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ITEM RESPONSE THEORY: PAST PERFORMANCE, PRESENT
DEVELOPMENTS, AND FUTURE EXPECTATIONS

Klaas Sijtsma∗ and Brian W. Junker∗∗

We give a historical introduction to item response theory, which places the work
of Thurstone, Lord, Guttman and Coombs in a present-day perspective. The general
assumptions of modern item response theory, local independence and monotonicity of
response functions, are discussed, followed by a general framework for estimating item
response models. Six classes of well-known item response models and recent develop-
ments are discussed: (1) models for dichotomous item scores; (2) models for polytomous
item scores; (3) nonparametric models; (4) unfolding models; (5) multidimensional mod-
els; and (6) models with restrictions on the parameters. Finally, it is noted that item
response theory has evolved from unidimensional scaling of items and measurement of
persons to data analysis tools for complicated research designs.

1. Historical context

The measurement of mental properties has been a long-lasting quest that originated
in the 19th century and continues today. Significant sources to the development of the
interest in measurement may be traced back to the 19th century in which French and Ger-
man psychiatry emphasized mental illness and its influence on motor and sensory skills
and cognitive behavior, German experimental psychology emphasized the standardization
of the research in which the data are collected, and English genetics emphasized the im-
portance of the measurement of individual differences using a well-defined methodology,
expressing measurements as deviations from the group mean. In the early 20th century,
Alfred Binet (Binet & Simon, 1905) was the first to actually develop and use what we
would nowadays call a standardized intelligence test, and in the same era Charles Spear-
man (1904, 1910) developed the concepts and methodology of what would later be called
classical test theory (CTT) and factor analysis.

1.1 Classical test theory

In psychometrics, CTT was the dominant statistical approach to testing data until
Lord and Novick (1968) placed it in context with several other statistical theories of men-
tal test scores, notably item response theory (IRT). To understand the underpinnings of
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CTT, note that measurements of mental properties such as test scores are the product of
a complex interplay between the properties of the testee on the one hand, and the items
administered to him/her and properties of the testing situation on the other hand. More
precisely, the testee’s cognitive processes are induced by the items (e.g., their difficulty
level and the mental properties required to solve them), his/her own physical and mental
shape (e.g., did the testee sleep well the night before he/she was tested? was his/her
performance affected by an annoying cold?), and the physical conditions in which test-
ing takes place (e.g., was the room well lighted? were other testees noisy? was the test
instruction clear?). Fundamental to CTT is the idea that, if one were to repeat testing
the same testee using the same test in the same testing situation, several of these factors
(e.g., the testee’s physical and mental well-being and the testing conditions in the room)
are liable to exert an impact on the test performance and the resulting test score which
may either increase or decrease the test score in an unpredictable way. Statistically, this
means that a model describing test scores must contain a random error component; see
Holland (1990) for other ways of accounting for the random error component in latent
variable models.

Given this setup, CTT rests on the idea that, due to random error (denoted ε) an
observable test score (denoted X+) often is not the value representative of a testee’s per-
formance on the test (denoted T ). Let an arbitrary testee be indexed v, then the CTT
model is

X+v = Tv + εv. (1)

For a fixed testee, CTT assumes that the expected value of random error, εv, equals 0
across independent replications for the same examinee v; that is, E(εv) = 0. Then ex-
pectation across the testees in a population also is 0: Ev[E(εv)] = 0. In addition, CTT
assumes that random error, ε, correlates 0 with any other variable, Y ; that is, ρ(ε, Y ) = 0.
Finally, for a fixed testee, v, taking the expectation across replications of both sides of
Equation 1 yields Tv = E(X+v). This operational definition of the testee’s representative
test performance replaced the older platonic view of the true (hence, Tv) score as a stable
person property to be revealed by an adequate measurement procedure.

Skipping many other important issues, we note that the main purpose of CTT is to
determine the degree in which test scores are influenced by random error. This has lead
to a multitude of methods for estimating the reliability of a test score, of which the lower
bound called Cronbach’s (1951) alpha is the most famous. In a particular population, a
test has high reliability when random error, ε, has small variance relative to the variance
of the true score, T . Cronbach, Gleser, Nanda, and Rajaratnam (1972) generalized CTT
to allow one to decompose the variation of test scores into components attributable to
various aspects of the response- and data-collection process, a form of analysis now known
as generalizability theory. Examples of these aspects, or facets, of measurement include
testees, items, testing occasions, clustering variables such as classrooms or schools, and
of course random error. The resulting reliability definition then expresses the impact of
random error relative to other sources of variation. CTT and its descendents continue
to be a popular tool for researchers in many different fields, for constructing tests and
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questionnaires.
Although CTT was the dominant statistical test model in the first half of the 20th

century (e.g., see Guilford, 1936; and Gulliksen, 1950; for overviews), other developments
were also taking place. In England, Walker (1931) set the stage for what later was to be-
come known as Guttman (1944, 1950) scaling, by introducing the idea that if a testee can
answer a harder question correctly then he or she should be able to answer easier questions
on the same topic correctly as well. Walker also introduced the idea of an quantitative
index measuring deviation from this deterministic model in real data (also, see Loevinger,
1948). This was a deterministic approach—without a random error component—to the
analysis of data collected by a set of items that are assumed to measure one psychological
property in common. A little earlier, in the 1920s, Thurstone (1927) developed his statis-
tical measurement method of comparative judgment. Thurstone’s work may be viewed as
the most important probabilistic predecessor of item response theory (IRT).

1.2 Thurstone’s model for comparative judgment

Like CTT, Thurstone’s method used a random error for explaining test performance,
and like IRT, response processes were defined as distributions of a continuous mental prop-
erty. This continuous mental property can be imagined as a continuous dimension (say,
a measurement rod), on which testees have measurement values indicating their relative
level, and items are positioned as thresholds. Thurstone (1927; also see Michell, 1990;
Torgerson, 1958) described the probability that stimulus j is preferred over stimulus k as
a function of the dimension on which these two stimuli are compared and used the nor-
mal ogive to model behavioral variability. First, he hypothesized that the difference, tjk,
between stimuli j and k is governed by their mean difference, µj −µk, plus random error,
εjk, so that tjk = µj −µk + εjk. Then, he assumed that εjk follows a normal distribution,
say, the standard normal. Thus, the probability that a respondent prefers j over k or,
equivalently, that tjk > 0, is

P (tjk > 0) = P [εjk > −(µj − µk)] =
1√
2π

∫ ∞

−(µj−µk)

exp−t2/2dt. (2)

Note that CTT did not model random error, ε, as a probabilistic function of the differ-
ence, X+v−Tv (see Equation 1), but instead chose to continue on the basis of assumptions
about ε in a group (e.g. Lord and Novick, 1968, p.27) [i.e., E(εv) = 0 and ρ(ε, Y ) = 0].
Thus, here lies an important difference with Thurstone’s approach and, as we will see
shortly, with modern IRT.

From our present day’s perspective, the main contribution of Thurstone’s model of com-
parative judgment, as Equation 2 is known, lies in the modeling of the random component
in response behavior in such a way that estimation methods for the model parameters and
methods for checking the goodness-of-fit of the model to the data could be developed. In
contrast, older versions of CTT were tautologically defined: the existence of error, al-
though plausible, was simply assumed, while error variance (and correlations of error with
other variables) was not separately identifiable, in the statistical sense, in the model. As
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a result, the assumptions could not be (dis-)confirmed with data unless different inde-
pendent data sets from real replicated test administrations were available. We emphasize
that later developments of generalizability theory and linear structural equations models
offered many possibilities for estimating components of variance and other features of test
scores as well as for goodness-of-fit testing; here we are merely pointing out historical
differences.

1.3 Lord’s normal ogive IRT model

IRT arose as an attempt to better formalize responses given by examinees to items
from educational and psychological tests than had been possible thus far using CTT.
Lord (1952) discussed the concept of the item characteristic curve or trace line (also,
see Lazarsfeld, 1950; Tucker, 1946), now known as the item response function (IRF), to
describe the relationship between the probability of a correct response to an item j and
the latent variable, denoted θ, measured in common by a set of J dichotomously scores
items. Let Xj be the response variable for item j (j = 1, . . . , J), which is scored 1 if the
answer was correct and 0 if the answer was incorrect. Then, Pj(θ) = P (Xj = 1|θ) is the
IRF. Lord (1952, p. 5) defined the IRF by means of the cumulative normal distribution
function, such that, in our notation,

Pj(θ) =
1√
2π

∫ zj

−∞
exp−z2/2dz; zj = aj(θ − bj), aj > 0. (3)

Parameter bj locates the IRF on the θ scale and is often interpreted as the difficulty pa-
rameter of the item. Parameter aj determines the steepest positive slope of the normal
ogive, which is located at θ = bj .

Equation 3 is essentially Thurstone’s (1927) model of comparative judgment. This is
seen most easily by redefining Lord’s model as the comparison of a person v and an item
j, the question being whether person v dominates item j (θv > bj), and assuming a stan-
dard normal error, εvj , to affect this comparison. That is, define tvj = aj(θv − bj) + εvj

and notice that, because of the symmetry of the normal distribution, integration from
−aj(θv − bj) to ∞ yields the same result as from −∞ to aj(θv − bj); then,

Pj(θ) = P (tvj > 0) = P [εvj > −aj(θv − bj)] =
1√
2π

∫ aj(θv−bj)

−∞
exp−t2/2dt; aj > 0. (4)

Both Thurstone’s and Lord’s model relate probabilities of positive response to a difference
in location parameters, µj −µk in Equation 2 and θv − bj in Equation 4. A difference be-
tween the models is that, unlike Equation 2, Equation 3 allows slopes of response functions
to vary across the items, thus recognizing differences in the degree in which respondents
with different θ values are differentially responsive to different items. However, this dif-
ference between the models seems to be technical more than basic.

An important difference may be the inclusion of a latent variable in Equation 3. As a
result, Equation 3 compares a stimulus to a respondent and explicitly recognizes person
variability on the dimension measured in common by the items. Here, individual differ-
ences in θ may be estimated from the model. Thurstone’s model compares stimuli to one
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another and does not include a latent variable. Thus, it may be considered a model for
scaling stimuli.

However, Thurstone was also interested in measuring individual differences. Scaling
and measuring were done as follows: In the first stage, respondents are asked to compare
stimuli on a specific dimension; e.g., from each pair of politicians select that one that
you think is the most persuasive. The ordering of the stimuli on the persuasiveness di-
mension is then estimated on the basis of Equation 2. In the second stage, treating the
stimulus ordering as known, the ordering of the respondents on the persuasiveness scale
is determined (Torgerson, 1958), for example by using the Thurstone score

Tv(w) =

∑J
j=1wjXvj∑J

j=1Xvj

(5)

where w = (w1, . . . , wJ) is a set of weights reflecting the preference- or persuasiveness-
order of the items, andXvj is respondent v’s response to item j. So, even though the latent
variable is not part of the formal model in Equation 2, person ordering is one of the goals
of the associated measurement procedure that is known as Thurstone scaling. Indeed,
as we shall see below, modern developments in direct-response attitude and preference
scaling often combine item- and person-scaling tasks, much as in IRT.

1.4 Deterministic models by Guttman and Coombs

Like Lord’s model, Guttman’s (1944, 1950) model compared item and person locations,
but unlike Lord’s model, it was deterministic in the sense that

θ < bj ⇔ Pj(θ) = 0; and θ ≥ bj ⇔ Pj(θ) = 1, (6)

where bj is a location parameter, analogous to bj in Equation 4. Guttman’s model predicts
with complete certainty the item score as a function of the sign of (θv−bj). Since real data
are usually messier than the deterministic predictions of the this model, several coefficients
were developed to express the distance of data from predictions based on Equation 6; a
critical discussion is provided by Mokken (1971, chap. 2). The need to adapt Guttman’s
model to account for deviations from the perfect item ordering implied by Equation 6 was
also at the basis of Mokken’s (1971) approach to nonparametric, probabilistic IRT, to be
discussed below in Section 3.3.

Another historical development was that of unfolding models for preference data
(Coombs, 1964). Coombs’ original deterministic model was similar to Guttman’s, and
may be stated as

P (Xj = 1|θ) =
{

1 if |θ − bj | ≤ dj/2
0 otherwise

(7)

where bj is a location parameter and dj is sometimes called the “latitude of acceptance”.
Coombs’ model predicts with certainty that the respondent will endorse item j (say, a
political statement or a brand of beer) if his/her θ (which may quantify political attitude,
preference for bitterness or sweetness, etc.) is in an interval of length dj centered at bj ,



80 K. Sijtsma and B.W. Junker

and will not otherwise. The origin of the term “unfolding” (Coombs (1964) used it to
describe a particular geometric metaphor for reconciling the conflicting preference orders
given by different respondents for a set of stimuli) is hardly relevant anymore, and nowa-
days unfolding models, proximity models, ideal-point models, and models with unimodal
IRFs, are all essentially the same thing, especially for dichotomous response data. The
unfolding models that have an error component and thus are probabilistic are discussed
later on. For the moment we concentrate on probabilistic models for dominance data,
which are prevailing in modern IRT.

Thus far, this brief overview of main contributions to the development of mental mea-
surement has emphasized the idea that a random measurement error is needed to describe
the process of responding to an item with a reasonable degree of realism. Despite their
lack of a mechanism for modeling the uncertainty that is typical of human response be-
havior, deterministic models such as those by Guttman and Coombs have been excellent
vehicles for understanding the basic ideas of this response process. We will now continue
outlining some of the key ideas of IRT.

2. Assumptions of IRT, and estimation

2.1 Assumptions of IRT and general model formulation.

Three key assumptions underlie most modern IRT modeling—and even IRT models that
violate these assumptions do so in well-controlled ways. Letting xj represent an arbitrary
response to the jth item (dichotomous or polytomous), we can write these cornerstones of
the IRT approach as

• Local independence (LI). A d-dimensional vector of latent variables θ = (θ1, . . . , θd)
exists, such that P [X1 = x1, . . . , XJ = xj |θ] =

∏J
j=1 P [Xj = xj |θ].

• Monotonicity (M). The functions P [Xj = xj |θ] satisfy the condition that for any
ordered item score c, we have that P [Xj > c|θ] is nondecreasing in each coordinate
of θ, holding the other coordinates fixed.

When d = 1, we simply write θ instead of θ. This situation gets a special name,

• Unidimensionality (U). The dimension of θ satisfying LI and M is d = 1.

and otherwise we call θ multidimensional.
The properties M and U are already evident in Lord’s Normal Ogive model, Equation 3:

U holds by definition since θ there is unidimensional; and for dichotomous responses M
boils down to the assumption that P [Xj = 1|θ] is nondecreasing in θ, which holds in
Equation 4 because we assumed aj > 0. These assumptions are intuitively appealing in
educational testing, for example, where θ can be interpreted as quantifying some broad,
test-relevant skill or set of skills, such as proficiency in school mathematics, and the test
items are mathematics achievement items: the higher the proficiency θ, the more likely
that an examinee should score well on each item. In addition, the assumptions M and U
have proved useful in a wide variety of applications—involving hundreds of populations
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and thousands of items—all across psychological and educational research, sociology, po-
litical science, medicine and marketing.

2.1.1 Local independence

The property LI is certainly computationally convenient, since it reduces the likelihood
P [X1 = x1, . . . , XJ = xj |θ] to a product of simpler terms that can be analyzed similarly
to models for simple random samples in elementary statistics. However, it is also easily
seen to be intuitively appealing. Indeed, if we let x(−j) be the vector of J − 1 item scores,
omitting xj , then LI implies

P [Xj = xj | θ,X(−j) = x(−j)] = P [Xj = xj | θ]. (8)

That is, for the task of predicting the response on the jth item, once we know θ, informa-
tion from the other item responses is not helpful. In this sense θ is a sufficient summary
of the item responses.

Equation 8 also makes clear that LI is a strong condition that may not hold in all cases.
For example, if the set of items is long and respondents learn while answering items, then
Equation 8 is unlikely to hold. Also, if the respondent has special knowledge unmodeled
by θ regarding some items, or some items require special knowledge unmodeled by θ,
then Equation 8 is again unlikely to hold. For this reason several alternatives to LI have
been proposed. For example, Zhang and Stout (1999a) introduced the weak LI (WLI)
condition,

Cov(Xj , Xk|θ) = 0, (9)

which is implied by LI but, reversely, does not imply LI. Stout (1990) considered the even
weaker essential independence (EI) condition, which can be written as

lim
J→∞

(
J

2

)−1 ∑ ∑
1≤j<k≤J

|Cov(Xj , Xk|θ)| = 0. (10)

There are at least two ways to look at LI. One is as a desideratum for measurement pro-
cedures. LI stipulates that the measurement procedure itself must not affect its outcome,
such as would be caused by learning or other forms of development taking place while
someone is being tested. Thus, given that LI is true, the items are modeled as stimuli
that each function as a little experiment independent of the others; this is expressed by
Equation 8. It also means that the statistical model (likelihood) for this measurement
procedure reduces to a product of separate terms for each item, a form that is familiar
and convenient for statistical computation. This is a strong assumption indeed, because
human beings learn from experience and trying, say, 30 problems in an arithmetic test
is likely to induce a learning process while doing this. Likewise, filling out a personality
inventory is likely to induce the respondent to reflect upon himself in the process of rating
the questions. Equation 8 may no longer hold under such circumstances.

Another way to look at LI is as a criterion for determining the dimensionality of the
test data. Finding the dimensionality—the minimum number of latent traits necessary to
explain the relationships between the items while possibly maintaining other restrictions
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such as assumption M—is simple in principle: Add θ’s until LI or its consequence, WLI
(Equation 9), are satisfied as much as possible for the whole test. In practice, however,
simply adding θ’s is not a trivial thing to do, and may take different forms. For example,
one approach selects items into clusters on the basis of the strength of their relationships
with latent variables such that each cluster measures a different θ, while some items are
possibly discarded altogether because they predominantly measure a unique θ (Molenaar
& Sijtsma, 2000). Another approach may actually shift items around from one cluster to
another until an estimate of the mean of conditional covariances as in WLI (Equation 9)
is minimized for the particular data set (Stout et al., 1996; Zhang & Stout, 1999b). Para-
metric methods in particular may take the form of testing a null hypothesis that WLI
holds for the whole test against the undirected alternative that WLI does not hold, and
local tests can then be applied to find the item pairs responsible for misfit (e.g., Glas &
Verhelst, 1995).

Of course, conditional independence (which is what we have called LI) is known in
applied statistics, but these two approaches to LI are typical of IRT. LI as a measure-
ment desideratum makes the test constructor aware of the importance of a controlled
test procedure in which all unwanted influences should be eliminated beforehand or con-
trolled afterwards through the use of auxiliary information collected on the respondents.
LI as a criterion for dimensionality actually treats deviation from LI as a loss function,
making the psychometrician aware of the inherent cognitive complexity of mental mea-
surement; Stout’s (1987, 1990) EI (Equation 10) assumption partially formalizes this idea
by identifying the maximum deviation from LI that still allows estimation of a “domi-
nant” unidimensional latent variable. Thus, unidimensional IRT models are little more
than ideal data representations that may be fitted to data in a first attempt to learn about
the composition of the data. Research into the dimensionality structure of the data may
be an inevitable next step and multidimensional IRT models may be more important here
than credited for thus far. No matter how one looks at LI, both visions stimulate the
use and development of meaningful theories about the constructs to be measured in the
process of test construction.

Local dependence may be inherent in a test procedure as in dynamic testing in which
children are alternately trained and tested. The training involves abilities that do not
become automatic, such as spatial learning ability, and the testing procedure monitors
change in ability due to training. The development of the abilities causes individual
differences in ability to become greater and may also cause the ability to become more
complex by requiring more sub-abilities and skills to explain this variance. Embretson’s
(1991) multidimensional Rasch model for learning and change (MRMLC) formalizes these
ideas. Jannarone’s (1997) approach to local dependence more directly formalizes learning
effects during testing, either due to training (e.g., by exposing correct answers to the
previous items after the person has given his/her answer) or due to a natural process,
as when dependence between items exists as a result of, for example, their reference to
the same content domain as in verbal comprehension items that ask questions about the
same short story; a general model of this type has been developed by Bradlow, Wainer
and Wang (1999) for example.
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2.1.2 Monotonicity

Similar to LI, one way to look at assumption M is as a desideratum needed to ascertain
particular measurement properties for a test. Notice that although intuitively it is diffi-
cult to argue why an IRF would not be monotone —for example, why would the response
probability of having an arithmetic item correct go down, even locally, with increasing
ability?— logically there is no compelling reason why M should be true in real data. For
example, although a regression curve fitted through the 0/1 item scores is very likely to
have a positive slope, it is frequently found that the corresponding estimated IRFs sig-
nificantly decrease at one or more intervals of θ. For particular abilities, an explanation
may be that at consecutive θ intervals testees use different solution strategies that vary
in degree of complexity and correctness (e.g., Bouwmeester, Sijtsma, & Vermunt, 2004).
For example, for lower θ’s the strategy may be simple and incorrect, for intermediate
θ’s it may be unnecessarily complex and partly correct, and for higher θ’s the strategy
may be simple and correct. Suppose that the items have multiple-choice format. It may
be possible that, for some items but not all, the complex intermediate θ strategy leads
testees more often astray to an incorrect answer than a simple, incorrect strategy that,
by accident, produces several correct answers, just as flipping a coin would. The resulting
IRF would show a shallow dip in the middle of the θ distribution.

In practice, for many items assumption M has been found to be reasonable in the re-
gression sense just mentioned (curves have positive regression coefficients), but also many
(small) deviations are found. Like assumption LI, assumption M is a strong assumption,
in particular if it must hold for all J items in the test. Thus, for dichotomous items Stout
(1987, 1990) proposed to replace M by weak M meaning that the test response function,

T (θ) = J−1
J∑

j=1

Pj(θ), (11)

is increasing coordinate-wise in θ, for sufficiently large J . Weak M guarantees that there
is enough information (in the sense of Equation 14 below) to estimate θ from the test
scores. Stout (1990) showed that if weak M (Equation 11) and EI (Equation 10) together
hold for a unidimensional θ then the total score X+ =

∑J
j=1Xj consistently estimates

(a transformation of) θ as J → ∞, a result that was generalized to polytomous items by
Junker (1991). In other words, also weaker forms of M, such as weak M, can be seen as
desiderata, implying desirable measurement properties, in this case consistency.

However, if M is true for all J items, and LI and U hold, then the stochastic ordering
of θ by means of total score X+, in fact, by the unweighed sum score based on any subset
of items from the set of J binary items, is true. That is, for any t and x+v < x+w, we
have that

P (θ > t|X+ = x+v) ≤ P (θ > t|X+ = x+w), (12)

which implies that
E(θ|X+) monotone nondecreasing in X+.

This result includes special cases such as the Rasch (1960) model and the 3-parameter
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logistic model (3PLM; e.g., Lord, 1980) but also Lord’s normal ogive model (Equation 3).
Hemker, Sijtsma, Molenaar, and Junker (1997) showed that Equation 12 also holds for
the partial credit model (Masters, 1982) for ordered polytomous items, but not for other
conventional polytomous IRT models; see Van der Ark (2005) for robustness results for
many polytomous-item models.

In our experience, IRFs estimated from real data sets tend to be monotone, but local
nonmonotonicities are not unusual. Few analyses proceed by assuming weak M only and
dropping assumption M altogether, because in practice J is finite and often small, and in
that case nonmonotone IRFs may lead to serious distortions in the ordering of persons
by X+ relative to θ. However, only allowing items that satisfy M in a test seems to be
too strict, because nonmonotonicities are so common. In the subsection on nonparametric
IRT models some methods for investigating assumption M are mentioned.

Another way to look at assumption M is as a criterion for the measurement quality
of the items. It is common in IRT to express measurement quality by means of Fisher’s
information function. Let P ′

j(θ) denote the first derivative of the IRF with respect to θ,
then for dichotomous items Fisher’s information function for item j is

Ij(θ) =
[P ′

j(θ)]
2

Pj(θ)[1− Pj(θ)]
, (13)

and, when LI holds, Fisher’s information for the whole test is

I(θ) =
J∑

j=1

Ij(θ). (14)

Equation 13 gives the statistical information in Xj for every value of θ, and I(θ)−1/2 gives
a lower bound on the standard error for estimating θ, which is achieved asymptotically
for the maximum likelihood (ML) estimator and related methods, as J → ∞. Clearly, the
slopes of the IRFs at θ, P ′

j(θ) (and, more specifically, the root-mean-square of all item
slopes), determine measurement accuracy. Thus, although assumption M is important for
interpreting IRT models, for measurement quality it matters more how steep the IRF is
for values of θ where accurate measurement is important: near such θs, the IRF may be
increasing or decreasing as long as it is steep, and the behavior of the IRF far from θ does
not affect estimation accuracy near θ at all.

It follows from the discussion thus far, that for high measurement quality one needs to
select items into a test that have high information values at the desired θ levels. Given
that we would know how to first determine those levels and then how to find items that
are accurate there, we are thus looking for steeply-sloped IRFs. Concepts like relative
efficiency (Lord, 1980, chap. 6), item discrimination (e.g., see Equation 3), and item scal-
ability (Mokken, 1997) help to find such items. See for example Van der Linden (2005)
for a complete introduction to the test assembly problem.

2.2 Estimation of IRT models

Now we turn to general IRT modeling for the data matrix XN×J with entries xvj that
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we obtain when N subjects respond to J items, under the assumption that LI holds.
Consider a testee sampled from a specific population by some process (simple random
sampling, for example, or perhaps some more-complex process that is a combination of
random sampling and administrative or social constraints); we will denote the distribution
of θ induced by the sampling process by G(θ). Given no other information than this, our
best prediction—say, in the sense of minimizing squared-error loss—of any summary f(θ)
of the sampled testee’s θ value is

E[f(θ)] =
∫

θ1

· · ·
∫

θd

f(θ)dG(θ).

Analogously, our best prediction of the respondent’s probability of answering xv = (xv1,

. . . , xvJ ) on the J items should be

P [Xv1 = xv1, . . . , XvJ = xvJ ] =
∫

θ1

· · ·
∫

θd

P [Xv1 = xv1, . . . , XvJ = xvJ |θ]dG(θ). (15)

This is a basic building block for modeling IRT data. If we consider the data matrix
XN×J , and we assume that respondents are sampled i.i.d. (independently and identically
distributed) from G(θ), we obtain the model

P [XN×J = xN×J ] =
N∏

v=1

P [Xv1 = xv1, . . . , XvJ = xvJ ] (16)

for XN×J . This i.i.d. assumption is sometimes called experimental independence in IRT
work, and might hold for example if the respondents have a common background relevant
to the items (so that there are no unmodeled variance components among them) and did
not collaborate in producing item responses.

The model for XN×J in Equation 16 can be elaborated, using LI and the integral
representation in Equation 15, to read

P [XN×J = xN×J ] =
N∏

v=1

∫
θ1

. . .

∫
θd

J∏
j=1

P [Xvj = xvj |θ]dG(θ). (17)

If the model for P [Xvj = xvj |θ] is the normal ogive model (Equation 3) for example, then
the probability on the left in Equation 17 is a function of 2J parameters (a1, . . . , aJ , b1,

. . . , bJ ) and these—as well as a fixed number of parameters of the distribution G(θ)—can
be estimated by ML. The approach to estimation and inference based on Equation 17 is
called the marginal maximum likelihood (MML) approach, and is widely favored because
it generally gives consistent estimates for the item parameters as the number N of respon-
dents grows. Such an approach might be followed by empirical Bayes inferences about
individual examinees’ θs (see e.g. Bock & Mislevy, 1982).

It should be noted that there are other ways of arriving at a basis for inference similar
to Equation 17. For example, we may wish to jointly estimate the item parameters (a1,
. . . , aJ , b1, . . . , bJ ) and each respondent’s latent variables θv, v = 1, . . . , N . This leads
to a different likelihood,
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P [X = x|θ1, . . . ,θN ] =
N∏

v=1

J∏
j=1

P [Xvj = xvj |θ], (18)

and an estimation method called joint maximum likelihood (JML). If the model of Equa-
tion 3 is used in Equation 18, we would be estimating 2J +N parameters. JML is viewed
as generally less attractive than MML, since it can be shown (Neyman & Scott, 1948;
Andersen, 1980) that estimates of item parameters, for example, can be inconsistent with
these parameters’ true values as we obtain more and more information—i.e., as N and
J → ∞—unless N and J are carefully controlled (Haberman, 1977; Douglas, 1997).

The integration in Equation 17 obviates this inconsistency problem, since it effectively
eliminates θ from the model for estimating item parameters to the observable data XN×J .
In some models in which P [Xvj = xvj |θ] is a member of the exponential family of distri-
butions, θ can be eliminated by conditioning on sufficient statistics Sv for each θv. Thus
the JML likelihood is transformed into

P [X = x|S1, . . . , SN ],

which is only a function of the item parameters. The method of estimation based on this
conditional likelihood is called conditional maximum likelihood (CML) and is well known
for estimating parameters in the Rasch (1960) model, where the sufficient statistic for θv
is respondent v’s total score, Sv = X+v =

∑J
j=1 xvj . Andersen (1980) and others [e.g.,

see Holland (1990), for a useful review] showed that CML estimates of item parameters
are consistent with the true values, as J grows, just as MML estimates are.

Finally, a Bayesian model-building approach also leads to a form similar to Equa-
tion 17. In this approach, items are viewed as exchangeable with each other, leading to
LI conditional on θ, and to a pre-posterior model formally equivalent to Equation 15,
conditional on the item parameters. Testees are then also viewed as exchangeable with
one another, leading to a model of the form Equation 16. Finally, if G(θ) is an informative
prior distribution for θ (perhaps based on knowledge of the sampling process producing
respondents) and we place flat noninformative priors on the item parameters, then poste-
rior mode (“maximum a-posteriori”, or MAP, in much IRT literature) estimates of item
parameters are identical to those obtained by maximizing Equation 17. Although in the
present context it seems like the Bayesian approach is nothing more than a trivial re-
statement of the assumptions leading to Equation 17 we will see below that the Bayesian
perspective is a powerful one that has driven much of the modern expansion of IRT into a
broad toolbox for item response modeling in many behavioral and social science settings.

Some restrictions along the lines of LI, M and U are needed to give the model in Equa-
tion 17 “bite” with data, and therefore strength as an explanatory or predictive tool.
Although there is much latitude to weaken these assumptions in various ways, no one of
them can be completely dropped, or the model will simply re-express the observed distri-
bution of the data—maximizing capitalization on chance and minimizing explanatory or
predictive power. For example, Suppes and Zanotti (1981; also Holland & Rosenbaum,
1986; Junker, 1993) have shown that the structure in Equation 17 does not restrict the
distribution of the data, unless the response functions and/or the distribution of θ are
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restricted. This is what IRT has done: Assuming LI, IRT concentrates mostly on the
response functions and finds appropriate definitions for them in an attempt to explain the
simultaneous relationships between the J items through Equation 17. The distribution of
G(θ) may be restricted primarily to facilitate the estimation of IRT model parameters, a
common practice in Bayesian and MML approaches to estimation.

3. Some well-known classes of IRT models

3.1 IRT models for dichotomous items

For dichotomous item scores for correct/incorrect or agree/disagree responses, many
IRT models have been defined based on assumptions LI and U, to which a parametric
version of assumption M is added. Due to their computational merits, logistic models
have gained great popularity. An example is the three-parameter logistic model (3PLM;
Birnbaum, 1968), defined as

Pj(θ) = γj + (1− γj)
exp[αj(θ − δj)]

1 + exp[αj(θ − δj)]
, αj > 0. (19)

In Equation 19, parameter γj is the lower asymptote of the IRF, that gives the probabil-
ity of, for example, a correct answer for low θ’s. This parameter is sometimes interpreted
as a guessing parameter. Parameter δj is the location or difficulty, comparable to bj in
Equation 3. Parameter αj determines the steepest slope of the IRF, comparable to aj in
Equation 3. This occurs when θ = δj ; then Pj(θ) =

1+γj

2 and P ′
j(θ) =

αj(1−γj)
4 .

The 3PLM is suited in particular for fitting data from multiple-choice items that vary
in difficulty and discrimination and are likely to induce guessing in low-ability examinees.
Its parameters can be estimated using ML methods. If in Equation 19 γj = 0, the 3PLM
reduces to the 2-parameter logistic model (2PLM; Birnbaum, 1968), which is almost iden-
tical to the 2-parameter normal-ogive in Equation 3. The 1-parameter logistic model
(1PLM) or Rasch model (Fischer & Molenaar, 1995; Rasch, 1960) sets γj = 0 and αj = 1
in Equation 19. Notice that such models may be interpreted as probabilistic versions of
the deterministic Guttman model (Equation 6).

3.2 IRT models for polytomous items

IRT models have been defined for items with more than two possible but nominal
scores, such as in Bock’s (1972) nominal response model and Thissen and Steinberg’s
(1984) response model for multiple-choice items. Such models are convenient when differ-
ent answer categories have to be distinguished that do not have an a priori order. Other
IRT models have been defined for ordered polytomous item scores; that is, items for which
Xj = 0, . . . ,m, typical of rating scales in personality inventories and attitude question-
naires. Given assumptions LI and U, three classes of polytomous IRT models have been
proposed (Mellenbergh, 1995). Hemker, Van der Ark, and Sijtsma (2001) provide a Venn
diagram that shows how these three classes and their member models are hierarchically
related.
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One such general class consists of the cumulative probability models. Such models are
typically based on the monotonicity of conditional response probability Gjx(θ) = P (Xj ≥
x|θ). This probability is the item step response function (ISRF). A well known repre-
sentative of this class is the homogeneous case of the graded response model (Samejima,
1969, 1997), that has a constant slope parameter for each ISRF from the same item, and
a location parameter that varies freely, so that

Gjx(θ) =
exp[αj(θ − δjx)]

1 + exp[αj(θ − δjx)]
, x > 0, αj > 0.

Notice that this response function is equivalent to that of the 2PLM, but that the differ-
ence lies in the item score that is modeled: polytomous Xj ≥ x in the graded response
model and binary Xj = 1 in the 2PLM, and that they coincide when m = 1. Cumula-
tive probability models are sometimes associated with data stemming from a respondent’s
global assessment of the rating scale and the consecutive choice of a response option from
all available options (Van Engelenburg, 1997).

The other classes are the continuation ratio models (see, e.g., Hemker, et al., 2001) and
the adjacent category models (Hemker, et al., 1997; Thissen & Steinberg, 1986). Con-
tinuation ratio models define response probabilities Mjx(θ) = P (Xj ≥ x|Xj ≥ x − 1; θ).
Hemker et al. (2001) argue that such models formalize the performance on a sequence of
subtasks of which the first x were mastered and as of x + 1 the others were failed; also
see Tutz (1990) and Samejima (1972, chap. 4). Adjacent category models define response
functions Fjx(θ) = P (Xj = x|Xj ∈ {x − 1, x}; θ). Like the continuation ratio models,
adjacent category models “look at” the response process as a sequence of subtasks but
unlike these models define a subtask in isolation of the others. This is formalized by the
conditioning on scores x − 1 and x only, and it means that the subtasks do not have a
fixed order but that each can be solved or mastered independent of the others. The partial
credit model (Masters, 1982), which defines Fjx(θ) as a 1PLM, is perhaps the best known
model from this class.

Many of the models discussed above are reviewed and extended, often by the mod-
els’ originators, in various chapters of the monograph by Van der Linden and Hambleton
(1997).

One area in which polytomous items arise naturally is in the rating of extended re-
sponses by trained raters or judges. When extended response items are scored by more
than one rater, the repeated ratings allow for the consideration of individual rater bias
and variability in estimating student proficiency. Several hierarchical models based on
IRT have been recently introduced to model such effects. Patz, Junker, Johnson and Mar-
iano (2002) developed a hierarchical rater model to accommodate additional dependence
between ratings of different examinees by the same rater. The hierarchical rater model
assumes that rating Xijr given to examinee i on item j by rater r is a noisy, and per-
haps biased, version of the “ideal rating” ξij that the examinee would get from a “perfect
rater”. The ideal ratings ξij are modeled in the hierarchical rater model using a polyto-
mous IRT model such as the partial credit model. The observed ratings Xijr are then
modeled conditional on the ideal ratings ξij ; for example, Patz et al. (2002) specify a
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unimodal response function for raters’ ratings, given the “ideal rating”, of the form

P [Xijr = x|ξij = ξ] ∝ exp
{
− 1
2ψ2

r

[x− (ξ + φr)]2
}
,

where φr is the bias of rater r across all examinees and rated items, and ψr is a measure
of the rater’s uncertainty or unreliability in rating. This specification of the hierarchical
rater model essentially identifies it as a member of the class of multilevel models (see e.g.
Gelman et al., 2004), which includes variance components models as well as the hierarchi-
cal linear model. The connection with variance components models also allows us to see
deep connections between the hierarchical rater model and generalizability theory models;
see Patz et al. (2002) for details.

The hierarchical rater model has been successfully applied to paper-and-pencil rating
of items on one large statewide assessment in the USA, and to a comparison of “modes of
rating” (computer image-based vs. paper-and-pencil) in another statewide exam that in-
cluded both rated extended-response items. A partial review of some other approaches to
modeling multiply-rated test items, as well as an extension of the basic hierarchical rater
model of Patz et al. (2002) to accommodate covariates to help explain heterogeneous
rating behaviors, may be found in Mariano and Junker (2005).

3.3 Nonparametric IRT models

Nonparametric IRT seeks to relax the assumptions of LI, M, and U, while maintaining
important measurement properties such as the ordinal scale for persons (Junker, 2001;
Stout, 1990, 2002). One such relaxation is that nonparametric IRT models refrain from
a parametric definition of the response function, as is typical of IRT models discussed
thus far. For example, for dichotomous items the monotone homogeneity model (MHM;
Mokken, 1971; also see Meredith, 1965) assumes LI, M, and U as in Section 2, but no
parametric form for the IRFs.

Notice that, for example, the 3PLM is a special case of the MHM because it restricts
assumption M by means of the logistic IRF in Equation 19. Reasons why the 3PLM may
not fit data are that high-ability examinees have response probabilities that are smaller
than 1 or the relationship between the item score and the latent variable does not have
a smooth logistic appearance. Thus, in such cases one needs a more flexible model that
allows for the possibility that the upper asymptote of the response functions is smaller
than 1 and the curve can take any form as long as it is monotone.

Assumption M has been investigated in real data by means of its observable conse-
quence, manifest monotonicity (e.g., Junker & Sijtsma, 2000): Let R(−j) =

∑
k �=j Xk be

the total score on the J−1 dichotomous items excepting item j; this is called the rest-score
for item j. Then monotonicity of Pj(θ), together with LI and U, implies

P [Xj = 1|R(−j) = r] non-decreasing in r, r = 0, . . . , J − 1.

Manifest monotonicity does not hold when conditioning is on X+ including Xj , nor does
it hold for polytomous items; Junker (1996) has suggested another methodology for the
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latter case.
For dichotomous items, P [Xj = 1|R(−j) = r] is the basis for estimating the item’s

IRF by estimating response probabilities for each discrete value of r using what is known
in nonparametric regression as binning (Junker & Sijtsma, 2000). Karabatsos and Sheu
(2004) proposed a Bayesian approach using Markov Chain Monte Carlo simulation to eval-
uating assumption M for J items simultaneously. This procedure also gives information
about item fit. Alternatively, kernel smoothing methods may be used to obtain a con-
tinuous estimate of the IRF, the ISRFs (for polytomous items), and the so-called option
response curves, P (Xj = xj |θ), with Xj nominal, representing the options of a multiple-
choice item (Ramsay, 1991). Jack-knife procedures may be used to estimate confidence
envelopes (Emons, Sijtsma, & Meijer, 2004). Rossi, Wang, and Ramsay (2002) proposed
a methodology that uses EM likelihood estimation to obtain the logit transformation of
the IRF, denoted λj(θ), by means of a linear combination of polynomials, chosen by the
researcher and used to approximate adjacent segments of λj(θ). Each polynomial has a
weight which is estimated from the data, and which controls the smoothness of λ̂j(θ). As
with kernel smoothing, a very irregular curve may actually show much sampling error and
a very smooth curve may mask systematic and interesting phenomena that are useful to
diagnose the item.

Although they are based on weaker assumptions than parametric models, nonparamet-
ric IRT models have desirable measurement properties, such as P (θ > t|X+ = x+) is
nondecreasing in x+ (Equation 12; for dichotomous items only) and X+ is a consistent
ordinal estimator of θ under relaxed versions of LI, M and U (both for dichotomous and
polytomous items). The fit of nonparametric models is often evaluated by finding the
dimensionality of the data such that weak LI is satisfied (e.g., Stout et al, 1996), and by
estimating, for example, the IRFs and check whether assumption M holds (e.g., Ramsay,
1991; Junker & Sijtsma, 2000).

Powerful tools for this fit investigation are based on conditional association (Holland
& Rosenbaum, 1986), which says that, for any partition X = (Y,Z); any nondecreasing
functions n1() and n2(), and any arbitrary function m(), LI, M, and U imply

Cov[n1(Y), n2(Y)|m(Z) = z] ≥ 0, for all z. (20)

Judicious choice of the functions n1, n2 and m will readily suggest many meaningful
ways of checking for the general class of models based on LI, M, and U. We mention two
important ones that form the basis of methods for dimensionality investigation.

First, letting m(Z) be the function identically equal to zero, Equation 20 implies that

Cov(Xj , Xk) ≥ 0, all pairs j, k; j �= k. (21)

Mokken (1971; Sijtsma & Molenaar, 2002) proposed a procedure that uses a scalability
coefficient that incorporates Equation 21 for all item pairs as a loss function for item
selection, and constructs item clusters that tend to be U while requiring items to have rel-
atively steep (positive) slopes to be admitted. Minimum admissible steepness is controlled
by the researcher. As is typical of trade-offs, higher demands with respect to slopes will
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result is shorter unidimensional scales.
Second, we may condition on a kind of “rest score” for two items j and k, R(−j,−k) =∑
h �=j,kXh. In this case, Equation 20 implies that

Cov(Xj , Xk|R(−j,−k) = r) ≥ 0, all j, k; j �= k; all r = 0, 1, . . . , J − 2. (22)

Thus, in the subgroup of respondents that have the same rest score r, the covariance
between items j and k must be nonnegative if they trigger responses that are governed by
the same θ. The interesting part is that Zhang and Stout (1999a, b) have shown how the
sign behavior of the conditional covariance in Equation 22 is related to the dimensionality
of an item set. This sign behavior is the basis of a genetic algorithm that selects items
into clusters within which WLI (Equation 9) holds as well as possible for the given data.

Similar work has been done for polytomous response scores. For example, Van der Ark,
Hemker, and Sijtsma (2002) defined nonparametric versions of each of the three classes of
polytomous IRT models, showed that each was the most general representative of its class
and also proved that they were hierarchically ordered. In particular, the nonparametric
version of the graded response model is the most general model for polytomous item scores
among the existing models based on LI, U, and M for the ISRFs, and all other polytomous
models, nonparametric and parametric, are special cases of it.

Not only does knowledge like this bring structure among the plethora of IRT models
but it also suggests an order in which models can be fitted to data, beginning with ei-
ther the most general and when it fits, continuing with fitting more specific models until
misfit is obtained. Another methodology could start at the other end, using a restrictive
model and when it does not fit, use a slightly less restrictive model, and so on, until a
fitting model is found. Also, considerations about the response process could play a role
in the selection of models. For example, if an item can be solved by solving a number of
part problems in an arbitrary order an adjacent category model may be selected for data
analysis.

3.4 Unfolding IRT models

Probabilistic versions of the Coombs unfolding model introduced in Equation 7 for
binary preference scores (e.g. testees’ preferences for brands of beer, people from other
countries, or politicians, on the basis of dimensions such as bitterness, trustworthiness,
and conservatism) have also been developed. IRT models for such direct-response attitude
or preference data generally employ unimodal, rather than monotone, IRFs. We will call
such models unfolding IRT models, though as mentioned in Section 1.4, the connection
with Coombs’ original unfolding idea is now rather tenuous.

Although unfolding IRT models have been around for years (e.g., Davison, 1977), it
is only relatively recently that a close connection between these unimodal models (also
known as proximity models) and conventional monotone IRT models (also known as dom-
inance models) has been made, through a missing data process (Andrich & Luo, 1993;
Verhelst & Verstralen, 1993). For example, the hyperbolic cosine model for dichotomous
attitude responses (Xj = 1 for “agree”; Xj = 0 for “disagree”),
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Pj(θ) = P [Xj = 1 | θ] = eγj

eγj + cosh(θ − βj)

=
exp{θ − βj + γj}

1 + exp{θ − βj + γj}+ exp{2(θ − βj)}
, (23)

in which βj is the location on the preference or attitude scale of persons most likely to
endorse item j, and γj is maximum log-odds of endorsement of the item, can be viewed as
the observed-data model corresponding to a complete-data model based on a trichotomous
item response model (i.e., the partial credit model of Masters, 1982),

Rj0(θ) = P [ξj = 0 | θ] = 1
1 + exp{θ − βj + γj}+ exp{2(θ − βj)}

Rj1(θ) = P [ξj = 1 | θ] = exp{θ − βj + γj}
1 + exp{θ − βj + γj}+ exp{2(θ − βj)}

Rj2(θ) = P [ξj = 2 | θ] = exp{2(θ − βj)}
1 + exp{θ − βj + γj}+ exp{2(θ − βj)}

,

where the complete data (or equivalently the “latent response”, as in Maris, 1995) ξj is
coded as

ξj = 0 if θ − βj � 0 (i.e., “disagree from below”)
ξj = 1 if θ − βj ≈ 0 (i.e., “agree”)
ξj = 2 if θ − βj � 0 (i.e., “disagree from above”) ,

in which the distinction between “disagree from above” (ξj = 2) and ”disagree from
below” (ξj = 0) has been lost. Another such parametric family has been developed by
Roberts, Donoghue and Laughlin (2000). Recently Johnson and Junker (2003) generalized
this missing data idea by connecting it with importance sampling, and used it to develop
computational Bayesian estimation methods for a large class of parametric unfolding IRT
models.

Post (1992) developed a nonparametric approach to scaling with unfolding IRT models
based on probability inequalities, stochastic ordering, and related ideas. A key idea is that
P [Xi = 1|Xj = 1] should increase as the modes of the IRFs for items i and j get closer
together; this is a kind of “manifest unimodality” property. Post shows that this mani-
fest unimodality property follows from suitable stochastic ordering properties on the IRFs
themselves, which are satisfied, for example, by the model in Equation 23 when the γj ’s
are all equal. Johnson (2005) re-examined Post’s (1992) ground-breaking approach and
connected it to a nonparametric estimation theory for unfolding models based on the work
of Stout (1990), Ramsay (1991) and Hemker et al. (1997). For example, Johnson estab-
lishes monotonicity and consistency properties of the Thurstone score in Equation 5 under
a set of assumptions similar to Hemker et al.’s (1997) and Stout’s (1990), and explores
estimation of IRFs via nonparametric regression of item responses onto the Thurstone
score, similar to Ramsay’s (1991) approach.

3.5 Multidimensional IRT models

Data obtained from items that require the same ability can be displayed in a two-
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dimensional space, with the latent variable on the abscissa and the response probability
on the ordinate. For such data, an IRT model assuming U (unidimensional θ) is a likely
candidate to fit. If different items require different or partly different abilities, a higher-
dimensional representation of the data is needed and models assuming U will probably
fail to fit in a satisfactory way. Then, an IRT model that postulates d latent variables
may be used to analyze the data.

Research in multidimensional IRT models has concentrated on additive and conjunc-
tive combinations of multiple traits to produce probabilities of response. Additive models,
known as compensatory models in much of the literature, replace the unidimensional la-
tent trait θ in a parametric model such as the 2PL model, with an item-specific, known
(e.g., Adams, Wilson, & Wang, 1997; Embretson, 1991; Kelderman & Rijkes, 1994; and
Stegelmann, 1983) or unknown (e.g., Fraser & MacDonald, 1988; Muraki & Carlson, 1995;
Reckase, 1985; and Wilson, Wood, & Gibbons, 1983) linear combination of components
αj1θ1+· · ·+αjdθd of a d-dimensional latent variable vector. For example, Reckase’s (1997)
linear logistic multidimensional model incorporates these parameters and is defined as

Pj(θ) = γj + (1− γj)
exp(α′

jθ − δj)
1 + exp (αj

′θ − δj)
,

where the location parameter δj is related (but not identical) to the distance of the ori-
gin of the space to the point of steepest slope in the direction from the origin, and the
γj parameter represents the probability of a correct answer when the θ’s are very low.
Note that the discrimination vector α controls the slope (and hence the information for
estimation) of the item’s IRF in each coordinate direction: For example, for θ = (θ1, θ2),
if responses to item j are driven more by θ2 than by θ1, the slope (αj2) of the manifold
is steeper in the θ2 direction than that (αj1) in the θ1 direction. Béguin and Glas (2001)
survey the area well and give an MCMC algorithm for estimating these models; Gibbons
and Hedeker (1997) pursue related developments in biostatistical and psychiatric applica-
tions. De Boeck and Wilson (2004) have organized methodology for exploring these and
other IRT models within the SAS statistical package.

Conjunctive models are often referred to as noncompensatory or componential models
in the literature. These models combine unidimensional models for components of re-
sponse multiplicatively, so that P (Xvj = 1|θv1, . . . , θvd) =

∏d
�=1 Pj�(θv�) where Pj�(θv�)

are parametric unidimensional response functions for binary scores. Usually the Pj�(θv�)s
represent skills or subtasks all of which must be performed correctly in order to generate a
correct response to the item itself. Janssen and De Boeck (1997) give a typical application.

Compensatory structures are attractive because of their conceptual similarity to fac-
tor analysis models. They have been very successful in aiding the understanding of how
student responses can be sensitive to major content and skill components of items, and
in aiding parallel test construction when the underlying response behavior is multidimen-
sional (e.g., Ackerman, 1994). Noncompensatory models are largely motivated from a
desire to model cognitive aspects of item response; see for example Junker and Sijtsma
(2001). Embretson (1997) reviewed blends of these two approaches (her general compo-
nent latent trait models; GLTM).
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3.6 IRT models with restrictions on the item parameters

An important early model of the cognitive processes that lead to an item score is the
linear logistic test model (LLTM; Fischer, 1973; Scheiblechner, 1972). The LLTM assumes
that the difficulty parameter, δj , of the Rasch model is a linear combination of K basic
parameters, ηk, with weights Qjk, for the difficulty of a task characteristic or a subtask in
a solution strategy: δj =

∑K
k=1Qjkηk+c, where c is a normalization constant for the item

parameters. The choice of the number of basic parameters and the item difficulty struc-
ture expressed by the weights and collected in a weight matrix QJ×K , together constitute
a hypothesis that is tested by fitting the LLTM to the 1/0 scores for correct/incorrect
answers to the J test items.

Other models have been proposed that, for example, posit multiple latent variables
(Kelderman & Rijkes, 1994), strategy shift from one item to the next (Rijkes, 1996; Ver-
helst & Mislevy, 1990), and a multiplicative structure on the response probability, Pj(θ)
(Embretson, 1997; Maris, 1995).

Models for cognitive diagnosis often combine features of multidimensional IRT models
with features of IRT models with restrictions on the item parameters. Suppose a domain
requires in total K different skills, and we code for each respondent θvk = 1 if respondent
v has skill k and θvk = 0 otherwise. As in the LLTM, we define Qjk = 1 if item j requires
skill k and Qjk = 0 otherwise. Two simple conjunctive models for cognitive diagnosis were
considered by Junker and Sijtsma (2001), the NIDA (noisy inputs, deterministic “and”
gate) model,

Pj(θv) = P (Xj = 1|θv) =
K∏

k=1

[
(1− sk)θvkg1−θvk

k

]Qjk

,

where sk = P [(slipping when applying skill k) | θvk = 1] and gk = P [(succeeding where
skill k is needed) | θvk = 0], and the DINA (deterministic inputs, noisy “and” gate) model

Pj(θv) = P (Xj = 1|θv) = (1− sj)
Q

k θ
Qjk
vk g

1−
Q

k θ
Qjk
vk

j

where now sj and gj play a similar role for the entire item rather than for each skill
individually.

More elaborate versions of these conjunctive discrete-skills models have been developed
by others (e.g., DiBello, Stout, & Roussos, 1995; Haertel, 1989; Maris, 1999; and Tatsuoka,
1995); and the NIDA and DINA models themselves have been extended to accommodate
common variation among the skills being acquired (De la Torre & Douglas, 2004). A com-
pensatory discrete-skills model was considered by Weaver and Junker (2003). Focusing
on θv = (θv1, . . . , θvK) these models have the form of multidimensional IRT models, with
dimension d = K. Focusing on the restrictions on item response probability imposed by
the Qjk, they have the form of IRT (or latent class) models with restrictions on the item
parameters. Junker (1999) provides an extended comparison of these and other models
for cognitively-relevant assessment.
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4. Discussion

In this paper we have sketched the historical antecedents of IRT, the models that have
formed the core of IRT for the past 30 years or so, and some extensions that have occupied
the interests of IRT researchers in recent years.

One of the earliest antecedents of IRT, classical test theory, is primarily a conceptual
model that provides a simple decomposition of test scores into a reliable or “true score”
component and an unreliable random error component; in this sense, CTT is a kind of
variance components model. In the simplest form of CTT the true score and random error
components are not identifiable. However, a variety of heuristic methods have been devel-
oped to estimate or bound the true score and random error components of the model, and
so CTT is still widely used today as a handy and simple guide to exploring trait-relevant
(true-score) variation vs. trait irrelevant (random error) variation in the total score of a
test: A test is considered reliable and generalizable if little of the variation in test scores
can be attributed to random error.

In one direction, CTT was refined and generalized to incorporate a variety of covari-
ate information, treating some covariates as additional sources of stochastic variation and
others as sources of fixed differences between scores. The resulting family of models,
which goes under the name generalizability theory, allows for quite general mixed-effects
linear modeling of test scores, partitioning variation of the test scores into components
attributable to various aspects of the response- and data-collection process, as well as
multidimensional response data. Although CTT and generalizability theory can be used
to assess the quality of data collection, for example, expressed as a fraction of the total
variation of scores due to noise or nuisance facets, they do not by themselves provide
efficient model-based tools for estimating latent variables.

In another direction, CTT was generalized, first, to accommodate discrete-response
data, as in Thurstone’s model of comparative judgment, and later, as in Lord’s Normal
Ogive model to explicitly incorporate a common latent variable across all responses to
items on the same test or questionnaire. At the same time other authors were developing
related parametric probabilistic models for responses to test items (Rasch, 1960), as well
as deterministic models for dominance (Guttman, 1944, 1950) and proximity/unfolding
items (Coombs, 1964). These threads were drawn together into a coherent family of
probabilistic models for measurement, called Item Response Theory, in the early 1960s.

IRT was certainly a conceptually successful model, because it provided parameters to
estimate “major features” of test questions as well as examinee proficiencies. It was also a
fantastically successful model on practical grounds, since, with the inexorable advance of
cheap computing power in the 40 years from 1960 to 2000, IRT models could be applied
to the vast quantities of primarily educational testing data being generated by companies
like ETS in the United States and CITO in the Netherlands. Although the psychological
model underlying IRT was not deep, it was adequate for many purposes of large-scale
testing, including

• Scaling: Pre-testing new items to make sure that they cohere with existing test items
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in the sense that LI, M, d = 1 still hold;
• Scoring: IRT-model-based scores, computed using ML or a similar method, offer more
efficient, finer-grained scores of examinees than simple number-correct scores;

• Equating: IRT modeling, which separates person-effects from item-effects provides a
formal methodology for attempting to adjust scores on different tests (of the same
construct) for item-effects (e.g., item difficulty), so that they are comparable. The
same methodology also allows one to pre-calibrate items in advance and store them
in an item bank until they are needed on a new test form;

• Test assembly: Traditional paper-and-pencil tests can be designed to provide optimal
measurement across a range of testee proficiencies; computerized adaptive tests can
be designed to provide optimal measurement at or near the testee’s true proficiency;

• Differential item functioning: Testing to see whether non-construct-related variation
dominates or drives differences in item performance by different sociological groups;

• Person-fit analysis: Analogously to testing to see whether new items cohere with
an existing item set, we can use the IRT model to test whether a person’s response
pattern is consistent with other peoples’; for example an unusual response pattern
might have correct answers on hard items and incorrect answers on easy ones;

• And many more.

At the same time that IRT was finding widespread application in the engineering
of large-scale assessments, as above, it was also being used in smaller-scale sociological
and psychological assessments. In this context the nonparametric monotone homogeneity
model of IRT was developed, to provide a framework in which scaling, scoring and person-
fit questions might be addressed even though there was not enough data to adequately
estimate a parametric IRT model. Later, in response to various anomalies that were un-
covered in fitting unidimensional monotone IRT models to large-scale testing data, other
forms of nonparametric IRT were developed, focusing, for example, on local dependence
and accurate nonparametric estimation of IRFs.

In addition, IRT has been expanded in various ways to better account for the response
process and data collection process. The LLTM, MLTM, NIDA/DINA models, and their
generalizations, are all attempts to capture and measure finer-grained cognitive aspects of
examinee performance. These models have in common that they are trying to stretch the
IRT framework to accommodate a more modern and more detailed psychological view of
the response process.

On the other hand, the Hierarchical Rater Model, as well as various testlet models, are
designed to capture and correct for violations of LI due to the way the test was scored,
or the way it was designed (e.g. several questions based on the same short reading).
At the same time, demographic and other covariates are now routinely incorporated into
IRT models for survey data, such as the National Assessment of Educational Progress
in the United States (e.g. Allen, Donoghue and Schoeps, 2001, chap. 12), or PISA in
Europe (e.g. OECD, 2005, chap. 9), to improve estimates of mean proficiencies in various
demographic groups.

Thus, IRT and its antecedents have evolved, from an initial conceptual model that was
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useful for defining and talking about what good measurement was, to a highly successful
set of tools for engineering standardized testing, to a core component in a toolbox for rich
statistical modeling of response and data collection processes in item-level discrete, direct
response data. An initial disadvantage of this evolution is that connections with simple
measurement criteria may be lost. However, the new IRT-based modeling toolbox is very
flexible and can incorporate not only aspects of the data collection process (increasing
its applicability generally), but also aspects of modern, detailed cognitive theory of task
and test performance (increasing face validity and focusing inference on psychologically
relevant constructs).

REFERENCES

Ackerman, T.A. (1994). Using multidimensional item response theory to understand what items

and tests are measuring. Applied Measurement in Education, 7, 255–278.

Adams, R.J., Wilson, M. &Wang, W.-C. (1997). The multidimensional random coefficients multi-

nomial logit model. Applied Psychological Measurement, 21, 1–23.

Allen, N.L., Donoghue, J.R., & Schoeps, T.L. (2001). The NAEP 1998 Technical Re-

port. Washington, DC: National Center for Educational Statistics, U.S. Department

of Education. Downloaded Sept. 29, 2005, from http://nces.ed.gov/nationsreport-

card/pubs/main1998/2001509.asp.

Andersen, E.B. (1980). Discrete statistical models with social science appplications. Amsterdam:

North-Holland.

Andrich, D. & Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding dichotomous

single-stimulus responses. Applied Psychological Measurement, 17, 253–276.
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Scheiblechner, H. (1972). Das Lernen und Lösen komplexer Denkaufgaben. Zeitschrift für Exper-

imentelle und Angewandte Psychologie, 19, 476–506.

Sijtsma, K., and Molenaar, I.W. (2002). Introduction to nonparametric item response theory.

Sage, Thousand Oaks CA.

Spearman, C. (1904). “General intelligence,” objectively determined and measured. American

Journal of Psychology, 15, 201–293.

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3,

271–195.



ITEM RESPONSE THEORY: PAST PERFORMANCE, PRESENT DEVELOPMENTS, AND FUTURE EXPECTATIONS 101

Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one

dimension. Psychometrika, 48, 259–267.

Stout, W.F. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psy-

chometrika, 52, 589–617.

Stout, W.F. (1990). A new item response theory modeling approach with applications to unidi-

mensionality assessment and ability estimation. Psychometrika, 55, 293–325.

Stout, W.F. (2002). Psychometrics: From practice to theory and back. Psychometrika, 67, 485–

518.

Stout, W.F., Habing, B., Douglas, J., Kim, H., Roussos, L., & Zhang, J. (1996). Conditional co-

variance based nonparametric multidimensionality assessment. Applied Psychological Mea-

surement, 20, 331–354.

Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible? Synthese, 48,

191–199.

Tatsuoka, K.K. (1995). Architecture of knowledge structures and cognitive diagnosis: a statistical

pattern recognition and classification approach. In P.D. Nichols, S.F. Chipman, and R.L.

Brennan (Eds.), Cognitively diagnostic assessment (pp.327–359). Hillsdale, NJ: Lawrence

Erlbaum Associates.

Thissen, D. & Steinberg, L. (1984). A response model for multiple choice items. Psychometrika,

49, 501–519.

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51,

567–577.

Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.

Torgerson, W.S. (1958). Theory and methods of scaling. New York: Wiley.

Tucker, L.R. (1946). Maximum validity of a test with equivalent items. Psychometrika, 11, 1–13.

Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of

Mathematical and Statistical Psychology, 43, 39–55.

Van der Ark, L.A. (2005). Practical consequences of stochastic ordering of the latent trait under

various polytomous IRT models. Psychometrika, 70, 283–304.

Van der Ark, L.A., Hemker, B.T., & Sijtsma, K. (2002). Hierarchically related nonparametric

IRT models, and practical data analysis methods. In G. Marcoulides & I. Moustaki (Eds.),

Latent variable and latent structure modeling (pp.40–62). Manwah, NJ: Erlbaum.

Van der Linden, W.J. (2005). Linear models for optimal test design. New York: Springer.

Van der Linden, W.J., & Hambleton, R.K. (1997; Eds.). Handbook of modern item response

theory. New York: Springer-Verlag.

Van Engelenburg, G. (1997). On psychometric models for polytomous items with ordered cate-

gories within the framework of item response theory. Unpublished doctoral dissertation,

University of Amsterdam, The Netherlands.

Verhelst, N.D., & Mislevy, R.J. (1990). Modeling item responses when different subjects employ

different solution strategies. Psychometrika, 55, 195–215.

Verhelst, N.D. & Verstralen, H.H.F.M. (1993). A stochastic unfolding model derived from the

partial credit model. Kwantitative Methoden, 42, 73–92.

Walker, D.A. (1931). Answer pattern and score scatter in tests and examinations. British Journal

of Psychology, 22, 73–86.

Weaver, R.L., & Junker, B.W. (2003). Model specification for cognitive assessment of pro-

portional reasoning. Technical Report #777, Department of Statistics, Carnegie Mellon

University, Pittsburgh, PA. Downloaded Sept. 28, 2005, from http://www.stat.cmu.

edu/tr/tr777/tr777.pdf.

Wilson, D., Wood, R.L., & Gibbons, R. (1983). TESTFACT: Test scoring and item factor anal-

ysis. [Computer software]. Chicago: Scientific Software Inc.

Zhang, J., & Stout, W.F. (1999a). Conditional covariance structure of generalized compensatory



102 K. Sijtsma and B.W. Junker

multidimensional items. Psychometrika, 64, 129–152.

Zhang, J., & Stout, W.F. (1999b). The theoretical DETECT index of dimensionality and its

application to approximate simple structure. Psychometrika, 64, 213–249.

(Received October 4 2005, Revised January 26 2006)


