indicate that problems with significantly more than 2000 triangle constraints are
computationally expensive to solve.

Another reason for potential difficulties with a direct approach lies in the
problem of quickly identifying important inequalities, that is to say those which
are active at the optimum. In [19] it was proposed to take the constraints most
violated by the optimal solution X of (3), and solve the relaxation (4) with
those constraints included, and iterate this process. This idea should work well,
if a reasonable proportion of constraints violated by X would appear in the list
of constraints active at the optimum. Unfortunately, our computational experi-
ments do not indicate that this is likely to happen.

To elaborate on this point, we report results about the following experiment.
We first solved the relaxation (4) for the problems g1d, g1s, spin5 and g2d given
in the appendix.

Then we took the optimal solution Xsdp of the basic relaxation (3) and sorted
all the triangle constraints according to violation with respect to Xsdp. Thus the
first constraint is the most violated one, and so on. In Table 3 we provide the
number of active constraints for these problems at the optimal solution of (4) in
column 3. We first observe that this number is much smaller than

(

n
2

)

.
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Table 3. The active constraints of (4) are difficult to identify by looking at the most violated
constraints of the basic relaxation. The last column gives the number of active constraints of
(4), which are inactive at the basic relaxation.

graph n active for (4) 500 1000 2000 5000 inactive

g1d 100 1053 66 120 205 406 20

g1s 100 1371 33 63 118 253 199

spin5 125 1924 21 29 51 116 420

g2d 200 2108 56 94 158 302 24

We then checked, how many of the most violated constraints of (3) are among
the active constraints at the optimal solution to (4). We looked separately at
the 500, 1000, 2000 and 5000 most violated constraints (columns 4, 5, 6 and 7).
Thus we see that among the 500 most violated constraints of Xsdp for g1d, only
66 are among the final active constraints. The situation is even worse for spin5,
where among the 5000 most violated constraints of (3), only 116 are active at
(4).

Finally, we also checked, how many of the active constraints of (4) are inactive
at the optimal solution of (3) (column 8). Ideally, this number should be quite
small. Unfortunately this is not in all our examples, notably g1s and spin5.

From these results it should not come as a surprise that solving (4) iteratively
by including the most violated constraints of (3) takes a nontrivial computational
effort.

As a possible alternative we therefore follow the philosophy of Lagrangian
duality and try to approximate the Lagrangian dual using techniques from non-
smooth optimization. We recall the necessary mathematical machinery and also
the relevant technicalities in the following section.

3. Lagrangian Duality and the Bundle Method

3.1. Lagrangian Duality

To describe the semidefinite problems from before in a general setting, we first
reformulate them as follows. It will be irrelevant that our problems are formu-
lated in the space of symmetric matrices, hence we prefer expressing them simply
as finite-dimensional (nonlinear) optimization problems. Using x = vec(X), c =
vec(L), we introduce the set X := {x : x = vec(X), diag(X) = e, X � 0}. In this
case, (3) can equivalently be written as

max{cT x : x ∈ X}. (7)

A similar definition would give the basic relaxation of k−EP. Including the
triangle constraints in (7) amounts to including the constraints

Ax ≤ b
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where A is a matrix of order 4
(

n
3

)

× n2, with each row of A representing one of
the triangle inequalities. Thus we end up with a problem of the following general
form:

z = max{cT x : x ∈ X , Ax ≤ b}. (8)

We assume that the problem without the inequalities is ‘easy’ to solve, but the
inclusion of Ax ≤ b makes it computationally expensive, see the discussion in
the previous section.

We introduce the Lagrangian

L(x, γ) := cT x + γT (b − Ax) (9)

and the dual functional

f(γ) := max
x∈X

L(x, γ) = bT γ + max
x∈X

(cT − AT γ)x. (10)

The following notation will be useful. We call a pair (γ, x) a matching pair for
f , if f(γ) = L(x, γ). The Lagrangian dual now is z = minγ≥0 f(γ). Note that
we assume X to be nice in the sense that maxx∈X minγ≥0 L(x, γ) = minγ≥0 f(γ)
holds.

The problem now consists in finding x∗ ∈ X and γ∗ ≥ 0 such that

|f(γ∗) − cT x∗| ≈ 0 and ‖max{0, Ax∗ − b}‖ ≈ 0.

Prosaically speaking, we would like to find x∗ which is nearly feasible and nearly
optimal. The dual variables γ∗ serve to estimate z from above. We note that
evaluating f for some γ amounts to solving a problem of type (7). Our idea is
now to get a good approximation of min f(γ) with only a limited number of
function evaluations.

The use of the Lagrangian dual to deal with primal constraints indirectly
has a long history in combinatorial optimization. Out of a long list of references,
we mention some older work [18,4] and the recent survey [26]. Traditionally,
the dual functional is based on a Linear Programming model, i.e. the set X is
polyhedral. We will see below that in the case of Max-Cut and Equipartition, it
is advantageous to use semidefinite relaxations.

3.2. The bundle method: basic ideas

The bundle method goes back at least to the 1970’s, see e.g. [25,24,38]. It was
originally developed to minimize a nonsmooth convex function f(γ) over γ ∈ IRn.
The function f is assumed to be given by an oracle, which, for some input γ
returns the function value f(γ) and a vector g contained in the subdifferential
of f at γ, g ∈ ∂f(γ). Imposing the sign constraints γ ≥ 0, as required in
our situation, does not make the problem much harder. We will use the bundle
method taylored for our problem, hence it is useful to briefly recall its basic ideas
and practical issues.
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If f(γ) is given as before, f(γ) = bT γ + maxx∈X (c − AT γ)T x, the bundle
method is most conveniently explained as follows. For given γ ≥ 0 we solve
(10) returning f(γ) and x, such that (γ, x) is a matching pair. A subgradient
g ∈ ∂f(γ) is then implicitly given by g = b − Ax, as can easily be verified.

We start with some initial γstart ≥ 0, for instance γstart = 0 and evalu-
ate f . Thus initially we have a matching pair (γstart, xstart) with f(γstart) =
L(xstart, γstart).

The algorithm is iterative and maintains in each iteration a currently best
approximation γ̂ to the minimizer of f and a sequence X = (x1, . . . , xk) where
each xi ∈ X and (γ̂, xk) is a matching pair.

To describe a general step, we assume to have X = (x1, . . . , xk) and γ̂, with
(γ̂, xk) a matching pair. Given X , we compute the following information:

gi := b − Axi, G = (g1, . . . , gk), φi := cT xi and F = (φ1, . . . , φk)T . (11)

The bundle method now combines two ideas to determine a new trial point
γtest. First, the function f(γ) is approximated by

fappr(γ) := max{L(x, γ) : x ∈ conv(x1, . . . , xk)}.

Since x ∈ conv(x1, . . . , xk) if and only if ∃λ ∈ Λ := {λ ∈ IRk : λ ≥ 0, eT λ = 1}
with x = Xλ, we can write out the definition of fappr to get

fappr(γ) = max
λ∈Λ

bT γ + (c − AT γ)T (Xλ) = max
λ∈Λ

FT λ + γT Gλ,

using the definition of F and G, and noting that Gλ = b − AXλ.
The second ingredient of the bundle method consists in the proximal point

idea, which penalizes displacements from the currently best point γ̂ with a term
proportional to ‖γ − γ̂‖2.

In summary therefore, the bundle method asks to find a new trial point
γtest ≥ 0 by minimizing, for some prescribed parameter t > 0 the function

fappr(γ) +
1

2t
‖γ − γ̂‖2 (12)

over the set γ ≥ 0. We obtain the following dual problem to be solved.

minγ≥0 maxλ∈Λ FT λ + (Gλ)T γ + 1

2t
‖γ − γ̂‖2

= minγ maxλ∈Λ,η≥0 FT λ + (Gλ)T γ + 1

2t
‖γ − γ̂‖2 − γT η

= maxλ∈Λ,η≥0 minγ FT λ + (Gλ)T γ + 1

2t
‖γ − γ̂‖2 − γtη

The inner minimization problem is convex quadratic in γ, hence we can
replace it by insuring ∂

∂γ
(.) = 0 which is equivalent to γ = γ̂ + t(η − Gλ).

Therefore minimizing fappr(γ)+ 1

2t
‖γ−γ̂‖2 is dual to the following maximization

max
λ∈Λ,η≥0

(F + GT γ̂)T λ −
t

2
‖η − Gλ‖2 − γ̂T η, (13)

yielding λ and η. The minimizing γ of (12) is then given by γ = γ̂ + t(η − Gλ).
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The final problem in λ and η is a convex quadratic optimization problem.
We solve it approximately by keeping one set of the variables constant: keeping
η constant results in a convex quadratic problem over the set Λ. Keeping λ
constant allows to solve for η coordinatewise, see for instance [20]. Thus we start
with η = 0, solve for λ which we then keep constant to solve for η and iterate
this process several times to get (approximate) solutions λ, η of (13). Using these
estimates λ and η we get the new trial point

γtest = γ̂ + t(η − Gλ).

As a byproduct of minimizing (12) we also get a ‘primal’ point

x̂ := Xλ (14)

in the convex hull of the current bundle X .
Note also that λi = 0 implies that the column xi of X has no influence on

the maximization. We use this observation and remove any columns of X with
corresponding λi = 0.

The bundle method now asks to evaluate f at γtest, producing the function
value f(γtest) and the matching pair (γtest, xtest). Using some standard criteria,
we decide whether or not γtest becomes the currently best point, we update our
information and start a new iteration.

One iteration of the bundle method therefore has the following two significant
steps:

– Solve (12) approximately by first solving a sequence of convex quadratic
problems in the k variables λ. This gives the new trial point γtest.

– Evaluate f at γtest.

In our applications, the last step is the dominating operation in each iteration. At
termination, the bundle method returns γ̂ as an approximate dual solution, and
x̂, see (14) as an approximate primal solution. We note, that these do not form
a matching pair, but the general convergence theory for the bundle method, see
e.g. [27,38,15], insures that under appropriate stopping conditions these vectors
converge towards an optimal primal-dual solution pair of (8).

We mention that the bundle method or other subgradient based techniques
are not the only possibilities to solve the Lagrangian dual. The ‘Analytic Cen-
ter Cutting Plane Method (ACCPM)’ [17,2,32] could as well be used. For our
purposes however, this method is too time-consuming, because inequalities are
maintained explicitely.

3.3. A dynamic version of the bundle method

Contrary to the ‘classical’ use of the bundle method, where the function f(γ) to
be minimized is considered to be fixed, we have a more flexible version in mind,
where f will change in the course of the algorithm, see also [4,5]. A theoretical
convergence analysis of dynamic versions of the bundle method has also recently
been provided in [8].
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To get the initial function f(γ) we solve

max{cT x : x ∈ X}

yielding an initial maximizer x∗. In principle we could now define f(γ) by dualiz-
ing all the constraints Ax ≤ b. Recall however, that the number m of constraints
may be substantially larger than the dimension of the problem. To maintain ef-
ficiency, we are interested only in those constraints, which are likely to be active
at the optimum. Therefore we look at r∗ := b − Ax∗ and set rmin := min{r∗i }.
In the unlikely event that rmin ≥ 0, x∗ is optimal for (8) and we are done. Oth-
erwise rmin < 0 and we consider now only those constraints from Ax ≤ b which
are ‘badly’ violated by x∗ to define f .

Specifically, let 0 < α < 1 and set

I := {i : r∗i ≤ α rmin}.

We denote by AI the submatrix of A with rows indexed by I, a similar definition
holds for bI . For notational convenience we define

fI(γI) := max
x∈X

cT x + (bI − AIx)T γI .

Thus we start by minimizing fI using the bundle method described above. In
order to maintain computational efficiency, we include as an additional stopping
condition an upper bound on the number of iterations. Therefore, when the
method stops, returning some γ̂I and some x̂, it is likely that γ̂I is still far from
the true minimizer of fI . To continue, we need to decide on the following two
issues:

– Which of the constraints in I should be kept?
– Are there additional constraints that should be added to I?

We use γ̂I to answer to the first question. A large value γ̂i indicates that the
constraint i is binding and hence should not be removed. γ̂i = 0 indicates that
constraint i may be inactive, and therefore could be removed. In summary, we
use γ̂I to purge I by removing constraints i with a value γ̂i smaller than a
prescribed fraction of max(γ̂I).

It is less obvious to decide which new constraints should be added to I. In
our experiments we found that using a convex combination of x̂ and the previous
point x̂old to identify violated constraints gives the most satisfactory behaviour
of the algorithm.

4. Solving the relaxations with the bundle method

We now turn to computational experiments with our version of the bundle
method. We consider Max-Cut and Equipartition problems in the following two
subsections separately.
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4.1. Solving the semidefinite relaxation (4) of Max-Cut

To make our experiments reproduceable and accessible to other researchers,
we generate our test instances using the graph generator rudy, introduced by
Giovanni Rinaldi. It is available under http://www-user.tu-chemnitz.de/∼
helmberg/rudy.tar.gz.

We generate three types of instances, all with edge weights cij randomly
chosen from {1,−1}: dense graphs, sparse graphs with edge density of 10 %, and
three-dimensional grid graphs. Finally we take some graphs from the literature,
see [21].

The calls to rudy to generate these graphs are given in the appendix. We
first give some statistics about these graphs in Table 4, including the number of
vertices (n), the number of edges (|E|) and the value of the best cut known to us.
We are mostly interested in difficult instances, where neither the approximation
results of Goemans and Williamson (aij ≥ 0) nor the theory of Nesterov (L � 0)
applies. We will show that even for this difficult class of Max-Cut instances, the
relaxation (4) provides a good (a-posteriori) approximation to the true value of
the Max-Cut problem, and in particular constitutes a nontrivial improvement of
the basic relaxation (3).

We apply the bundle method with the modifications previously described to
these graphs. For problems with n ≤ 512 we have set a limit of 100 function
evaluations, for the bigger problems (729 ≤ n ≤ 1000) we allowed 50 function
evaluations. We use the graphs on 2000 vertices to indicate also the limits of
the present approach. For these graphs we allow only 30 function evaluations to
estimate the optimum of (4).

In Table 4 we summarize our computational results. The table identifies the
graphs (in column 1), then gives the initial bound (optimal value of (3)) and
the final bound found after the maximum number of function evaluations was
reached. We also include the gap (in %) of the bounds relative to the value of
the best known cut, gap = 100(bound− cut)/cut. The last two columns contain
the number of γi > 0, i.e. the number of inequalities actually active at the stop,
and the total computation times in minutes on a PC (Pentium 4, 1.7 Ghz).

Accuracy: The first question is to estimate, how good our bounds approxi-
mate the correct optimal value of (4). To estimate the quality of our bounds, we
use the final set of active constraints of the bundle method, to solve the relax-
ation with these constraints by interior-point methods. We kept adding violated
constraints, until the largest violation of all triangle constraints was less than
0.02. We collect the results in Table 5 for some of the smaller problems. Com-
paring the bound obtained after 100 iteration of the bundle method with the
true optimal value of (4), we conclude that the bundle method gives reasonably
accurate approximations of (4). We may therefore safely assume that the results
of Table 4 give tight approximations to (4).

Bound versus Bundle Iterations: We now take a closer look at the
development of the bounds during the iterations of the bundle method. In Figure
1 we provide a graphical development of the results for the three-dimensional
grid graphs. The figure shows that the biggest improvement is obtained in the
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first few iterations with a flat tail. This is an attractive feature, because it allows
the user to trade quality against computation time.

Big graphs: Looking at the graphs on 2000 nodes, we also see the limits of
the present approach. The function evaluation itself is already quite expensive,
see also Table 1, leading to computation times of several hours. We note however
that even for these large problems, the inclusion of triangle inequalities provides
a significant improvement of the initial basic semidefinite programming bound.

LP versus SDP: For curiosity, we also compare solving (4) with and with-
out the semidefiniteness constraint on X . Optimizing over the triangle inequali-
ties alone amounts to solving a Linear Program, so one might think that this is
a straight-forward task. Unfortunately, this is not the case. In the last column
of Table 5 we provide this LP bound for all the instances where we managed
to compute the optimal solution of the triangle relaxation. We note that the
linear relaxation is quite strong in case of the grid graphs, but tends to be very
weak for all other instances. We find it surprising that solving (at least approx-
imately) the relaxation (4) seems easier than solving the relaxation with the
semidefiniteness condition omitted. One reason for this may be the fact that
X � 0 with diag(X) = e bounds the largest violation of the triangle inequalities
in a nontrivial way. Without any constraint on X except −1 ≤ xij ≤ 1, we get
xij + xik + xjk + 1 ≥ −2. If X � 0 holds, then xij + xik + xjk + 1 ≥ −0.5 can
easily be shown to hold.

Improvement of (3) using the triangle inequalities: We now take a
closer look at the question of how much the triangle inequalities help to improve
the basic semidefinite relaxation (3). Comparing the initial gap and the final gap
we note that the improvement is particularly drastic for the highly structured
3-dimensional grid graphs spinx and for G11, which is a 2-dimensional grid. It
is also quite remarkable in case of G18 and G39, which are sums of two planar
graphs. The improvement is only marginal in case of larger unstructured graphs,
like g4d, g5d, g5s, G1, G6, G22 and G27.

Generating Cuts: Once we have solved our relaxation up to the desired
accuracy we have available a primal matrix X which ideally should be a rank-
one matrix and hence represent a cut. In general this is not the case. We use X
for the Goemans-Williamson hyperplane rounding technique [16] and report the
best cut x found this way. This cut x is locally improved by checking all possible
moves of a single vertex to the opposite partition block. We iterate now with
the matrix .5X + .5xxT and repeat as long as we find better cuts. The final cut
value obtained this way is given in Table 4 in the column labeled ‘cut’.

Comparison to published work: There are several papers dealing with
the basic relaxation (3). The primal-dual interior-point path-following method
is investigated for instance in [19,22]. In [11,12] the authors investigate methods
that are taylored also for large-scale instances, dealing with instances where n is
up to 10000. The approximate solution of (4) has found less attention in the lit-
erature. Interior-point methods are applied in [19,21] to tackle smaller problems
(n ≈ 100). In [20], the spectral bundle method is applied with a limited and fixed
set of triangle inequalities. Several papers deal with heuristics for Max-Cut. In
Burer et al. [10], heuristic solutions for some of the larger Gx instances are re-
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ported, and compare extremely well with other heuristic procedures to generate
good cuts. Three instances of the G-set from Table 4 were also considered in
[10]: G11 (554), G14 (3053), G22 (13331). The best cut values that we found
are: G11 (564), G14 (3054), G22 (13293).

Use in a Branch-and-Bound (B&B) setting: To conclude, we now take
a look at the effect of using an approximate solution of (4) in a B&B setting.
After having computed the bound as described before, we use the primal point
X̂, formally given in (14), to make a branching decision of the type ‘merge’, i
and j are on one side of the cut, and of type ‘separate’, where i and j are on
different sides of the cut. We use rule R2 from [21] to select i and j. This rule
asks to look for those vertices i, j where the corresponding rows of X̂ are closest
to a -1,1 vector.

To have some comparison with existing work, we look at quadratic 0-1 min-
imization, given by

min xT Qx + cT x such that x ∈ {0, 1}n.

We assume the data to be integers from the interval [−qmax, qmax], where qmax =
100. We look at dense instances, where the upper triangle of Q is dense, and
sparse instances, where an entry in the upper triangle of Q is nonzero with prob-
ability p = 0.2. The lower triangle of Q is without loss of generality identically
zero. It is well known, that this problem is equivalent to Max-Cut, see e.g. [6].

We point out that problems of this type can be solved by several Branch and
Bound approaches to optimality for n ≤ 100, see for instance [6,34,21,7,9].

It has also been noted by several researchers that the computational effort is
usually higher on dense instances. On the other hand, we are not aware of any
method, that would solve problems of this type to optimality for larger sizes,
say n ≥ 150, in a routine way.

In Table 6 we report results for problem sizes n ∈ {100, 150, 200, 250, 300}.
We provide detailed information at the root node (initial bound, gap, final
bound, value of best cut found, final gap). We also include the two upper bounds
after branching, as described above. We identify with an asterisk all the subprob-
lems that can be eliminated at the first level of branching. We see that problems
with n up to 200 should not be a serious challenge for our bound in a branch
and bound setting. Since the bound (4) is not computed with full accuracy, we
sometimes get a bound on a subproblem slightly worse than the root bound.
A serious computational study of the present bound in a Branch-and-Bound
setting is the topic of current research.

4.2. Computational results for Equipartitioning

We now turn to the equipartition problem. Here we use the data from [28].
These are graphs with edge density of 80 % and edge weights drawn randomly
from {1, . . . , 100} and are available from http://www.math.uni-klu.ac.at/or/

software. We have scaled the cost elements by multiplying with 10−3.
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Table 4. Results for Max-Cut. The initial bound is the solution of (3). The final bound is
obtained after 100 function evaluations with the bundle method in case n ≤ 512, after 50
iterations in case 729 ≤ n ≤ 1000 and after 30 iterations for n = 2000. m denotes the number
of active constraints at the stop of the bundle method.

pr. n |E| cut in bd gap (%) final bd gap (%) m time

g1d 100 4901 324 396.1 22.25 353.6 9.14 1299 0.44

g2d 200 19701 1050 1268.9 20.85 1170.4 11.47 2427 2.49

g3d 300 44402 1953 2359.6 20.82 2218.3 13.58 2996 6.63

g4d 400 79002 3012 3670.8 21.87 3481.1 15.57 3644 14.20

g5d 500 123503 3987 4937.3 23.84 4728.6 18.60 4431 25.50

g1s 100 495 126 144.6 14.77 130.8 3.81 1816 0.42

g2s 200 1990 318 377.7 18.77 344.2 8.24 2934 2.36

g3s 300 4485 555 678.5 22.25 635.7 14.54 3158 6.25

g4s 400 7980 920 1118.3 21.55 1055.7 14.75 4433 13.20

g5s 500 12475 1252 1557.6 24.41 1487.6 18.82 4321 24.57

spin5 125 375 108 125.3 16.02 111.1 2.87 3714 0.73

spin6 216 648 182 211.8 16.37 186.9 2.69 6223 3.16

spin7 343 1029 304 347.9 14.44 308.4 1.45 11323 10.55

spin8 512 1536 454 524.3 15.48 463.1 2.00 18375 33.44

spin9 729 2187 648 744.7 14.92 666.7 2.89 18265 42.75

spin10 1000 3000 890 1032.6 16.02 921.4 3.53 27830 106.1

G1 800 19176 11612 12083.2 4.06 12005.4 3.39 7372 51.76

G6 800 19176 2172 2656.2 22.29 2566.2 18.15 6983 43.11

G11 800 1600 564 629.2 11.56 572.7 1.54 15946 60.20

G14 800 4694 3054 3191.6 4.51 3140.7 2.84 8973 59.68

G18 800 4694 985 1166.0 18.38 1063.4 7.96 17635 69.19

G22 2000 19990 13293 14135.9 6.34 14045.8 5.66 18325 278.06

G27 2000 19990 3293 4141.7 25.77 4048.4 22.94 15178 406.66

G39 2000 11779 2373 2877.7 21.27 2672.7 12.63 26471 533.36

The function evaluation of the bundle method amounts now to solving the
basic relaxation (5). We dualize the sign constraints, and summarize the results
in Table 7. Again, the bundle method provides a strong method to deal with
many inequalities efficiently. Looking at the number of active constraints (col-
umn 7), it is clear that a direct approach to solve any of the relaxations using
interior-point methods is hopeless. We also note that including the sign con-
straints constitutes a significant improvement of the initial basic relaxation. We
provide a graphical comparison of the improvement by comparing the initial gap
with the final gap in Figure 2. We point out that the improvement using the
bundle method as compared to a direct approach based entirely on interior-point
methods, see [28], is impressive.
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Table 5. Exact solution of (4) for smaller instances, compared to 100 iterations of the bundle
method. The final column contains the pure Linear Programming bound with all the trian-
gles included but without the semidefiniteness constraint on X. We indicate with n.a. those
problems where we did not manage to solve the LP.

problem n zmc−met 100 bundle it. LP

g1d 100 352.375 353.6 786.3

g2d 200 1167.992 1170.4 n.a.

g3d 300 2215.257 2218.3 n.a.

g1s 100 130.008 130.8 137.5

g2s 200 343.156 344.2 410.0

g3s 300 635.040 635.7 854.4

spin5 125 109.344 111.1 110.3

spin6 216 185.662 186.9 187.1

Table 6. Quadratic 0-1 minimization as Max-Cut. One level of Branch-and-Bound. Subprob-
lems marked by * can be eliminated at the first level. The first block of instances has sparse
Q (density p = 0.2), the second block has dense Q.

n initial bnd gap final bnd cut gap bnd-left bnd-right

100 8547.502 5.88 8074.034 8073 0.013 7881.594* 8074.634

150 17067.520 6.99 16043.290 15953 0.566 15605.462* 16032.740

200 21417.079 8.91 19913.286 19665 1.263 19915.621 19445.208*

250 36074.106 7.91 34084.379 33431 1.954 33570.328 34086.631

300 48681.007 7.85 46075.418 45136 2.081 46083.548 45631.672

100 19595.733 9.461 18105.818 17902 1.138 17425.004* 18098.033

150 35808.838 6.242 33925.505 33705 0.654 33926.813 33281.746*

200 50439.735 10.227 47083.385 45760 2.892 47092.519 45851.241

250 71623.345 9.795 67227.308 65234 3.056 65894.607 67216.441

300 93671.332 8.017 88663.170 86719 2.242 88644.452 86956.782

In summary, the results provided here should give enough computational evi-
dence that the bundle method in combination with simple semidefinite programs
is a good way to approximate more complicated semidefinite programs.

5. Extensions and Conclusion

We briefly sketch some other combinatorial optimization problems, where our
approach might provide an attractive alternative to pure interior-point based
methods.

We start out with the Quadratic Assignment Problem (QAP), which
can be expressed as follows:

min tr(AXB + C)XT
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Table 7. Results for equipartition, k=10 and k=50.

problem feas sol. initial bd gap % final bd (gap %) m total time

r100 168.712 155.1 8.78 165.3 2.06 2238 0.52

r200 680.633 641.4 6.11 665.3 2.30 6204 3.35

r300 1558.767 1485.9 4.91 1525.3 2.20 10938 9.08

r400 2768.879 2659.6 4.11 2712.9 2.06 16083 19.12

r500 4354.869 4195.7 3.79 4267.7 2.04 22421 34.51

r200 765.728 698.4 9.64 757.5 1.08 15489 4.32

r300 1739.303 1617.9 7.50 1719.1 1.18 32642 11.04

r400 3078.133 2895.9 6.30 3039.9 1.26 54996 22.45

r500 4825.907 4568.7 5.63 4762.9 1.32 83030 40.01

over the set of permutation matrices X . In the recent dissertation [39], an ap-
proach similar to the one presented here is applied to obtain bounds for QAP.
The resulting bounds are currently by far the best ones available. Since the
derivation of the relaxations includes many technicalities that would go beyond
the limits of an introductory paper like this one, we refer to [39,37] for fur-
ther details and computational results. The technical report [37] is available at
http://www.math.uni-klu.ac.at/or/Forschung/.

Another interesting source of problems of the type considered in this paper
is given by the ϑ-function of a graph. The number ϑ(G) associated to a graph
G separates the clique number ω(G) from the chromatic number χ(G),

ω(G) ≤ ϑ(G) ≤ χ(G),

see the seminal paper [29]. ϑ(G) is the optimal value of a semidefinite program of
rather simple structure. This semidefinite program can now be strenghtened to
give better approximations to ω(G), see e.g. [30], or to get tigher approximations
of the chromatic number, see [31]. These tighter models again are computation-
ally intractable by standard interior-point methods, hence they are another class
of problems, where our bundle approach might be a practical alternative.

To summarize, we draw the following conclusions from our computational
experiments presented in this paper:

– The bundle method in combination with interior-point methods is a good way
to approximate semidefinite programs with a huge number of combinatorial
cutting planes.

– The present approach provides the currently strongest bounds at reasonable
computational cost for several NP-hard optimization problems like Max-Cut,
Equipartitioning and also the Quadratic Assignment Problem.

– The number of function evaluations to reach good approximations is surpris-
ingly small.

– It is also surprising that solving (4) seems less difficult than solving (4) with
the semidefiniteness condition omitted.
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6. Appendix: rudy-calls to generate the test graphs

%% rudy call
% 3d-spinglass random 1,-1 weights
rudy -spinglass3pm 5 5 5 50 5551 > spin5
rudy -spinglass3pm 6 6 6 50 6661 > spin6
rudy -spinglass3pm 7 7 7 50 7771 > spin7
rudy -spinglass3pm 8 8 8 50 8881 > spin8
rudy -spinglass3pm 9 9 9 50 9991 > spin9
rudy -spinglass3pm 10 10 10 50 1010101 > spin10

% dense graphs: random 1,-1 weights
rudy -rnd_graph 100 99 1001 -random 0 1 1001 -times 2 -plus -1 > g1d
rudy -rnd_graph 200 99 2001 -random 0 1 2001 -times 2 -plus -1 > g2d
rudy -rnd_graph 300 99 3001 -random 0 1 3001 -times 2 -plus -1 > g3d
rudy -rnd_graph 400 99 4001 -random 0 1 4001 -times 2 -plus -1 > g4d
rudy -rnd_graph 500 99 5001 -random 0 1 5001 -times 2 -plus -1 > g5d

% sparse (10% density) graphs: random 1,-1 weights
rudy -rnd_graph 100 10 1001 -random 0 1 1001 -times 2 -plus -1 > g1s
rudy -rnd_graph 200 10 2001 -random 0 1 2001 -times 2 -plus -1 > g2s
rudy -rnd_graph 300 10 3001 -random 0 1 3001 -times 2 -plus -1 > g3s
rudy -rnd_graph 400 10 4001 -random 0 1 4001 -times 2 -plus -1 > g4s
rudy -rnd_graph 500 10 5001 -random 0 1 5001 -times 2 -plus -1 > g5s
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