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Memory-based understanding of user utterances

in a spoken dialogue system:

Effects of feature selection and co-learning

Antal van den Bosch

ILK / Computational Linguistics and AI
Tilburg University

P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands

Abstract. Understanding user utterances in human-computer spoken
dialogue systems involves a multi-level pragmatic-semantic analysis of
noisy natural language input streams. These analyses are heavily de-
pendent on the dialogue context, and are complex due to the inherent
ambiguity of language use, and to the errors induced by the intermedi-
ate speech recognition system. We review work on applying k-nearest-
neighbour classification to this multi-level task split into (1) dialogue act
classification (2) slot filling identification, and (3) communication prob-
lem signalling, showing that co-learning some of these tasks produces
superior results over learning them in isolation. We also show that ad-
ditional feature selection can produce succinct feature sets, illustrating
the viability of simple keyword-based shallow understanding.

1 Introduction

Spoken dialogue systems (SDSs) are developed typically to assist people at con-
trolling devices and at accessing various computer-based services, in situations
in which speech is the preferred or the only possible medium of interaction. In-
teraction in SDSs proceeds typically via pairs of spoken system and user turns.
Interpreting user turns takes considerable effort, involving at least three hurdles.
First, speech tends to be looser, more disfluent, more elliptic, and more agram-
matical than written or typed input, and linguistic analyses need to be robust
enough to handle this. Second, automatic speech recognition (ASR) technology is
error-prone, particularly in speaker-independent systems and in situations with
background noise. A third hurdle is that in a goal-oriented dialogue a user turn
is typically a concise utterance that conveys several messages simultaneously,
and not all messages are explicitly voiced [1].

The automatic understanding of user utterances may therefore seem a com-
plex task, ultimately involving full natural language understanding. On the other
hand, domain-specific goal-oriented human-machine dialogue systems, such as
transport information systems for flights or train trips, usually involve limited
domains of conversation, with limited vocabulary and limited types of utterances,
needed to arrive at the desired goal. Often, keyword spotting in user utterances



is enough to ‘understand’ what a user is conveying, since these domain-specific
systems tend to give their users little freedom in generating answers, by taking
the initiative, posing simple unambiguous questions, and assuming the users are
cooperative. Yet, even cooperative users sometimes say unexpected things, and
speech recognition errors may additionally interrupt the system’s plan at any
time, forcing both conversation partners to engage in sub-dialogues to correct
the miscommunication.

In recent years there has been an increased interest in using statistical and
machine learning approaches for the interpretation of user utterances in projects
developing spoken dialogue systems. Dialogue act classification, i.e. to deter-
mine what the underlying intention of an utterance is (e.g., ‘request’, ‘confirm’,
‘reject’, etc.) is an example for which these data-driven approaches have been
relatively successful [2–4]. The automatic detection of communication problems
is another interpretation task to which machine learning approaches have been
applied. Given the frequent occurrences of communication problems between
users and systems due to misrecognitions, erroneous linguistic processing, incor-
rect assumptions, and the like, it is important to detect miscommunications in
the interaction as soon as possible [5]. Earlier work reports that users signal com-
munication problems when they become aware of them, and that it is possible
to detect this automatically to some extent [6, 7].

As a toolkit, machine learning (in this study, the k-nearest neighbor classifier)
offers more than a means to study the learnability of one subtask such as dialogue
act classification or the detection of communication problem awareness. In this
paper we extend the usage of the machine learning toolkit in two directions:

1. Separate classification tasks in understanding user utterances, such as di-
alogue act classification, communication problem detection, and semantic
content analysis of the utterance, can be joined into combined classification
tasks. To the machine learner a combined task is simply a task with more
classes; if there is any intrinsic relation between the combined subtasks their
joint task might be equally well learnable as, or better than, the individual
tasks.

2. User utterances can be represented by many different features, such as the
recognized words and measurements on the recorded sound waves, but also
the system’s prompts may be used as predictive features to analyze the
utterance. Automatic feature selection can be of help in narrowing a larger
set of potentially relevant features down to just the most essential ones,
possibly with better generalization performance.

This paper is structured as follows. The next section describes our data,
showing how our SDS corpus was turned into training examples for machine
learning, and how the pragma-semantic processing tasks were formulated; it
also describes the classifier employed in the study and the way we evaluate its
performance. The experimental results are presented in Section 3. We discuss
our findings and draw conclusions in Section 4.



2 Experimental setup: Data, algorithms, evaluation

2.1 Data collection

The research material on which this study is based is collected from interactions
with the OVIS dialogue system [8]. OVIS, for ‘Openbaar Vervoer Informatie
Systeem’ (Public Transport Information System), prompts the user for four slot
values in order to retrieve trip information from an on-line database of train
timetables: the departure and arrival station names, as well as the date and
time (i.e., hour and minute, and time of the day) of either the departure or
the arrival. During the development of OVIS a corpus of dialogue transcripts
with syntactic and semantic annotations was compiled for evaluation purposes,
consisting of transcribed dialogues sampled from a range of telephone calls of
naive users of OVIS. Figure 1 is an illustration of the type of dialogues contained
in this corpus, translated to English. The composite codes associated to each
user utterance (delimited by ‘ ’ and ‘;’ when an utterance has two dialogue acts)
represent the components of interest in this paper, and are explained later.

Turn Utterance Annotation

S1 Good evening. This is the automatic information system of public
transportation. (. . .) From which station to which station do you
want to travel?

q va

U1 I need to go from Schiphol to Nijmegen on Tuesday next week. s vad ok

S2 From where to where would you like to travel on Tuesday twelve
December?

q va;i d

U2 From Schiphol to Nijmegen. s va prob

S3 At what time do you want to travel from Schiphol to Nijmegen? q h;i va

U3 Around quarter past eleven in the evening. s th ok

S4 So you want to leave around eleven thirty-eight in the morning? e th

U4 No, in the evening. n;s t prob

Fig. 1. Translation of the first three turn pairs of dialogue nr. 004/005 sampled from
the OVIS corpus. User turns are annotated by our label set on the three components of
the understanding task: tra, slot, and pr, respectively. System prompts are analysed
in terms of system tras and slots.

The material used in the present study consists of 441 transcribed dialogues
coming from interactions with 80 naive users who communicated with the system
over regular phone lines. Audio files containing the recorded user input, the
transcribed, semantically annotated user utterances, as well as the ASR output
containing word graphs were available to us for research. The dialogues amount
to 3,738 pairs of system and user turns. The number of turn pairs in the dialogues
ranges from 2 to 29, the average number being 8. The number of words uttered
in a user turn ranges from 1 to 15, the average being three, while the ASR on
average recognizes about 7 words per utterance (including alternatives). 43.2%



of the turns are conceptually inaccurately recognised by the system, whereas
the word error rate is reported to vary between 8-26% depending on the phone
models and language models used in speech recognition [8].

2.2 Class label design

The three components of the pragma-semantic analysis of each user turn are
labelled in terms of three sets of labels. The labelling is based on two earlier
annotations of the OVIS corpus by [9] and [7]. First, the task-related act (tra)
interpretation component is defined by a label set representing basic actions that
a user performs in information-seeking dialogues. The following five labels are
sufficient to represent the tras in the OVIS corpus:

– s (‘slot-filling’), provide information with respect to the query (e.g. ‘from
Amsterdam to Tilburg’)

– y, give an answer that expresses affirmative input in the given dialogue
context (e.g. ‘yes’, ‘that’s right’, etc.)

– n, give a negative answer (e.g. ‘no thanks’, ‘it’s not necessary’, ‘go back’,
‘this is incorrect’, etc.)

– a, accept incorrectly verified information (e.g., by not signalling a system
error)

– nstd, give a non-standard reply (e.g., to remain silent, to provide a fully
irrelevant input).

The slot interpretation component is defined by task-related information
units for which information is supplied by the user:

– v (‘vertrek’, departure station)
– a (‘aankomst’, destination station)
– d (day of travel)
– t (time of day of travel, i.e., morning, afternoon, evening)
– h (hour and minute of travel).
– void (in case no slots are treated in the turn)

In the backward-pointing communication problem detection level we label
user turns as prob, when it identifies the point at which the user becomes aware
of the communication problem, since he or she has just heard a system prompt
not in accordance with information provided in earlier exchanges in the dialogue.
The label ok is used to annotate cases when no communication problems occur.

2.3 Feature design

Most of the cues we utilise for understanding user utterances have shown their
worth in earlier work; we simply collect all of these features and use all of them
for the classification of all three components. Table 1 lists the employed features
according to their origin: whether they come directly from the system’s dialogue
manager (DM) or the speech recogniser, or whether they come from prosodic
processing of the audio recording of the user input made by the ASR. The result-
ing vector of each user turn has a total of 2,482 features. For more information,
cf. [10].



Table 1. Overview of the employed features.

Aspect Feature

DM: prompt ⊲ sequence of last 10 prompt types
DM: lexical ⊲ 934-bits bag-of-words vector of current and previous

prompt

ASR: confidence ⊲ highest summed confidence score in current word graph
⊲ same, normalised by number of nodes in path
⊲ score difference between most confident and second-most
confident path in current word graph

ASR: branching ⊲ branching factor in the word graph of current and previous
utterance

ASR: lexical ⊲ 1,518-bits bag-of-words vector of current and previous user
turn
⊲ word string in most confident path in current word graph
⊲ length of most confident string

Audio: pitch ⊲ maximum, minimum, mean pitch, and standard deviation
⊲ position of maximum and minimum pitch

Audio: loudness ⊲ maximum and mean energy, and standard deviation
⊲ position of maximal energy

Audio: duration ⊲ duration of turn
⊲ duration of initial pause

Audio: speech rate ⊲ tempo

2.4 Classifier

We use a memory-based learner mbl as the machine-learning classifier of choice.
The mbl algorithm is a descendant of the k-nearest neighbour (k-NN) classifier
[11, 12]. Memory-based, or instance-based learning is a type of ‘lazy’ learning;
the classifier simply stores a representation of all training examples in memory,
without abstracting away from individual instances during the learning pro-
cess. The classification procedure of mbl1 finds, for each new test instance,
k nearest-neighbor examples from memory, and subsequently extrapolates the
nearest neighbors’ majority class to the new instance. mbl computes the dis-
tance between a memory example X and the new unlabelled instance Y for each
feature according to a distance function ∆(X, Y ), that computes the distance
of X and Y as the sum of the differences between the individual corresponding
features of X and Y , as in ∆(X, Y ) =

∑
n

i=1
wi δ(xi, yi), where n is the number

of features, and wi is an additional optional feature weight of the ith feature.
Different functions can be used for δ, such as overlap or Hamming distance,

modified value difference, and Jeffrey divergence. After the k nearest neighbours
are identified with the distance function, their majority class label is transferred
as the predicted class to the new instance Y . What constitutes the majority class

1 In our experiments we used the implementation of mbl called ib1 from the timbl

software package [13], version 5.1.



of a set of k nearest neighbours can optionally be determined by unweighted
democratic voting, or by various distance-weighted voting schemes. For details
on all parameters, functions, and metrics in the mbl algorithm, cf. [13].

It is unknown which (combination of) parameter settings yield the best gen-
eralisation performance on some task. Ideally, one would want to tune algorithm
parameters automatically: such a procedure however contains a search problem
for finding optimal parameter settings given a particular data set. The method
of wrapped progressive sampling or WPS [14] offers a solution to this. The pro-
cedure implemented in WPS combines finding a set of optimised algorithmic
parameters for a range of machine learning algorithms through classifier wrap-
ping combined with progressive sampling of training data. For more details, cf.
[14]. We applied WPS to all experiments reported in this paper.

The performance of the learner on the various tasks is measured in terms
of F-score [15] computed per class, and micro-averaged over classes, averaged
over 10-fold cross-validation experiments. For the cross-validation experiments
the data was partitioned at the level of dialogues, not labeled examples.

3 Experimental results

Table 2 displays the outcomes of our systematic series of 10-fold cross-validation
experiments on each of the three tasks, the three combinations of these tasks in
pairs (‘Double task’ in the table), and the single combination of all three tasks
(‘Triple task’). Under the columns headed by ‘−’ we observe that learning the
tasks in isolation is not necessarily the best scenario. Although it is for the tra

task, the slot task is learned better when co-learned with the tra task, and in
the case of the pr task we even observe an optimal result when it is co-learned
with the other two tasks. The values of the best results (91.7, 87.7, and 90.8,
respectively) show that all three components can be learned at fairly reliable
levels. This is attested also by comparing them to the baseline score listed in the
second column of Table 2. This baseline is quite sharp and informed: it represents
the F-score of guessing the tra, slot, and pr labels based on the previously
asked question by the system. If users would be totally predictable in the way
they answer questions, and if their answers would be recognized perfectly, this
score would be 100. The present best results reduce the remaining error left by
the baseline by one third to a half.

Next, we performed the same series of experiments, introducing automatic
feature selection before learning and testing on a cross-validated training and
test set. Automatic feature selection, typically based on some heuristic search
for the fittest feature subset by running wrapping experiments on the training
data, produces a subset of features estimated to perform well on unseen data;
preferrably at least as good as, and smaller than the original set of features.
We adopted a simple yet powerful bi-directional hill-climbing feature selection
method proposed by Caruana and Freitag [16], feeding it with the empty set as
starting point. The generalization performance results of these experiments are
displayed in Table 2 in the columns headed by ‘+’. Compared to the experiments



Table 2. Average F-scores (scaled to 100) on the three basic tasks, performed in
isolation, as part of a double task, and as part of the triple task, without feature
selection (−) and with feature selection (+), with standard deviations printed below
each F-score.

Individual Double task Triple task
Task Baseline − + Task − + − +

tra 78.7 91.7 91.5 +slot 91.3 90.3 90.7 91.1
2.5 0.7 1.1 0.6 1.3 1.2 1.6

+pr 91.6 90.4
0.9 1.0

slot 77.8 86.7 84.8 +tra 87.7 84.6 86.6 85.1
2.2 2.0 1.9 2.0 2.4 2.3 2.0

+pr 86.5 84.5
1.8 1.3

pr 81.3 87.2 88.2 +tra 89.7 89.3 90.8 89.0
3.9 2.3 2.0 1.4 1.0 1.2 1.2

+slot 89.9 88.8
1.5 1.5

without feature selection, we observe mild decreases in performance, especially
on the slot task and on several ‘Double’ tasks in which one point of F-score is
lost, while we also observe smaller decreases and some increases in performance
on the tra and pr tasks.

These results are all the more surprising given that they are based on re-
ductions of the original set of 2,482 features down to just 8 to 18 on average (a
compression rate of over 99%), as displayed in Table 3. For example, for the tra

task just over 8 features on average are needed to attain virtually the same result
as using all 2,482 features. A few more features are needed for the other tasks
and task combinations, especially those involving the slot task, which involves
on average about nine lexical features that are triggered by the recognition of
words by the ASR.

A second remarkable fact is that most tasks involve small amounts of fea-
tures from all types; apart from specific words from the user utterance and
system prompt, typically one feature representing some aspect of the dialogue
history is selected, and one feature of the recorded audio of the user utterance.
Table 4 lists the top-18 most frequently selected features over all feature se-
lection experiments; the single-most frequently selected feature (selected in all
experiments) is the type of question the system most recently asked, which is
also the single feature on which the baseline of Table 2 is based, and arguably
the most important feature of all [17]. The single audio feature is typically either
the length of the utterance measured in the number of words, or in seconds. It
can further be seen in Table 4 that the list of most-selected features represents a
succinct, minimal vocabulary that covers the most essential words in train travel
from both parties.



Table 3. Average numbers of selected features for all seven tasks, divided over sources
and types of features, and totalled.

# Features
System User

Task History Words Audio Words Total

tra 1.3 2.5 2.0 2.3 8.1
slot 1.0 3.4 1.4 9.0 14.6
pr 1.1 5.4 0.1 4.7 11.3

tra+slot 1.1 7.1 0.8 9.5 18.5
tra+pr 1.5 3.3 1.2 3.3 9.2
slot+pr 1.1 6.0 1.0 8.8 16.9

tra+slot+pr 1.3 6.7 1.0 9.3 18.3

Table 4. The eighteen most frequently selected features, grouped by source and type.

Source Type Selected features

System History Previous question
Words waar (where), welk (which), naar (to)

User Audio Utterance length (# words in recognized string, seconds)
Words Complete recognized string, nee (no), ja (yes), aankomen

(arrive), ’s avonds (in the evening), ’s middags (in the
afternoon), ’s ochtends (in the morning), morgenocht-

end (tomorrow morning), uur (o’clock), van (from), naar

(to), in (in).

4 Conclusions

Based on a case study we have explored the learnability of three aspects of
understanding user utterances in goal-oriented spoken dialogue systems, and
especially their co-learnability as combined learning tasks. The case study indeed
showed that co-learning is possible, and even warranted to arrive at the optimal
scores for two of the three tasks. In both of these cases, the slot and pr tasks, it
can be argued that the tra task (which is best learnt in isolation) is in fact the
‘supertask’ of which slot and pr are subtasks. slot is the hierarchically lower
subtask of detecting particular slots under the ‘slot-filling’ act of tra. pr, the
task of detecting the user’s awareness of communication problems, can perhaps
be seen as yet another main type of act as part of tra.

Second, we observed by performing feature selection experiments that only a
small subset of 8 to 18 features is sufficient to attain near-top performance. The
18 most frequently selected features tell the story about how the tasks should be
performed: first, the ‘baseline’ outcome is determined by the question just asked
by the system. In case the user does not respond as expected, possibly signalling



a communication problem, this can be detected by checking the values of the
other features: for example, the length of the user’s utterance (e.g. if a 10-word
answer is returned to a yes/no question, something unexpected is happening),
and domain-specific ‘hot’ words that tell whether the user is talking about times
or places, possibly to correct earlier misrecognized information that the system
needs to backtrack to, but has assumed to be recognized correctly so far.

The strength of the top-18 features is reflected in Table 5 which provides
also the upper bound of the system in case of perfect ASR performance; as said,
the OVIS data also has a transcribed version of all user utterances besides the
audio recordings. If the top-18 features would be used to learn the task we would
arrive at performances which are within standard deviation range of the upper
bound results.

Table 5. F-scores on the three tasks as parts of the triple task with all features (left),
the top-18 most frequently selected features (middle), and the upper bound score on
each task given transcribed user utterances (right).

Task All features Top 18 features Upper bound

tra 91.7 ± 0.7 92.3 ± 1.1 93.3 ± 0.8
slot 86.7 ± 2.0 88.4 ± 2.0 90.8 ± 1.2
pr 87.3 ± 2.3 89.2 ± 1.7 91.8 ± 1.1

This paper extends earlier results [7, 18, 19, 17, 10] on the same corpus; it
reaffirms the findings reported in this series of papers and expands them with
the new feature selection results. Similar results have already been attained
by applying rule learning to the same data, yielding comparable feature sets
and performances for the individual tasks, but worse performances for the co-
learning tasks. We view the co-learning results as a recommendation to test the
co-learnability of subtasks with memory-based learning in any domain, whenever
there is reason to believe they are related tasks and could be co-learned.

As for dialogue systems, we believe our results with the k-nearest neighbor
approach using small amounts of features reaffirms the simple power of classic
keyword-based methods that have been superseded by research into the inte-
gration of deeper syntactic, semantic, and pragmatic analyses. This approach
has yet to demonstrate its robustness to noisy environments, which the present
approach clearly has – it will arguably be the best option as long as no truly
robust general-purpose syntactic and semantic parsers exist.
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