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Voor alle gëınteresseerden





Voorwoord (Acknowledgements)

Het is uiteindelijk dan toch zover gekomen. Na bijna vier jaar hard werken, zit mijn

AiO-schap er nagenoeg op. Het waren vier jaar met ups en downs waarbij vooral het

laatste deel om uiteenlopende redenen lastig is geweest.

De doorgemaakte intellectuele groei heb ik als meest positieve aspect van het AiO-

schap ervaren. De mensen die daarvoor het meest verantwoordelijk zijn, te weten Bas

Werker en Feico Drost, wil ik daarvoor hartelijk bedanken. Ook ben ik aan hen veel dank

verschuldigd vanwege het feit dat ze zoveel tijd en energie in mijn begeleiding gestoken

hebben. Ik ben blij dat ze gedurende de hele periode het geloof in mij hebben behouden.

Door hen kon ik mij geen betere werkomstandigheden wensen.

De samenwerking met ABN-Amro Structured Asset Management bleek een vrucht-

bare te zijn. Het bracht mij een welkome afwisseling van mensen, kantoor en werkbe-

nadering. Het voortdurend heen en weer pendelen tussen de theorie en de dagelijkse

praktijk van vermogensbeheer heb ik als bijzonder prettig ervaren. Ik wil dan ook Cees

Dert en Bart Oldenkamp bedanken dat ze zich vier jaar geleden hebben ingezet om deze

constructie mogelijk te maken. Verder kijk ik er naar uit om vanaf 1 oktober, na 51
2

jaar, eindelijk binnen een vast dienstverband mee te draaien. Mijn toekomstige collega’s

wil ik vanaf deze plaats hartelijk danken voor het goede contact en de subtiele (voet-

bal)discussies de afgelopen jaren. In het bijzonder wil ik Mark Petit en Anne de Kreuk

danken voor het lezen van bepaalde delen van mijn proefschrift.

Het eerste contact met de Universiteit van Tilburg, in die tijd nog Katholieke Uni-

versiteit Brabant, is totstandgekomen via Theo Nijman. Hem wil ik bedanken voor het

ontspannen eerste gesprek waardoor de keuze voor Tilburg eigenlijk direct gemaakt was.

i



ii Voorwoord (Acknowledgements)

Daarnaast wil ik ook de andere commissieleden Andre Lucas, Frans de Roon en Robert

Tompkins danken dat ze in de promotiecommissie zitting hebben willen nemen.

Ik zou nog een uitgebreide opsomming van mensen kunnen geven die het leven in

Tilburg en ver daarbuiten veraangenaamd hebben. Aangezien ik zeker een aantal zou

vergeten, houd ik het bij een bijzonder gezelschap. Ik wil mijn ouders, de rest van

mijn familie en mijn vrienden bedanken voor alle steun, geduld, warmte, gezelligheid en

gastvrijheid in de afgelopen vier jaar.

Daarbij heb ik de afgelopen jaren mogen genieten van een geweldige kamergenote.

Bedankt, Marta, voor al die persoonlijke en minder persoonlijke praatsessies van ons.

Verder wil ik ook Anna, Esther, Evgenia, Jeroen, Laurens en Rob bedanken voor het

prettige contact dat is ontstaan de afgelopen jaren. Ook is het prettig thuiskomen in

de wetenschap dat iemand als Petra naast je woont. Petra, oneindig veel dank voor je

emotionele steun tijdens de laatste paar maanden. Tenslotte wil ik Shaastie bedanken

voor al haar geloof in en begrip voor mij tijdens de afgelopen jaren.

Amsterdam, augustus 2005



Table of Contents

Voorwoord (Acknowledgements) i

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview and Contribution of Thesis . . . . . . . . . . . . . . . . . . . . 4

2 Literature Overview 9

2.1 Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Price processes and theoretical option pricing . . . . . . . . . . . 9

2.1.2 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Jump processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Econometric issues . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.5 Implied price processes . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.6 Implied volatility modeling . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Expected Option Returns and Factor Models . . . . . . . . . . . . . . . . 31

3 The Impact of Overnight Periods on Option Pricing 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 The Overnight Jump Model . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Stock price process . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Data and Estimation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



iv TABLE OF CONTENTS

3.4.1 Standard option pricing models . . . . . . . . . . . . . . . . . . . 48

3.4.2 Option pricing models with overnight jumps . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.A Option Pricing Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Nonparametric Risk-Neutral Return and Volatility Distributions 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Estimation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Relation with Existing Methods . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Fully nonparametric methods . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Breeden and Litzenberger (1978) based methods . . . . . . . . . . 67

4.3.3 Risk-neutral return/volatility distributions in the Heston model . 67

4.3.4 Risk-neutral volatility distributions in stochastic volatility models 72

4.4 Empirical Risk-Neutral Return/Volatility Distributions . . . . . . . . . . 75

4.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Risk-neutral return and volatility densities . . . . . . . . . . . . . 77

4.4.3 Risk-neutral bivariate return/volatility distribution . . . . . . . . 81

4.4.4 Conditional risk-neutral return distributions . . . . . . . . . . . . 83

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 A Note on the Use of GARCH Instruments for Parameter Estimation

in Stochastic Volatility Models 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 GMM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Mean-Variance Properties of Option Returns 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Affine jump-diffusions . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.2 Expected option returns . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.3 Variance and covariance of option returns . . . . . . . . . . . . . 105

6.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Expected option returns and the volatility risk premium . . . . . 108



TABLE OF CONTENTS v

6.4.2 The influence of the jump risk premium . . . . . . . . . . . . . . 111

6.5 Mean-Variance Performance Measurement . . . . . . . . . . . . . . . . . 113

6.5.1 CAPM and the Black-Scholes model . . . . . . . . . . . . . . . . 114

6.5.2 CAPM and the Heston model . . . . . . . . . . . . . . . . . . . . 116

6.5.3 CAPM and the Poisson-jump model . . . . . . . . . . . . . . . . 120

6.5.4 CAPM and delta-hedged straddles . . . . . . . . . . . . . . . . . 121

6.6 Asset Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6.1 Asset allocation in stochastic volatility models . . . . . . . . . . . 122

6.6.2 Asset allocation in jump models . . . . . . . . . . . . . . . . . . . 126

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.A Benchmark Model Derivations . . . . . . . . . . . . . . . . . . . . . . . . 129

6.B Second Moment of Option Returns . . . . . . . . . . . . . . . . . . . . . 132

6.C Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and Future Research 137

7.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 143

Nederlandse Samenvatting (Dutch Summary) 159





CHAPTER 1

Introduction

1.1 Motivation

The usage of derivatives in risk management and portfolio management has expanded

tremendously over the last couple of decades. The increased liquidity in standard deriva-

tive contracts (options and futures) and the development of more complex exotic deriva-

tive products are mainly caused by the general developments of financial institutions,

investors’ needs, and regulations.

From a risk management perspective, derivatives are used to control the uncertainty

in the value of investment portfolios. For instance, credit derivatives provide financial

institutions a tool to manage the credit risk of their investments by insuring against

adverse movements in the credit quality of the borrower. Other possible sources of

uncertainty that are hedgeable by derivatives include changing interest rates, exchange

rates, and stock prices.

Derivatives are not only used for hedging purposes but have also become a direct

source of revenue in portfolio management. In equity markets, for example, (institu-

tional) investors are interested in products that have a high expected return and a

limited downside risk. Portfolios of standard options can be constructed in such a way

that these features are present in the portfolio payoff profile. Combinations of (barrier)

options, default-free bonds, and cash constitute the basis of the so-called guaranteed

products and click funds. These type of investment products were very popular in the

1



2 INTRODUCTION

late nineties and have attracted a significant share of new capital to equity markets in at

least The Netherlands. Financial products that provide leveraged equity combined with

limited downside risk are still popular after the world wide downfall of equity markets

between 2000 and 2003 and after the increased stringent guidelines that institutional

investors, like pension funds and insurance companies, are faced with. More recently,

derivative products related to the volatility of equity markets have gained more pop-

ularity. The obvious consequence of using derivatives in portfolio management is that

these financial instruments become objects of risk management themselves.

Evidence for the increased liquidity in derivative products can, for example, be found

in the Bank for International Settlements publications (BIS) and on Bloomberg. The

quarterly BIS publications on International Banking and Financial Developments report

an outstanding exchange traded futures amount of $2.3 trillion at the end of 1991 up to

$6.0 trillion in 1995 and $17.7 trillion at the end of 2003. The interest rate futures market

is by far the largest and most liquid among futures markets. Similar growth patterns are

recognized in option markets. According to the same source, the outstanding amount

of exchange traded options (interest rate, currency and equity) was $1.3 trillion by the

end of 1991 and subsequently increased to $3.1 trillion in 1995 and reached $31.3 trillion

at the end of 2003. Again, the interest rate options are the most actively traded. The

notional amount of outstanding OTC contracts grew from $72.1 trillion in 1998 to $197

trillion in 2003. The numbers on turnover show that besides the size of the markets,

trading activity has also increased. Bloomberg reports a similar growth in European and

Asian markets. The numbers reported above confirm the spectacular growth in liquidity

and trading activity in derivative markets during the last two decades.

The increased importance of derivatives in financial management is the main moti-

vation for this thesis. A strong emphasis is thereby placed on the information revealed

by exchange traded plain vanilla index option prices. Although numerous papers have

appeared in the financial and econometrics literature utilizing the information of option

prices and returns on the option’s underlying asset, there are still a number of questions

which remain unanswered. This thesis fills some of these gaps that still exist in the

current financial literature.

Financial modeling deals with two issues concerning risky assets: pricing and hedging.

In order to calculate the model price of a derivative security three theoretical concepts

are of crucial importance. These are (1) the real-world dynamics of the derivative’s

underlying security, (2) the pricing kernel, and (3) the risk-neutral dynamics of the

derivative’s underlying security. The pricing kernel consists of the risk premia of the
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systematic risks that are implied by the underlying economy and the attitude towards

risk of the representative investor in that economy. Financial theory shows that in

equilibrium two of three aforementioned concepts imply the remaining third concept.

For instance, in the widely celebrated Black-Scholes model the assumption that both

the real-world dynamics and the risk-neutral dynamics of the derivative’s underlying

security are geometric Brownian Motion, can be used to infer that the representative

investor in the underlying economy has constant relative risk aversion.

In the option pricing literature numerous papers are motivated by the failure of the

Black-Scholes model in describing all features in observed stock (index) returns and

option prices. Within the current financial literature three different streams can be

identified that deal with the failures of the Black-Scholes model. First, alternative mod-

els are proposed that relax the geometric Brownian Motion assumption of the option’s

underlying value.1 These models mostly introduce additional systematic risk factors.

In addition, assumptions are imposed on the risk premia that are required on these

factors. The dynamics of the option’s underlying value and the imposed risk premia

together determine the risk-neutral dynamics and, therefore, theoretical option prices.

To see whether the proposed model corresponds to the empirical regularities in the

data, model-based option prices are compared to the option prices observed in practice.

The second stream in the option pricing literature utilizes the direct relation between

empirical option prices and the risk-neutral dynamics of the option’s underlying asset.

From observed plain vanilla option contracts so-called Arrow-Debreu securities are con-

structed. These securities define the risk-neutral probabilities of future values of the

underlying. This stream of literature estimates the risk-neutral distribution of the un-

derlying value nonparametrically while in the first stream a parametric specification of

the risk-neutral distribution is imposed. The last stream of research uses the Black-

Scholes model as the benchmark. This model is appealing to derivative practitioners

because of its simplicity. However, instead of a constant volatility practitioners often

use an option implied volatility as a model input. This implied volatility is assumed to

be a (deterministic) function of the option’s strike price and maturity. Research in this

area aims to find empirical regularities in the dynamics of the option implied volatilities.

This thesis contributes to the first and second stream of literature while the third stream

falls outside the scope of this thesis.

Early finance theory is founded on the work of Markowitz (1952) who was the first

1Bates (2003) divides the first stream further into univariate models, stochastic volatility models,
and jump models.
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to analyze the concept of the risk-return trade off in a portfolio of stocks instead of

picking the best stock from a set of available stocks. The idea was further developed

and eventually resulted in the Capital Asset Pricing Model (CAPM) in which the single

stock expected return is determined by the stock’s correlation with the market. In this

relatively simple model the only source of systematic risk, for which compensation is

required, is market risk. Though in other respects conceptually different, the CAPM

feature of one single systematic risk factor is shared with the Black-Scholes option pricing

model. This feature allows for a testing framework that identifies market completeness

and/or the redundancy of options. Current literature only provides a limited amount of

papers that study the nature of option returns and the correlation between option returns

and the option’s underlying. More insight in these issues is of significant importance in

the practical implementation of portfolio management (and hence risk management).

Motivated by the increasing liquidity in option markets, this thesis aims to use the

information contained in these option prices to solve some remaining issues in the option

pricing literature and to study the nature of option returns in more detail.

1.2 Overview and Contribution of Thesis

Chapter 2 gives an extensive overview of the literature that is related to empirical

option prices. Option pricing literature has developed from the early Black and Sc-

holes (1973) paper to the general class of affine jump-diffusions (Duffie, Pan, and Sin-

gleton (2000)) and the literature on option pricing under Lévy processes (see, e.g., Cont

and Tankov (2004)). Attention is also paid to econometric issues, like parameter esti-

mation with latent state variables, that come into play when more sophisticated models

are applied. Difficulties that arise due to the incompleteness of markets are treated as

well. Extraction of the risk-neutral distribution from observed option prices is based on

the theoretical results in Breeden and Litzenberger (1978). Early empirical applications

of the theoretical concept can be found in Shimko (1993) and Aı̈t-Sahalia and Lo (1998).

The comparison between model distributions and empirical distributions, the implica-

tions for empirical risk aversion, and the profitability of trading strategies based on the

differences between these distributions can be found, among others, in Aı̈t-Sahalia and

Lo (2000) and Aı̈t-Sahalia, Wang, and Yared (2001). Coval and Shumway (2001) is one

of the few papers that studies the nature of option returns instead of looking for the

best description of observed option prices. An extension of the empirical work in Coval

and Shumway (2001) can be found in Driessen and Maenhout (2004).
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In Chapter 3 the influence of overnight trading halts on option prices is considered.

The chapter is based on Boes, Drost, and Werker (2004). The motivation for this

chapter lies in the fact that traditional asset pricing models ignore trading halts in

overnight periods while literature shows that distributional properties of asset returns

in nontrading periods differ considerably from the asset returns during trading periods

(see, for instance, French and Roll (1986)). Chapter 3 proposes an option pricing model

that takes the nontrading overnight periods explicitly into account. More specifically,

the change in the index between the closing one day and the opening the other day

is modeled by means of a single jump. During the trading day, changes in the index

price are described by a stochastic volatility model that includes random jumps. After

a change of measure, theoretical option pricing formulas are derived. These prices are

used to estimate the risk-neutral parameters by using S&P-500 index option prices. The

main conclusion of Chapter 3 is that overnight jumps have a non-trivial impact on S&P-

500 index option prices: the overnight jump component accounts for approximately one

quarter of total jump variation. Moreover, an option pricing model including overnight

jumps next to stochastic volatility and random jumps provides the best fit for SPX

options.

Chapter 4 proposes a new methodology for the estimation of the joint risk-neutral

density of excess index returns and future spot volatility by using plain vanilla options

that are written on that index. The main advantage of this approach is that besides the

risk-neutral distribution of returns, the risk-neutral density of the future instantaneous

volatility can also be estimated. The risk-neutral density of future volatility can be used

to price derivative products that have a payoff dependent on future spot volatility. The

chapter originates from Boes, Drost, and Werker (2005). The current literature, initi-

ated by Shimko (1993) and Aı̈t-Sahalia and Lo (1998), is based on the insight provided

in Banz and Miller (1978) and Breeden and Litzenberger (1978) that the risk-neutral

density of returns is the second derivative of a call option pricing formula with respect to

the strike price. Such an approach is not feasible in estimating the risk-neutral volatility

distribution since there are no derivatives that have a payoff perfectly correlated with

future spot volatility. Theoretically, the methodology in Chapter 4 is an application of

the First Fundamental Theorem of Asset Pricing. The method is verified in a Heston

(1993) world. The results show that the method is able to extract the joint density of

excess returns and future spot volatility out of the Heston (1993) model option prices.

A similar conclusion is drawn even if the true spot volatilities are replaced by the esti-

mated EGARCH volatilities. Furthermore, the results confirm a right-shift in the future
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volatility distribution for higher initial volatility levels, but additionally reveal positive

risk-neutral volatility skewness. Moreover, volatility skewness is more pronounced in low

volatility periods. This is consistent with a large aversion towards unexpected positive

volatility shocks. With respect to the risk-neutral return distribution, estimation results

confirm overall negative skewness and show that conditional on decreasing volatility lev-

els, the negative return skewness disappears. Concerning the risk-neutral dependence

between return and volatility, the results show that this dependence is negative. Com-

pared to parametric models, the outcomes imply that risk-neutral volatility of volatility

is much smaller than predicted by the Heston (1993) model. This indicates the necessity

of a jump component in the risk-neutral return process. Finally, the results indicate

that the risk-neutral volatility of volatility cannot be described by a single diffusion

risk-neutral volatility process.

Chapter 5 is a small note on parameter estimation in stochastic volatility models.

Parameter estimation in these models is cumbersome since the instantaneous volatility

appears in moment conditions while this variable is unobserved. Solutions that are pro-

posed in the literature include for example, computer intensive simulation methods like

Simulated Method of Moments or Efficient Method of Moments. Other methods con-

struct a noisy estimator of the instantaneous volatility utilizing high frequency data and

subsequently apply standard GMM techniques. Chapter 5 shows in a simulation study

that taking unconditional moments instead of conditional moments results in a bad em-

pirical identification of the parameters in the stochastic volatility process. Furthermore,

results of a simulation study show that instruments based on GARCH parameter esti-

mates lead to a significant reduction of the standard errors of the parameter estimates

of the stochastic volatility model in comparison to the standard errors resulting from

using traditional instruments like lagged squared returns. However, standard errors are

still too large for the estimates to be of practical relevance.

Chapter 6 treats the mean-variance characteristics of option returns. As was pointed

out in Coval and Shumway (2001), there is an enormous literature on the pricing of

options under all kinds of advanced models, but there is a limited amount of papers

available that treats option returns both theoretically and empirically. Chapter 6 pro-

vides a methodology, based on characteristic functions, that allows for the calculation

of the conditional expectation and the conditional variance of returns on options that

are not necessarily held to maturity. Using the same methodology, the covariance be-

tween the stock and the option and the covariance between options that have different

strike prices can be calculated. The theoretical derivations are applied in the area of
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mean-variance investment analysis. The first application, based on Leland (1999), treats

the issue of performance measurement of option based strategies under mean-variance

preferences. Leland (1999) argues that under the assumption of perfect markets and in-

dependently and identically distributed returns on the market portfolio, CAPM β is an

invalid measure of risk and CAPM α an inappropriate performance measure for option

based strategies. The results of Chapter 6 show that these conclusions still hold after the

assumption of independently and identically distributed returns is relaxed. However, if

only market risk is priced, CAPM α can be used as a performance measure for returns

on delta-hedged straddles. The second application compares optimal asset allocation

for mean-variance investors and power utility investors in a setting where investors have

access to the derivatives markets. Mean-variance investors optimally hold short strad-

dle positions when the volatility risk premium is negative. In this way, mean-variance

investors earn the risk premium on stochastic volatility. In case of a crash risk premium

mean-variance investors optimally take short positions in out-of-the-money puts if the

compensation for crash risk is sufficiently high.

Chapter 7 summarizes the thesis and provides some directions for future research.





CHAPTER 2

Literature Overview

2.1 Option Pricing

The introduction illustrated that derivative markets have expanded spectacularly in the

past couple of decades. This growth is not only recognized in derivatives markets but

also in the academic derivatives literature. This chapter gives a detailed overview of

the progress that has been made in modeling observed asset returns, option prices, and

option returns.

2.1.1 Price processes and theoretical option pricing

This section reviews the literature on modeling stock prices and option prices using

continuous time stochastic processes. Bachelier (1900) is one of the first studies that

applied stochastic process theory to financial markets. The paper proposes to model

stock prices as a Brownian Motion with drift. A fundamental property of these type

of processes is that the processes become negative with probability one. This drawback

was corrected in Samuelson (1965) by modeling stock prices as geometric Brownian

Motion. Black and Scholes (1973) derived theoretical option prices under the geometric

Brownian Motion assumption. In the seventies and early eighties the model seemed to

provide a reasonable description of both daily stock index returns and observed option

prices. Monday October 19, 1987, also called Black Monday, had a huge impact on

9
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Figure 2.1: Black-Scholes implied volatility skew using S&P-500 index options with one

month to maturity on October 22, 2003. The closing index value on this day was 1032.

financial markets. On this day, the Dow Jones Industrial Average lost 22.6% and the

S&P-500 index dropped 20.5%. The effect of this event became clearly visible in option

markets. Pictures in Bates (2000) show that before the stock market crash the Black-

Scholes implied volatility was approximately constant across strike price. However, after

the crash a pronounced implied volatility skew appeared in option markets. An example

of a volatility skew on the S&P-500 is shown in Figure 2.1. This figure is based on

put option data from October 22, 2003. The non-constancy of implied volatility and

the changing shape of the implied volatility smile across maturities and the dynamics

of the smile through time is in contrast to the assumptions of the Black-Scholes model.

The average difference between the at-the-money implied volatility of an option and

the realized volatility of the option’s underlying asset, e.g., a stock index (see Figure

2.2) provides another argument against the Black-Scholes assumptions. In addition,

asset return data reveal that historical volatility is non-constant: volatilities cluster and

short horizon stock (index) returns exhibit heavy tails. These empirical observations

contradict the Black-Scholes assumptions of constant volatility and normally distributed

asset returns.

Academic literature responds and continues to respond by proposing alternatives to

the Black-Scholes model of stock prices ranging from the Heston (1993) stochastic volatil-

ity model to the more complicated Lévy jump models as for example in Carr, Geman,

Madan, and Yor (2003). Self contained references in the latter area are Schoutens (2003)

and Cont and Tankov (2004). In the Black-Scholes world the defined market is complete
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Figure 2.2: Black-Scholes at-the-money implied volatilities and one-month realized

volatilities using S&P-500 data over the period January 1990 to July 2004.

with respect to the risk free asset and the stock. This feature disappears in the stochas-

tic volatility and jump models. In stochastic volatility models an extra asset, e.g. a call

option needs to be introduced in order to restore the completeness of the market. In

most jump models there are infinite sources of uncertainty and hence an infinite number

of assets is necessary for completeness. This and other issues show that complicated

models induce an increasing theoretical and numerical complexity.

2.1.2 Stochastic volatility models

Comparing the high standard deviation of asset returns in 2002 and 2003 to the extreme

low volatility of asset returns in 2004 leads to the conclusion that variability of asset

returns changes stochastically over time. One of the well known classes of continuous

time models allowing for changing volatilities is the class of bivariate diffusion models.

The stochastic differential equations of the stock price and volatility in this class of

models are usually of the type

dSt

St

= µ (t, St, σt) dt + σtdW S
t ,

dσt = a(t, St, σt)dt + b (t, St, σt) dW V
t , (2.1)

where W S and W V are Brownian Motions. The Brownian Motions are allowed to have a

constant correlation coefficient ρ. Note that the introduction of the stochastic volatility

process implies that the price process is not a Markov process, i.e. the probability
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distribution of the future stock price depends not only on the current stock price but

also on the current level of volatility. The models of Hull and White (1987), Stein

and Stein (1991), and Heston (1993) belong to this general class of stochastic volatility

models.1 These models differ in the specification of the volatility process and in the

assumption about the correlation between the Brownian Motions. In the Heston (1993)

model the assumed variance process is based on the Cox, Ingersoll, and Ross (1985)

interest rate process

dσ2
t = −κ

(
σ2

t − σ2
)
dt + σσσtdW V

t ,

with κ as the reversion speed of the process to the long run mean variance σ2. Application

of Ito’s Lemma yields the corresponding volatility process

dσt = −1

2
κ

(
σt −

(
σ2

σt

− σ2
σ

4κσt

))
dt +

1

2
σσdW V

t ,

which clearly fits in specification (2.1). The difference between the Hull and White (1987)

and Heston (1993) model lies in the specification of the variance process. In the Hull and

White (1987) model, for instance, the volatility of volatility is a linear function of the

instantaneous variance whilst in the Heston (1993) model this function is linear in the

instantaneous volatility. The Stein and Stein (1991) model differs from the Heston (1993)

model in the sense that the Stein and Stein (1991) model imposes a zero correlation

between the Brownian Motions while Heston (1993) allows for a non-zero correlation

coefficient.

For the purpose of option pricing, bivariate diffusions are a convenient class of pro-

cesses since partial differential equation (PDE) methods can be utilized to calculate

option prices. Analogous to Merton (1973), Heston (1993) reports the no-arbitrage

PDE for the value of any asset that depends both on the stochastic underlying value

and the stochastic variance. Under the assumption that the variance risk premium is

linear to the instantaneous variance, Heston (1993) determines closed form solutions for

option prices which can be obtained by Fourier inversion.2

1Other examples include Johnson and Shanno (1987), Scott (1987), and Wiggins (1987).
2Hull and White (1987), Johnson and Shanno (1987), Scott (1987), and Wiggins (1987) use other

methods to calculate theoretical option prices. For instance, in Scott (1987) a Monte Carlo technique
is employed and Wiggins (1987) uses a higher-dimensional finite-difference approach. In these papers
option prices are determined under the assumption that volatility risk is not priced. The Fourier inver-
sion technique is, among others, also applied in Stein and Stein (1991), Bakshi, Cao, and Chen (1997),
Scott (1997), Bakshi and Madan (2000), Bates (2000), Duffie, Pan, and Singleton (2000), and Dai and
Singleton (2000).
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An alternative approach for calculating option prices is the risk-neutral valuation

method. This method is based on the First Fundamental Theorem of Asset Pricing

which states that the absence of arbitrage opportunities is equivalent to the existence of

an equivalent martingale measure.3 More formally: a market model is arbitrage free if

and only if there exists a probability measure Q equivalent to the real world probability

measure IP such that all discounted asset prices are martingales. The mathematical tool

that is used to change the measure is Girsanov’s theorem. The mechanism is easily

demonstrated in the Heston (1993) model

dSt

St

= µdt + σtdW S
t , (2.2)

dσ2
t = −κ

(
σ2

t − σ2
)
dt + σσσt

(
ρdW S

t +
√

1− ρ2dW V
t

)
, (2.3)

where W S and W V are independent Brownian Motions under the probability measure

IP. In comparison to the original Heston (1993) model, (2.3) is slightly reformulated

with two independent Brownian Motions. The model can be rewritten as

dSt

St

= rdt + σt

{
dW S

t +

(
µ− r

σt

)
dt

}
,

dσ2
t = − (

κ + ηV
) (

σ2
t −

κσ2

κ + ηV

)
dt + σσσt

(
ρ

{
dW S

t +

(
µ− r

σt

)
dt

}

+
√

1− ρ2

{
dW V

t +
1√

1− ρ2

(
ηV σt

σσ

−
(

µ− r

σt

)
ρ

)
dt

})
.

Applying Girsanov’s theorem to this set of equations yields

dSt

St

= rdt + σtdW̃ S
t ,

dσ2
t = − (

κ + ηV
) (

σ2
t −

κσ2

κ + ηV

)
dt + σσσt

(
ρdW̃ S

t +
√

1− ρ2dW̃ V
t

)
,

where W̃ S and W̃ V are independent Brownian Motions under a probability measure Q

equivalent to the probability measure IP. This example clearly demonstrates that the

market is not complete with respect to the stock and the bond. The Second Fundamental

Theorem of Asset Pricing states that a market is complete if and only if there is a unique

3Note that this is true in discrete time models with finitely many states. In continuous time, the
existence of an equivalent martingale measure still implies absence of arbitrage but the converse does
not hold in general. No-arbitrage is not sufficiently strong to imply the existence of an equivalent
martingale measure and should be replaced by the stronger concept of no free lunch with vanishing
risk, see Delbaen and Schachermayer (1994) and Delbaen and Schachermayer (1998).



14 LITERATURE OVERVIEW

equivalent martingale measure. In model specification (2.3), there exists another risk-

neutral process

dSt

St

= rdt + σtdW
S

t ,

dσ2
t = − (

κ + ηV
) (

σ2
t −

(κσ2 − σσ (µ− r) ρ)

κ + ηV

)
dt + σσσt

(
ρdW

S

t +
√

1− ρ2dW
V

t

)
,

where W
S

and W
V

are independent Brownian Motions under a probability measure Q∗

equivalent to the probability measure IP. This model is different from the Heston (1993)

model and therefore implies different model option prices. However, the prices in this

model are still arbitrage free. The notion of incompleteness becomes more important in

jump models where markets are usually incomplete with respect to any finite number of

traded assets.

A final pricing method is based on the pricing kernel process. The pricing kernel

equivalent of the First Fundamental Theorem of Asset Pricing is that absence of arbitrage

is equivalent to the existence of a nonnegative pricing kernel. For a given nonnegative

pricing kernel π, time t no-arbitrage value Xt of a derivative with payoff XT at time T

is

Xt = EIP
t

(
XT

πT

πt

)
.

In bivariate diffusion models with independent Brownian Motions, the process π is de-

scribed as (assuming a constant risk free interest rate r)

dπt = −rπtdt− ζS
t πtdW S

t − ζV
t πtdW V

t ,

with ζS
t and ζV

t as the market prices of market risk and variance risk, respectively.

The reason to treat the Heston (1993) model extensively is that the model is em-

pirically reasonable and analytically tractable. The model, for instance, allows for a

non-zero correlation between the Brownian Motions which is important in explaining

observed implied volatility patterns. Furthermore, Duffie and Kan (1996) shows that

the model belongs to the general class of affine jump-diffusions. Figure 2.3 shows that a

negative correlation between the Brownian Motions leads to a downward sloping implied

volatility skew, while ρ = 0 implies a symmetric smile. Since in option markets both

volatility skews and smiles are observed, flexibility in the correlation parameter is called

for.

Another important issue in bivariate diffusion models is the volatility risk premium

parameter ηV . A negative value of this parameter leads to a higher long run mean of the
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(a) Negative correlation
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(b) Zero correlation

Figure 2.3: Black-Scholes implied volatilities resulting from option prices calculated

from the Heston model. Model prices for a negative and zero correlation between the

driving Brownian Motions are determined for options that have one remaining month

to maturity.

risk-neutral variance process than the long run mean in case the risk in variance is not

priced (ηV = 0). Hence, model option prices increase when the volatility risk premium

parameter decreases. This is intuitively clear since options provide a desired protection

against high volatility states.

There are several ways to extract information on the volatility risk premium from

empirical data. First, a structural model implies that the theoretical option prices are a

function of the risk-neutral parameters that contain the risk prices. Option prices can be

used to choose model parameters in such a way that some criterion on the option pricing

errors is minimized. Bakshi, Cao, and Chen (1997) chooses the risk-neutral parameters

by using option data only. Since the objective parameters are not separately identified,

this approach does not give any information about the sign of the risk premium. In

Chernov and Ghysels (2000) and Pan (2002) both option prices and stock (index) returns

are used to estimate the parameters and therefore reported estimates include both the

objective parameters and risk-neutral parameters. These papers report estimates that

imply a negative volatility risk premium in the standard Heston (1993) model, i.e. option

prices used in these studies are best described by a higher long run mean in the variance

process. However, the outcomes strongly depend on the model specification. Hence, the

results should be treated with care.

Secondly, option positions can be constructed such that these positions are (instanta-

neous) delta-neutral. The returns generated from these strategies are related to the vari-

ance of the underlying value. Bakshi and Kapadia (2003) considers a dynamic strategy

in which equity call options are delta hedged. The paper derives a theoretical relation-
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ship between the variance risk premium and the gains on option portfolios. Empirical

results reveal that the variance risk premium is negative. In Coval and Shumway (2001)

a similar approach is taken but instead of considering single call options the paper

uses delta-neutral at-the-money straddles. These turn out to have a payoff directly re-

lated to the variance of the underlying asset. That paper also suggests that the most

plausible explanation for the results is a negative volatility risk premium. Finally, Bon-

darenko (2004) chooses an approach that is completely model free and also comes to the

conclusion that the variance risk premium is negative and large in magnitude.

Chernov (2002) gives yet another argument for a negative volatility risk premium.

The paper derives, in a stochastic volatility framework, an approximate relation between

the expected integrated volatility, the Black-Scholes implied volatility, and the covariance

between the stochastic discount factor and the integrated volatility

EIP
t

(
1

h

∫ t+h

t

σ2
udu

)
≈ σBS

t,t+h − e−rhCovt

(
πt+h

πt

,
1

h

∫ t+h

t

σ2
udu

)
,

with σBS
t,t+h, the time t Black-Scholes implied volatility from an at-the-money option that

matures at time t + h. The empirical observed positive difference between the at-the-

money implied volatility and the realized volatility (see Figure 2.2) is in the stochastic

volatility setting explained by a positive covariance between future variance and the

pricing kernel. A positive covariance corresponds to a negative volatility risk premium

in the Heston (1993) stochastic volatility model.

2.1.3 Jump processes

The addition of jumps to a continuous time asset price process was first motivated in

Merton (1976). The paper introduces a model in which the continuous part (modeled by

a constant variance geometric Brownian Motion) represents the normal vibrations of the

stock prices due to, for instance, changes in the economic outlook. The jump part of the

model describes the abnormal vibrations of the stock, i.e. the arrival of important new

information about the stock that causes a significant change to the stock price value.

Since then the empirical significance of jumps and the implications for option pricing

have been studied extensively in the finance and econometrics literature. Nowadays, two

main strands of literature can be identified. First, models that are based on the class of

affine jump-diffusion models as described in Duffie, Pan, and Singleton (2000). One of

the characteristics of these models is that there are finitely many jumps in every time

interval. Furthermore, the distribution of jump sizes is assumed to be known which
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simplifies the understanding of the dynamic model structure. The second stream of

literature uses more general Lévy processes as building blocks of the stock price process.

The main distinction with the former class of models is that there are possibly an infinite

number of jumps in every time interval. These models are often called infinite activity

models.

The expression affine jump-diffusion models stems from the affine dependence of the

drift vector, the instantaneous covariance matrix, and the jump intensities on the state

vector. Earlier papers like Heston (1993) for derivative pricing and Cox, Ingersoll, and

Ross (1985) for interest rates already present models that fit into the class of affine

jump-diffusion models. In Duffie, Pan, and Singleton (2000) the affine jump-diffusion

state-process model is presented as follows. Assume that X is a stochastic process in

some state space D ⊂ Rn following the dynamics

dXt = µ (Xt) dt + σ(Xt)dWt + dZt,

with W a standard Brownian Motion in Rn. The function µ (·) : D → Rn represents the

time trend of the process and the function σ (·) : D → Rn×n is the diffusion function. The

process Z is a pure jump process and is assumed to follow a Poisson process with time

varying intensity λ (·). The jump sizes are independent of all other random variables

at the time the jump occurs. The functions µ, σσT , λ and the discount rate function

R : D → R are assumed to be affine in the state variables in X

µ(x) = K0 + K1x, for K = (K0, K1) ∈ Rn × Rn×n,(
σ (x) σ (x)T

)
ij

= (H0)ij + (H1)ij x, for H = (H0, H1) ∈ Rn×n × Rn×n×n,

λ(x) = l0 + l1x, for l = (l0, l1) ∈ R× Rn,

R(x) = ρ0 + ρ1x, for ρ = (ρ0, ρ1) ∈ R× Rn.

Together with the jump size distribution, the parameters (K, H, l, θ) determine the dis-

tribution of X. Consider now a function ψ (·) : Cn ×D × R+ × R+ → C defined by

ψ (u,Xt, t, T ) = E

(
exp

(
−

∫ T

t

R(Xs)ds

)
euXT

∣∣∣∣Ft

)
, (2.4)

for t ≤ T . In this formula Ft denotes all information available at time t. The discounting

factor makes ψ (·) different from the standard conditional characteristic function. Duffie,

Pan, and Singleton (2000) shows that under technical regularity conditions (which are

omitted here, see for details Duffie, Pan, and Singleton (2000))

ψ (u, Xt, t, T ) = eα(t)+β(t)x,
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where β and α satisfy the complex-valued ordinary differential equations

β̇(t) = ρ1 −KT
1 β(t)− 1

2
β(t)T H(t)β(t)− l1 (θ (β(t))− 1) ,

α̇(t) = ρ0 −KT
0 β(t)− 1

2
β(t)T H(t)β(t)− l0 (θ (β(t))− 1) ,

with boundary conditions β(T ) = u and α(T ) = 0. Function ψ (·) proves to be useful

for option pricing. Duffie, Pan, and Singleton (2000) first derives the expected present

value of a call option’s payoff C(d, c, T, χ) with maturity T , i.e. for each given (d, c, T ) ∈
Rn × R× R+

C(d, c, T, χ) = E

(
exp

(
−

∫ T

t

R(Xs)ds

) (
ed·XT − c

)+

∣∣∣∣Ft

)
,

= E

(
exp

(
−

∫ T

t

R(Xs)ds

) (
ed·XT − c

)+
1d·XT≥log c

∣∣∣∣Ft

)
,

= Gd,−d (− log c; X0, T, χ)− cG0,−d (− log c; X0, T, χ) , (2.5)

where χ contains all model parameters and, under some condition, Ga,b = (·; x, T, χ) :

R→ R+

Ga,b (y; X0, T, χ) =
ψ (a,X0, 0, T )

2

− 1

π

∫ ∞

0

Im [ψ (a + ivb,X0, 0, T ) e−ivy]

v
dv, (2.6)

with Im(c) the imaginary part of the complex number c. If there is a jump component

in the class of affine jump-diffusion models the market model is incomplete with respect

to any finite number of traded assets due to the infinite number of uncertainties fol-

lowing from the jump part. Consequently, there exists an infinite number of equivalent

martingale measures that give no-arbitrage prices. If the equivalent martingale measure

is chosen such that the structure of the model is preserved (i.e., the state-process model

still fits in the class of affine jump-diffusion under this chosen equivalent martingale

measure) then (2.5) and (2.6) can be applied, using a given χQ (vector containing risk-

neutral model parameters) instead of χ, to determine the time 0 price of a call option

with strike price c and maturity T .

For example, suppose that in a Heston (1993) world (see previous section) the value

of a call option on S with strike price K and maturity T needs to be calculated. The

Heston (1993) model follows from taking n = 2, X = (log S, σ2), d = (1, 0), and c = K in

the more general affine jump-diffusion model. Heston (1993) proves that the theoretical

option price (using constant interest rates and notation as in previous section)

C = S0P1 −Ke−rT P2,
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with

P1 =
1

2
+

1

π

∫ ∞

0

Re

[
ϕ0 (φS − i) e−iφS log K

iφSϕ0 (−i)

]
dφS,

P2 =
1

2
+

1

π

∫ ∞

0

Re

[
ϕ0 (φS) e−iφS log K

iφS

]
dφS,

and

ϕ0 (φS) = E0 {exp (iφS log ST )} ,

= exp
(
C (T ; φS) + D (T ; φS) σ2

0 + iφS log S0

)
,

where

C (T ; φS) = riφST +
κσ2

σ2
σ

{
(κ− ρσσiφS + d) T − 2 log

(
1− gedT

1− g

)}
,

D (T ; φS) =
κ− ρσσiφS + d

σ2
σ

1− edT

1− gedT
,

and

g =
κ− ρσσiφS + d

κ− ρσσiφS − d
,

d =

√
(ρσσiφS − κ)2 + σ2

σ (iφS + φ2
S).

Application of affine jump-diffusion models to asset return data (mostly S&P-500 in-

dex returns) shows that there is a consensus about the added value of jumps under the

objective probability measure. Andersen, Benzoni, and Lund (2002), Pan (2002), Er-

aker (2004), and Eraker, Johannes, and Polson (2003) report benefits of adding jumps in

returns to the Heston (1993) stochastic volatility model. Although these studies use dif-

ferent data periods and estimation techniques (see next section), conclusions about the

impact of jumps in the return process are similar. This is considered as strong evidence

for the presence of jumps in the S&P-500 index price process.

Adding a jump part to the asset return process is not sufficient to capture all empirical

regularities in the data. For instance, Jones (2003) finds a higher volatility of volatility

during more volatile periods in the stock market. Pan (2002) also reasons that the

volatility of volatility might be stochastic. One way to add more flexibility to the

variance process is by means of a jump process. However, empirical evidence for the

presence of jumps in the volatility process is mixed. Eraker, Johannes, and Polson (2003)

and Eraker (2004) find strong evidence for jumps in the volatility process while the

evidence in Chernov, Gallant, Ghysels, and Tauchen (2003) and Pan (2002) is less clear
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or completely absent. In Broadie, Chernov, and Johannes (2004) the positive skewness

and excess kurtosis in model implied variance increment point towards jumps in volatility

under the objective probability measure.

Conclusions about the importance of jumps in asset returns and volatility for the fit of

option prices is mixed as well. Bakshi, Cao, and Chen (1997) and Broadie, Chernov, and

Johannes (2004) find significant improvement in the pricing of options by adding jumps

in the return process of a stochastic volatility model. On the other hand, Bates (2000),

Pan (2002), and Eraker (2004) find only minor benefits. Furthermore, Eraker (2004) re-

ports that the addition of jumps in volatility does not lead to an improvement in fit while

Broadie, Chernov, and Johannes (2004) finds a relative improvement of almost 20% due

to jumps in volatility. Finally, there are also some contrasting results reported on the

several risk premia. As mentioned in the previous section, Coval and Shumway (2001),

Chernov and Ghysels (2000), and Bakshi and Kapadia (2003) provide strong empirical

indications of a significant negative volatility risk premium. However, in Broadie, Cher-

nov, and Johannes (2004) the diffusive volatility risk premium is insignificant. This is

explained by the additional jump component in the volatility process. In general, em-

pirical results indicate that the expected value of future instantaneous variance is higher

under the risk-neutral measure than under the objective measure. In models that include

jumps in the asset return process, Pan (2002) finds a significant jump risk premium and

an insignificant volatility risk premium. This in contrast to Eraker (2004) that reports

empirical evidence on a significant volatility risk premium and an insignificant jump risk

premium. The lack of consensus is mainly due to the different option data that are used

in the various studies. Most papers use data over a small sample period or only use a

small part of the information contained in the data. The next section shows that an

estimation algorithm that fully exploits the information in return data and option data

is still unavailable.

The second category of jump models is called infinite activity models. As mentioned

before, these models assume an infinite number of jumps in each time interval. The

commonly assumed market models consist of one risk free bond and a risky asset S

which is modeled by

St = S0e
Xt , (2.7)

where X = {Xt, t ≥ 0} is a Lévy process. The motivation for using a Lévy process is

that in contrast to Brownian Motion the Lévy process is allowed to have discontinu-

ities. Brownian Motion is the only continuous Lévy process. In order to ensure the

independent and stationary increments assumption of a stochastic process, the time t
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distribution of X has to be infinitely divisible. These type of processes are, in gen-

eral, called Lévy processes, after Paul Lévy. An excellent self-contained treatment

of the application of Lévy processes in financial modeling can be found in Cont and

Tankov (2004). Schoutens (2003) offers a more applied overview of Lévy processes in

finance. Technical details are omitted since the application of Lévy processes is be-

yond the scope of this thesis. The most well-known choices for the process X are the

symmetric variance gamma process (Madan and Seneta (1990)), the general variance

gamma process (Madan, Carr, and Chang (1998)), the normal inverse Gaussian process

(Bandorff-Nielsen (1997) and Bandorff-Nielsen (1998)), the CGMY process (Carr, Ge-

man, Madan, and Yor (2003)), and the generalized hyperbolic Lévy processes (Bandorff-

Nielsen (1978), Eberlein (2001), and Raible (1998)). The main drawback of these Lévy

models is that stochastically changing volatility is not allowed for. In the Lévy literature

two methods are proposed to correct for this. First, like in the Heston (1993) model

a stochastic volatility process is added to the asset return process. The basic selected

process is of the Ornstein-Uhlenbeck type where the process is driven by a positive Lévy

process. References that illustrate this method include, among others, Bandorff-Nielsen

and Shephard (2001) and Bandorff-Nielsen and Shephard (2003). The second method

is to apply a stochastic time change to the Lévy process X. The stochastic time clock

is usually modeled by an integrated CIR process or an Ornstein-Uhlenbeck. The main

reference for this second method is Carr, Geman, Madan, and Yor (2003).

In option pricing the same problems arise as for the affine jump-diffusion models.

Unless the process X is Brownian Motion, the Lévy market model is incomplete. This,

again, means that the equivalent martingale measure is not unique, i.e. a wide range

of no-arbitrage option prices can be calculated. One way to construct an equivalent

martingale measure in the exponential Lévy model (2.7) is to use the so-called Esscher

transform. In short, the method works as follows. Suppose that ft(x) is the conditional

objective density of random variable Xt. Then a new density f θ
t (x) can be defined as

f θ
t (x) =

exp (θx) ft(x)∫∞
−∞ exp(θy)ft(y)dy

,

for some real number θ ∈
{

θ ∈ R| ∫∞−∞ exp(θy)ft(y)dy < ∞
}

. The parameter θ is chosen

in such a way that the discounted asset price is a martingale. Gerber and Shiu (1996)

provides an economic argument for choosing the Esscher transform martingale measure.

Another possible solution is to add an extra drift parameter to the Lévy process. After

estimating the model parameters, this drift parameter can be adjusted in such a way

that the discounted stock price process becomes a martingale. In case the Esscher
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transform equivalent measure is used, the time t call price Ct(T,K) with strike price K

and maturity T is given by

Ct(T, K) =

∫ ∞

log K
St

f
(θ∗+1)
T (x)dx− e−r(T−t)K

∫ ∞

log K
St

f θ∗
T (x)dx,

where θ∗ is the choice of θ which makes the discounted asset price a martingale.

2.1.4 Econometric issues

The issue of parameter estimation in continuous time models is intensively studied in

the financial econometrics literature. Stock (index) return data can only be utilized to

identify the parameters of the objective probability distribution. In the Black-Scholes

model parameter estimation is relatively simple. Standard maximum likelihood is ap-

plied to the data to get consistent and efficient estimates of the drift parameter and

the variance parameter. The extension of the Black-Scholes to a stochastic volatility

model creates difficulties for parameter estimation. Namely, (conditional) probability

distributions and moment conditions depend on the unobservable volatility factor. The

consequence is that maximum likelihood estimation becomes computationally infeasi-

ble. As a result, several methods have been proposed in the literature that deal with

the problem of latent factors. The methods that only employ stock (index) return data

are roughly divided in simulation based methods, characteristic function based methods,

and Bayesian Markov Chain Monte Carlo methods.

Simulation methods are feasible if simulation of the model processes is relatively

easy. The basic idea of the simulated method of moments procedure (Duffie and Single-

ton (1993)) is that sample moments are matched with simulated moments. These simu-

lated moments are determined using a simulated time series of the assumed underlying

stochastic processes. The efficient method of moments (Gallant and Tauchen (1996))

is an extension of the simulated method of moments by generating moment conditions

from an auxiliary model that approximates the distribution of the observed data. Un-

der certain conditions the parameter estimates obtained by applying efficient method

of moments are as efficient as maximum likelihood parameter estimates. The resulting

estimator is closely related to the indirect inference estimator proposed by Gourieroux,

Monfort, and Renault (1993). The efficient method of moments is, among others, applied

in Andersen, Benzoni, and Lund (2002) for affine jump-diffusion models and in Chernov

and Ghysels (2000) for the Heston stochastic volatility model. Another simulation based

method is simulated maximum likelihood as described in Brandt and Santa-Clara (2002).
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In this approach the likelihood function is evaluated in a consistent approximation of the

transition density of the diffusion. Applications of the method to models that contain

both jumps and stochastic volatility can be found in Piazzesi (2000), Durham (2000),

and Brandt and Santa-Clara (2002).

In the two classes of models discussed in the previous section the (joint) character-

istic function of the random state variables is known in closed form. In Das (1996) and

Bates (1996a) the characteristic function is used for parameter estimation in continuous

time models. These papers employ inversion techniques to obtain the density function

from the characteristic function. Because of the computational complexity of inver-

sion, new estimation techniques were developed that utilized the characteristic function

directly. Examples can be found in Singleton (2001), Jiang and Knight (2002), and

Chacko and Viceira (2003). The difference between the methods in these papers lies in

the treatment of latent variables. The methods integrate out the latent variable from

the characteristic function in some sense and therefore become conditional only on the

current value of the stock price.

The final class of methods discussed here are the Bayesian Markov Chain Monte

Carlo (MCMC) methods. MCMC is based on the Hammersley-Clifford theorem which

states that a joint distribution can be characterized by the complete set of conditional

distributions. Relying on this result, MCMC generates samples from a given target

distribution. In financial applications this means that the distribution of the state

variables and the parameters are characterized by, first, the distribution of the state

variables conditioned on the data and the parameters, and secondly on the distribution of

the parameters given the state variables and the data. The method is successful because

the conditional distributions are relatively easy to compute compared to the joint density.

From a financial point of view, the main advantage of the MCMC methods is that both

the model parameters and state variables are estimated. For instance, no additional

filtering rule is necessary to obtain an estimate of instantaneous volatilities. Results in

Jacquier, Polson, and Rossi (1994) and Andersen, Chung, and Sorensen (1999) show

that MCMC outperforms (in terms of mean squared error) GMM, QMLE, and EMM. A

practical application to S&P-500 returns using a model that allows for jumps in returns

and volatility is found in Eraker, Johannes, and Polson (2003).

Efficiency of the parameter estimates could be improved by using the cross-section

of option data in addition to return data. Chernov and Ghysels (2000) applies EMM

to asset return data and at-the-money Black-Scholes implied volatilities. In Pan (2002)

the implied state GMM methodology is introduced. This method uses at most two
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options to identify the risk premia in the model. Furthermore, given model parameters,

option prices provide an estimate of the instantaneous volatility process. The implied

volatility is then assumed to be known and is subsequently used as an input to several

moment conditions. Eraker (2004) shows how to estimate parameters by the MCMC

method using both option prices (approximately three on a day) and returns. A common

feature between the procedures is that the information of only a few options is employed.

The main reason for this is that computing time increases heavily with the inclusion of

more options.

Finally, there are studies that only use the entire cross-section of option prices for

parameter estimation. The consequence is that only risk-neutral parameters are es-

timated and therefore risk premia and objective parameters are often not separately

identified. In Bakshi, Cao, and Chen (1997) parameters are estimated in a model with

stochastic interest rates, stochastic volatility, and jumps in the return process utilizing

the information in the entire cross-section of option prices between 1988 and 1991. In

Bates (2000) futures option prices between 1988 and 1993 are used. Two issues concern-

ing this methodology need to be addressed. First, the choice of the criterion function

and the options that are used for optimization. The choice of the criterion function

depends on the application at hand. If the main interest is the estimation of the tails

of the distribution, in-the-money options (most illiquid, see Bondarenko (2003b)) are

left out and relative pricing errors are minimized. On the other hand, if interest lies

on the center of the distribution, absolute pricing errors are used instead of relative

pricing errors. Secondly, as was pointed out by Bates (2000), an appropriate statistical

theory of option pricing errors is lacking. This implies that the calculation of standard

errors or confidence bands of parameters is a non-trivial task. Broadie, Chernov, and

Johannes (2004) solves this issue by using a nonparametric bootstrapping procedure.

2.1.5 Implied price processes

As was already mentioned in the introduction of this thesis, financial theory is centered

around the concepts of (1) the representative agent’s preferences in combination with

an equilibrium model, (2) the asset price dynamics, and (3) the risk-neutral dynamics.

Theoretical literature states that in equilibrium two of the three aforementioned concepts

imply the third.

The previous section treated the issues concerning parametric specifications of asset

price dynamics intensively. In this section attention is shifted towards the risk-neutral

dynamics that are implied by derivative prices. The first stream of literature that uti-
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lized the information of derivatives aims to construct the risk-neutral price process of

the option’s underlying asset. The basis of the method goes back to Cox, Ross, and Ru-

binstein (1979) that gives the discretization of the continuous time Black-Scholes model

by means of a binomial tree. Rubinstein (1994) builds on this method by constructing

binomial trees using observed option prices. By assuming that all paths reaching the

same terminal node have the same probability, a unique implied binomial tree is derived.

The no-arbitrage tree is constructed using backward recursion. Derman and Kani (1994)

proposes another method for the construction of the binomial tree. This method employs

a forward construction procedure that utilizes the information of options with different

maturities. A number of numerical difficulties arise when the procedure is implemented

using observed option prices. To solve these problems, Derman, Kani, and Chriss (1996)

proposes to use trinomial trees instead of binomial trees. The underlying assumption of

implied (binomial) trees is that these are discretizations of a one-dimensional diffusion

in which the volatility is a deterministic function of the asset price and time.4 This is

a rather restrictive and empirically implausible assumption (see Dumas, Fleming, and

Whaley (1998)). There are a number of studies that extend to stochastic volatility in

tree methods. The most appealing among these is the method proposed in Britten-

Jones and Neuberger (2000). The paper describes all continuous price process that are

compatible with observed option prices without making the restrictive assumption that

volatility is a function of asset price and time. Unfortunately, a formal empirical test

of the concepts in Britten-Jones and Neuberger (2000) is not yet provided in literature.

Although tree methods induce numerous numerical difficulties, the positive properties

should not be forgotten. Once the risk-neutral price process can be obtained from option

prices the task of pricing all kinds of exotic options is fairly simple. Jackwerth (1999)

provides a more detailed overview of tree methods.

Another stream of literature concentrates on the information contained in option

prices on the future stock price distribution. The (conditional) density of the underlying

model factors under the risk-neutral dynamics is called the risk-neutral density or state

price density. In a model where asset prices can take every possible positive value,

the state price density is the continuous state analogue of the prices of Arrow-Debreu

securities. These are contingent claims that have a unit payoff in a given state and

4Univariate diffusion models relax the geometric Brownian Motion assumption in the Black-Scholes
model. Other examples of univariate diffusion models include the constant elasticity of variance model
in Cox and Ross (1976) and Cox and Rubinstein (1985) and the leverage effect model in Geske (1979)
and Rubinstein (1983).
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nothing in each other possible state. The conditional risk-neutral density proves to

be useful in valuing derivative securities at a particular point in time. Breeden and

Litzenberger (1978) shows that there is an obvious link between the state price density

and option prices. The paper shows that the risk-neutral density of the underlying

value of the option at maturity of the option is the second derivative of a call option

pricing formula with respect to the strike price of the option. This can easily be seen by

considering (in a discrete setting) an option portfolio that gives the butterfly spread as

a payoff, i.e. 1/c of call options with strike K−c and with strike K +c, and additionally

-2/c call options with strike K. If the distance between two successive states is equal to

c then the payoff of this portfolio equals 1 in case the underlying value takes value K at

maturity and value 0 otherwise. Assuming a constant risk free interest rate r the First

Fundamental Theorem of Asset Pricing implies

C (St, K − c,T − t)− 2C (St, K,T − t) + C (St, K + c,T − t)

c
= e−r(T−t)Qt (ST = K) ,

(2.8)

where C (St, K,T − t), is the time t value of a call option with strike K and maturity

T−t given that the time t value of the underlying is St. For the continuous state setting,

the risk-neutral probability is transformed to a density value in a standard way. Letting

c go to zero then gives

er(T−t)∂
2C (St, K,T − t)

∂K2
= qST

(K), (2.9)

where qST
(·) denotes the conditional risk-neutral density of ST in a continuous state

setting.

The methods that make use of (2.9) are nonparametric methods. These methods can

be divided in a number of classes of which the kernel methods and curve-fitting methods

are most important. An example of a methodology that fits into the first class is found in

Aı̈t-Sahalia and Lo (1998). This paper proposes a semiparametric approach for finding

an estimate of the option-pricing function. In the second step (2.9) is utilized to obtain

an estimate of the risk-neutral density q (·). In the most general formulation the method

is not unconditional. However, under the assumption that the option-pricing function

is homogeneous of degree one, the resulting implied risk-neutral density is independent

of the initial stock price. Jackwerth and Rubinstein (1996) provides a methodology

that belongs to the class of curve-fitting methods. The risk-neutral probability distri-

bution is calculated by minimizing the distance between the risk-neutral probabilities

(which are the decision variables in the optimization) and a prior distribution under

the restriction that options and the option’s underlying value are priced correctly. In
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contrast to Aı̈t-Sahalia and Lo (1998), Jackwerth and Rubinstein (1996) only use op-

tion data at a particular point in time to estimate the conditional risk-neutral density

of the underlying asset, i.e. using data on another day results in a different implied

distribution. Another popular method (see for instance Shimko (1993)) is to fit the

implied volatility smile/skew by, for example, a polynomial. Subsequently, the implied

volatilities are translated into option prices after which (2.9) is applied to obtain the

risk-neutral distribution of the future stock price. Besides the nonparametric methods,

parametric methods are also developed. These methods will not be treated in this thesis

but Jackwerth (1999) gives a detailed overview. More recent contributions are found in

Bondarenko (2000) that proposes a new nonparametric method for the calculation of

risk-neutral densities and in Panigirtzoglou and Skiadopoulos (2004) which is the first

paper that treats the dynamics of risk-neutral densities. Empirical application of several

methods in Coutant, Jondeau, and Rockinger (1998) and Anagnou, Bedendo, Hodges,

and Tompkins (2002) show that if there are a sufficient number of options available, the

different methodologies produce similar results.

The estimated risk-neutral densities after the 1987 crash appear to be strongly neg-

atively skewed, see for instance the results in Aı̈t-Sahalia and Lo (1998) and Jackwerth

and Rubinstein (1996). This typical post-crash shape of the implied risk-neutral distri-

bution using S&P-500 options is also found in Weinberg (2001) and Anagnou, Bedendo,

Hodges, and Tompkins (2002). The shape of the risk-neutral density is an immediate

consequence of the volatility smile or skew that is present in options markets since the

stock market crash in 1987. These patterns are not only observed in the United States

but also in Japanese, German, and British markets (see Tompkins (2001a)). One of the

possible explanations for the changing shape of the implied volatility curve around the

crash is that investors’ attitude toward risk has changed after the crash. This explana-

tion was a motivation for several studies (Aı̈t-Sahalia and Lo (2000), Jackwerth (2000),

Bliss and Panigirtzoglou (2004), and Anagnou, Bedendo, Hodges, and Tompkins (2002))

that extract risk aversion coefficients from estimators of both the risk-neutral and the

objective density.

The empirical work on implied risk aversion is based on the fact that in the economy

that is described by Jackwerth (2000), the coefficient of absolute risk aversion RA can

be expressed in terms of the risk-neutral and the statistical density

RA =
p′(ST )

p(ST )
− q′(ST )

q(ST )
,

where p(·) is the objective density and q(·) defined as before. Of course, a lot of critical
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points can be made about the choice of the underlying economy but intuitively the dif-

ference between the risk-neutral density and the statistical density provides information

on general risk aversion towards the uncertainty in stock markets. Jackwerth (2000)

uses a kernel estimator to find an estimate of p(·). Using this estimator and an estimate

of the risk-neutral density, the paper finds that before the 1987 stock market crash,

the risk aversion function is reasonably consistent with economic theory. However, after

1987, the risk aversion function become negative and increasing in certain states. Similar

conclusions are drawn in Aı̈t-Sahalia and Lo (2000). Brown and Jackwerth (2001) cal-

culate the empirical pricing kernel using estimates of the objective and the risk-neutral

distribution. The shape of the empirical pricing kernel is consistent with the findings

in Jackwerth (2000) and Aı̈t-Sahalia and Lo (2000). Although the literature entitles

these observations as puzzles, a closer look to the estimation methodologies provides

more insight. There is just one restriction in estimating the risk-neutral distribution:

to avoid arbitrage opportunities the expected instantaneous return on the asset should

be the risk free rate. Usually more assumptions (about the underlying economy) are

implicitly imposed when objective parameters are estimated. This gives reason for the

different shapes of the implied density and the objective density. Trading strategies

based on the differences between the objective and risk-neutral distribution appear to

be extremely profitable, see (Aı̈t-Sahalia, Wang, and Yared (2001)). The profitability

of these strategies is mainly explained by the relatively high price that is received for

shorting an out-of-the money put option. Coval and Shumway (2001) empirically shows

that simple short option strategies give extraordinary returns. These trading strategies

are no pure arbitrage strategies since the return need not to be positive in all states of

the world.

Derivatives prices do not only provide information on the risk-neutral density but

can also be used to hedge realized variance of the underlying asset. Regarding vari-

ance, the literature concentrates mostly on how option prices can be used to determine

the risk-neutral expectation of realized variance or quadratic variation of the option’s

underlying asset. This is theoretically illustrated in, for instance, Britten-Jones and

Neuberger (2000). The paper shows that in a diffusion setting with zero interest rates

the risk-neutral expectation of realized variance between times t and T equals

EQ
t

[∫ T

t

σ2
udu

]
= 2

∫ ∞

0

C(St, K, T − t)− C(St, K, 0)

K2
dK. (2.10)

A similar kind of expression is obtained by calculating the reference level of a variance

swap. A variance swap is a contract that pays off the difference between the realized
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variance RV of the underlying asset between time t and time T and the reference level

L. When the contract is initiated the contract (like a forward contract) has value 0 and

therefore the theoretical value of L is

L = EQ
t (RVt,T ) =

1

T − t
EQ

t

[∫ T

t

σ2
udu

]
, (2.11)

where the second equality is only true in a diffusion setting without any jumps. This

setting also allows to rewrite (2.11) as

L =
2

T − t
EQ

[∫ T

t

dSt

St

− log
ST

St

]
,

=
2

T − t

{
r (T − t)−

(
St

Ft

erT − 1

)
− log

Ft

St

+ er(T−t)

∫ Ft

0

1

K2
P (St, K, T − t) dK

+er(T−t)

∫ ∞

Ft

1

K2
C (St, K, T − t) dK

}
. (2.12)

In this formula Ft represents the time t reference level of a standard forward contract that

expires at time T . Setting interest rates at zero and applying put call parity to (2.12)

leads to (2.10). The results in Coval and Shumway (2001) and Carr and Wu (2004)

show that strategies whose payoffs are correlated with the quadratic variation of the

underlying assets give on average high returns. This conclusion provides some evidence

that investors are not only concerned about the uncertainty in the return but are also

influenced by the uncertainty about the return variance. Carr and Wu (2004) finds

by using the structure of variance swaps that uncertainty in the return variance of the

S&P-500 and Dow Jones index is priced. The previous section has shown that these

results are confirmed by studies that use parametric option pricing models.

2.1.6 Implied volatility modeling

Most practitioners do not think in terms of complicated stochastic processes when they

are managing (the risk of) their option portfolios. Often the observed implied volatility

surface in combination with the so-called ’sticky-strike’ rule or ’sticky-delta’ rule is used

to get an estimate of the future value of the options under management. Scientific

research that aims to fit observed option prices perfectly (in both the strike price and

the maturity dimension) goes back to the lattice methods in Derman and Kani (1994)

and Rubinstein (1994). The previous section mentioned that the underlying assumption

in these tree methods is that volatility is a deterministic function of the asset price and

time. Empirical evidence of the time-instability of parameters in deterministic volatility
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models is given in Dumas, Fleming, and Whaley (1998). Furthermore, that paper shows

that time-varying parameters lead to substantial changes in hedge parameters which is

undesirable from a risk management perspective. As a result, models are constructed

that not only aim to fit the observed Black-Scholes implied volatilities but also model the

dynamic evolution of the implied volatility surface. This type of research gives a number

of reasons for using Black-Scholes implied volatilities instead of local or instantaneous

volatilities. First, Black-Scholes implied volatilities are easily retrieved from market data.

No model is presumed because of the one-to-one correspondence between market prices

and Black-Scholes implied volatilities. Secondly, implied volatilities provide information

on the state of the option market that is familiar to market practitioners. Finally, there

is a high correlation between shifts in the levels of implied volatilities across maturities

and strike prices. This indicates that the joint dynamics of implied volatilities across

strikes and maturities can be described in a parsimonious way.

Empirical research in this area is mostly focused on the term structure of at-the-

money implied volatilities or on the dynamics of the volatility skew/smile across strike

where maturity is held fixed. Principal component analysis is usually applied to implied

volatility surfaces that are retrieved from empirical data. The term structure of implied

volatilities is among others studied in Heynen, Kemna, and Vorst (1994), Hardle and

Schmidt (2000), and Avellaneda and Zhu (1997). Avellaneda and Zhu (1997), for in-

stance, model the at-the-money implied volatility with a GARCH process. Subsequently,

principal component analysis is applied to the term structure of the implied volatility.

Das and Sundaram (1999) consider higher moments like skewness and kurtosis that are

implied by option prices. That paper shows that the empirical properties of the data

are not matched by the predictions of simple models.

The dynamics of the implied volatility smile/skew are treated, among others, in Ski-

adopoulos, Hodges, and Clewlow (1999) and Alexander (2001). Skiadopoulos, Hodges,

and Clewlow (1999) identifies two significant principal components by performing princi-

pal component analysis of volatility smiles on S&P-500 options. The analysis in Alexan-

der (2001) is more or less the same as in Skiadopoulos, Hodges, and Clewlow (1999) but

the deviation of implied volatilities from the at-the-money volatility is used instead.

Finally, Cont and Fonseca (2002) looks simultaneously at all available maturity and

moneyness combinations in order to retrieve the joint dynamics of all implied volatilities.

The method in this paper is based on a Karhunen-Loeve decomposition of the daily

variations of implied volatilities obtained from market data.



2.2: Expected Option Returns and Factor Models 31

2.2 Expected Option Returns and Factor Models

The previous section stipulated that the risk-neutral probability distribution of an asset

implied by option prices written on that asset often differs considerably from reasonable

estimators of the objective distribution. The most important observation is that the left

tail of the option’s implied risk-neutral is extremely fat in comparison to the left tail of

the objective distribution. In a discrete state world this implies that the low states of

the asset earn a negative return because of the high price that is paid for those states.

Option strategies that take a short position in the expensive states and a long position in

the cheap states lead to impressive average returns. Since the work of Markowitz (1952)

the view is advocated that returns on a strategy should be related to the risk of the

investment. However, after a correction for risk, the previously mentioned option strate-

gies still show a remarkable performance. For instance, Bondarenko (2004) reports a

Jensen’s α for shorting at-the-money put options of 23% (on a monthly basis) using

S&P-500 futures options between 1987 and 2000. Using a similar data set, Driessen and

Maenhout (2004) finds that shorting a single out-of-the money put option or combina-

tions of options (i.e. straddles) give Sharpe ratios of approximately 0.30 (the Sharpe

ratio of the index in that period was 0.18). The empirical performance of these type

of option strategies motivated a number of papers in the financial literature on option

strategies and the relation to factor models, introducing new expressions like ”overpriced

puts puzzle”, ”empirical pricing kernel puzzle”, and ”option pricing anomalies”. This

section gives a short overview of the papers that are available in this area.

The previous section obviously shows that literature was mainly interested in option

pricing while a thorough study of the dynamics of an option price, i.e. the return on

the option, was lacking for a long time. This is surprising since option returns should

provide additional information on the risks that are priced in an economy. One of

the few formal treatments of option returns related to systematic risks is provided in

Coval and Shumway (2001). The theoretical part of the paper shows, that under the

general condition that the pricing kernel is negatively correlated with the price of a given

security, any call option written on that security has a positive expected net return that

is increasing in the strike price of the option. The underlying financial intuition is that a

negative correlation between the pricing kernel and the security implies that low values

of the securities are considered as the bad states of the world. Call options deliver

payoff in the good states of the world and therefore should earn a higher return than

the risk free rate. The theoretical result for the put option is the other way around.

Any put option written on a security of which the price is negatively correlated with
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the stochastic discount factor will have an expected return below the risk free rate.

Furthermore, the return on the put option is increasing in strike price. The intuition

is that put options provide protection against the bad states of the world. Using S&P-

500 index options between January 1990 to October 1995 the paper claims, without

a formal testing procedure, that average option returns are too low to be consistent

with the Black-Scholes model. The results on individual option returns indicate that

besides market risk, different risk factors are priced. In order to investigate the claims,

option positions are constructed in such a way that at initiation the position is not

sensitive to changes in the underlying asset. Although the delta of the position is not

zero instantaneously, the return in a Black-Scholes world should not deviate too much

from the risk free rate. Coval and Shumway (2001) reports significant negative returns

on these (initial) delta-neutral straddles indicating (and nothing more since the position

is not delta-neutral instantaneously) that there is a negative volatility risk premium.

A negative volatility risk premium means that high volatility is disliked by investors.

Since straddles have a higher expected payoff as volatility increases, straddles provide

protection against volatility risk and therefore should earn a return below the risk free

rate if this risk is priced. The empirical procedure in Coval and Shumway (2001) does

not isolate the volatility risk factor completely but straddle returns are a very strong

indication of a negative volatility risk premium. Conclusions do not change if a crash put

is added to a straddle. The reason for considering the influence of a crash put on straddle

returns is that the straddle position is not instantaneously insensitive for large jumps in

the options’ underlying asset. A crash risk premium and a volatility risk premium have

the same effect on straddle returns and therefore conclusions about the volatility risk

premium can only be made if these effects are separated. A deep out-of-the-money put

protects against market crashes and thus is a tool to extract the crash risk premium from

the straddle return. Since both crash puts and crash neutral straddles earn a negative

return on average, there is strong evidence for the existence of a crash risk premium and

a volatility risk premium.

Using a data set that contains two crashes (S&P-500 index options between January

1987 and June 2001) Driessen and Maenhout (2004) finds similar average returns for

protective puts, straddles, and crash neutral straddles. All the results in Coval and

Shumway (2001) and Driessen and Maenhout (2004) are driven by high put and strad-

dle prices. Driessen and Maenhout (2004) tries to answer the question what type of

investors optimally take long positions in puts and straddles given that the returns on

short positions are so high. The paper shows that standard expected utility preferences
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and non-expected utility specifications do not lead to demand for out-of-the-money put

options. Only an application of cumulative prospect theory results in positive demand

for puts and straddles. Hence, in standard utility frameworks there are no reasonable risk

aversion parameters that lead to a demand for long positions in out-of-the-money puts

and straddles. Otherwise stated, with respect to these equilibrium models options but

specifically put options are mispriced. The studies in Jones (2004), Bondarenko (2003a),

and Bondarenko (2003b) come to a similar conclusion: no model from a broad class of

models is able to explain the high prices of some particular options. Bondarenko (2003b)

uses a class of models in which the pricing kernel only depends on the market returns

while Jones (2004) allows for additional sources of priced risk. In comparison to the

study in Bondarenko (2003b) this leads to a reduction of pricing errors but the factor

is not able to explain the returns on short term deep out-of-the-money puts and longer

term out-of-the-money puts simultaneously.

Despite the results in Coval and Shumway (2001), Driessen and Maenhout (2004),

Bondarenko (2003b), and Jones (2004), the conclusion that option prices are set irra-

tionally seems strong. Another possible explanation is that there is no rational model

currently available that describes the extreme aversion of investors to low states of the as-

set. Broadie, Chernov, and Johannes (2004) finds, for instance, that pricing performance

is improved if a jump volatility risk premium is allowed for. Furthermore, the paper finds

empirical evidence for jumps in volatility and time-varying risk premia. Pricing errors

depend on the level of volatility which indicates that risk premia in some way depend

on volatility. Hence, more research is needed on more flexible and general equilibrium

models before concluding that option prices are set irrational. Market microstructural

effects may also play an important role as pointed out in Bollen and Whaley (2004).

This paper documents that buying pressure has a significant effect on the shape of the

Black-Scholes implied volatility curve. In order to make the right conclusions about the

’fairness’ of option prices, these kind of effects should be taken into account.





CHAPTER 3

The Impact of Overnight Periods on Option Pricing

3.1 Introduction

As a result of the shortcomings in the classical Black-Scholes model for option pricing,

two streams of literature can be identified. The first stream extends the Black-Scholes

framework to time varying volatility and the occurrence of random jumps in the under-

lying stock price process. Hull and White (1987) derives option prices in a stochastic

volatility model under the assumption that volatility risk is idiosyncratic. Heston (1993)

gives closed form option pricing formulas using a mean-reverting volatility process and

an explicit volatility risk premium. Parallel to this, Merton (1976) motivates that the

occurrence of abnormal events can be modeled by a jump component in the under-

lying stock price process. That paper discusses the implications for option pricing in

case jumps are modeled as a compound Poisson process and under the assumption that

jump risk is not priced in the market.1 The models derived in Heston (1993) and Mer-

ton (1976) can be merged in the affine jump-diffusion framework of Duffie, Pan, and

Singleton (2000), where asset returns and variances are driven by a finite number of

state variables. The second stream of literature uses more general Lévy processes in-

stead of Brownian Motion and the compound Poisson process as driving factors for asset

returns. If the parsimonious variance gamma process is assumed to be the stochastic

1Cox and Ross (1976) is another early paper that treats the option valuation problem for jump
processes.
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process for underlying stock returns, Madan, Carr, and Chang (1998) derives closed

form expressions for the density of asset returns and option prices. Stochastic volatility

models driven by Lévy processes are studied in Carr, Geman, Madan, and Yor (2003),

among others.

From the empirical results concerning the aforementioned models, it is evident that

jumps are important in explaining characteristics of asset returns and option prices,

see, for example, Bakshi, Cao, and Chen (1997), Pan (2002), Andersen, Benzoni, and

Lund (2002), and Madan, Carr, and Chang (1998). Using a parametrically specified

pricing kernel, Pan (2002) provides evidence that jump risk is priced in the SPX options

market. The results in Coval and Shumway (2001) are indicative of a negative volatility

risk premium. This conclusion is based on returns of option positions that are (at

initiation) only sensitive for volatility risk and jump risk. The Lévy literature also

provides support for priced volatility and jump risk since the parameter estimates under

the objective and the risk-neutral measure are generally significantly different. For

instance, Madan, Carr, and Chang (1998) finds significant negative skewness under the

risk-neutral probability measure while this is not present in their objective parameter

estimates. The differences between the objective and the risk-neutral distributions are

indicative of the presence of a price for crash risk in options markets. However, it is not

always obvious how market prices of risk can be inferred from the estimation results,

because a parametric pricing kernel that defines risk prices, is usually not specified in

this literature. On the whole, it is clear from both streams of literature that jumps, next

to stochastic volatility, are important in explaining observed patterns in asset returns

and option prices.

The present chapter considers the jump process in more detail by focusing on jumps

in asset prices that are inherent to overnight market closure.2 Most of the empirical

research cited above, uses daily returns. These returns are calculated using the last

tick price on the exchange of each trading day. However, the exchange is closed a large

part of the day and information that arrives during the closing time cannot be imme-

diately incorporated in stock prices. For instance, European investors use information

revealed in US stock markets, by submitting orders to their exchange before the open-

ing. This means that the opening price of the exchange reflects overnight information.

The effect of market closure on stock (index) returns has been considered extensively in

2The idea of modeling the overnight nontrading period by a jump component is not new. Oldfield
and Rogalski (1980) already proposes a general model for stock returns that includes jumps for market
closures.
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the literature. Important findings are that (1) open-to-open returns are more volatile

than close-to-close returns (see, for instance, Amihud and Mendelson (1987), Stoll and

Whaley (1990), Amihud and Mendelson (1991), and Cao, Choe, and Hatheway (1995)),

(2) weekend returns are lower than weekday returns (see, for example, French (1980),

Gibbons and Hess (1981), and Keim and Stambaugh (1984)), and (3) returns over trad-

ing periods are more volatile than returns over nontrading periods (see, among others,

Fama (1965), French and Roll (1986), Oldfield and Rogalski (1980), and Amihud and

Mendelson (1991)).3 However, the influence of market closure on option pricing is not

treated yet.

In this chapter the difference in information is stressed by using different processes

driving intraday and overnight returns, respectively.4 In particular, in the spirit of An-

dersen, Benzoni, and Lund (2002) the model consists of a continuous part with stochastic

volatility (reflecting the normal vibrations in the stock price) and a jump part (modeling

the arrival of important new information) during the day. Furthermore, the “normal”

overnight change in the stock price is modeled by means of a single jump. Additional

random jumps due to important news releases are not excluded in the overnight pe-

riod. The theoretical and empirical implications of this added factor on option prices

are investigated.

The results show that, for the SPX market over two separate periods, both random

jumps and overnight jumps are important for option pricing. In particular, the overnight

jump component accounts for approximately one quarter of total jump variation. More-

over, the inclusion of overnight jumps leads to different parameter estimates for the

stochastic volatility and random jump part of the stock price process. This will have

important consequences for hedging these risks.

The organization of the chapter is as follows. Section 2 provides the theoretical

formulation of the model under the risk-neutral measure. A closed-form option pricing

formula in the spirit of Heston (1993) is also provided. Section 3 describes the data

and discusses the estimation procedure. In Section 4 the empirical results are presented.

Section 5 concludes. Mathematical details are gathered in the appendix.

3As a result of these observed patterns, theoretical models are developed to explain them. See, for
instance, Slezak (1994) and Hong and Wang (2000).

4The usage of different processes for trading and nontrading periods is already motivated in Oldfield
and Rogalski (1980).



38 THE IMPACT OF OVERNIGHT PERIODS ON OPTION PRICING

3.2 The Overnight Jump Model

3.2.1 Stock price process

Financial markets all over the world do not allow for continuously trading stocks, inter-

est rates products, and derivatives. Trading usually starts in the morning hours local

time and ends in the late afternoon or in the evening. Of course, it is possible for in-

dividual and institutional investors to do 24 hours trading all over the world: by the

time London closes, Wall Street is already open and when the US markets stop trading,

Asian exchanges have already opened their doors. Due to increasing globalization and

financial market integration, economies and firms from various countries are interrelated.

As a consequence, changes in the value of financial instruments on different exchanges

are not independent. This does not only hold if exchanges are open simultaneously, but

also if one market is closed. In case an exchange is closed, relevant news cannot be

immediately incorporated in prices. For instance, a high closing of stocks traded on the

Dow Jones usually has a positive effect on stock price openings in Europe.5 All news

that is important for the value of a particular stock should ideally be processed in the

opening price of the stock. The difference between the closing price and the opening

price the next day can be seen as a measure of the revealed information all over the

world during the overnight period.6

Up to now, the overnight period in financial markets has not been considered in the

derivative pricing literature. This chapter tries to fill this gap by explicitly modeling this

period through an additional jump process. The jump in the stock price process exactly

5Connolly and Wang (2000) concludes that intraday returns on foreign markets have a significant
impact on domestic intraday returns and domestic overnight returns. The impact on the domestic
overnight returns seems to be the highest. Furthermore, the US market has a greater influence on the
UK and Japanese market than the other way around.

6There are important differences in market opening procedures between exchanges. Specifically, on
the NYSE a stabilized auction market opens trading while on the NASDAQ a quote-driven, dealer
market mechanism is used for all transactions during the trading day. However, even though there
is no formal call market opening on the NASDAQ, the open of trade is preceded by a pre-opening
session that facilitates price discovery. Greene and Watts (1996) and Masulis and Shivakumar (1997)
examine the differences in close-to-open price reaction to overnight news announcements across these
markets. Greene and Watts (1996) finds that the opening procedure on the NASDAQ leads to prices
that incorporate more of the overnight information. In addition, Masulis and Shivakumar (1997) reports
that the NASDAQ reacts faster to overnight seasoned equity offering announcements. Cao, Ghysels,
and Hatheway (2000) concludes that the more rapid price adjustment on the NASDAQ is a consequence
of the pre-opening session.
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models the observed overnight return. Of course, closed markets also imply that an

overnight jump has to be added to the money market process. However, as the interest

rate sensitivity of stock derivatives is usually found to be rather low, the implications of

this will be rather limited.

The money market process is given by, assuming a possibly different (annualized)

risk-free interest rate r during the trading day and ro during the overnight period

dBt

Bt−
= rdt + d

b252tc∑
i=1

{
exp

(
ro

252

)
− 1

}
, (3.1)

i.e. Bt = exp {rt + ro b252tc /252}, where b·c denotes the floor function.

In this chapter the equivalent martingale method is used for pricing options. In

comparison to the standard Black and Scholes (1973) framework, there are additional risk

factors that make the market incomplete with respect to the traded financial securities.

A consequence is the non-uniqueness of the equivalent martingale measure Q. Motivated

by, for example, the Breeden (1979) consumption based model, the value process of the

underlying stock in transaction time under the risk-neutral probability measure Q is

defined by

dSt

St−
= rdt + σtdW S

t + d
Nt∑
i=1

(Yi − 1)− dAt + d

b252tc∑
i=1

(Vi − 1) , (3.2)
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)
,

log Vi ∼ N

(
ro

252
− 1

2

σ2
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252
,
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252

)
,

where
{
W S

t

}
is a standard Brownian Motion independent of the Poisson process {Nt}

with

Nt ∼ Poiss

(
(1− c) λt + cλ

b252tc
252

)
.

Both
{
W S

t

}
and {Nt} are also assumed to be independent of sequences of jumps {Yi}

and {Vi}. Note that the volatility model with jumps of Bakshi, Cao, and Chen (1997)

and Andersen, Benzoni, and Lund (2002) is obtained by setting the parameter c equal

to zero and by deleting the last sum covering the overnight jump part in (3.2). The

time-varying volatility process {σ2
t } will be defined below.

Note that the random jump distribution of the Y ’s is parameterized such that a

single jump multiplies, in expectation, the price by 1 + µRJ . On a yearly basis, due to

the random number of jumps, this implies an expected instantaneous drift term {At},
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see the appendix, that needs to be compensated in (3.2) to keep the martingale property

of the discounted price process.

The contribution of this chapter consists of an extra jump term that is added to the

stock price process. For simplicity weekends are counted as a single night and there

are 252 days a year. At each time which is a multiple of 1/252, an overnight period is

inserted. Each overnight period results in a stock return that is reflected by the jump Vi.

Note that the random jump process (interpreted before as, for example, news releases)

will also be active during the overnight periods but possibly at a different rate. The

parameter c allows the random jumps to have a different intensity during the trading

day compared to the overnight period. The expected number of random Y -jumps during

one calendar year (in addition to the 252 V -jumps) is equal to λ. Finally, note that, as

required, the Q-expected yearly return on the stock price in our model is given by

EtSt+1/St = exp {r + ro} .

The specification of the stochastic variance process in (3.2) is taken from Heston (1993)

dσ2
t = −κ

(
σ2

t − σ2
)
dt + σσσtdW V

t , (3.3)

Covt

(
dW V

t , dW S
t

)
= ρdt,

where
{
W V

t

}
is a standard Brownian Motion independent of the Poisson process {Nt},

κ is the speed of mean reversion, σ2 is the long run mean of the variance, and σσ the

volatility of volatility. This specification allows a negative premium for volatility risk,

see, for example, Bakshi and Kapadia (2003) for theoretical and empirical evidence. It

has been often observed that a large decline in the stock price is accompanied by a

positive shock in volatility levels. This is captured by means of the parameter ρ.

3.2.2 Option pricing

Given the risk-neutral processes in (3.2) and (3.3), a standard plain vanilla call option

can be priced using

Ct(K, T ) = BtEt

(
max (ST −K, 0)

BT

)
,

where T is the maturity and K is the strike price of the option. Following Heston (1993),

Appendix 3.A shows that the pricing formulas for the value of a call option C and a put

option P at time t can be simplified as

Ct(K,T ) = StP1 −Ke−r(T−t)−nro/252P2, (3.4)

Pt(K,T ) = Ke−r(T−t)−nro/252 (1− P2)− St (1− P1) , (3.5)
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where the probabilities P1 and P2 are given by (3.7) and (3.8), and n = b252T c−b252tc
denotes the remaining number of overnight periods till maturity.7 The proof uses the

independence of the overnight process and the intraday process and the fact that the

trading day part of the model is an affine jump-diffusion in the spirit of Duffie, Pan, and

Singleton (2000).

3.3 Data and Estimation Issues

In the previous section was motivated that different processes describe the intraday and

overnight returns. In the empirical application the focus is on the S&P-500 index in two

periods: a low volatility period from January 1, 1992 until August 27, 1997 and a high

volatility period from July 9, 1999 until November 27, 2003.

To assess the effects of market closure in an intuitive informal way, Table 3.1 shows

the sample statistics of the close-to-close, open-to-close, and close-to-open returns series

for the respective sample periods.8 Similar to Compton and Kunkel (2003), the numbers

in Table 3.1 show that for both sample periods the close-to-open average return is higher

than the average open-to-close return and that this higher average return is accompanied

with a lower standard deviation. However, this is only a qualitative statement because

the hypothesis of equal medians in close-to-open and open-to-close return series cannot

be rejected at reasonable significance levels for both sample periods.9,10 On the other

hand, the hypothesis of equal variances of the open-to-close and close-to-open return

series is rejected at reasonable significance levels.11 Furthermore, outcomes of standard

7The resulting option pricing formulas in Appendix 3.A show that, except for parameter c, all model
parameters have a different effect on option prices, i.e. all model parameters, except c, are separately
identified in the overnight option pricing model. In the estimation procedure parameter c is fixed at
the proportion of the day that markets are closed.

8To avoid potential stale-price problems associated with openings of US indices (see Stoll and Wha-
ley (1990)), the opening price is taken as the value of the S&P-500 index taped together with the first
option quote.

9The Wilcoxon signed rank test is used to test the hypothesis that the paired difference between the
trading return and the nontrading returns has median zero. This test does not require the assumption
that the population is normally distributed.

10Compton and Kunkel (2003) finds for several European countries that the location of close-to-open
returns differs significantly from the location of the open-to-close returns. There are several possibilities
to explain why the overnight return has a higher average and lower standard deviation than the intraday
return.

11The hypothesis is tested by using the Levene test because this test is less sensitive to the normality
assumption than the Bartlett test. The p-values are available upon request.
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January 1992–August 1997 July 1999–November 2003

close-close open-close close-open close-close open-close close-open

average 13.2% 5.5% 7.7% -4.3% -3.5% -0.8%

std.dev 10.5% 9.9% 2.7% 20.6% 18.9% 7.9%

skewness -0.28 -0.26 -2.54 0.13 0.21 0.25

kurtosis 4.8 4.7 40.8 4.6 5.9 10.4

Table 3.1: Summary statistics S&P-500 returns during the low volatility period January

1, 1992–August 27, 1997, and the high volatility period July 9, 1999–November 27, 2003.

tests show that close-to-open and open-to-close returns have significant skewness and

significant excess kurtosis in both sample periods. As a result, application of the Jarque-

Bera test leads to rejection of the normality hypothesis for close-to-open and open-to-

close returns in both sample periods.

The standard deviations in Table 3.1 indicate that the overnight return is an im-

portant part of the total daily return in both the first and the second period. As the

sample standard deviation of the overnight returns is lower than the standard deviation

of the intraday returns, one may conclude that information important for S&P stocks

generally arrives during trading hours. Information of significant importance during the

night often leads to a high, either positive or negative, return on the S&P-500 explaining

the high kurtosis values of overnight returns in Table 3.1.

Finally, daily closing option quotes of SPX options for both sample periods are avail-

able. These data are extracted from the proprietary ABN-Amro Asset Management

option database. Following Bakshi, Cao, and Chen (1997), for each day in the sample,

only the midprice based on the last reported bid-ask quote (prior to 3:00 PM Central

Standard Time) of each option contract is used for estimation. Of course, the aforemen-

tioned S&P-500 index levels are measured at the same time. Following Jackwerth and

Rubinstein (1996), the dividend amount and timing expected by the market is assumed

to be identical to the dividends actually paid on the index. Interpolated LIBOR rates

are used as a proxy of the intraday risk-free rate. In addition, information on overnight

interest rates in the US market is extracted from Bloomberg.

Table 3.2 and Table 3.3 provides descriptive statistics on call and put option prices

(stated in terms of Black-Scholes implied volatilities) that

1. have time-to-expiration of greater than or equal to six calendar days,
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January 1992–August 1997 July 1999–November 2003

Calls days to expiration subtotal days to expiration subtotal

Ke−r(T−t)/S <60 60-180 >180 <60 60-180 >180

ITM < 0.97 0.209 0.171 0.167 0.316 0.277 0.252

14736 14828 6830 36394 12550 10908 2872 26330

ATM 0.97-1.03 0.137 0.138 0.147 0.222 0.225 0.238

14611 13693 5571 33875 7929 6802 2874 17605

OTM > 1.03 0.124 0.118 0.124 0.241 0.212 0.207

4768 9380 5836 19984 8318 10021 2130 20469

subtotal 34115 37901 18237 90253 28797 27731 7876 64404

Puts days to expiration subtotal days to expiration subtotal

Ke−r(T−t)/S <60 60-180 >180 <60 60-180 >180

OTM < 0.97 0.190 0.173 0.172 0.307 0.279 0.249

12895 14723 7074 34692 12121 11667 2955 26743

ATM 0.97-1.03 0.137 0.139 0.151 0.220 0.222 0.233

14690 13771 5710 34171 7926 6773 2874 17573

ITM > 1.03 0.162 0.125 0.130 0.244 0.220 0.205

8500 11259 6122 25881 10081 10623 2155 22859

subtotal 36085 39753 18906 94744 30128 29063 7984 67175

Table 3.2: Summary statistics on SPX call and put option implied volatilities. The

reported numbers are implied volatilities of options on the S&P-500 index corresponding

to the average last tick before 3:00 PM and the total number of observations for each

maturity category. The sample periods are January 1, 1992, to August 27, 1997, and

July 9, 1999, to November 27, 2003, respectively.
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January 1992–August 1997 July 1999–November 2003

Calls days to expiration subtotal days to expiration subtotal

N(d2) <60 60-180 >180 <60 60-180 >180

ITM ≥ 0.60 0.191 0.162 0.160 0.303 0.274 0.251

19319 17737 8101 45157 14434 11206 2969 28609

ATM 0.40-0.60 0.154 0.150 0.149 0.232 0.231 0.235

5647 8862 4753 19262 4259 6532 3589 14380

OTM < 0.40 0.122 0.118 0.126 0.234 0.210 0.196

9149 11302 5383 25834 10104 9993 1318 21415

subtotal 34115 37901 18237 90253 28797 27731 7876 64404

Puts days to expiration subtotal days to expiration subtotal

N(−d2) <60 60-180 >180 <60 60-180 >180

OTM < 0.40 0.174 0.164 0.165 0.295 0.276 0.248

17495 17710 8422 43627 14005 11963 3052 29020

ATM 0.40-0.60 0.154 0.151 0.153 0.230 0.228 0.230

5688 8890 4820 19398 4262 6531 3589 14382

ITM > 0.60 0.148 0.124 0.132 0.238 0.219 0.198

12902 13153 5664 31719 11861 10569 1343 23773

subtotal 36085 39753 18906 94744 30128 29063 7984 67175

Table 3.3: Summary statistics on SPX call and put option implied volatilities. The

reported numbers are implied volatilities of options on the S&P-500 index corresponding

to the average last tick before 3:00 PM and the total number of observations for each

maturity category. The sample periods are January 1, 1992, to August 27, 1997, and

July 9, 1999, to November 27, 2003, respectively.
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2. have a bid price of greater than or equal to 3/8$,

3. have a bid-ask spread of less than or equal to 1$,

4. have a Black-Scholes implied volatility greater than zero and less than or equal to

0.70, and satisfy the arbitrage restriction,

Ct(K,T ) ≥ max
(
0, Ste

−δ(T−t) −Ke−r(T−t)
)
,

for call options and a similar restriction for put options. In this formula K is the

option exercise price, δ the dividend rate, and r the continuously compounded

intraday risk-free rate.

From the numbers in Table 3.2 and Table 3.3, well known patterns in implied volatili-

ties across strikes and maturities are recognized.12 The volatility skew or smile is clearly

present for most option categories. The exceptional categories are less frequently traded.

From the return data in Table 3.1, it is clear that the 1992–1997 sample period can be

characterized as a low volatility period and the 1999–2003 sample as a high volatility

period. This characterization of both periods also becomes clear from the implied volatil-

ities in Table 3.2, since they are consistently on a higher level across strike prices and

maturities in the 1999–2003 sample period. Christensen and Prabhala (1998), among

others, provide evidence for a high correlation between realized volatility and Black-

Scholes implied volatility.

In this chapter information about Q-parameters is extracted from the option prices

since our focus is on the influence of overnight jumps on these options. The practical

implementation of the estimation procedure is straightforward and follows Bakshi, Cao,

and Chen (1997). For a particular day t, a set of N options is chosen for which the

12In Table 3.2 and Table 3.3 two measures of moneyness are employed. Table 3.2 uses the discounted
ratio of the strike price to the underlying (see, for instance, Fung and Hsieh (1991) and Bakshi, Cao,
and Chen (1997)). However, this measure does not take the time to maturity of the option into account
(see Natenberg (1994) and Tompkins (2001a)). Therefore, a second measure of moneyness is reported
in Table 3.3. This is the Black-Scholes (risk-neutral) probability of ending in the money, i.e. N(d2) for
calls and N(−d2) for puts, where d2 is given by

d2 =
log(S/K) +

(
r − 1

2σ2
)
(T − t)

σ
√

T − t

with σ as the Black-Scholes at-the-money implied volatility. This volatility is extracted from an option
series with shortest maturity longer than one week. The tables show that there are only small differences
in the implied volatility patterns for the two different measures of moneyness.
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closing price is observed. Henceforth, the i-th option price in this set will be denoted

by Oobs
it . For all options, related values as strike price, remaining time to maturity, risk-

free interest rates, and (dividend discounted) value of the underlying are observed as

well. Subsequently, a model price of option i at time t, say Omodel
it , that is a function of

the structural Q parameter vector θ = (µJ , σRJ , λ, σOJ , κ, σ, σσ, ρ) and the unobservable

instantaneous variance σ2
t , is calculated. For a particular time t the estimated parameter

vector is determined from

[
θ̂t, σ̂

2
t

]
= arg min

θ,σ2
t

N∑
i=1

(
Omodel

it −Oobs
it

Oobs
it

)2

. (3.6)

This objective function implies that the focus is on fitting the steepness of the observed

(Black-Scholes) implied volatility skews or otherwise stated the tails of the market im-

plied risk-neutral distribution, see Britten-Jones and Neuberger (2000).13 The procedure

is repeated for each day in both samples resulting in two time series of estimators. Simi-

lar procedures are applied to option pricing models in Bakshi, Cao, and Chen (1997) and

Madan, Carr, and Chang (1998). In the implementation of the procedure above only

out-of-the money options (for low strikes put options and for high strikes call options)

are used, since these options are generally more liquid than in-the-money options (see

Bondarenko (2003b)).

3.4 Empirical Results

This section provides the estimation results obtained by applying the data and estimation

techniques as described in Section 3.3 to the model formulated in Section 3.2. First, as a

benchmark, results are presented for the standard stochastic volatility model (SV) and

the stochastic volatility model with random jumps (SVRJ). These results are followed

by a discussion of the results in the extended model including overnight jumps. The

13Surprisingly, the topic of specification of the loss function is not heavily debated in the option
valuation literature. This in contrast to other topics like model specification and parameter estimation
in continuous time models. However, specification of the loss function is not an unimportant issue
since the loss function amounts to the specification of a statistical model (Engle (1993)). Christoffersen
and Jacobs (2004) is one of the few studies that treats the loss function in more detail. The choice
of minimizing relative price errors instead of absolute pricing errors (Bakshi, Cao, and Chen (1997),
Heston and Nandi (2000), and Figlewski (2002)) is made because an absolute pricing error based loss
function assigns much weight to long maturity contracts. A similar disadvantage appears for relative
pricing errors (emphasis on short maturity and out-of-the-money contracts) but the disadvantage is
circumvented (partly) by excluding options with very short maturities and very low prices.
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January 1992–August 1997 July 1999–November 2003

SV SVRJ SVOJ SVRJOJ SV SVRJ SVOJ SVRJOJ

µRJ -6.3% -7.2% -11.5% -8.5%

(3.9%) (3.6%) (7.6%) (5.8%)

σRJ 8.8% 6.7% 13.8% 11.4%

(4.2%) (2.7%) (10.0%) (6.8%)

λ 0.60 0.54 0.63 1.18

(0.05) (0.42) (0.11) (1.05)

σOJ 7.5% 5.1% 6.9% 7.7%

(2.8%) (2.6%) (5.2%) (4.6%)

κ 1.67 3.55 1.62 3.32 1.60 3.90 1.72 3.27

(0.96) (1.00) (0.13) (1.08) (0.51) (0.11) (0.22) (3.55)

σ 16.0% 11.6% 16.0% 11.2% 15.9% 11.3% 16.0% 11.9%

(4.3%) (3.5%) (1.0%) (4.8%) (1.5%) (3.1%) (1.7%) (5.2%)

σσ 61.1% 40.0% 92.4% 50.6% 86.8% 39.3% 79.2% 56.7%

(18.7%) (30.0%) (32.2% (28.9%) (18.7%) (11.2%) (38.9%) (40.3%)

ρ -0.69 -0.59 -0.88 -0.71 -0.64 -0.53 -0.89 -0.70

(0.15) (0.20) (0.13) (0.23) (0.18) (0.07) (0.15) (0.22)

σt 14.4% 11.7% 11.9% 9.5% 24.8% 20.2% 22.3% 17.4%

(3.0%) (3.2%) (3.4%) (3.4%) (5.3%) (5.0%) (7.0%) (7.4%)

SSE 0.70 0.16 0.40 0.12 0.70 0.22 0.49 0.10

(0.58) (0.15) (0.35) (0.10) (0.66) (0.31) (0.53) (0.13)

Table 3.4: Implied average parameter estimates in SV, SVRJ, SVOJ, SVRJOJ models

using option data on the S&P–500 from the low volatility period January 1, 1992, until

August 27, 1997, and the high volatility period July 9, 1999, until November 27, 2003.

Standard deviations of the daily parameter estimates are given in brackets.
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results are presented both in a setting with only stochastic volatility during the day

(SVOJ) as well as in a setting where random jumps are possible (SVRJOJ).

3.4.1 Standard option pricing models

This subsection presents the results for the SV-model and the SVRJ-model in order

to make these comparable to those of Bakshi, Cao, and Chen (1997). Their model

specification and their estimation techniques are similar to the ones that are employed

in this chapter. For both sample periods described in Section 3.3, Table 3.4 gives an

overview of the estimation results of the risk-neutral parameters.

For the SV-model, Table 3.4 confirms that the average instantaneous volatility in

the 1992–1997 sample is low in comparison to, for example, the estimated values in

Bakshi, Cao, and Chen (1997) over the period June 1988 to May 1991. In the 1999–

2003 sample the average instantaneous volatility is higher. In comparison to Bakshi, Cao,

and Chen (1997), parameters σσ, κ, and σ are also estimated differently.14 One obvious

explanation for these differences is the different sample periods used. Furthermore,

Bakshi, Cao, and Chen (1997) focuses on absolute pricing errors while in this chapter

relative pricing errors are considered, see (3.6). By using relative pricing errors the

misspecification of the SV-model becomes more apparent since a high value of σσ is

necessary to fit empirically observed implied volatility curves.

To address this issue in more detail, consider the usual situation where the option

implied volatility curve for short term options is downward sloping in the strike price

for low levels of the strike price.15 The steepness of the implied volatility curve provides

information about the risk-neutral distribution of the underlying index at the maturity

date. The steeper the implied volatility curve for a certain strike price region, the more

probability mass in that particular region of the implied risk-neutral distribution.

There is an enormous literature on methodologies that extract information about

the risk-neutral distribution from option prices, see for example Britten-Jones and Neu-

berger (2000).16 Because squared relative errors are minimized, the fit of cheaper options

14Bakshi, Cao, and Chen (1997) estimates σσ equal to 0.39 while this parameter in Broadie, Chernov,
and Johannes (2004) is estimated at a level of 2.82 in a stochastic volatility model.

15For shorter maturities the option implied volatility curve has usually a smile shape (see Table 3.2
and Tompkins (2001a)) and hence the option implied volatility curve is not downward sloping over the
whole range of strike prices.

16For an overview of methods see Coutant, Jondeau, and Rockinger (1998), Jackwerth (1999), Anag-
nou, Bedendo, Hodges, and Tompkins (2002), Bliss and Panigirtzoglou (2002), and Panigirtzoglou and
Skiadopoulos (2004).
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(short term OTM puts and calls) is relatively more important compared to the more

expensive options in the sample (long term ATM and ITM puts and calls). Stated differ-

ently, the focus is more on the tails of the market implied risk-neutral distribution. The

negative slope of the implied volatility curve for short term options forces the optimiza-

tion algorithm to choose parameter values that are able to generate negative skewness

in the risk-neutral distribution. The desired skewness can be obtained both from ρ and

σσ. In more detail, the SV-estimates would imply a volatility of volatility σσσt of 9% in

the low volatility period and a volatility of volatility of 21% in the high volatility period

while using empirical data volatility of volatility is estimated around 5% in low volatility

markets and 12% in high volatility markets.17,18

The estimation results show that part of the misspecification in the SV-model is

solved by adding random jumps to the option’s underlying value. Compared to the

SV-estimates, the parameter estimates of σσ and ρ are much smaller in the SVRJ-model

which is due to the appearance of (on average) negative jumps that capture (part of)

the negative skewness in the implied risk-neutral distribution.19 The three parameter

random jump size process combined with stochastic volatility is superior to the SV-

model in describing the tails of the market implied risk-neutral distribution and fitting

the option data.

Comparing the results for both sample periods, the parameter estimates show that

the instantaneous volatility in the SVRJ-models is lower on average than in the SV-

model. This is intuitively correct since the total variation in the underlying value is now

divided in the variation of a jump component and the variation that stems from the

stochastic volatility part of the model. The variance in the log-return due to the jumps

is given by

Var

(
Nt+1−Nt∑

i=1

log Yi

)
= λσ2

RJ + λ

(
log (1 + µRJ)− 1

2
σ2

RJ

)2

.

17These estimates are based on the standard deviation of the at-the-money Black-Scholes implied
volatilities of the data described in Section 3.3.

18Although the estimator of σσ differs from the estimate in Bakshi, Cao, and Chen (1997),
Bates (2000), and Broadie, Chernov, and Johannes (2004), the conclusion is the same: the volatil-
ity of volatility parameter σσ is estimated at a too high level to be consistent with time series estimates
in, for instance, Andersen, Benzoni, and Lund (2002), Chernov, Gallant, Ghysels, and Tauchen (2003),
and Eraker, Johannes, and Polson (2003). The latter study reports the highest estimate of σσ = 0.14
in a stochastic volatility model.

19A similar conclusion can be found in Bakshi, Cao, and Chen (1997) and Bates (2000). These studies
also find that adding jumps to the risk-neutral return process leads to lower estimates of ρ and σσ.
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1992-1997 1999-2003

SVRJ SVRJOJ SVRJ SVRJOJ

Continuous part 0.014 0.009 0.041 0.030

Random Jump part 0.007 0.006 0.023 0.026

Overnight Jump part 0.003 0.006

Total 0.021 0.017 0.063 0.061

Volatility 11.7% 9.5% 20.2% 17.4%

Objective function 0.163 0.123 0.216 0.103

Table 3.5: Variance decomposition of the SVRJ-model and the SVRJ-model for the

1992–1997 and 1999–2003 sample periods. The numbers are based on the implied pa-

rameter estimates of Table 3.4.

The full variance decomposition for the SVRJ-model is presented in Table 3.5. This

table shows that the variance due to the random jump part is given by 0.007 and 0.023

in the respective sample periods. Taking σ2
t as a proxy of the variance of the continuous

part of the underlying value process, approximately one third of the total variance is

due to random jumps. Moreover, if the variance of the random jump part is added to

the estimate of σ2
t , then, for both samples, the total variance in the SV-model is almost

identical to the total variance in the SVRJ-model.

Summarizing, the results of this subsection show that the parameter estimates in

the SVRJ-model are more in line with the findings of Bakshi, Cao, and Chen (1997)

than in the SV-model case. The addition of the random jump component stabilizes

the stochastic volatility parameters to more reasonable levels and, hence, reduces the

misspecification of the model.20

3.4.2 Option pricing models with overnight jumps

As the goal of the present chapter is to assess the importance of overnight trading halts

for derivative pricing, the estimation results for SVOJ- and the SVRJOJ-models are

compared with the results in the previous subsection.

As a first remark, note that the yearly log-return on a risk-free investment of one

20Note that compared to time-series estimates the volatility of volatility parameter is still estimated
at a too large value. This indicates misspecification of the risk-neutral volatility process that possibly
could be solved by adding jumps to the volatility process. Eraker, Johannes, and Polson (2003) finds
strong evidence for jumps in volatility by using index returns.
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dollar in the model with overnight jumps is equal to r + ro. Since trading takes place

approximately 6.5 hours a day, the annualized risk-free rate during trading periods and

the annualized overnight risk-free rate is divided in the proportions 1
4

and 3
4
, respectively.

Secondly, observe that the parameter c is not present in the option pricing formulas

(3.4)–(3.5), i.e. the different risk-neutral jump intensities during trading periods and

overnight periods cannot be identified from option data, only λ, the total expected

number of random jumps during a calendar year, is determined by option prices.

Table 3.4 shows that the parameter estimates in the SVOJ-model are quite similar

to the ones resulting from the SV-model. Again, just as discussed for the SV-model, the

parameters σσ and ρ are too extreme in the SVOJ-model. This leads to the conclusion

that the inclusion of overnight jumps only, fails to produce the desired skew in the risk-

neutral distribution. Moreover, as already observed in the SVRJ-model, the attributed

proportion of the total variance due to jumps is approximately one third. Especially

in the second sample period, the SVOJ-model fails to reproduce this result. Taking

σt as a proxy of the standard deviation of the continuous part, the total variance is

given by σ2
t + σ2

OJ . Using this it follows that the jump proportion of the variance is

slightly less than one third (28%) in the first period but that it is far too low (9%) in

the second period. Since jumps play a more dominant role in high volatility periods,

this once more indicates that the SVOJ-model is misspecified. A final objection against

the SVOJ-model is the fit to the option data. Of course, the SVOJ-model beats the

classical SV-model but the increased fit due to overnight jumps, although not negligible,

is low in comparison to the inclusion of random jumps as in the SVRJ-model. All this

leads to the conclusion that replacement of the random jumps in the SVRJ-model by a

single overnight jump is not sufficient. However, the question whether overnight jumps

influence option prices, remains open. This issue will be tackled in the next paragraph.

The estimation results for the SVRJOJ-model clearly outperform the models dis-

cussed before. In comparison to the SV-, SVRJ-, and the SVOJ-models, the SVRJOJ-

model improves the fit of option prices in both sample periods considerably. The addition

of random jumps to the SVOJ-model has the same effect on parameters σσ and ρ as

the addition of random jumps to the SV-model. The reasoning is also the same: the

random jump part captures (part of) the negative skewness in the risk-neutral distri-

bution required to fit option prices that otherwise could only partly be captured by

large changes in the parameters σσ and ρ. Comparing the remaining parameters in the

SVRJOJ-model with the SVRJ-model leads to some first obvious conclusions. Since

overnight jumps are included, the parameter estimates of the random jump distribution
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are less dominant and since the total variance has to be divided over three terms, the es-

timated variance of the continuous part diminishes. One striking difference is the change

in the estimated intensity λ. In the first sample period, the estimated value decreases as

expected since additional jumps are added. However, in the high volatility period, the

intensity is almost doubled compared to the SVRJ-model. This effect is greatly offset by

the much lower value of σRJ . Probably, in high volatility periods, the model fits much

more smaller jumps and due to the effect of the overnight jump, the SVRJOJ-model is

better able to identify the smaller jump intensity.21

In the same spirit as in the previous subsection, the total variance of the log-return

can be split into three parts: a first component arrives from the stochastic volatility

term σt, and the two remaining components stem from both the random jumps and the

overnight jumps. The trading period’s variance consists of the variance of the continu-

ous component (stochastic volatility) and (part of) the random jump component. The

nontrading overnight period variance is due to the remaining part of the random jump

component and the overnight jumps. Similar to the continuous trading model without

overnight periods, the variance in the in the log-return due to the jumps in the extended

models SVOJ and SVRJOJ is given by

Vart

(
Nt+1−Nt∑

i=1

log Yi

)
= λσ2

RJ + λ

(
log (1 + µRJ)− 1

2
σ2

RJ

)2

+ σ2
OJ .

Given the estimates of the SVRJOJ-model in Table 3.4, the variance decomposition is

provided in Table 3.5. The estimated variances due to the jumps are 0.009 and 0.032,

in the respective periods. These values can be split into a variance of 0.006 (0.026) due

to the random jumps and 0.003 (0.006) due to the overnight jumps in the first (second)

sample period. The proportion of the total variance due to jumps has increased to

around 50% in both sample periods. On average 25% of this part has to be attributed

to the overnight jumps, once more indicating that the inclusion of overnight jumps is

nonnegligible.

This section showed that the most appealing model is clearly the SVRJOJ-model,

allowing for difference in intraday asset return variance and overnight asset return vari-

ance. The SVRJOJ-model fits empirical option prices best in two different sample

periods.22 Since this model contains the overnight jump part, which covers approxi-

21Note that the addition of overnight jumps comes at the cost of a worse empirical identifiability of λ.
This is reflected by the higher standard deviation of the estimate of λ in the SVRJOJ-model compared
to the SVRJ-model.

22As the focus of this chapter is on identifying overnight jump influences, an out-of-sample analysis
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mately one quarter of total jump variance, the estimation results show that overnight

periods are important and have a considerable impact on option prices. The economic

content of this result is that the risk of overnight closures is identifiable from option

prices. Investors that have positions in these options are faced with an additional and

undiversifiable source of risk which was previously attributed to random jump risk.23

3.5 Summary

This chapter presented an option pricing model that explicitly models the influence of

nontrading overnight periods on option prices. One of the main conclusions is that

both random jumps during trading periods and the overnight jump are important in

explaining observed option prices. The results show that in two sample periods, of

which the first can be characterized as a period of low volatility and the second as

a period of high volatility, the added jump component covers a significant amount of

the variation in the underlying value (risk-neutral) process. In more detail, the results

show that the overnight jump part covers approximately one quarter of total jump

variation. Moreover, fifty percent of the daily variance is explained by jumps, either

random or overnight. Furthermore, the empirical results reveal that the model including

the overnight jump component gives a better fit of empirical option prices than the

traditional asset pricing models. Finally, the results show that a model containing only

overnight jumps in combination with stochastic volatility has the same problem as a

pure stochastic volatility model: the estimated volatility of volatility is too large in

comparison to the volatility of volatility extracted from volatility series.

3.A Option Pricing Formulas

The theoretical formula for a plain vanilla call option is derived given the risk-neutral

processes in (3.2) and (3.3). The put price follows similarly. Using Ito’s Lemma, the

stochastic differential of log St is

d log St =

(
r − 1

2
σ2

t

)
dt + σtdW S

t + d

(
Nt∑
i=1

log Yi

)
− dAt + d



b252tc∑
i=1

log Vi


 .

of pricing errors or hedging errors based on the parameter estimates in Table 3.2 is omitted.
23The pricing of this additional risk is postponed to future research.
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Following Scott (1997), the call option value formula is given by

Ct(K,T ) = BtEt

(
max (ST −K, 0)

BT

)

= StP1 − e−r(T−t)−nro/252KP2,

where

P1 =

∞∫

X

ST

Et(ST )
pt(ST )dST ,

P2 = IPt(ST > K).

Since the probability density function is unknown under our assumptions regarding the

evolution of stock and money market, Fourier inversion techniques are used to derive

expressions for P1 and P2 (see Bakshi and Madan (2000)). For P2 this gives

P2 =
1

2
+

1

π

∞∫

0

Re

(
exp (−iα log K) ϕ (α)

iα

)
dα, (3.7)

where ϕ (α) denotes the characteristic function of the random variable log ST , i.e. ϕ (α) =

Et exp (iα log ST ). The probability P1 will be obtained later from P2. Given the process

of log St above, ϕ (α) can be written as, with τ = T − t

ϕ(α) = Et {exp (iα log ST )} ,

= Et



exp


iα


log St + rτ − 1

2

T∫

t

σ2
udu +

T∫

t

σudW S
u +

+

NT∑
i=Nt+1

log Yi − (AT − At) +

b252T c∑

i=b252tc+1

log Vi











= Et



exp


iα


log St + rτ − 1

2

T∫

t

σ2
udu +

T∫

t

σudW S
u









×

Et

{
exp

(
iα

[
NT∑

i=Nt+1

log Yi − (AT − At)

])}
Et



exp


iα

b252T c∑

i=b252tc+1

log Vi






 .

The characteristic functions of the various parts will be derived separately. The first

part is equal to formula (17) in Heston (1993), i.e.

Et



exp


iα


log St + rτ − 1

2

T∫

t

σ2
udu +

T∫

t

σudW S
u











= exp
(
C (τ ; α) + D (τ ; α) σ2

t + iα log St

)
,



3.A: Option Pricing Formulas 55

where

C (τ ; α) = riατ +
κσ2

σ2
σ

{
(κ− ρσσiα + d) τ − 2 log

(
1− gedτ

1− g

)}
,

D (τ ; α) =
κ− ρσσiα + d

σ2
σ

1− edτ

1− gedτ
,

and

g =
κ− ρσσiα + d

κ− ρσσiα− d
,

d =

√
(ρσσiα− κ)2 + σ2

σ (iα + α2).

The random jump part of the model is described by means of a compensated com-

pound Poisson process. The lognormal distribution of the jump sizes Yi determines the

characteristic function as, still with τ = T − t

Et

{
exp

(
iα

[
NT∑

i=Nt+1

log Yi − (AT − At)

])}
=

= exp

{
(AT − At) /µRJ

[
(1 + µRJ)iα exp

((
iα

2

)
(iα− 1) σ2

RJ

)
− 1

]
− iα (AT − At)

}
,

where the compensator is given by

At = λµRJ [(1− c) t + c b252tc /252] .

Note that for integer values of 252τ , this expression does not depend on c. The expression

for the characteristic function of the fixed jump part is more tractable since (relative

to the random jump part) one source of randomness disappears. The characteristic

function then can be calculated, using the lognormal jump sizes Vi, as

Et



exp


iα

b252T c∑

i=b252tc+1

log Vi






 = exp

(
iαnro/252− 1

2
α (α + i) nσ2

OJ/252

)
.

where n = b252T c − b252tc. The characteristic function of the terminal stock price is

determined and can be used to obtain P2 in the option pricing formula.

In order to obtain P1 observe the following lemma with Y = log ST .

Lemma 3.1. Let Y be a random variable whose distribution has density p and char-

acteristic function ϕ and for which E {exp (Y)} < ∞. Define the distribution F by its

survival function

1− F (z) =

∞∫

z

exp (y)

E {exp (Y)}p (y) dy.
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Then, F has characteristic function ϕ̃ with

ϕ̃ (α) =
ϕ (α− i)

E {exp (Y)} .

Proof. Let Z have distribution function F and density

f(z) =
exp (z) p (z)

E {exp (Y )} .

Now

ϕ̃ (α) = E exp (iαZ) =

∞∫

−∞

exp (iαz)
exp (z) p (z)

E {exp (Y )}dz

=

∞∫

−∞

exp (i (α− i) z)

E {exp (Y )} p (z) dz =
E exp {i (α− i) Y }

E {exp (Y )}

=
ϕ (α− i)

E {exp (Y )} ,

which concludes the proof of the Lemma.

Comparable to (3.7), this leads to

P1 =
1

2
+

1

π

∞∫

0

Re

(
exp (−iα log K) ϕ (α− i)

iαϕ (−i)

)
dα. (3.8)



CHAPTER 4

Nonparametric Risk-Neutral Return and Volatility Distributions

4.1 Introduction

During the past decades, a considerable amount of financial research has been devoted

to the informational content of derivative prices. These prices depend on one or more

underlying financial quantities and, therefore, price changes give information about the

stochastic evolution of these quantities. This information is not only used in academic

research but also in the everyday practice of risk management, investment strategies,

and monetary policies. This chapter focuses on the information revealed by option prices

about risk-neutral return and volatility distributions. An extensive literature exists on

inference concerning the risk-neutral density of future stock prices/returns. However,

this chapter studies the information contained in option prices concerning the joint

density of returns and volatility in a nonparametric way.

Initially, stock index options were used to discover the relation between the Black-

Scholes implied volatility and the realized volatility. The Black-Scholes at-the-money

implied volatility is often regarded as the option market’s forecast of future realized

volatility over the time to maturity of the option. Jorion (1995) concludes, using foreign

currency options, that implied volatility is an efficient but biased estimator of future re-

alized volatility. However, Day and Lewis (1992) and Lamoureux and Lastrapes (1993)

find that in addition to implied volatility historical volatility contains information on

future volatility. Thus these papers conclude that implied volatility is an inefficient

57
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predictor of future realized volatility. A stronger conclusion comes from the study by

Canina and Figlewski (1993) which claims that there is no correlation between future re-

alized volatility and implied volatility. Finally, by using a longer time series of volatilities

and a lower frequency Christensen and Prabhala (1998) finds that implied volatility is

a less biased estimator for future realized volatility than is reported in previous studies.

Summarizing, various tests show that implied volatility is a biased predictor of future

realized volatility.1 A possible explanation is the existence of a negative volatility risk

premium in stochastic volatility models (see Chernov (2002)). Hull and White (1987)

shows that in a stochastic volatility setting the price of a call option equals the expected

value of the Black-Scholes formula evaluated in the average integrated volatility.2 This

expectation should be taken under the risk-neutral measure which can be separated in an

expectation under the objective measure and a risk premium term. Hence, if volatility

risk is priced, the future realized volatility will deviate from the Black-Scholes implied

volatility.

Furthermore, the information contained in index option prices was utilized to infer

the risk-neutral density of the future value of the option’s underlying index. The risk-

neutral density is also known as the state price density or the implied density. The

name “state price density” derives from the insight that a set of option prices with all

possible strikes determines the continuous state equivalent of Arrow-Debreu securities.3

A popular device to extract risk-neutral return distributions from option prices is based

on Breeden and Litzenberger (1978). That paper shows that under the condition that a

continuum of European options with the same maturity date and strike prices from zero

to infinity exists, the risk-neutral return density can be obtained as the second derivative

of the call option pricing function with respect to the strike price. However, in practice,

only a finite number of options is available. Since the work of Shimko (1993), Ru-

binstein (1994), and Jackwerth and Rubinstein (1996) numerous papers have appeared

that provide numerical techniques to solve this problem. For an overview of the vari-

ous methods, see Coutant, Jondeau, and Rockinger (1998), Jackwerth (1999), Bliss and

Panigirtzoglou (2002), and Panigirtzoglou and Skiadopoulos (2004).4 These methods

1See also Poteshman (2000), Bandi and Perron (2001), and Blair, Poon, and Taylor (2001).
2This result is derived under the assumption of no correlation between the stock (index) return and

the instantaneous volatility.
3The work of Ross (1976) provides the insight that there should be a way to extract state-contingent

prices from option prices. The relationship is made explicit in Banz and Miller (1978) and Breeden and
Litzenberger (1978).

4The focus of this chapter is on nonparametric techniques. However, there are also studies that utilize
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aim to extract the implied state price density at a single point in time. Panigirtzoglou

and Skiadopoulos (2004) investigate the dynamics of the implied distributions and pro-

vide algorithms that make their results applicable to areas like option pricing and risk

management.

The evolution of estimated risk-neutral return distributions has been studied exten-

sively. In particular, Jackwerth and Rubinstein (1996) shows that, before the 1987 stock

market crash, both the risk-neutral return distribution and the objective distribution

are close to log-normal (over a 1-month horizon). However, after the 1987 crash the

objective distribution still appears log-normal but the shape of the implied distribution

has changed considerably.5 Weinberg (2001), Anagnou, Bedendo, Hodges, and Tomp-

kins (2002), and Bliss and Panigirtzoglou (2002) and find a typical post-crash shape of

the implied risk-neutral distribution using S&P-500 index options.6 Bates (2000) pro-

vides three possible explanations for a shift in the implied distribution after the crash:

a change in the investors’ assessment of the stochastic process that the S&P-500 index

follows, a change in aggregate risk aversion, and mispricing. The first and second ex-

planation led to a number of papers that estimate the risk aversion of a representative

investor as implied by the risk-neutral return distribution and an estimated objective

distribution. The resulting implied risk aversion function seems to be inconsistent with

theory. For example, the risk aversion functions estimated in Jackwerth (2000) imply

that investors are more risk averse at high and low levels of wealth. A similar conclusion

can be drawn from the results in Hodges, Tompkins, and Ziemba (2003). Aı̈t-Sahalia

and Lo (2000) finds decreasing but non-monotonic implied risk aversion functions as

wealth increases.7 In a non-published paper, Brown and Jackwerth (2001) calls the

phenomenon that implied risk aversion functions do not fit with the requirements of

parametric density functions to model the implied density. For instance, Ritchey (1990), Bahra (1997),
Melick and Thomas (1997), Soderlind and Svensson (1997), and Gemmill and Saflekos (2000) propose
a mixture of lognormals.

5Rubinstein (1994) states that the change in the shape of the implied volatility smile after the crash,
which is directly related to the change in the shape of the implied distribution, seems to indicate an
increasing crash-o-phobia.

6In several studies the forecasting power of different implied distributions is tested. Most of these
studies reject the hypothesis that the option implied distribution is an accurate forecast of the distribu-
tion of the future value of the underlying asset. See Anagnou, Bedendo, Hodges, and Tompkins (2002)
for a detailed overview of these studies.

7Other studies that examine implied risk aversion functions include Aı̈t-Sahalia, Wang, and
Yared (2001), Coutant (2001), Weinberg (2001), Perignon and Villa (2002), Rosenberg and Engle (2002),
Bliss and Panigirtzoglou (2004).
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economic theory even “the pricing kernel puzzle”. The final explanation is suggested

by market practitioners who claim that large demand causes the high out-of-the-money

put option prices. Bollen and Whaley (2004) indeed shows that buyer-initiated trad-

ing in out-of-the-money puts dominates the market. This may lead to the conclusion

that the changing patterns in implied volatility provide only limited information on the

distribution of the underlying index.

The existing methods all consider risk-neutral return distributions only. At the

same time, the methods mostly recognize that risk-neutral volatility distributions are

important as well to test financial theory and in the application of risk management.8 So

far, the papers that study risk-neutral volatility distributions use parametric methods,

as for example in Pan (2002). In contrast, this chapter extracts information on the

joint risk-neutral density of returns and future spot volatility from plain vanilla option

prices without making parametric assumptions. Under the assumption that option prices

depend on moneyness, spot volatility, and time-to-maturity, this chapter provides a

nonparametric (and thus model free) methodology that gives the empirical risk-neutral

distribution of both asset returns and instantaneous volatility. While the risk-neutral

volatility distributions are interesting per se for financial theory, they can also be used

to test parametric stochastic volatility models and to obtain nonparametric estimates of

prices of derivatives written on volatility, like variance swaps.

In particular, a number of interesting new facts about risk-neutral distributions are

documented. First of all, while the risk-neutral return distributions exhibit significant

negative skewness (a premium for crash risk), the results show that this skewness dis-

appears in situations of decreasing volatility levels.9 Apparently, decreasing volatility

reduces the risk premium for crashes. At the same time, the empirical results reveal

that increasing volatility, also in risk-neutral terms, goes together with decreasing asset

prices. Concerning the risk-neutral volatility distribution, a clear positive skewness is

documented that is not present in, for instance, the parametric Heston (1993) model.

This indicates that the market is more averse towards high volatility states than is

implied by the Heston (1993) model. At the same time, the Heston (1993) model is

sufficiently flexible to describe the risk-neutral return distribution accurately but it does

so by overestimating the volatility of volatility. Furthermore, the results show that the

8See the introduction of Aı̈t-Sahalia and Lo (1998) for a detailed motivation for the importance of
implied distributions.

9Given the statistical definition of skewness this result seems strange. However, the “volatility” that
appears in the denominator of skewness differs from the volatility that is mentioned in the text. The
distinction will become clear later in this chapter.
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skewness of the risk-neutral volatility distribution depends on the overall volatility level

which possibly indicates the presence of a jump component in the risk-neutral volatility

process that has a volatility dependent jump intensity. Finally, the estimated volatility

density indicates that the volatility risk premium depends in a non-linear way on the

current level of volatility.

The rest of the chapter is organized as follows. Section 4.2 presents the proposed

methodology for obtaining risk-neutral distributions of returns and volatilities jointly.

Sections 4.3.1 and 4.3.2 show how the approach relates to existing methods that yield

nonparametric estimates of risk-neutral return distributions. Moreover, Section 4.3.3

illustrates the scope of the method in three hypothesized stochastic volatility worlds.

In Section 4.4 the method is applied to recent S&P-500 data which leads to several

new insights in risk-neutral volatility distributions. Section 4.5 summarizes the main

conclusions of this chapter.

4.2 Estimation Methodology

This section proposes a new methodology to extract risk-neutral return and spot volatil-

ity distributions from plain vanilla options. As explained in the introduction, nonpara-

metric estimates of risk-neutral return distributions, as they are available in the liter-

ature, use butterfly spreads or, more specifically, the second derivative of option prices

with respect to the strike price of the option, see Breeden and Litzenberger (1978). Such

approaches, by construction, only lead to risk-neutral return distributions. They could

be used to infer risk-neutral volatility distributions if derivatives were traded whose

payoff depends on volatility. However, such derivatives are not (liquidly) traded. The

approach in this chapter is based on the straightforward observation that standard plain

vanilla options before maturity have a value that does depend on both the asset’s price

and the instantaneous volatility of the asset.

To be more precise, consider a financial market for an asset whose price at time

t is denoted by St. Assume that the spot volatility in this market is stochastic and

denote it by σt. Fix a horizon ∆. The return of the asset over the interval (t, t + ∆] is

written Rt:t+∆ := log St+∆/St. Also assume that interest rates are constant at a level

r and denote excess returns by R̃t:t+∆ := Rt:t+∆ − r∆. The risk-neutral distribution

(joint in prices and volatilities) is denoted by Q. The main interest of this chapter is

the conditional distribution of (St+∆, σt+∆), given all information available at time t.

This information set is denoted by Ft. The risk-neutral process of prices and volatilities
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are assumed to be Markovian and homogeneous with respect to the initial price level

throughout this chapter.

Assumption 1. The risk-neutral distribution of
(
R̃t:t+∆, σt+∆

)
conditional on all the

information available at time t, is equal to this distribution given σt. Formally, for all

∆ > 0

LQ

([
R̃t:t+∆

σt+∆

]
|Ft

)
= LQ

([
R̃t:t+∆

σt+∆

]
|σt

)
.

Under Assumption 1, time t call option prices, with maturity T and exercise price

K can be written as

Ct(K, T ) = EQ {exp(−r(T − t)) max {ST −K, 0} |Ft}
= StE

Q

{
max

{
exp(R̃t:T )− exp(−r(T − t))K

St

, 0

}
|Ft

}

= Stc(mt, T − t; σt), (4.1)

for some deterministic function c, time t moneyness mt = exp(−r(T − t))K/St, and

time-to-maturity T − t. Assumption 1 excludes the possibility that current price levels

influence the excess return volatility. This assumption underlies most of the empirical

asset pricing models, both in continuous time and in discrete time.10

Relation (4.1) cannot be used to estimate risk-neutral volatility distributions directly

due to the occurrence of the current volatility level σt only, without simultaneous ref-

erence to future volatility levels. However, the First Fundamental Theorem of Asset

Pricing does provide such a relation as it implies, for T ≥ t + ∆ ≥ t

Ct(K, T ) = EQ {exp(−r∆)Ct+∆(K,T )|Ft} .

Substituting (4.1) for Ct(K, T ) and Ct+∆(K, T ) yields

Stc(mt, T − t; σt) = EQ {exp(−r∆)St+∆c(mt+∆, T − (t + ∆); σt+∆)|Ft} ,

or, using mt+∆ = exp(−r(T − (t + ∆)))K/St+∆ = mt exp(−R̃t:t+∆)

c(mt, T − t; σt) = EQ
{

exp(R̃t:t+∆)c(mt exp(−R̃t:t+∆), T − (t + ∆); σt+∆)|Ft

}
. (4.2)

10An example of a model that does not satisfy Assumption 1 is a stochastic volatility model where the
drift or diffusion function of the stochastic volatility process depends on the current price level St. These
type of models are usually not examined (empirically) in the literature and therefore Assumption 1 is
not too restrictive.
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Denote the joint risk-neutral conditional density of (R̃t:t+∆, σt+∆) at time t by q(r, v|σt).

Invoking the Markov property in Assumption 1 once more, expression (4.2) can be

rewritten, for all H ≥ ∆, m > 0, and σ > 0, as

c(m,H; σ) =

∫

z

∫

v

exp(z)c(m exp(−z), H −∆; v)q(z, v|σ)dzdv. (4.3)

Relation (4.2), or the integral equivalent (4.3), does simultaneously involve current

volatility levels σt and future volatility levels σt+∆. This observation can be used to infer

risk-neutral volatility distributions over a given horizon ∆, jointly with the risk-neutral

return distribution. In order to infer the risk-neutral return/volatility density q, the c

function is estimated nonparametrically and subsequently, the integral equation (4.3) is

solved for q.

Given empirically observed plain vanilla option prices, Aı̈t-Sahalia and Lo (1998) is

followed to come up with a nonparametric estimate of the function c. More precisely,

given option prices Ct(K,T ), the c function can be expressed as

Ct(K, T )

St

= c(mt, T − t, σt) = BS (mt, T − t, IV (mt, T − t, σt)) , (4.4)

with

BS
(
m,T − t, σ2

)
= Φ

(
log(m) + σ2(T − t)/2

σ
√

T − t

)
−mΦ

(
log(m)− σ2(T − t)/2

σ
√

T − t

)
. (4.5)

Here BS stands for the Black-Scholes formula (normalized by the current stock price

level) and IV denotes the option’s Black-Scholes implied volatility. The Black-Scholes

implied volatility is assumed to depend on moneyness mt, time-to-maturity T − t, and

spot volatility σt.
11 A detailed comparison of this chapter’s approach with that of Aı̈t-

Sahalia and Lo (1998) is provided in Section 4.3.2, but note already that in this chapter’s

method implied volatilities depend on spot volatilities and not on the stock price level

(other than through moneyness). Since spot volatilities are unobserved, these are filtered

using an estimated EGARCH model

Rt:t+∆ = µ +
√

ht εt:t+∆,

εt:t+∆|Ft ∼ N(0, ht),

log ht = ω + β log ht−∆ + α

∣∣∣∣∣
εt−∆:t√

ht−∆

∣∣∣∣∣ + γ
εt−∆:t√

ht−∆

. (4.6)

11Note here the difference between the spot volatility σt in (4.4) and the Black-Scholes implied
volatility σ in (4.5). The spot volatility σt in (4.4) is used (together with moneyness and time to
maturity) to obtain an estimate of the Black-Scholes implied volatility. This estimate is translated to
an estimate of the c function by means of (4.5).
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Nelson and Foster (1994) shows that the EGARCH volatilities filtered from (4.6) provide

consistent (as the data frequency increases) estimates of the underlying spot volatility

for general stochastic volatility diffusion models. The effect of the filtering step is as-

sessed in Section 4.3.3.12 Following Aı̈t-Sahalia and Lo (1998) once more, kernel-based

nonparametric regression is used to estimate the implied volatility of observed options

as a function of moneyness, time-to-maturity, and spot-volatility. For each of these vari-

ables the kernel function is chosen as the fourth order kernel function that is given in the

appendix of Aı̈t-Sahalia and Lo (1998). The bandwidths used in these kernel functions

are determined according to the procedures described in the aforementioned appendix.

Observe that the current volatility level σt or the filtered equivalent
√

ht is used

as explanatory variable in the nonparametric regression for the implied volatility. At

the same time, Assumption 1 is relied on to ignore possible dependence on current price

levels. If deemed appropriately, price levels could be added in the regression as long as the

curse of dimensionality does not affect the results, that is, as long as sufficient data points

are available. Moreover, observe that the risk-neutral return distribution LQ

(
R̃t:t+∆|σt

)

can be obtained directly from the nonparametric implied volatility estimate using the

Breeden and Litzenberger (1978) result. This, however, does not lead to risk-neutral

volatility distributions LQ (σt+∆|σt), nor to the risk-neutral dependence between returns

and volatilities.

The estimate of the risk-neutral joint return/volatility distribution is obtained by

solving the integral equation (4.3) for q using the estimated option price function ĉ(mt, T−
t, σt). More precisely, a grid z0 < z1 < z2 < . . . < zM is chosen for excess asset returns

and a grid 0 < v0 < v1 < . . . < vN for volatility levels.13 Expression (4.3) is discretized

as

ĉ(m,H; σ) =
M∑
i=1

N∑
j=1

exp(zi)ĉ(m exp(−zi), H −∆, vj)q(zi, vj|σ)(zi − zi−1)(vj − vj−1).

(4.7)

Equation (4.7) provides, for each moneyness m and each time-to-maturity H > ∆ a

linear equation in q(zi, vi|σ). A suitable grid of possible values is selected for both

moneyness and time-to-maturity to obtain a system of linear equations. The grid exploits

12There are many other ways to obtain an estimate of spot volatility using high-frequency data
(see, for instance, Jiang and Oomen (2004)) or option data (see Bakshi, Cao, and Chen (1997) and
Pan (2002)). The simulation study later in this chapter shows that for several stochastic volatility
models the EGARCH procedure as proposed above is an adequate solution.

13The endpoints zM and vN are based on the distribution of moneyness and estimated spot volatility
in the available data set. By doing this, the estimated density becomes a truncated density.
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the fact that it is coarser for low density areas. Details are available upon request.

The resulting system of linear equations is solved numerically by means of a standard

least-squares algorithm. In the algorithm is imposed that the probabilities q(zi, vj) are

positive, the unit-integral condition

M∑
i=1

N∑
j=1

q(zi, vj|σ)(zi − zi−1)(vj − vj−1) = 1,

and the constraint that excess returns have zero risk-neutral expectations, i.e.

M∑
i=1

N∑
j=1

ziq(zi, vj|σ)(zi − zi−1)(vj − vj−1) = 0.

Since ĉ is a nonparametric estimate, the numerical integral approximation (4.7)

could lead to non-smooth densities. Therefore, a dimension-reduction and a smooth-

ness penalty are used in the simulation and empirical sections. The dimension reduction

is easily obtained using the observation above that the Breeden and Litzenberger (1978)

result leads to LQ

(
R̃t:t+∆|σt

)
, i.e. the marginal distribution of q(R̃t:t+∆, σt+∆|σt) with

respect to returns. This reduction is used throughout the chapter. Secondly, following

Jackwerth and Rubinstein (1996), a smoothness condition on the solution q as a function

of returns and volatilities is added. This smoothness condition is a penalty on the second

derivative of q with respect to both returns and volatilities. Formally, the least-squares

criterion function is extended with the terms

M−1∑
i=1

[(zj+1 − zj) q (zi−1, vj|σ)− (zj+1 − zj−1) q (zi, vj|σ) + (zj − zj−1) q (zi+1, vj|σ)]2 ,

N−1∑
j=1

[(vj+1 − vj) q (zi, vj−1|σ)− (vj+1 − vj−1) q (zi, vj|σ) + (vj − vj−1) q (zi, vj+1|σ)]2 ,

each with an appropriate penalty factor.

Summarizing, the proposed method consists of the following four steps.

1. Filter spot volatilities using an EGARCH model for observed returns as in (4.6);

2. Calculate a nonparametric estimate of Black-Scholes implied volatilities as in Aı̈t-

Sahalia and Lo (1998) using moneyness, time-to-maturity, and the EGARCH-

filtered spot volatility as explanatory variables;

3. Apply the Breeden and Litzenberger (1978) result to obtain the marginal risk-

neutral return distribution, conditionally on current values of spot volatility;



66 NONPARAMETRIC RISK-NEUTRAL RETURN AND VOLATILITY DISTRIBUTIONS

4. Solve the linear equations (4.7) to obtain the joint risk-neutral density q with

respect to both returns and volatilities.

4.3 Relation with Existing Methods

The literature presents mainly two approaches to obtain nonparametric estimates of risk-

neutral return distributions: the method discussed in Jackwerth and Rubinstein (1996)

and the nonparametric Breeden and Litzenberger (1978) based approach of Aı̈t-Sahalia

and Lo (1998). The next section describes that the method proposed in this chapter

is, with respect to the conditional information used to determine the risk-neutral return

distribution, in between these two approaches. More importantly, however, the pro-

posed method offers the additional advantage of estimating the risk-neutral volatility

distribution and the risk-neutral return-volatility dependence structure. In that respect,

the method applies to, e.g., the popular Heston (1993) stochastic volatility model, but,

without any parametric assumptions. The present section discusses the relation of the

proposed approach with both alternatives mentioned above and the performance of the

proposed approach in a theoretical Heston (1993) world (Section 4.3.3).

4.3.1 Fully nonparametric methods

Shimko (1993) and Jackwerth and Rubinstein (1996) use option prices observed at a

given date to infer risk-neutral probabilities of returns for a given future date. Essentially

the (discrete) risk-neutral probability distribution of returns is determined such that

all observed option prices today are within the bid-ask bounds. In the notation of

Section 4.2, these methods provide an estimate of LQ (Rt:t+∆|Ft) without any further

restrictions on the conditioning information set Ft. In particular, as noted in Aı̈t-

Sahalia and Lo (1998), no time-consistency is imposed in this method. As a result, the

estimates of risk-neutral return probabilities will vary over time. The method is thus

fully nonparametric, but only few observations (i.e., only options traded on a given day

with a particular maturity) can be used in the estimation. The method proposed in this

chapter builds on Assumption 1 which identifies the current spot volatility as the only

relevant state variable for predicting risk-neutral return distributions. As mentioned

before, such an assumption is common in most parametric stochastic volatility models.
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4.3.2 Breeden and Litzenberger (1978) based methods

The nonparametric risk-neutral return distributions in Aı̈t-Sahalia and Lo (1998) are

based on the Breeden and Litzenberger (1978) result that the risk-neutral return distri-

bution is proportional to the second derivative of plain vanilla call prices with respect

to the exercise price. The functional relation between the option prices and relevant ex-

planatory variables is estimated using nonparametric kernel regression of Black-Scholes

implied volatilities on the futures price associated with the underlying asset, the exercise

price, and time-to-maturity.14 As mentioned above, other state variables can be added

to the nonparametric regression. In particular, the current spot volatility level σt is

added to set of state variables.

Compared to the method proposed in this chapter, Aı̈t-Sahalia and Lo (1998) does

allow for time-varying volatility of the GARCH type, i.e., where current levels of the

stock price induce a certain volatility. However, in cases of stochastic volatility as a

separate state variable, the method does not lead to risk-neutral return distributions

conditional on a certain volatility level, but to unconditional distributions. Since spot

volatility is considered as a separate state variable in this chapter, which is in line with

the Heston (1993) model, option’s implied volatilities is assumed to depend on futures

prices and exercise prices through moneyness alone (see, also, Renault (1997)). Observe

that in case of a stochastic volatility model, the Aı̈t-Sahalia and Lo (1998) method will

pick up of some of the stochastic volatility effects as stock prices and volatilities are

(negatively) correlated.15 This will be discussed in more detail in the next section where

this chapter’s method and the Aı̈t-Sahalia and Lo (1998) method are considered in a

theoretical Heston (1993) world.

4.3.3 Risk-neutral return/volatility distributions in the Heston

model

Heston (1993) presents a parametric stochastic volatility model which is especially useful

for calculating derivative prices due to the fact that the characteristic function of the

14Aı̈t-Sahalia and Lo (1998) consider other (vectors of) explanatory variables as well, but futures
price, exercise price, and time-to-maturity come out as preferred choice.

15Black (1976) and Christie (1982) find empirical evidence of this negative leverage effect for individ-
ual stocks. Tompkins (2001b) reports a similar conclusion for several futures markets in the nineties.
Theoretical explanations for the negative correlation between equity (index) returns and instantaneous
(conditional) volatility can, among others, be found in Black (1976), Poterba and Summers (1986), and
Campbell and Hentschel (1992).
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risk-neutral return distribution is known in analytical form. This latter property is a

demonstration of the fact that the Heston (1993) model belongs to the class of affine

jump-diffusions (see, Duffie and Kan (1996)). The Heston (1993) model is given by the

dynamics, under the risk-neutral probability measure

dSt = rStdt + σtStdW S
t ,

dσ2
t =

(
κ + ηV

) (
κ

κ + ηV
σ2 − σ2

t

)
dt + σσσtdW σ

t , (4.8)

Cov
{
dW S

t , dW σ
t

}
= ρdt.

Under the objective probability measure, the dynamics can be obtained by setting ηV = 0

and r = µ, the expected instantaneous return. For given parameters, the risk-neutral

return distribution is known in closed form as the inverse of its Fourier transform, see

Heston (1993). The risk-neutral distribution of spot volatility σt+∆ given σt is also known

in analytical form, see Cox, Ingersoll, and Ross (1985). Moreover, the Heston (1993)

model satisfies the Markovianity condition in Assumption 1.

In order to study the performance of the proposed method, five years (1260 trading

days) of daily S&P-500 data are simulated using the Pan (2002) parameters, i.e. in the

notation of (4.8), κ = 6.4, σ = 0.124, σσ = 0.30, ρ = −0.53, and ηV = −3.1. The

interest rate is fixed at a constant annual level of 4%, the initial volatility level σ0 is

set equal to the unconditional mean σ = 0.124, and the expected instantaneous return

is fixed at 10%.16 The diffusion (4.8) is simulated using an Euler discretization with

time steps of 1/200 of a day. The main interest is the risk-neutral return/volatility

distribution over a period of one month. Given the fact that the parameters above are

annualized, this implies that ∆ = 1/12. Using the simulated prices and volatilities,

analytical option prices are calculated with the Heston (1993) formula. For each day

options with on average four different maturities and, for each maturity, forty different

strike prices are considered. The actual number of options available each day varies as a

stylized option introduction scheme is implemented, in line with the methodology used

by most exchanges. Finally, the method as described in Section 4.2 is applied.

Figure 4.3 shows the estimated risk-neutral return distributions for various initial

volatility levels and the standard Aı̈t-Sahalia and Lo (1998) estimate. This latter es-

timate is unconditional with respect to the initial spot volatility. The Aı̈t-Sahalia and

Lo (1998) estimate is provided to assess the effect of stochastic volatility on this estimate.

16The analytic joint density and copula that are implied by these parameter assumptions are given in
Figure 4.1 and Figure 4.2. The shape of the copula is explained by the negative sign of the correlation
parameter ρ.
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Figure 4.1: Theoretical joint risk-neutral return-volatility distribution over a horizon of

one month in the Heston (1993) model with the Pan (2001) parameters.
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Figure 4.2: Theoretical copula over a horizon of one month in the Heston (1993) model

with the Pan (2001) parameters.
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Figure 4.3: The risk-neutral return distribution estimates over a horizon of one month

based on five years of simulated data in the Heston (1993) model with the Pan (2002)

parameters. The solid line denotes the estimate given an initial volatility level of σt =

12.4%. The dotted line corresponds to σt = 9.5% and the dashed line corresponds to

σt = 14.8%. The dotted-dashed line shows the (unconditional) Aı̈t-Sahalia and Lo (1998)

estimate.

The methodology proposed in this chapter is conditional on initial spot volatility levels

and the low level of σt = 9.5% corresponds to the first quartile of the objective volatility

distribution (as measured by the filtered EGARCH volatilities), while the high level of

σt = 14.8% corresponds to the third quartile. Observe that the Pan (2002) estimates

refer to a period of low overall volatilities. The figure shows some clear variation in

the risk-neutral return distribution for various initial volatility levels. Moreover, in all

cases the distribution is left-skewed as induced by the negative return/volatility corre-

lation parameter ρ. As could be expected, the unconditional Aı̈t-Sahalia and Lo (1998)

estimate is closest to the estimate given an average initial volatility.

A possible issue in this chapter’s methodology is the use of filtered EGARCH volatil-

ities instead of (unobserved) actual spot volatilities. This simulation exercise allows to

study the effect of using the EGARCH volatilities. Figure 4.4 shows (1) the true marginal

risk-neutral return distributions, (2) the estimated marginal risk-neutral return distri-

butions in case actual Heston spot volatilities are used and (3) the estimate using the
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Figure 4.4: Risk-neutral return distribution estimates over a horizon of one month based

on five years of simulated data in the Heston (1993) model with the Pan (2002) param-

eters. The solid line denotes the estimate based on EGARCH filtered volatilities. The

dotted line shows the estimate based on the actual simulated spot volatilities. The

dashed line shows the actual risk-neutral distribution. All distributions are conditional

on a current level of spot volatility σt = 12.4%.

EGARCH filtered volatilities. The graphs clearly show that the effect of using EGARCH

filtered volatilities instead of the true underlying spot volatilities is negligible. More-

over, Figure 4.4 shows that the estimated densities closely follow the true risk-neutral

volatility distribution. The graphs are conditional on an initial average volatility level

σt = 12.4%. For other initial volatility levels, the results are comparable.

Similarly, Figure 4.5 provides the risk-neutral volatility density for the same cases.

Once more, the method proposed in this chapter succeeds in recovering the risk-neutral

volatility distribution with high precision. This precision is due to the large number

of observations that are available in this kind of analysis, due to the fact that, over

a period of time, all options with more than one month to maturity are used. The

effect of filtering spot volatilities is visible in these graphs. This shows that there are

some statistically significant biases in the filtered volatilities. From a financial point of

view, however, the differences are small, especially in the tails of the distributions. In

particular, observe that in the right tail the EGARCH based estimator seems to perform
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Figure 4.5: Risk-neutral volatility distribution estimates over a horizon of one month

based on five years of simulated data in the Heston (1993) model with the Pan (2002)

parameters. The solid line denotes the estimate based on EGARCH filtered volatilities.

The dotted line shows the estimate based on the actual simulated spot volatilities. The

dashed line shows the actual risk-neutral distribution. All distributions are conditional

on a current level of spot volatility σt = 12.4%.

better than an estimator based on the true instantaneous volatilities.

4.3.4 Risk-neutral volatility distributions in stochastic volatil-

ity models

This section analyzes the results of applying the previously discussed methodology to

two stochastic volatility models that differ from the Heston (1993) model. First, the

Hull and White (1987) model is considered. The dynamics of this model, under the

risk-neutral measure, are given by

dSt = rStdt + σtStdW S
t ,

dσ2
t = κσ2

t dt + σσσ
2
t dW σ

t , (4.9)

Cov
{
dW S

t , dW σ
t

}
= ρdt.

The paper provides a series solution for the value of an option that is written on S.

However, this solution is derived under the assumption that ρ = 0. Furthermore, fast
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Figure 4.6: Risk-neutral volatility distribution estimates over a horizon of one month

based on five years of simulated data in the Hull and White (1987) model. The solid

line denotes the estimate based on EGARCH filtered volatilities. The dotted line shows

the estimate based on the actual simulated spot volatilities. The dashed line shows the

actual risk-neutral distribution. All distributions are conditional on a current level of

spot volatility σt = 12.4%.

convergence is only achieved for small values of σ2
σ(T − t), where T − t is the time to

maturity of the option.

The simulation experiment is designed in the same manner as in the previous sec-

tion. The parameters used are based on Pan (2002) although adjustments are made to

meet the assumptions in Hull and White (1987), i.e. κ = 6.4, σ = 0.124, σσ = 1.00,

ρ = 0.00, and ηV = 0.00. Interest rates are again fixed at a level of 4%. Figure 4.6

presents the true marginal risk-neutral volatility distribution, the estimated marginal

risk-neutral volatility volatility distribution if simulated spot volatilities are used, and

the estimated volatility distribution using EGARCH volatilities.17 The graphs are con-

ditional on an initial volatility level of 12.4%. The conclusions drawn from Figure 4.6 are

the same as in the Heston (1993) case of the previous section. The proposed methods

succeeds in recovering the risk-neutral volatility distribution and the differences between

the estimated densities using spot volatilities or EGARCH volatilities are small.

The second model considered in this section is the Stein and Stein (1991) stochastic

17Estimated risk-neutral return densities are not reported. The outcomes are similar to the results
shown in Figure 4.4.
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Figure 4.7: Risk-neutral volatility distribution estimates over a horizon of one month

based on five years of simulated data in the Stein and Stein (1991) model. The solid

line denotes the estimate based on EGARCH filtered volatilities. The dotted line shows

the estimate based on the actual simulated spot volatilities. The dashed line shows the

actual risk-neutral distribution. All distributions are conditional on a current level of

spot volatility σt = 12.4%.

volatility model. In Stein and Stein (1991) the stochastic evolution of the stock price

process and the volatility process under the risk-neutral measure is

dSt = rStdt + σtStdW S
t ,

dσt = κ (σ − σt) dt + σσdW σ
t , (4.10)

where the processes W S and W σ are assumed to be two independent Brownian Motions.

Stein and Stein (1991) provides an analytical solution for the future stock price density.

This solution can be used to derive theoretical prices in the model. In the simulation

experiment which is conducted in the same fashion as in the previous section, parameters

are based on Pan (2002) with again some necessary adjustments, i.e. κ = 6.4, σ = 0.124,

σσ = 0.15, ρ = 0.00, and ηV = 0.00. Figure 4.7 shows marginal volatility densities for the

three previously mentioned cases using an initial spot volatility of 12.4%. The obvious

conclusion from this figure is that the proposed methodology is able to extract the

true risk-neutral volatility distribution from simulated data independent of the chosen

volatility measure.
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4.4 Empirical Risk-Neutral Return/Volatility Dis-

tributions

This section provides risk-neutral return/volatility distribution estimates based on S&P-

500 data. Section 4.4.1 discusses the data that are used in more detail and gives some

summary statistics. In Section 4.4.2 is confirmed that the risk-neutral return distri-

bution is negatively skewed. Moreover, the results show that the Heston (1993) model

calibrated to this return distribution significantly overestimates the risk-neutral volatility

of volatility. Section 4.4.3 shows the bivariate risk-neutral return and volatility distri-

bution. The risk-neutral dependence between returns and volatilities is more apparent

from the conditional distribution of returns given future volatility levels. Section 4.4.4

presents these results and shows that in situations of decreasing volatility, the return

distribution is in fact slightly positively skewed.

4.4.1 Data description

The empirical results in the present chapter are based on European options traded on

the Chicago Board Options Exchange over the period from July, 1999, to December,

2003. The option data are extracted from the ABN-Amro Asset Management database

and contain daily closing quotes of SPX options for all trading days in the sample period.

In addition, the closing S&P-500 index levels are provided. Following Jackwerth and

Rubinstein (1996), dividend rates are calculated from the actual dividends paid out by

the SPX stocks. The methodology presented in Section 4.2 does not treat dividends ex-

plicitly but in the empirical analysis index prices are replaced by index prices discounted

by the dividend rate. Finally, interpolated LIBOR rates are employed as a proxy for the

risk free rate.

Following Bakshi, Cao, and Chen (1997), only options are used that satisfy a number

of criteria. More precisely, attention is restricted to calls and puts that

1. have time-to-expiration greater than or equal to six calendar days,

2. have a bid price greater than or equal to 0.03$,

3. have a bid-ask spread less than or equal to 1$,

4. have a Black-Scholes implied volatility greater than zero and less than or equal to

80% (annualized),
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Figure 4.8: Estimated EGARCH volatilities over the sample period July, 1999, until

December, 2003.

5. satisfy the arbitrage restriction,

Ct(K,T ) ≥ max
(
0, Ste

−δ(T−t) −Ke−r(T−t)
)
,

for call options and a similar restriction for put options. In this formula δ denotes

the dividend rate.

Table 4.1 provides descriptive statistics on the resulting set of options.18

From Table 4.1 well-known patterns in implied volatilities across strikes and ma-

turities are recognized. The volatility skew or smile is clearly present for all option

categories. Unreported statistics on return data show that in the sample period the

annualized standard deviation of returns equals 20.6%. Figure 4.8 shows the estimated

EGARCH volatilities over the complete sample period.

18In Table 4.1 two measures of moneyness are employed. First, the discounted ratio of the strike
price to the underlying (see, for instance, Fung and Hsieh (1991) and Bakshi, Cao, and Chen (1997)).
However, this does not take the the time to maturity of the option into account (see Natenberg (1994)
and Tompkins (2001a)). Therefore, a second measure of moneyness is reported in Table 4.1. This is
the Black-Scholes (risk-neutral) probability of ending in the money, i.e. N(d2) for calls and N(−d2) for
puts, where d2 is given by

d2 =
log(S/K) +

(
r − 1

2σ2
)
(T − t)

σ
√

T − t

with σ as the Black-Scholes at-the-money implied volatility. This volatility is extracted from an option
series with shortest maturity longer than one week. The table shows that there is hardly any difference
in the implied volatility patterns for the two different measures of moneyness.
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Calls days to expiration days to expiration

Ke−r(T−t)/S <60 60–180 >180 N(d2) <60 60–180 >180

ITM < 0.97 0.315 0.274 0.250 ≥ 0.60 0.303 0.274 0.251

12734 11877 4251 14434 11206 2969

ATM 0.97–1.03 0.221 0.231 0.217 0.40–0.60 0.232 0.231 0.235

7949 6624 2350 4259 6532 3589

OTM ≥ 1.03 0.262 0.235 0.199 < 0.40 0.252 0.233 0.198

12902 12879 1837 14892 13642 1380

subtotal 33585 31380 8438 33585 31380 8438

Puts days to expiration days to expiration

Ke−r(T−t)/S <60 60–180 >180 N(−d2) <60 60–180 >180

OTM < 0.97 0.323 0.280 0.246 < 0.40 0.311 0.280 0.248

14304 13086 4334 16005 12413 3052

ATM 0.97–1.03 0.233 0.220 0.214 0.40–0.60 0.230 0.228 0.230

7947 6603 2350 4262 6531 3589

ITM ≥ 1.03 0.245 0.221 0.198 ≥ 0.60 0.238 0.219 0.198

9877 9824 1800 11861 10569 1343

subtotal 32128 29513 8484 32128 29513 8484

Table 4.1: Summary statistics on SPX call and put option implied volatilities. Implied

volatilities of options on the S&P-500 index corresponding to the last tick before 3:00

PM and the total number of observations for each maturity category are reported. The

sample period is July 9, 1999, to November 27, 2003.

The (annualized) volatility during the sample period varies between 8.0% and 45.2%

with an average of 19.4%. Figure 4.8 shows that, after the turbulence in 2001 (Septem-

ber 11) and 2002, volatility has decreased to low levels in 2003.

4.4.2 Risk-neutral return and volatility densities

This section presents risk-neutral distributions for both returns and volatilities individu-

ally.19 Note that these distributions are conditional on an initial spot volatility level, as

19The proposed methodology of first calculating a nonparametric estimate of the Black-Scholes im-
plied volatility function, subsequently determining the joint density of excess return and future volatility,
while the data are clearly generated under the objective measure, makes it impossible to derive reliable
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Figure 4.9: Estimated risk-neutral marginal excess return density over one month hori-

zon based on S&P-500 data as described in the main text for three initial spot volatility

levels.

implied by Assumption 1. In the present section the dependence between future returns

and volatilities is not considered. This dependence will be discussed in Sections 4.4.3

and 4.4.4. Figure 4.9 presents the risk-neutral return distribution as implied by the

empirical data.

The initial volatility level of σt = 19.4% corresponds to the average volatility level

as follows from the filtered volatilities. The high and low volatility levels correspond to

the 75% and 25% quantile respectively. Note that these levels are objective estimates

which, due to negative volatility risk premiums lie below their risk-neutral counterparts.

Observe that the volatility levels are much higher than those in Pan (2002) as the (much)

more volatile 1999–2003 period is considered, while Pan (2002) covers the January, 1989,

until December, 1996, period. The figure clearly confirms negative skewness in the risk-

neutral return distribution for all initial volatility levels.

More interesting are the nonparametric risk-neutral volatility densities provided by

this chapter’s method. These are presented in Figure 4.10. The expected risk-neutral

future volatility is in two of three initial volatility scenarios (much) larger than the

confidence bounds for the density estimate using standard techniques. Therefore, confidence bounds
for the nonparametric density estimators are not provided.
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Figure 4.10: Estimated risk-neutral marginal volatility density over one month horizon

based on S&P-500 data as described in the main text for three initial spot volatility

levels.

objective average spot volatility of 19.4%. Therefore, the results in Figure 4.10 are

a strong indication of a negative volatility risk premium. A negative volatility risk

premium results in option prices higher than they would be in case of idiosyncratic

volatility risk.20 The higher price is a compensation for unhedged volatility risk that

option traders typically face because they only delta hedge their short options positions,

see also Bakshi and Kapadia (2003). The results confirm that higher initial volatility

leads to a right-shift in the future volatility distribution. In addition to these long-

established facts, Figure 4.10 depicts clear evidence of positive skewness in the risk-

neutral volatility distribution. However, in high volatility states (as for σt = 21.9%) the

skewness seems to disappear. Note that this effect is not due to a mean-reversion in

risk-neutral volatility distributions as the high volatility state leads to a larger (i.e., more

negative) volatility risk premium, given the high expected future volatility levels in this

case. These conclusions are consistent with a market aversion towards high volatility

levels and an even larger aversion towards unexpected positive volatility shocks. From

a parametric model perspective this result is indicative of a jump component in the

20In (4.8) a negative volatility risk premium, i.e. ηV < 0, leads (on average) to higher volatility levels
than in case ηV = 0 (idiosyncratic volatility risk). The result follows then from the positive dependence
of option prices on volatility.
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Figure 4.11: Risk-neutral return density from Heston (1993) models using parameters

that fit the nonparametric estimate best (in quadratic mean sense). See main text for

details.

risk-neutral volatility process. The changing skewness for the various volatilities can

possibly be modelled by a jump intensity that depends on the volatility level.

The nonparametric technique can be used to infer the accuracy of parametric risk-

neutral stochastic volatility models. To that end, the Heston (1993) model is used with

parameter values that are chosen in such a way as to provide an optimal fit (in least

squares sense) of the estimated risk-neutral return distribution as in Figure 4.9. This

leads to the parameter choices κ + ηV = 1.76, κσ2 = 0.25, σσ = 0.84, and ρ = −0.39.

Note that κ and σ2 cannot be identified separately from the risk-neutral return distribu-

tion alone. The resulting risk-neutral return distribution from the Heston (1993) model

with these parameter values is depicted in Figure 4.11. It is clear that the Heston (1993)

model is capable of providing a very accurate description of risk-neutral return distri-

bution for the sample. However, it fails in describing simultaneously the risk-neutral

volatility distribution as shown in Figure 4.12, which shows the induced risk-neutral

volatility distribution using the same parameter values. From this figure it is clear

that an accurate fit of the return distribution, leads to a severe overestimation of the

risk-neutral volatility of volatility.21 Moreover, the Heston (1993) volatility distribution

21In the same way as for the risk-neutral density, an optimal fit of the volatility distribution was
determined. The estimated σσ was indeed much lower (0.52) but still much larger than values reported in
the time series literature, see for instance Eraker, Johannes, and Polson (2003). This suggests that more
components in the volatility process are necessary to describe asset returns and the (volatility of the)
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Figure 4.12: Risk-neutral volatility density from Heston (1993) models using the same

parameters as in Figure 4.11.

does not provide the correct positive skewness that is apparent from the nonparametric

estimate.

To assess the financial significance of the presented densities, consider a volatility

swap which pays the difference between the actual spot volatility and a reference volatil-

ity level over a maturity of one month. The reference level is chosen in such a way that

the current value of the contract is zero. Using the risk-neutral volatility density from

the Heston (1993) model, the reference level would be 19.8%, while the nonparametric

estimate yields a significantly higher reference level of 20.5%, mainly due to positive

volatility skewness.

4.4.3 Risk-neutral bivariate return/volatility distribution

The method proposed in this chapter also leads to joint risk-neutral return and volatility

distributions which can be used to study the risk-neutral dependence. Figure 4.13 graphs

this joint estimate.22 The graph clearly shows that standard Gaussian and other elliptical

empirical volatility distribution simultaneously. In parametric models this could be accomplished by, for
instance, an additional Brownian component (see Chernov, Gallant, Ghysels, and Tauchen (2003)) or a
jump component (see Broadie, Chernov, and Johannes (2004)) in the Heston (1993) volatility process.
Once more, these are possible parametric adjustments of the Heston (1993) model that correspond to
the nonparametric density estimates of this chapter.

22As for the simulated Heston (1993) model the corresponding copula is presented (Figure 4.14). This
figure indicates that the dependence between returns and volatility is negative. Section 4.4.4 gives more
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Figure 4.13: Nonparametric estimate of bivariate risk-neutral excess return/volatility

density.
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Figure 4.15: Risk-neutral conditional excess return distributions for an initial spot

volatility level op 19.4% and several future spot volatility levels. Returns and volatilities

are over a period of h = 1 month.

distributions will not provide a good fit to the bivariate distribution. However, it is

difficult to asses the financial significance of these deviations. These are more apparent

from conditional return distributions (conditional on future volatility levels) as provided

in the next section.

4.4.4 Conditional risk-neutral return distributions

In order to assess the risk-neutral dependence structure of returns and volatilities, Fig-

ure 4.15 presents the return distribution conditional on the future level of the spot

volatility. In line with previous results, see, for instance, Bakshi, Cao, and Chen (1997),

Figure 4.15 provides clear evidence of negative risk-neutral correlation between (excess)

returns and volatility. This follows from the fact that higher future volatility levels in

Figure 4.15 lead to negative shifts in the return distribution. This is also confirmed

when the excess return and spot volatility correlation is calculated.

At the same time, the method proposed in this chapter provides evidence that return

distribution skewness depends on volatility changes. For a future volatility level of

insight on this dependence.
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25%, which is close to the risk-neutral average spot volatility, the return distribution is

clearly skewed to the left. Left skewness of the risk-neutral return distribution is usually

associated with a significant crash risk premium. However, for low future volatility levels

the return distribution not only shifts to the right, but it loses its negative skewness and

even shows slight positive skewness. The intuition behind this result is that the crash

risk premium is higher when there is more uncertainty in the market. This latter result

has not been reported before (empirically).

4.5 Summary

A nonparametric technique to infer risk-neutral return and volatility distributions from

plain vanilla option prices is presented. Using this technique and recent S&P-500 data,

the results confirm negative skewness in the risk-neutral return distribution, negative

volatility risk premiums, and negative risk-neutral return/volatility correlation. It is

important to note that these results are obtained without using a parametrically specified

model. At the same time, as the full joint risk-neutral return and volatility distribution is

estimated, the results show positive skewness in the risk-neutral volatility distribution,

which seems to decrease with volatility levels. Moreover, conditional on low future

volatility levels, the return distribution is no longer negatively skewed but shows some

slight positive skewness. These effects are consistent with volatility dependent risk

premiums. Finally, the results are indicative of a volatility risk premium that depends

on initial volatility in a non-linear way.

A future extension of the proposed technique could look at the possibility of jumps

in both the underlying price process and in the underlying volatility process. Several

parametric models have been proposed to include both. An issue in the implementation

of the proposed method for these kinds of underlying methods is that the applied filter-

ing procedure is only valid for continuous volatility processes and thus would have to be

adapted. Recently, however, some techniques to distinguish jumps from continuous be-

havior have emerged, see, for instance, the work Bandorff-Nielsen and Shephard (2004).



CHAPTER 5

A Note on the Use of GARCH Instruments for Parameter

Estimation in Stochastic Volatility Models

5.1 Introduction

The quest for an empirically sound description of equity-index returns (and option prices)

in continuous time started right after the publication of the Black and Scholes (1973)

model. A good description of the asset price process is not only important for the pur-

pose of option pricing but is also of great relevance for risk management. The Black and

Scholes (1973) model predicts normally distributed log-returns over a fixed horizon un-

der the objective probability measure. This contradicts the empirical features of (short

horizon) log-returns on individual stocks, stock indices, or exchange rates. Financial

time series generally exhibit features as fat tails, negative skewness, and volatility clus-

tering. These features are economically relevant and therefore numerous models have

been proposed that allow for the observed regularities. One way to go is to introduce

stochastic volatility in such a way that persistence in volatility is captured. Examples

of stochastic volatility models can be found in Hull and White (1987) and Scott (1987).

These papers derive theoretical option prices under the assumption that volatility risk is

idiosyncratic. Wiggins (1987) derives an option pricing partial differential equation un-

der particular assumptions for agents’ risk preferences while Heston (1993) finds a closed

form solution for option prices in the presence of stochastic volatility. The benchmark

85
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model (taken from Nelson (1990)) that is used throughout this chapter is

d log St = µdt + σtdW S
t , (5.1)

dσ2
t = −κ

(
σ2

t − σ2
)
dt +

√
2κθσ2

t dW V
t , (5.2)

where W =
(
W S,W V

)
is a two-dimensional standard Brownian motion. The long-run

variance parameter σ2 is positive as is the mean-reversion parameter κ. The parameter θ

is a nuisance parameter that governs the volatility of volatility. The stochastic variance

process (σ2
t ) is a mean-reverting process in the same spirit as Hull and White (1987),

leading to stylized features as volatility clustering and fat tails. Although the focus of

this chapter is on processes that are continuous, the methodology also applies to models

that include jumps in asset prices and volatility.1 Furthermore, the model allows for

leverage effects as W S and W V may be correlated.

Statistical inference in continuous time models is challenging, mainly due to the fact

that exact likelihoods (that need to be based on transition densities) for (jump-)diffusions

are generally unknown in analytical form. Moreover, the presence of latent variables in-

duces extra complications. As a result, several non-likelihood-based or simulation-based

inference techniques have been proposed. For instance, the model (5.1)–(5.2) is derived

in Nelson (1990) as the limit of a sequence of discrete-time GARCH(1,1) processes.

This inspired empirical researchers to use the GARCH(1,1) model to estimate this dif-

fusion. However, the moment conditions of the discrete time GARCH(1,1) model are

not exactly satisfied in the continuous time model, see Drost and Werker (1996). The

convergence result is used in Section 5.2 for the construction of informative instruments.

Other approaches include the Efficient Method of Moments (EMM) which is applied

by Chernov and Ghysels (2000) in the Heston stochastic volatility model and Andersen,

Benzoni, and Lund (2002) in a jump-diffusion model; the Simulated Method of Moments

(SMM) approach in Duffie and Singleton (1993); Markov Chain Monte Carlo (MCMC)

methods applied by, e.g. Eraker, Johannes, and Polson (2003) in a jump-diffusion set-

ting; and the spectral GMM estimator utilizing the characteristic function in Chacko

and Viceira (2003) that applies the method to stochastic volatility and jump-diffusion

models. Most methods are computationally demanding and cumbersome to implement

in practice. This in contrast to the method described in Section 5.2 which can be best

characterized as ”simple”. Following Meddahi and Renault (2004), moment conditions

are constructed for the stochastic volatility model above that are independent of la-

1Examples can be found in Duffie, Pan, and Singleton (2000), Broadie, Chernov, and Jo-
hannes (2004), and Santa-Clara and Yan (2004).
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tent variables by taking linear combinations of first and second conditional moments for

different lags. The traditional problem with this method is that insufficiently informa-

tive instruments appeared to be available. Instead, instruments based on a Gaussian

QMLE analysis of approximating GARCH(1,1) models are used in this chapter. Sim-

ulation results show that these are much more informative than classical instruments

like lagged returns and their squares. However, the practical applicability of the method

is questionable since the improvement does not lead to sufficiently precise parameter

estimates.

The estimation proposal is detailed in Section 5.2 while the simulation study is

presented in Section 5.3.

5.2 GMM Estimation

The main interest of this chapter is the estimation of model (5.1)–(5.2) based on regularly

spaced observations in discrete time. First, the linear mean-reversion in the volatility

equation (5.2) implies that exact conditional moment conditions for both instantaneous

variances and log-returns over deterministic intervals are easily obtained. More precisely,

for all fixed h > 0,

αt(h) := Et (log St+h − log St)

= Et

∫ h

0

µdu + σt+udWt+u

= µh, (5.3)

βt(h) := Et (log St+h − log St − µh)2

= Et

∫ h

0

σ2
t+udu

=

∫ h

0

σ2 + exp(−κu)
(
σ2

t − σ2
)
du

= σ2h +
1− exp(−κh)

κh

(
σ2

t − σ2
)
h. (5.4)

The conditional variance βt(h) depends on the latent instantaneous variance σ2
t . In order

to derive moment conditions in terms of observables alone, the dependency on σ2
t has to

be removed. To eliminate σ2
t a well-known trick (see, e.g. Meddahi and Renault (2004))

is applied to the conditional moments βt(h) and βt(2h). More precisely, the moment

condition (5.4) immediately implies

βt(2h)

1− exp(−2κh)
− βt(h)

1− exp(−κh)
= σ2h

(
2

1− exp(−2κh)
− 1

1− exp(−κh)

)
. (5.5)
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Adding moment conditions beyond βt(2h) is possible as well. For horizons of length

h, 2h, . . . , Kh, we get

Et

(
[αt(kh)]k=1,...,K

[βt(kh)]k=1,...,K

)
=

(
aK 0K

bK cK

)(
1

σ2
t

)
, (5.6)

for some K-vectors aK , bK , and cK . The vector 0K denotes the null vector and, for

instance aK = µh(1, . . . , K)T . In general, the vectors aK , bK , and cK depend on h and

the unknown parameters. To remove the latent volatility, again linear combinations of

the conditional expectations are taken such that the resulting moment conditions are

independent of σ2
t . Note that this method could be easily generalized in case more latent

variables are present. In that case, the above vectors generally become matrices, but

the idea of taking linear combinations of moment conditions for different lags which do

not depend on the unobservable variables remains unchanged. From a theoretical point

of view, the inclusion of higher-order (i.e., k = 1, . . . , K) moments would lead to more

efficient estimates if the model (5.1)–(5.2) is correctly specified. However, the use of

higher order moments will severely deteriorate the behavior of the estimates in case of

small deviations of this model, while the first two conditional moments of the process

describe the stylized features of log-returns.

The approach described here leads to exact moment conditions in terms of observ-

ables alone so that standard GMM can be applied by using some instruments. In estimat-

ing financial models these instruments are often chosen in an ad hoc manner although

there is a literature on the optimal choice of instruments in a GMM framework (see

Hansen (1982)). The reason behind this approach is that optimal instruments are often

difficult to calculate in financial models. Taking ad hoc instruments leads to a consistent

and asymptotically normal inference procedure, but the efficiency is quite low. In this

chapter so-called ’GARCH’ instruments are used. The motivation for this choice is based

on the second estimation method that is sometimes used and which will be discussed

now.

This second estimation method is based on Nelson (1990) that shows that the con-

tinuous time processes (5.1) and (5.2) can be obtained as the limit of a sequence of

discrete-time GARCH processes. This has led people to estimate the approximating

GARCH model, e.g. by a Gaussian likelihood method and to infer the continuous time

parameters from these estimates. The disadvantage of such an approach is that the

approximating nature of the GARCH processes induces a discretization type bias in

the estimates. In fact Wang (2002) has shown that, while the discrete time GARCH

processes do converge to the continuous time processes (5.1) and (5.2) in a probabilistic
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sense, there is no convergence in a statistical sense. This means that the associated

estimation problems in the discrete time GARCH model and the continuous time model

are by no means similar. For this reason, estimates of (5.1) and (5.2) based on GARCH

QMLE will not be considered in the sequel of this chapter. However, the QMLE pro-

cedure is used to obtain more efficient instruments that will be employed in the GMM

procedure described above. To be more precise, the QMLE technique estimates the

GARCH parameters θ̃ = (ω, α, β) in the “approximating” model

log St+h − log St = µh + vt(θ̃)εt+h, (5.7)

v2
t (θ̃) = ω + α (log St − log St−h)

2 + βv2
t−h(θ̃), (5.8)

where the innovations εt are assumed to be i.i.d. with mean zero. The Gaussian QMLE

for this GARCH model can be seen as a moment estimator based on

Et (log St+h − log St − µh)2 = v2
t (θ̃) (5.9)

with ’GARCH’ instruments
∂

∂θ̃
log v2

t (θ̃). (5.10)

Note that these instruments are observable as a consequence of the recursion (5.7) and

can easily be calculated using the same recursion (5.7). Nelson (1990) indeed stresses

that a GARCH model with non-latent volatility can have a continuous time limit with

latent volatility. The methodology proposed in this chapter utilizes the exact moment

conditions (5.3) and (5.5) combined with instruments (5.10) that are based on Gaussian

likelihood based inference in the approximating GARCH process. Observe that these

moment conditions only identify µ, σ2, and κ, but not the diffusion specification of the

instantaneous variance σ2
t . For the parameters that are identified, the simulation study

in the next section shows that the proposed method dominates the GMM method with

ad hoc instruments for relevant parameter configurations. In particular, the diffusion

term of the instantaneous variance need not be specified. Simulation based methods

like EMM/Indirect Inference do need a parametrization of this term. Methods based on

conditional characteristic functions are also of a parametric nature.

5.3 Simulation Results

This section investigates the empirical applicability of the method that is described in

the previous section by means of a simulation study. For simplicity reasons the drift
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parameter µ is restricted to be equal to 0 in the simulations. While most empirical papers

show comparable estimates of the mean of the variance process for S&P-500 index data,

there is wide variation in the estimates for the rate of mean-reversion and the volatility-

of-volatility. For example, Andersen, Benzoni, and Lund (2002) find a mean reversion

parameter equal to 3.251 and a volatility of volatility parameter of 0.185, while Chernov

and Ghysels (2000) estimate κ = 0.926 and a volatility of volatility equal to 0.063.

Chacko and Viceira (2003) confirm this poor identification and argue that, in order to

capture the regularities in the variance process, a low speed of mean-reversion must be

offset by a low value of the volatility of volatility and a high speed of mean reversion needs

to be compensated by a high volatility of volatility. This argumentation is confirmed

in the literature by the estimation results of stochastic volatility models using S&P-

500 return data. Given these results two benchmark values for the parameter vector

are chosen in the simulation study below, namely a high persistence/low volatility of

volatility case and a low persistence/high volatility of volatility case. The parameter

estimates of the aforementioned studies are used to simulate the daily return patterns.

Furthermore, the mean of the variance process σ2 is estimated as 0.014 in Andersen,

Benzoni, and Lund (2002) and 0.0164 in Chernov and Ghysels (2000).

In the simulation study conducted in this chapter, for each replication, a return series

is generated for the two above mentioned parameter vectors. Subsequently, GARCH(1,1)

parameter estimates are determined for the simulated return series. Finally, the contin-

uous time parameters are estimated using the exact moment conditions with GARCH

instruments, as described in the previous section. This procedure is compared to using

the ad hoc instruments (1, r2
t−h, r

2
t−2h) with rt−h = log St/St−h. The simulation study is

based on 5,000 replications. Table 5.1 summarizes the results.

Table 5.1 shows that the use of exact moment conditions with GARCH instruments,

leads to a significant reduction in variability of the estimates. With the notable exception

of the median absolute deviation (MAD) for the high persistence case, all results imply

that the use of GARCH instruments leads to point estimates which are on average closer

to the true value and lower variability around this true value. This effect is especially

strong for the estimates of the mean-reversion coefficient κ, where the use of ad hoc

instruments often leads to extreme point estimates. These outliers in the estimators

distribution do not occur when using GARCH instruments.

The second conclusion that can be drawn from Table 5.1 is that the constructed

unconditional second moment does not provide sufficient empirical identification of the

volatility process parameter κ. As was mentioned before, κ measures the speed of mean
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reversion in the variance process. Intuitively, changes in κ do not have a considerable

influence on the second moment of returns, leading to a questionable empirical identifica-

tion. The logical next step is to construct higher order moment conditions (of returns or

variance) independent of the latent state variables that are more sensitive for changes in

the mean reversion parameter κ than the set of moment conditions used in this chapter.

The practical implementation of this extension is left for future work.

5.4 Summary

The main conclusions of this chapter can be summarized in only a few sentences. This

chapter proposes a simple methodology for dealing with conditional moments that con-

tain latent variables. The idea is to construct moment conditions independent of the la-

tent variables by taking linear combinations of the conditional moments. The simulation

experiment shows that for the purpose of parameter estimation in stochastic volatility

models, the use of these moment conditions in combination with ad-hoc instruments is

useless. Using so-called GARCH-instruments instead leads to a considerable decrease in

standard deviations of the estimated parameters. However, the empirical identifiability

of the mean-reversion parameter remains poor.
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Five years of daily data

ABL ad hoc ABL GARCH CG ad hoc CG GARCH

κ σ κ σ κ σ κ σ

True value 3.25 0.014 3.25 0.014 0.92 0.016 0.92 0.016

Average 47.41 0.207 4.52 0.039 89.64 0.198 2.95 0.026

Median 0.18 0.017 3.45 0.013 0.27 0.116 0.50 0.016

St.dev. 91.96 0.252 6.42 0.088 580.31 0.209 12.07 0.038

MAD 20.00 0.009 5.02 0.005 0.72 0.151 3.01 0.005

2.5 perc -49.72 0.010 -6.03 0.006 -256.74 0.000 -14.29 0.000

97.5 perc 289.54 0.765 20.07 0.276 1455.34 0.687 34.49 0.133

Ten years of daily data

ABL ad hoc ABL GARCH CG ad hoc CG GARCH

κ σ κ σ κ σ κ σ

True value 3.25 0.014 3.25 0.014 0.92 0.016 0.92 0.016

Average 32.01 0.155 3.78 0.025 57.02 0.214 1.69 0.021

Median 2.79 0.015 3.39 0.014 0.18 0.140 0.78 0.016

St.dev. 62.36 0.230 3.57 0.038 158.08 0.218 3.58 0.023

MAD 33.44 0.004 3.39 0.003 0.47 0.185 1.89 0.004

2.5 perc -58.32 0.011 -2.50 0.009 -3.81 0.012 -4.88 0.000

97.5 perc 187.16 0.696 11.89 0.148 436.98 0.687 10.78 0.099

Table 5.1: Simulation results for exact GMM in the model (5.1)-(5.2), with ad hoc

and GARCH instruments. The true underlying parameters are chosen as the estimates

presented in Andersen, Benzoni, and Lund (2002), ABL, or Chernov and Ghysels (2000),

CG. The upper panel refers to the use of five years of daily return data, while the lower

panel refers to ten years of daily data. MAD denotes the Median Absolute Deviation,

rescaled so that for the normal distribution it equals the standard deviation. The rows

“2.5 perc” and “97.5 perc” refer to the respective empirical quantiles of the estimated

parameters over the replications. The results are based on 5,000 replications.



CHAPTER 6

Mean-Variance Properties of Option Returns

6.1 Introduction

The mean-variance analysis of Markowitz (1952) is the first study that analyzes the risk-

return trade-off for a portfolio of stocks. When compared to dynamic expected utility

models, mean-variance analysis provides an intuitive and simple approach to the concept

of diversification. The idea of Markowitz (1952) is further developed in Sharpe (1964),

Lintner (1965), and Mossin (1966), leading to the classical Capital Asset Pricing Model

(CAPM). The CAPM can be characterized as a single-period model in which the only

source of systematic risk is the risk in the market portfolio. One of the assumptions

underlying the CAPM is that each investor optimally holds a mean-variance efficient

portfolio. Sufficient conditions for this assumption to hold are strong: (i) all asset

returns are elliptically distributed or (ii) investors have a quadratic utility function.

The CAPM has been subject to criticism both theoretically and empirically. First,

the elliptical distribution assumption of asset returns or portfolio returns is often not

satisfied.1 Furthermore, Dybvig and Ingersoll (1982) shows that, in complete markets,

mean-variance preferences lead to arbitrage opportunities.2 Jarrow and Madan (1997)

1For instance, if returns of underlying assets are normally distributed then returns of portfolios
containing options written on these assets or returns of dynamic strategies will not be normally dis-
tributed. Empirical evidence of non-normality of option portfolios can be found in Merton, Scholes,
and Gladstein (1978), Merton, Scholes, and Gladstein (1982), and Coval and Shumway (2001)

2This is an immediate consequence of the shape of the utility function. Quadratic utility implies

93
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argues that completeness is not a necessary condition for these arbitrage opportunities

to occur. That paper shows that the presence of arbitrage opportunities in the CAPM

is due to the mean-variance preferences.

The discussion of the single-period nature of the model leads to the continuous time

asset pricing models in Merton (1971) and Merton (1973). Fama and French (1992) and

Fama and French (1993) provide empirical evidence that the single market factor cannot

explain the difference in return between portfolios constructed on the basis of the ratio

of book value of equity to market value of equity.

Despite the theoretical and empirical objections against the CAPM, performance

measures based on the CAPM (like CAPM α and the Sharpe ratio) are still widely used

by practitioners. Academic studies have shown that these performance measures should

be treated with caution when the shape of the return distribution is far from normal.3

Highly non-normal return distributions can be created by taking positions in options.

Leland (1999) shows that under the assumption of perfect markets and independently

and identically distributed (i.i.d.) returns of the market portfolio, the performance of

derivative portfolio managers will be mismeasured by CAPM α.4 That paper shows how

to adjust CAPM β in the Black-Scholes world such that CAPM β can be interpreted as

a risk measure.

The problems that occur when performance of option strategies is evaluated under

the CAPM assumptions are clear now. However, the implications of mean-variance

assumptions on optimal asset allocation, in a setting where options are treated as a sep-

arate asset class, have not been considered yet. Although there are studies that treat the

issue of optimal positioning in options, only a few papers concentrate on the demand for

options.5 Options are often excluded from the analysis because of computational com-

negative state prices for high return states because of negative marginal utility in these states.
3With respect to manipulation of the Sharpe ratio, see Henriksson and Merton (1981), Dybvig and

Ingersoll (1982), Bernardo and Ledoit (2000), Spurgin (2001), and Goetzmann, Ingersoll, Spiegel, and
Welch (2002). Goetzmann, Ingersoll, Spiegel, and Welch (2002) derives rules that define derivative
strategies which maximize the Sharpe ratio. That paper finds that the optimal strategy is to sell
out-of-the-money calls and out-of-the-money puts.

4The CAPM assumptions are not only violated because of the derivatives based portfolios but also
because of the assumptions of i.i.d. returns of the market portfolio and perfect markets. This assumption
implies (see Rubinstein (1976), Brennan (1979), and He and Leland (1993)) that the representative must
have a power utility function. An implication of power utility is that investors treat upside and downside
risks differently.

5Derivatives in an asset allocation context are mostly used to measure the economic value of market-
timing performance, see Merton (1981), Henriksson and Merton (1981), and Evnine and Henriks-
son (1987).
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plexities. If options are redundant securities, i.e. in complete markets, this exclusion

is justified. However, the empirical results in, for instance, Bakshi and Kapadia (2003)

indicate that options are non-redundant. The optimal asset allocation decision should,

therefore, be based on the specific risk-return characteristics of options. Dert and Old-

enkamp (1996) and Dert and Oldenkamp (2000) use empirically observed option prices

to determine optimal investment portfolios from a universe of assets that consists of

a risk free asset, a stock index, and options that are written on this index. Optimal

portfolios are obtained by maximizing the expected return at the investment horizon

under the restriction that the realized portfolio return at the horizon is not smaller than

a specified guaranteed return. Carr, Jin, and Madan (2001) provides closed form solu-

tions for the optimal derivative contracts when the utility function is in the HARA class

and the (risk-neutral) process for the derivative’s underlying asset is assumed to be in

the variance gamma class. In a single period economy, Carr and Madan (2001) shows

how investors can determine their optimal positions in three asset classes (risky asset,

riskless asset, and options). Based on the findings of the empirical literature with respect

to volatility risk and jump risk6, Liu and Pan (2003) derives optimal dynamic deriva-

tive strategies in a model that incorporates three separate risk sources.7 In addition,

that paper determines the portfolio improvement from adding options to the investment

opportunity set by comparing the certainty-equivalent wealth of investors with and with-

out the opportunity to invest in options. Finally, Driessen and Maenhout (2004) uses

an empirical approach to calculate optimal portfolio weights. As a consequence, no as-

sumptions on price dynamics or risk prices need to be imposed. The empirical results

of the related study in Driessen and Maenhout (2004) show that constant relative risk

aversion investors, loss-averse investors, and disappointment-averse investors optimally

take short positions in out-of-the-money puts and at-the-money straddles, indicating

6There is mixed empirical evidence on the presence and magnitude of volatility and jump risk
premia. Chernov and Ghysels (2000) and Bakshi and Kapadia (2003) find a negative volatility risk
premium but these studies do not include jumps in the model. Pan (2002) reports a significant negative
volatility risk premium when jumps are excluded but the volatility risk premium becomes insignificant
after jumps are included in the model. In a recent study Broadie, Chernov, and Johannes (2004)
provides empirical evidence for a jump risk premium in the option’s underlying asset and for a jump
risk premium in the variance process. The results in Demertefi, Derman, Kamal, and Zou (1999), Coval
and Shumway (2001), Bondarenko (2004), Carr and Wu (2004), and Dert, Pergamentsev, Petit, and
Tolenaar (2004) also indicate that either volatility risk and/or jump risk is priced.

7One of the differences between Carr and Madan (2001) and Liu and Pan (2003) is that the former
derives optimal portfolio weights in a general equilibrium setting while the analysis in Liu and Pan (2003)
is of a partial equilibrium nature.
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that the risk premia in option pricing models are large.8

This chapter examines the mean-variance properties of option returns in a world

that allows for systematic volatility risk and jump risk. In order to investigate these

properties the conditional expectation of option returns, the (conditional) variance of

option returns, the conditional covariance between an option return and the return on the

option’s underlying asset, and the conditional covariance between two different options

need to be determined. This chapter provides a methodology, based on the characteristic

function, that can be employed to calculate the previously mentioned quantities for all

models that fit in the class of affine-jump diffusions. The emphasis of this chapter will

be on the two applications of mean-variance theory as described above: performance

measurement and portfolio selection. The performance measurement application is an

extension of the work in Leland (1999). Analytical expressions for CAPM α of single

option returns are derived under more realistic assumptions for the return on the market.

The portfolio allocation application is best compared to the study in Liu and Pan (2003).

However, the model considered in this chapter’s application is more general than the

model in Liu and Pan (2003).

Adding single options to the investment opportunity set seems to be inconsistent

with the theory underlying the CAPM. Single option returns are obviously not ellip-

tically distributed and, secondly, the model structure implies that under reasonable

parameter choices the utility function of the investor is strictly increasing. However, the

mean-variance investor should also profit from the addition of options to the investment

opportunity set in settings where volatility risk and jump risk are priced since options

can be used for taking exposure in every risk factor. Optimal portfolio weights derived

in the expected utility framework of Liu and Pan (2003) are compared to the optimal po-

sitions of a mean-variance opportunity. To deal with the theoretical inconsistencies that

arise from considering single option returns, optimal portfolio weights of delta-hedged

straddles are determined. Returns on delta-hedged straddles are more symmetric than

single option returns. Again the optimal portfolio weights are compared to the results

in Liu and Pan (2003).

The theoretical results show that as a performance measure of option returns, CAPM

α should be treated carefully. The reason for this is that the CAPM is linear while option

returns are highly non-linear. Despite the shortcomings of the CAPM in evaluation

option based investment strategies, it is important to examine the properties of CAPM

8The usage of derivatives in asset allocation context is, for instance, also considered in Leland (1980),
Brennan and Solanki (1981), and Haugh and Lo (2001).
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α and CAPM β because the CAPM is widely applied in practice. Properties of CAPM

α and CAPM β are not only considered for single option returns but also for returns on

delta-hedged straddles. The outcomes reveal that CAPM α and CAPM β of delta-hedged

straddle returns get their usual interpretation when the hedging frequency increases in

a world with nonsystematic volatility risk and nonsystematic jump risk. Furthermore,

the usage of the CAPM regression equation for validating option pricing models can

be tricky because the underlying OLS estimation assumptions are often violated in

stochastic volatility and jump models.

Like power utility investors, mean-variance investors optimally take short positions

in volatility under the assumption of a negative volatility risk premium. The investment

vehicle considered in this analysis is an at-the-money delta-neutral straddle since the

return on a straddle is highly correlated with realized variance. Varying several param-

eters in the stochastic volatility model leads qualitatively to the same optimal straddle

weights as in Liu and Pan (2003). In the presence of jumps, out-of-the-money options

are used to create jump exposure because these options disentangle jump risk and dif-

fusive risk most effectively. Differences are observed between optimal portfolio choice

of power utility investors and mean-variance investors. Mean-variance investors tend to

take the risky side of the out-of-the-money put at lower jump risk compensation than

power utility investors. For some settings, power utility investors use the put options

only as a hedge for long stock positions. Finally, large efficiency gains of adding options

to the investment opportunity set are observed in a world with a negative volatility risk

premium and a jump risk premium. This gain is realized if the mean-variance investor

takes a short position in the delta-neutral straddle.

The chapter is organized as follows. Section 2 gives a brief summary of the main

theoretical findings on option returns followed by a treatment of the methodology that is

used to determine expected option returns and the variance of option returns in Section 3.

Section 4 provides intuition for the influence of volatility risk premia on the expectation

and variance of option returns in a jump-diffusion model that fits in the class of affine

jump-diffusion models. The link between a single-period CAPM performance measure

and continuous time option pricing models is discussed in Section 5. Mean-variance

portfolio asset allocation is performed in Section 6. The main findings of the chapter

are summarized in Section 7. All proofs are given in the appendix.
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6.2 Review

Although there are quite some studies9 that examine the empirical properties of option

returns or returns of option based strategies, only a few theoretical results on the (condi-

tional) probability distribution of option returns are available. One of these results can

be found in Coval and Shumway (2001). This section discusses the findings of Coval and

Shumway (2001) in more detail and demonstrates these for the Black-Scholes model.

Standard asset pricing theory shows that, under no-arbitrage, a positive stochastic

discount factor π exists such that the time t price, Xt, of a financial claim XT at time

T is given by

Xtπt = EIP
t (XT πT ), (6.1)

where the expectation is taken under the real-world probability measure IP. The stochas-

tic discount factor takes high values in bad states of the world and low values in good

states of the world. For instance, low values of stock indices are often considered to be

bad states of the world. In such an economy there will be a negative correlation between

the stock index and the stochastic discount factor. Coval and Shumway (2001) shows

that if the underlying value of a call option is negatively correlated with the stochastic

discount factor, expected call option returns will be higher than the expected return on

the option’s underlying asset. The same assumption also implies that the expected call

option return is increasing in strike price. In order to illustrate this, note (assuming that

πt = 1) that the expected gross return Rc
t:T (K) of a call option with strike price K and

maturity T is given by

Et (Rc
t:T (K)) =

Et(CT )

Ct

=

∫∞
K

(ST −K) ft(ST )dST∫∞
0

∫∞
K

πT (ST −K) ft(ST , πT )dST dπT

,

where ft (·) denotes the conditional probability density function of (ST , πT ) at time t.

The derivative of the expected net return with respect to the strike price K is

∂Et (rc
t:T (K))

∂K
=

−Cov (E (πT |ST ) , ST −K|ST > K)(∫∞
K

(ST −K) E (πT |ST ) ft(ST )
1−Ft(K)

dST

)2 , (6.2)

where Ft is the cumulative distribution function corresponding to ft.
10 Formula (6.2)

shows that if the correlation between the stochastic discount factor at time T and the

9Merton, Scholes, and Gladstein (1978), Merton, Scholes, and Gladstein (1982), Sheikh and
Ronn (1994), Coval and Shumway (2001), Hodges, Tompkins, and Ziemba (2003), Driessen and Maen-
hout (2004), and Jones (2004).

10For a more detailed derivation, see Coval and Shumway (2001).
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underlying value at time T is negative, the numerator of the above expression is positive.

A call option price with strike price zero is equivalent to a stock and hence expected net

returns on a call option exceed that of the underlying security.

The general pricing formula (6.1) provides additional intuition for this result. The

payoff of a call option is small when the underlying stock has a low value at maturity of

the option. Under the assumption that the correlation between the stochastic discount

factor and the option’s underlying value is negative, the call option pays off zero in states

where the stochastic discount factor is high, i.e. where payoff is most rewarded. The

payoff of the underlying stock is also negatively correlated with the stochastic discount

factor but the difference with the call option is that the stock keeps value. Therefore, call

options are ’riskier’ than their underlying value and should consequently earn a higher

return than the stock they are written on.11

For a put option an analogous reasoning applies. The correlation between the payoff

of a put option and the stochastic discount factor is positive since put options provide

payoff when the underlying stock (index) takes low values. Therefore, put options are

considered to be hedge instruments against the undesirable states. Consequently, put

options earn a lower return than the risk free rate.

The main condition for the theoretical result in Coval and Shumway (2001) is that

the stochastic discount factor is negatively correlated with the underlying value of the

call option. This condition is equivalent to a positive equity risk premium in most asset

pricing models.12 This means that low levels of asset prices are disliked by investors

and that investment opportunities which give protection against these states, like put

options, generate a low expected return.

To illustrate the main results of Coval and Shumway (2001), the standard Black-

Scholes model, in which the stock price follows a geometric Brownian Motion, is con-

sidered. In this Black-Scholes world the expected gross return of a strike K call option

with maturity T is given by

Et

(
Rc,BS

t:T (K)
)

=
Ste

µ(T−t)Φ(d1,p)−KΦ(d2,p)

StΦ(d1,q)−Ke−r(T−t)Φ(d2,q)
,

11From a CAPM perspective: the covariance between the call option’s payoff and the terminal stock
price decreases with strike price but the covariance between call option’s return and the return on the
underlying asset is increasing in strike price.

12Parameters in jump models can be chosen such that the condition is not satisfied. However, these
parameter sets are empirically irrelevant.
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Figure 6.1: Expected discounted gross return (annualized) on a call option with one

month to maturity for a positive equity risk premium, no equity risk premium, and a

negative equity risk premium. Returns are calculated under the assumption of a Black-

Scholes world.

where

d1,p =
log

(
St

K

)
+

(
µ + 1

2
σ2

)
(T − t)

σ
√

(T − t)
,

d1,q =
log

(
St

K

)
+

(
r + 1

2
σ2

)
(T − t)

σ
√

(T − t)
,

d2,p = d1,p − σ
√

(T − t),

d2,q = d1,q − σ
√

(T − t),

with µ and σ the standard Black-Scholes model parameters and Φ (·) the standard

normal cumulative distribution function. The risk free rate is denoted by r. If the strike

price K goes to zero then

lim
K→0

Et

(
Rc,BS

t:T (K)
)

= eµ(T−t),

which is exactly the expected gross return on the stock. Note that in case market risk

would not be priced, the gross return on each call option with maturity T equals er(T−t)

which is intuitively obvious since a zero market risk premium implies a risk-neutral world

in this particular model.

The stochastic discount factor is important in the Coval and Shumway (2001) deriva-

tions. In the Black-Scholes world the stochastic discount factor process π can be derived
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Figure 6.2: Expected discounted gross return (annualized) on a put option with one

month to maturity for a positive equity risk premium, no equity risk premium, and a

negative equity risk premium. Returns are calculated under the assumption of a Black-

Scholes world.

as

dπt = −rπtdt−
(

µ− r

σ

)
πtdWt,

where W is a Brownian Motion under the real-world probability measure IP. The corre-

lation between the stock price and the stochastic discount factor (for every t) is negative

if µ > r. Hence, the results in Coval and Shumway (2001) imply that under this con-

dition call options will earn higher returns than the underlying value of the option.

Figure 6.1 and Figure 6.2 illustrate theoretical expected discounted option returns for

respectively calls and puts as a function of moneyness (where moneyness is defined as

exp(−r(T − t))K/St) in the Black-Scholes world.13 The expected option returns are

calculated for a one month maturity option that is held until maturity.

Figure 6.1 and Figure 6.2 confirm the intuition. If the expected rate of return on

the underlying security is equal to the risk free rate (which equals 4% in Figure 6.1 and

13The reason for choosing this measure of moneyness will become clear later in this chapter when
the conditional expectation of option returns is derived in a particular model. The disadvantage of
this measure is that the term structure of implied volatilities is omitted. An alternative measure of
moneyness which corrects for this is given in Natenberg (1994). However, this measure is based on
total volatility over the life of the option. In empirical studies the Black-Scholes at-the-money implied
volatility is often used to approximate total volatility. Such an approximation should be avoided in a
theoretical study like this.
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Figure 6.2) there is no premium required on the risk that is in the stock and therefore

all assets should earn the risk free rate, i.e in this special case the real-world measure

equals the risk-neutral measure. In case of a positive risk premium the expected return

on the call option is increasing in strike price. This corresponds to the derivations in

Coval and Shumway (2001). Furthermore, a call option with strike zero equals the stock

and therefore the expected discounted gross return on a call option should converge to

e(µ−r)(T−t) as moneyness approaches zero. Finally, a put option with strike price infinity

is a risk free asset and consequently the expected discounted gross return on a put

converges to one as moneyness goes to infinity.

6.3 Methodology

In the theoretical analysis of Coval and Shumway (2001) expressions for expected option

returns are derived in a setting where options are held to maturity. However, in that

paper’s empirical application, average option returns are calculated for option positions

that are closed out before maturity. This section demonstrates how expected returns

on options that are possibly not held to maturity dates, can be calculated explicitly.

Moreover, the methodology can also be used to calculate (conditional) variances of

option returns. The method is based on the joint characteristic function of the model’s

state variables. Because characteristic functions are model dependent this chapter’s

approach is less general than the approach in Coval and Shumway (2001). On the

other hand, the resulting expressions can be used to determine the influence of risk

premia on optimal portfolios. Furthermore, the moment conditions could also be useful

for parameter estimation in the underlying continuous time model. The methodology

will be demonstrated for the general class of affine jump-diffusion models as proposed

in Duffie, Pan, and Singleton (2000). The practical applications will be based on a

particular model that fits into this class.

6.3.1 Affine jump-diffusions

Duffie, Pan, and Singleton (2000) derives the time t price of a call option Ct with strike

price K and maturity T in the class of affine jump models as

Ct =
ψ (1, Xt, t, T )

2
− 1

π

∫ ∞

0

Im

[
ψ (1− iφS, Xt, t, T ) eiφS log K

φS

]
dφS

−K

[
ψ (0, Xt, t, T )

2
− 1

π

∫ ∞

0

Im

[
ψ (−iφS, Xt, t, T ) eiφS log K

φS

]
dφS

]
, (6.3)
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where the vector X contains the state variables, φS takes real values, and Im (·) denotes

the imaginary part of a complex number. In this option pricing formula the function

ψ(·) is defined by

ψ (u,Xt, t, T ) = EQ
t

(
exp

(
−

∫ T

t

R(Xs)ds

)
eu log ST

)
, (6.4)

where S denotes the option’s underlying asset, R(·) is a discounting function, and u

takes complex values. The next lemma shows that (6.3) can be rewritten such that the

resulting call option pricing formula looks more familiar.

Lemma 6.1. The option price in (6.3) is rewritable in a Black-Scholes representation

Ct = StP1,t −Ke(−
R T

t R(Xs)ds)P2,t, (6.5)

with

P1,t =
1

2
+

1

π

∫ ∞

0

Re

[
ϕt (φS − i) e−iφS log K

iφSϕt (−i)

]
dφS,

P2,t =
1

2
+

1

π

∫ ∞

0

Re

[
ϕt (φS) e−iφS log K

iφS

]
dφS,

where P1,t and P2,t are probabilities and ϕt (·) is the time t conditional characteristic

function of log ST

ϕt (φS) = EQ
t

(
eiφS log ST

)
.

Proof. Appendix 6.C.

The derivations in the remainder of this chapter are based on option pricing for-

mula (6.5) using a constant interest rate. In most empirical option pricing applications

the statistical model is chosen such that the option pricing formula is homogeneous of

degree one with respect to the pair (St, K).14 The obvious consequence is that the option

pricing formula can be rewritten as the product of the initial stock price and a function

that depends on St only through the ratio K/St.

6.3.2 Expected option returns

Examination of the mean-variance properties of option returns requires knowledge of the

expectation of option returns. This sections shows how this expectation can be obtained

14A sufficient condition for this assumption to hold is that the risk-neutral process of X is assumed
to be Markovian and homogeneous with respect to the initial stock price level. See also, Garcia and
Renault (1995) and Garcia and Renault (1998).
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for every model that fits into the class of affine jump-diffusion models. The resulting

expectations are conditional on the time t values of the state variables in X. Using (6.5)

at time t + h, the expected gross return between time t and time t + h on a call with

strike price K and maturity T ≥ t + h is

EIP
t

(
Ct+h

Ct

)
= EIP

t

(
EQ

t+h (max(ST −K, 0))

Ct

)
= EIP

t

(
St+hP1,t+h −Ke−r(T−(t+h))P2,t+h

Ct

)
,

where

P1,t+h =
1

2
+

1

π

∫ ∞

0

Re

[
exp (−iφs log K) ϕt+h (φs − i)

iφsϕt+h (−i)

]
dφs,

P2,t+h =
1

2
+

1

π

∫ ∞

0

Re

[
exp (−iφs log K) ϕt+h (φs)

iφs

]
dφs.

The affine model structure implies

P1,t+h =
1

2
+

1

π

∫ ∞

0

Re


exp (−iφs log K) exp

(
α1,q + β1,qX̃t+h + iφs log St+h

)

iφs


 dφs,

P2,t+h =
1

2
+

1

π

∫ ∞

0

Re


exp (−iφs log K) exp

(
α2,q + β2,qX̃t+h + iφs log St+h

)

iφs


 dφs,

where X̃ contains all state variables except S and α1,q and β1,q are complex valued func-

tions that depend on the model parameters and T − (t+h). The necessary expectations

for calculating the expected call option return can be expressed as

EIP
t (St+hP1,t+h) = a +

1

π

∫ ∞

0

Re


beα1,q

EIP
t

(
exp

{
iβ1,q

i
X̃t+h + i (φs − i) log St+h

})

iφs


 dφs,

EIP
t (P2,t+h) =

1

2
+

1

π

∫ ∞

0

Re


beα2,q

EIP
t

(
exp

{
iβ2,q

i
X̃t+h + iφs log St+h

})

iφs


 dφs, (6.6)

where

a =
1

2
EIP

t (St+h) ,

b = exp (−iφs log K) .

Subsequently, the model structure is utilized once more to calculate EIP
t (St+hP1,t+h) and

EIP
t (P2,t+h) explicitly (details omitted). The particular chosen asset pricing model defines

the parameters of the process and the closed form expressions of expected option returns.
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6.3.3 Variance and covariance of option returns

Not only expected option returns are necessary for mean-variance analysis but the vari-

ance of option returns, the covariance between option returns and returns on the risky

asset, and the covariance between option returns of different strikes need to be deter-

mined as well. This section shows that these quantities can be calculated in the same

way as in the previous section.

For the (conditional) variance of call option returns only the expectation of the

squared future call price is unknown. Given the option price representation in (6.5), the

second moment of the future call price, for t = 0, is given by

EIP
0

(
C2

h

)
= EIP

0

(
ShP1,h −Ke−r(T−h)P2,h

)2
,

= EIP
0

(
S2

hP
2
1,h

)− 2Ke−r(T−h)EIP
0 (ShP1,hP2,h) + K2e−2r(T−h)EIP

0 P 2
2,h. (6.7)

Appendix 6.B shows that calculating the expectation of the squared probabilities is more

cumbersome than the expectation of the probabilities in the previous section. However,

the specific structure of the affine jump-diffusion models can be used once more to obtain

analytical expressions for all conditional expectations in (6.7).

Finally, the methodology can also be used to calculate the covariance between the

future value of the risky asset and the future option price, and the covariance between

two future option prices that have different strikes or maturities. Consider, for instance,

the covariance between the future value of the risky asset and the future call option price

(option with strike price K and maturity T ), for t = 0

Cov0 (Ch, Sh) = Cov0 (ShP1,h, Sh)−Ke−r(T−h)Cov0(P2, Sh),

= E0 (ShP1,hSh)− E0 (ShP1,h) E0 (Sh)

− Ke−r(T−h) (E0 (ShP2,h)− E0 (Sh) E0 (P2,h)) . (6.8)

Obviously, all expectations in (6.8) can be calculated by means of the methodology

presented in the previous section.

6.4 Model

The previous section demonstrated how the expectation and variance of option returns

can be determined for affine jump-diffusion models. In this section a particular model

that belongs to the class of affine jump-diffusion models is chosen. The model will be

used in the remainder of this chapter for the inspection of the mean-variance properties
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of option returns. The second part of this section shows how the risk premia in the

chosen benchmark model affect expected option returns.

The following stock price model is used to assess the link between several risk premia

and option returns

dSt

St−
=

(
r + ηS + µJ

(
λ− λ̃

))
dt + σtdW S

t − λµJdt + d
Nt∑
i=1

(Yi − 1) ,

dσ2
t = −κ

(
σ2

t − σ2
)
dt + σσσt

(
ρdW S

t +
√

1− ρ2dW V
t

)
,

log Yi ∼ N

(
log(1 + µJ)− 1

2
σ2

J , σ2
J

)
, (6.9)

where W S and W V are uncorrelated Brownian Motions, and N is a pure-jump Poisson

process under the objective probability measure IP. In addition to the risky stock there is

a risk free asset that has a constant rate of return r. The equity premium is determined

by the compensation for risk in the price diffusion W S and by the compensation for jump

risk in N . The compensation for jump risk is rather intuitive. Consider, for instance,

the empirically relevant case µJ < 0. If λ̃ > λ the effect on the equity premium

is positive indicating that investors require a premium for being unprotected against

market crashes.15

The model in (6.9) is incomplete with respect to any finite number of traded assets.

Assume that a risk-neutral measure is chosen such that the Poisson description of the

jump part remains unchanged. Furthermore, suppose that the variance of jump sizes

does not change after the change of measure, i.e. the return jump volatility risk premium

is zero. Applying a change of measure under these assumptions leads to

dSt

St−
= rdt + σtdW̃ S

t − λ̃µ̃Jdt + d
Ñt∑
i=1

(
Ỹi − 1

)
,

dσ2
t = − (

κ + ηV
) (

σ2
t −

κσ2

κ + ηV

)
dt + σσσt

(
ρdW̃ S

t +
√

1− ρ2dW̃ V
t

)
,

log Ỹi ∼ N

(
log(1 + µ̃J)− 1

2
σ2

J , σ2
J

)
, (6.10)

where W̃ S and W̃ V are uncorrelated Brownian Motions, and Ñ is a pure-jump Poisson

process under a risk-neutral probability measure Q equivalent to the objective probability

measure IP. The proposed model fits in the class of affine jump diffusions. Note that the

15In the next sections asset allocation results will be compared to the outcomes in Liu and Pan (2003).
The model in (6.9) is more general than the model in Liu and Pan (2003) since the former allows for
stochastically varying jumps.
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influence of volatility risk premia and jump risk premia on option returns is measurable

by means of the parameters ηV , λ̃, and µ̃J .

The link between the data-generating dynamics in (6.9) and the risk-neutral process

in (6.10) is the pricing kernel process π. In differential form, the pricing kernel process

implied by the change of measure in (6.9) and (6.10) is given by

dπt = −rπtdt− ζS
t πtdW S

t − ζV
t πtdW V

t + πtd
(
Ht − λ̃t

)
− πtd (Nt − λt) , (6.11)

with

ζS
t =

ηS

σt

,

ζV
t =

1√
1− ρ2

(
ηV σt

σσ

− ζS
t ρ

)
,

Ht =
Nt∑
i=1

λ̃f(Yi + (µ̃J − µJ))

λf(Yi)
,

where f is the lognormal jump size density. Pan (2002) questions the joint empirical

identifiability of the jump timing risk premium and the jump size risk premium. There-

fore, that paper assumes that all jump risk premia are absorbed by the jump size risk

premium. In this chapter a similar view is adopted, but with the distinction that the

jump risk premium is contained in the jump timing risk premium. Under this assump-

tion, the pricing kernel process (6.11) simplifies to

dπt = −rπtdt− ζS
t πtdW S

t − ζV
t πtdW V

t +
λ̃− λ

λ
πtd (Nt − λt) , (6.12)

where W V is a Brownian Motion under the objective probability measure IP and N is

a Poisson process with intensity λ.16 Appendix 6.A provides a closed form solution of

the expected call option return in this particular asset pricing model. The appendix

additionally shows how to calculate the variance of the call option return.

The assumed stochastic processes under the risk-neutral measure imply that the re-

sulting option valuation formulas are homogeneous of degree one with respect to (St, K).

Hence, the time t price of a call option with strike price K and maturity T can be rewrit-

ten as

Ct

(
K,T, σ2

t

)
= Stct(mt, T, σ2

t ),

16The change of measure and corresponding pricing kernel process imply that this chapter’s risk-
neutral stochastic volatility process is slightly different from the risk-neutral stochastic volatility process
in Liu and Pan (2003).
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where mt = exp(−r(T − t))K/St. Intuitively, a similar property is expected for option

returns in these type of models.

Lemma 6.2. In the benchmark model, the discounted expected gross return of an op-

tion is a function of the model parameters, instantaneous variance, option’s moneyness,

option’s maturity, and investment horizon, i.e.

Et

(
e−rh Ct+h

Ct

)
= g

(
Θ, σ2

t ,mt, T − t, h
)
,

where Θ contains all model parameters and g is defined in (6.33).

Proof. Appendix 6.C.

The consequence of Lemma 6.2 is that in order to make proper qualitative or quan-

titative statements about average option returns the observations should be categorized

not only in terms of moneyness (as is done in Coval and Shumway (2001)) but also in

variance classes.

The next lemma describes that a similar result as Lemma 6.2 also applies for the

conditional variance of option returns and the conditional covariance between option

returns.

Lemma 6.3. The conditional variance of the discounted call option return, put option

return, and the covariance between the call option return and the put option return

(where the strike price and maturity of the call and put are equal) depends only on the

current stock price through moneyness, i.e.

Vart

(
e−rh

(
Ct+h

Ct

))
= f1

(
Θ, σ2

t ,mt, T − t, h
)
,

Vart

(
e−rh

(
Pt+h

Pt

))
= f2

(
Θ, σ2

t ,mt, T − t, h
)
,

Covt

(
e−rh

(
Ct+h

Ct

)
, e−rh

(
Pt+h

Pt

))
= f3

(
Θ, σ2

t ,mt, T − t, h
)
.

6.4.1 Expected option returns and the volatility risk premium

In order to get a deeper understanding of the benchmark model in (6.9) and (6.10), this

section discusses the influence of the volatility risk premium. The influence of the jump

risk premium is examined in the next section. The price diffusion risk premium is not

treated here since the results are analogous to the Black-Scholes results in Section 6.2.
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Figure 6.3: The influence of the volatility risk premium on expected discounted returns

of a plain vanilla call option as a function of moneyness for several values of instantaneous

variance. The price diffusion risk premium and the jump risk premium are set to zero.

The influence of the volatility risk premium on expected option returns is investigated

in the benchmark model where only volatility risk is priced, i.e. the price diffusion risk

premium and the jump risk premium are set to zero. Figure 6.3 and Figure 6.4 show

expected option returns for respectively call options and put options as a function of

moneyness for various levels of the instantaneous variance. The maturity of the options

is two months and the options are held in portfolio for one month.

The intuition behind the results is best understood in a situation where interest rates

are set to zero and options are not sold before maturity. Assume that the volatility risk

premium is negative. In the benchmark model this implies a positive correlation between

the pricing kernel and future variance for all t. The payoff of the option at maturity

does not depend on the variance level at maturity but the probability distribution of the

option’s underlying depends on future volatility. A negative volatility risk premium leads

to a risk-neutral distribution of the option’s underlying value that has a higher variance

than the variance of the objective distribution of the asset price at the option’s maturity.

This means that the stochastic discount factor is high when the option’s underlying asset

takes high or low values at the option’s maturity. Both puts and calls provide payoff when

the stochastic discount factor is high and therefore serve as protection tools against high
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Figure 6.4: The influence of the volatility risk premium on expected discounted returns

of a plain vanilla put option as a function of moneyness for several values of instantaneous

variance. The price diffusion risk premium and the jump risk premium are set to zero.

levels of future volatility. Consequently, the expected return on calls and puts should

be below the risk free rate. Furthermore, for call options with higher strike levels the

option’s payoff is concentrated in states for which the state price is highest compared to

the state’s expected return. As a result, the call option return is expected to decrease

in moneyness. A similar reasoning applies for put options with lower strikes.

For a positive volatility risk premium a similar reasoning applies. The payoff of

both puts and calls are negatively correlated with the stochastic discount factor. Hence,

expected returns on these instruments should be above the risk free rate. In a similar

fashion, the expected call option return is expected to be increasing in moneyness and

the expected put returns should be decreasing in moneyness. Figure 6.3 and Figure 6.4

show that this also applies to option positions that are closed out before maturity.

In the benchmark model the variance risk premium is proportional to the instan-

taneous variance. Hence, a lower initial variance value reduces the difference between

the IP-distribution and the Q-distribution of the option’s underlying value at maturity.

Hence, a lower starting level of variance should lead to option returns closer to the risk

free rate for all possible strikes. Figure 6.3 and Figure 6.4 clearly confirm this reasoning.
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Figure 6.5: The influence of the jump timing risk premium on expected discounted

returns of a plain vanilla call option as a function of moneyness for several values of

instantaneous variance. The price diffusion risk premium and the volatility risk premium

are set to zero.

6.4.2 The influence of the jump risk premium

This section shows that a crash risk premium combines the effects of the price diffusion

risk premium and the volatility risk premium on expected option returns, since the jump

risks influences the expectation of the option’s underlying asset at the option’s maturity

under the objective probability measure as well as the variance of the underlying value

at maturity under the risk-neutral measure.

The results in Pan (2002) show that jump size risk is priced in option markets. As

was mentioned in the previous section, this chapter adopts the assumption that all jump

risk is concentrated in jump timing risk. The ratio λ̃/λ is a possible measure for the

magnitude of the jump risk in the benchmark model under this assumption. Using

several values for this ratio and all other risk premia equal to zero, Figure 6.5 and

Figure 6.6 show expected option returns for respectively calls and puts as a function of

moneyness for three different levels of instantaneous variance.

Crucial for the shapes of the curves in Figure 6.5 and Figure 6.6 is the assumption

that µJ < 0. The intuition for the hump-shaped expected call option return curve is as

follows. If λ̃/λ > 1 then the expectation of the option’s underlying asset at maturity is
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Figure 6.6: The influence of the jump timing risk premium on expected discounted

returns of a plain vanilla put option as a function of moneyness for several values of

instantaneous variance. The price diffusion risk premium and the volatility risk premium

are set to zero.

higher under the objective measure than under the risk-neutral measure. However, there

is a second effect that is of importance for the case λ̃/λ > 1. Under this assumption, the

variance of the option’s underlying asset at maturity will be higher under the risk-neutral

measure than under the objective measure. As a result, the stochastic discount factor is

increasing for high values of the option’s underlying asset. Hence, far out-of-the-money

calls pay off in states where the stochastic discount factor is increasing. The obvious

consequence is that expected call option returns start to decrease at high strike prices.

Note that in case µJ is chosen to be positive, the expected call option return curve will

be monotonic and the expected put option return curve hump-shaped.

The effect of a change in the starting instantaneous variance is less clear as in the

previous cases since the jump risk premium does not depend on the current instantaneous

variance. However, both the risk-neutral and the objective distribution of the option’s

underlying value at maturity obviously depend on the current variance level. Consider

the case where µJ < 0 and λ̃/λ > 1, i.e. the variance of the option’s underlying asset at

maturity is higher under the risk-neutral measure than under the objective measure. For

a smaller value of the instantaneous variance, the relative impact of the jump premium
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on the variance of the option’s underlying asset is higher. Therefore, the stochastic

discount factor is steeper in higher values of the option’s underlying asset than in the

average instantaneous variance case. Thus, the hedging characteristic for far out-of-the-

money calls becomes more important and, therefore, these calls should have a lower

expected return than in case the initial variance equals the average variance.

6.5 Mean-Variance Performance Measurement

The previous section provided the necessary tools and intuition for the examination of

mean-variance properties of option returns. This section concentrates on the intercept of

the CAPM regression equation (CAPM α) which is often used as a performance measure.

Leland (1999) shows that in a world of i.i.d. returns on the market portfolio, CAPM

α should not be used as a performance measure for buy-and-hold derivative strategies.

This section shows that the same result holds if the assumption of i.i.d. market returns

is relaxed.

The concept of risk-return trade off for a portfolio of stocks was first studied in

Markowitz (1952). Earlier research aimed to find the ’best’ stock among a set of avail-

able stocks. In the framework of Markowitz (1952) investors optimally hold a mean-

variance efficient portfolio. A portfolio is called mean-variance efficient if the portfolio

has the highest return for a given variance level. In order to come to a model that has

equilibrium content, additional assumptions need to be imposed such that each investor

holds a minimum-variance portfolio. Sharpe (1964) and Lintner (1965) show that if

(i) all investors optimally hold mean-variance efficient portfolios, (ii) all investors have

a common time horizon and homogenous beliefs, (iii) each asset is infinitely divisible,

and (iv) a risk free asset that can be bought or sold in unlimited amounts exists, then

the portfolio of all invested wealth (also called the market portfolio) is a mean-variance

efficient portfolio. Extending this notion results in the classical Sharpe-Lintner Capital

Asset Pricing Model. One of the assumptions underlying the CAPM is that each in-

vestor optimally holds a mean-variance efficient portfolio. A quadratic utility function

and an elliptical distribution for asset returns are sufficient conditions under which this

behavior maximizes expected utility.17

17The inclusion of options in the investment consideration set leads to problems if these options need
to be priced by means of the one-period CAPM. Jarrow and Madan (1997) shows that the CAPM
implies the existence of arbitrage opportunities for economies in which options are traded with an
unbounded strike range, i.e. the linearity of the pricing kernel in the market return leads to negative
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The Sharpe-Lintner CAPM regression equation for the expected gross return on a

call option is given by (using continuously compounded interest rates)

Ct+h

Ct

− erh = αt + βt

(
St+h

St

− erh

)
+ εt,t+h, (6.13)

where εt,t+h is an error term with expectation zero and uncorrelated with the increments

in the option’s underlying value S. Under these assumptions, the CAPM β boils down

to

βt =
Covt

(
Ct+h

Ct
, St+h

St

)

Vart

(
St+h

St

) . (6.14)

Given βt in (6.14), calculation of the intercept αt is trivial

αt = Et

(
Ct+h

Ct

− erh

)
− βtEt

(
St+h

St

− erh

)
. (6.15)

In the benchmark model (6.9) and (6.10), αt and βt depend only on St through mon-

eyness. Therefore, the time t dependence of αt and βt stems from the moneyness of

the option and the instantaneous variance level at time t. Furthermore, αt and βt are

functions of model parameters, the investment horizon h, and the option’s time to ma-

turity T .

6.5.1 CAPM and the Black-Scholes model

This section studies the effect of measuring the performance of buy-and-hold option

strategies by CAPM α in a world where options are priced under the Black-Scholes

assumptions. The focus of this chapter is similar to Leland (1999) since the Black-

Scholes assumptions imply i.i.d. returns on the market portfolio. The main difference

with Leland (1999) is that in this section option positions are not necessarily held to

maturity.18 This makes the calculations more complicated, but the conclusions should

remain the same.

values for far out-of-the-money calls. These problems do not arise if the instantaneous planning horizon
version of the CAPM is considered (Merton (1973)).

18This is an important distinction from a practical perspective. On the one hand portfolio managers do
not want to trade too often since trading costs can have a significant impact on investment performance
(see Davis and Norman (1990), Aiyagari and Gertler (1991), He and Modest (1995), and Heaton and
Lucas (1996)) which justifies the use of buy-and-hold strategies. On the other hand, the investment
horizon may be shorter than the maturity of the traded options. Instead of excluding these options
from the investment consideration set, this chapter determines the risk-return characteristics of these
assets.
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In the Black-Scholes world the stochastic evolution of a call option price is described

by

dCt = ∆BS
t dSt + r

(
Ct −∆BS

t St

)
dt,

where r denotes the risk free rate and ∆BS
t the sensitivity of the call option price for

changes in the option’s underlying asset at time t. The equation implies that the call

can be replicated by continuously taking positions in the stock and the risk free asset,

i.e. options are redundant assets. Consider the discrete time version of the model.19

The call option price at time t + 1 is approximated as

Ct+1 ≈ Ct + ∆BS
t (St+1 − St) + r

(
Ct −∆BS

t St

)
. (6.16)

The excess call option return is easily derived as

Ct+1

Ct

− (1 + r) ≈ ∆BS
t St

Ct

(
St+1

St

− (1 + r)

)
. (6.17)

For obvious reasons, the expression ∆BS
t St/Ct is often referred to as the CAPM β in

the Black-Scholes model. However, relation (6.16) is only a discrete time approximation

of the call option return in the Black-Scholes world. The exact representation is, for

(h ≤ T ), given by (6.13). For h > 0, αt is unequal to zero and βt 6= ∆BS
t St/Ct. When

the holding period h approaches to zero, αt converges to zero and βt to ∆BS
t St/Ct.

20 This

result implies that in the Black-Scholes world, for 0 < h ≤ T , a call option return is not

fully explained by the return on the risky and the riskless asset. Hence, simple buy-and-

hold option strategies generate positive CAPM α.21 This seems counterintuitive since

options are fairly priced and therefore CAPM α should be equal to zero. Leland (1999)

provides the explanation for this phenomenon.22 Returns on options are obviously not

elliptically distributed in the Black-Scholes world. Moreover, the Black-Scholes assump-

tions imply that the representative investor must have power utility. Hence, none of

the sufficient conditions which guarantees mean-variance preferences is satisfied. As a

19If market returns are lognormally distributed and the representative investor has power utility,
the Black-Scholes option pricing formula gives fair prices, in discrete time, for options written on the
market, see Rubinstein (1976).

20Black and Scholes (1973) already reports that the CAPM β of an instantaneous option return equals
∆BS

t St/Ct.
21For instance, in a Black-Scholes world with a price diffusion risk premium of 6%, an at-the-money

call option with two months to maturity that is held for one month leads to αt = −0.31% (-3.65%
annualized).

22Leland (1999) does not consider single option returns but treats covered call and portfolio protection
strategies.
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consequence is that CAPM β is an inappropriate risk measure and, therefore, CAPM

α an invalid performance measure. The fact that the representative investor must have

power utility in the Black-Scholes world can be used to explain the sign of αt for option

based strategies. Strategies that have a non-linear convex payoff as function of the mar-

ket payoff give a negative αt.
23 This is best understood when a put option is considered.

The put option protects against low states of the market portfolio. This is appreciated

more by power utility investors than by mean-variance investors, i.e. a power utility

investor accepts a lower return on the put option than a mean-variance investor. Hence,

the CAPM β is higher than the ”true” β. Because the expected future option price

is calculated under the Black-Scholes assumptions, CAPM α will be negative for a put

option. Similar reasonings can be constructed for a single call and portfolio protection

strategies. Strategies with a non-linear concave payoff as function of the market payoff

lead to positive values of αt.
24

In empirical studies of option returns, CAPM regression equation (6.13) is some-

times used to validate option pricing models.25 The results in this section indicate that

statistical tests should be performed with care. For instance, for buy-and-hold call op-

tion strategies where h is not too small, the estimate of β should not be tested against

∆BS
t St/Ct when the Black-Scholes model is validated.

6.5.2 CAPM and the Heston model

The analysis in Leland (1999) is performed under the assumptions of perfect markets and

i.i.d. market returns. In this section the latter assumption is relaxed by investigating

CAPM α and CAPM β in the Heston model. The Heston model allows for stochastically

varying volatilities. The movements of the stock and the instantaneous variance are not

driven by the same process and therefore the model is incomplete (with respect to risky

asset and the riskless asset) whether the risk in volatility is priced or not. The dynamics

of the call option price in the Heston model are given by (see Bakshi and Kapadia (2003))

dCt = ∆H
t dSt + r

(
Ct −∆H

t St

)
dt +

∂Ct

∂σ2
t

(
ηV σ2

t dt + σσσtρdW S
t + σσσt

√
1− ρ2dW V

t

)
,

(6.18)

where notation of the benchmark model (6.9) and (6.10) is used. If volatility risk is

idiosyncratic, the discrete time version of the model approximates the future call option

23Not only a single call and put option but also a put option combined with the market generate a
negative αt.

24See, for instance, the numbers of the covered call strategy in Table I of Leland (1999).
25See Coval and Shumway (2001) and Driessen and Maenhout (2004).
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ATM call OTM put

Et

(
Ct+h

Ct

)
αt βt Et

(
Pt+h

Pt

)
αt βt

Black-Scholes 4.28% -0.10% 26.22 -8.64% -0.61% -48.18

Heston, ρ = 0 4.36% -0.10% 26.77 -6.94% 1.17% -48.61

Heston, ρ < 0 4.70% 0.72% 23.85 -5.31% 3.58% -53.29

Heston, ρ > 0 4.03% -0.92% 29.70 -11.16% -3.99% -42.98

Table 6.1: CAPM parameters and expected option returns for an at-the-money call

option and an out-of-the-money put option under the Black-Scholes assumptions and

the Heston assumptions. The numbers are calculated using an (annualized) rate of

return on the risky asset of 2% and a 0% risk free rate.

price as

Ct+1 ≈ Ct + ∆H
t (St+1 − St) + r

(
Ct −∆H

t St

)
+ σσσtρ

∂Ct

∂σ2
t

(
W S

t+1 −W S
t

)

+σσσt

√
1− ρ2

∂Ct

∂σ2
t

(
W V

t+1 −W V
t

)
. (6.19)

Constructing the excess gross return gives

Ct+1

Ct

− (1 + r) ≈ ∆H
t St

Ct

(
St+1

St

− (1 + r)

)
+ εt, (6.20)

with εt representing the idiosyncratic risk in the variance process. This random variable

has expectation zero. However, relation (6.19) is only a discrete time approximation of

the call option return in the Black-Scholes world. The exact representation of the call

option return is again given by (6.13). The methodology of Section 6.3 can be applied

to determine closed form expressions for functions αt and βt. The difference with the

Black-Scholes model in the previous section is that the time t dependence of αt and βt

also originates from the instantaneous variance. The resulting expressions for αt and βt

show that, for h > 0, αt differs from zero and βt is unequal to ∆H
t St/Ct. Under the

assumption of non systematic volatility risk, αt converges to zero when the investment

horizon h goes to zero. Hence, the expected return on a call option is fully explained by

the expected return of the option’s underlying asset when h → 0.26

26Note that the future value of the call option is not perfectly replicable by the stock and the risk
free asset and, therefore, the option is non-redundant even when the investment horizon h goes to zero.



118 MEAN-VARIANCE PROPERTIES OF OPTION RETURNS

Table 6.1 gives an overview of the results under different parameter assumptions.27

The results show that for ρ = 0 and the at-the-money call option, only small differences

between the Heston outcomes and the Black-Scholes outcomes occur. Larger differences

appear for the out-of-the-money put option. For this put option, αt turns out to be

positive. This is explained by the value of βt which implies that the expected return on

the put option should be lower than -6.94%. To compensate for this αt is assigned a

positive value. Hence, the CAPM βt is not an adequate risk measure for single option

returns in the Heston world and, therefore, αt is not suitable as a performance measure

for buy-and-hold option based strategies in the Heston world.28 Again, the explanation

is that the utility function implied by the Heston model is not quadratic.29 This holds

for all cases considered in Table 6.1. Each choice of ρ implies different probability

distributions of the risky asset under both the objective measure and the risk-neutral

measure. Therefore, marginal utility as a function of the risky asset also changes with

ρ. For instance, the numbers for ρ = 0 and ρ < 0 indicate that the marginal utility for

low levels of the risky asset is higher when volatility and the returns on the risky asset

are uncorrelated.

For the validation of option pricing models an additional complexity arises when

ρ 6= 0. Under this condition, the underlying assumption in (6.13) of no correlation

between the return on the option’s underlying asset and the error term is violated if

ρ 6= 0 in the Heston model. Therefore, the more general representation of βt should be

used

β̃t =
Covt

(
Ct+h

Ct
, St+h

St

)

Vart

(
St+h

St

) −
Covt

(
εt,t+h,

St+h

St

)

Vart

(
St+h

St

) . (6.21)

If h goes to zero then β̃t in (6.21) converges to ∆H
t St/Ct. Ignoring the correlation

between the error and the option’s underlying would lead to a converging value of βt

27The stochastic volatility parameters are based on the parameters in Pan (2002), i.e. κ = 6.4,
σσ = 0.30, and σ2 = 0.015. The starting level of variance is chosen equal to the long term mean level
of the variance process. This is also the variance used for the Black-Scholes results. Furthermore, the
chosen options have a maturity of two months and are held for one month in the portfolio. Finally, the
rate of return on the risky stock is assumed to be 2% and the rate of return on the risk free asset is set
at 0%.

28Note that the volatility risk premium is equal to zero which implies that αt should be zero if risk
is measured correctly.

29See also Leland (1999). That paper proposes to adjust CAPM β in a world of i.i.d. returns on the
market portfolio such that it can be interpreted again as a risk measure. The topic of how to adjust
CAPM β in the Heston world is left for future research.
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Figure 6.7: Convergence of αt in regression equation (6.13) for ρ = 0 and ρ < 0 in the

Heston model. The at-the-money call option has a maturity of two months. Volatility

risk and jump timing risk are not priced. The premium on price diffusion risk is set to

6%.

smaller than ∆H
t St/Ct for the case ρ < 0. The issue is illustrated in Figure 6.7 which

presents the converging value of αt when h → 0 for ρ = 0 and for ρ < 0. Figure 6.7

shows that ignoring the correlation between the error term and the regressor in (6.13)

may lead to a serious bias in αt.

In the case of priced volatility risk, the values of αt for the single option strategies

of Table 6.1 change considerably. The volatility risk premium will have an effect on fair

expected option returns in the Heston model. Furthermore, the value βt will change

after allowing for a volatility risk premium. Although the previous analyses concluded

that CAPM α fails as a performance measure, a non-zero volatility risk premium creates

even more complexities since αt contains the fair compensation for taking volatility risk.

Hence, even in the case of continuous trading, the expected call option return is not

completely explained by the expected return on the option’s underlying stock (index).

The inclusion of an asset in (6.13) that has a payoff dependent on the instantaneous

volatility would lead to αt → 0 if h → 0. This is obvious since adding a single volatility-

dependent asset would complete the Heston market. The influence of volatility risk

premia on optimal asset allocation will be treated in Section 6.6.
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ATM call OTM put

Et

(
Ct+h

Ct

)
αt βt Et

(
Pt+h

Pt

)
αt βt

λ = 0.19, λ̃ = 4.52, µJ = −0.8% 3.84% -0.58% 26.50 -8.99% -1.11% -47.23

λ = 0.19, λ̃ = 4.52, µJ = −3.0% -1.55% -5.52% 23.77 -31.01% -25.75% -31.53

λ = 0.19, λ̃ = 4.52, µJ = 1.0% 3.56% -0.84% 26.34 -9.48% -1.65% -46.93

λ = 0.19, λ̃ = 0.19, µJ = −0.8% 4.36% -0.10% 26.76 -6.94% 1.16% -48.58

Table 6.2: CAPM parameters and expected option returns for an at-the-money call

option and an out-of-the-money put option in a model that allows for stochastic volatility

and jumps of a fixed size. The numbers are calculated using an (annualized) rate of

return on the risky asset of 2% and a 0% risk free rate.

6.5.3 CAPM and the Poisson-jump model

This section briefly investigates the value that CAPM α takes in models that allow

for jumps. Throughout this section, the volatility risk premium parameter ηV and the

correlation parameter ρ are set to zero. Consider the case where jump sizes are restricted

to be constant. Given that volatility is assumed to be stochastic, this case implies that

two options are necessary to complete the market. The option price dynamics in this

situation are given by (see Liu and Pan (2003))

dCt = ∆J
t dSc

t + r
(
Ct −∆J

t St

)
dt +

∂Ct

∂σ2
t

(
ηV σ2

t dt + σσσtρdW S
t + σσσt

√
1− ρ2dW V

t

)

+
[
C(St−(1 + µJ), σ2

t )− C(St− , σ2
t )

]
(dNt − λdt) + StλµJ∆J

t dt, (6.22)

where Sc
t denotes the continuous part of St. The methodology of Section 6.3 can be

applied to determine closed form expressions for functions αt and βt in (6.13). Table 6.2

presents the expectation of the option return, αt and βt for several choices of λ, λ̃, and

µJ . The stochastic volatility parameters are based on Pan (2002).30

The results confirm the conclusions of the previous sections: CAPM β cannot be

used as a risk measure and, therefore, CAPM α is an inadequate performance measure

for nonlinear option based strategies. Again, the explanation is that the underlying

assumptions of (6.13) do not match the underlying preference structure of the jump

model. Valuation of jump models by means of (6.13) leads to the same problems as

in the previous section. Results are not reported but (6.22) obviously shows that the

30The first row of results in Table 6.2 are based on the jump parameters as estimated in Pan (2002).
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assumption of no correlation between the stock (index) return and the error term is

violated in (6.13). Hence, when αt and βt are calculated in the traditional way by means

of (6.15) and (6.14), the resulting values do not correspond to the true values of αt and

βt in the Poisson-jump model with fixed jump sizes.

6.5.4 CAPM and delta-hedged straddles

Straddles are popular instruments nowadays31 because the straddle value increases with

the volatility of the underlying asset. Summary statistics in Driessen and Maenhout (2004)

show that the skewness of the straddle return distribution is substantially lower than the

skewness of the single option return distribution. As a result of these observations, this

section examines the usefulness of CAPM α for discretely hedged straddles. The value

of a discretely hedged straddle Vh at investment horizon h using options that expire at

maturity date T ≥ h is given by

Vh = Ch(K,T ) + Ph(K, T )−
(

∂ (C + P )

∂S

)

h−∆

Sh

+

(
X0 − C0(K, T )− P0(K,T ) +

(
∂ (C + P )

∂S

)

0

S0

)
erh

+
N−1∑
j=1

Sj∆

{(
∂ (C + P )

∂S

)

j∆

−
(

∂ (C + P )

∂S

)

(j−1)∆

}
er(h−j∆),

where ∆ denotes the time between subsequent portfolio adjustments and N = h/∆.

The methodology of Section 6.3 can be employed to calculate all necessary quantities

for analytical expressions of αt and βt. The results for several different models are

presented in Table 6.3.

The results of the Black-Scholes case clearly indicate that the reduced skewness in the

straddle return distribution has a big impact on αt and βt. When the hedging frequency

increases, the position becomes less sensitive for changes in the option’s underlying asset

and, therefore, βt is expected to decrease to zero. Furthermore, in the Black-Scholes

world only market risk is priced and, thus, αt should be equal to zero in (6.13). Hence,

the results in Table 6.3 show that if the world would be Black-Scholes then αt can be

used as a performance measure. The same conclusion applies to a stochastic volatility

model in which volatility risk is idiosyncratic and to a jump model with nonsystematic

volatility risk en jump risk. In case volatility risk or jump risk is priced αt does not

31From the statistics in Bondarenko (2003b) can be concluded that straddles are very liquidly traded.
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hedge frequency 21 days 7 days 1 day

αt βt αt βt αt βt

Black-Scholes 0.00% 0.036 0.00% 0.012 0.00% 0.00

SV, ηV = 0 0.00% 0.038 0.00% 0.014 0.00% 0.00

SV, ηV < 0 -0.29% 0.036 -0.29% 0.014 -0.29% 0.00

SVJ, λ = λ̃, µJ < 0 0.00% 0.038 0.00% 0.014 0.00% 0.00

SVJ, λ > λ̃, µJ < 0 -0.02% 0.037 -0.02% 0.014 -0.02% 0.00

Table 6.3: CAPM parameters of returns on at-the-money straddles for several option

pricing models (SV for stochastic volatility models and SVJ for stochastic volatility

models including jumps). The holding period is one month and the maturity of the

options is two months. The hedging frequency is given in the first row. A hedging

frequency of 21 days means that the option position is only hedged at initiation.

converge to zero if the hedging frequency goes to infinity because the compensation for

these risks are contained in the intercept of the one-factor model (6.13).

6.6 Asset Allocation

The previous section examined the properties of a mean-variance based performance

measure for several option strategies under several model assumptions. The main con-

clusion was that these model assumptions do not correspond to the mean-variance as-

sumptions and, therefore, mean-variance based performance measures should not be

used for the considered option strategies except for straddle strategies under some un-

realistic model assumptions. This section considers the optimal portfolio choice for a

mean-variance investor in settings where the mean-variance investor has access to the

option market. The optimal portfolios are qualitatively compared to the optimal port-

folio choice of a power utility investor. Optimal positions of power utility investors are

reported in Liu and Pan (2003).

6.6.1 Asset allocation in stochastic volatility models

The focus in this section will be on mean-variance asset allocation in stochastic volatility

models. As a consequence, jump parameters λ, λ̃, µJ , and σ2
J are set to zero. In this

section, the mean-variance investor can choose between the risky stock, the risk free
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Figure 6.8: Efficient frontiers for several investment opportunities in a Heston world

with a price diffusion risk premium of 6.76% and systematic volatility risk. The delta-

neutral straddle has a maturity of two months and the investment horizon is chosen as

one month.

asset, and straddles that are written on the risky stock. Straddles are made delta-

neutral at initiation by choosing the strike price such that the delta of a call option is

0.5. Stochastic volatility parameters are taken from Liu and Pan (2003), i.e. κ = 5,

σ2 = (0.13)2, σσ = 0.25, and ρ = −0.40. The price diffusion risk premium is chosen

equal to 6.76% and the risk free rate is assumed to be 5%. For the cases where volatility

risk is assumed to be systematic, ηV is set at -1.38.

Figure 6.8 presents the mean-variance efficient frontiers resulting from investment

opportunities sets excluding and including a delta-neutral straddle. The results are

calculated under the assumption that volatility risk is priced. One conclusion that can be

drawn from Figure 6.8 is that adding a delta-neutral straddle economically improves the

efficiency of mean-variance efficient portfolios in case of systematic volatility risk.32 For

a portfolio return of 15%, the annualized standard deviation drops from 19.6% to 17.4%

which is a substantial decrease. Optimally, the mean-variance investor takes a short

position in the delta-neutral straddle for all levels of required return. The less risk averse

the mean-variance investor, the smaller the weight in the straddles. Given that a negative

32Unreported results show that efficiency is not improved when volatility risk is idiosyncratic. More-
over, in case of systematic volatility risk efficiency cannot be further improved by adding more straddles
to the investment opportunity set. This result appears since one volatility dependent asset completes
the market. Finally, single option returns lead to efficiency improvements of the same magnitude as
straddles.
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volatility risk premium implies a positive correlation between the stochastic discount

factor and volatility, negative call option positions provide payoff in good volatility

states. Therefore, the investor optimally takes the risky side of the position with respect

to volatility. This explains the positive relation between risk aversion and the optimal

weight in the straddle under the assumption of a negative volatility risk premium.

Figure 6.9 shows the sensitivity of optimal portfolio weights for changes in several un-

derlying model parameters. The benchmark case parameters are set as described above.

Furthermore, the required portfolio return and the initial spot volatility are assumed

to be 15% (annualized). The results for the volatility risk premium ηV are qualita-

tively similar to the optimal weights in Liu and Pan (2003). Both the mean-variance

investor and the power utility take a long position in the straddle when the volatility

risk premium is positive and a short position when the volatility risk premium decreases

to a negative value. The explanation is that investors take advantage of the specific

risk-return characteristics of volatility by selling straddles (ηV < 0) or buying straddles

(ηV > 0). The only qualitative difference can be identified for high and low values of the

volatility risk premium. The reason is that the variance of a portfolio is an inappropriate

risk measure for power utility investors. For low values of the volatility risk premium the

power utility investor builds expected portfolio return by taking larger straddle weights

(in absolute value) while the mean-variance investor stabilizes the portion of straddles in

portfolios because of the large influence that option returns have on portfolio variance.

For high values of the volatility risk premium a similar reasoning applies.

Although a higher value of the initial variance implies a lower expected straddle

return, this higher value influences the variance of the stock the most. Thus, the delta-

neutral straddle is more attractive relative to the risky stock for high volatility levels.

This is reflected in the larger optimal straddle weights (in absolute value). Liu and

Pan (2003) provides a different explanation but qualitatively the results are similar as

reported here. An increase of parameter σσ has hardly any influence on the expected

return of the straddle but the variance of the straddle return increases considerably.

Hence, the risk-return characteristics become less attractive for the mean-variance in-

vestor and, therefore, lower straddle weights (in absolute value) are observed when the

initial volatility increases. Similar patterns are reported in Liu and Pan (2003). The

overall conclusion of this section is that the properties of the return distribution of

straddles imply that asset allocation using the mean-variance criterion leads to sensible

outcomes. Only for some specific (and unrealistic) cases the fundamental differences

between the mean-variance framework and power utility approach appear.
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(a) The influence of the volatility risk premium on optimal portfolio weights.
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(b) The influence of the initial volatility on optimal portfolio weights.
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(c) The influence of the volatility of volatility on optimal portfolio weights.

Figure 6.9: Optimal portfolio weights for a mean-variance investor. The benchmark case

parameters are κ = 5, σ2 = (0.13)2, σσ = 0.25, ρ = −0.40, and the initial volatility is

taken equal to 15%.
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case 1 case 2 case 3

required return λ̃/λ stock put stock put stock put

1 0.80 0.56% 0.80 0.57% 0.79 0.51%

10% 2 0.63 -0.13% 0.72 0.17% 0.76 0.34%

5 -0.02 -2.33% 0.19 -1.24% 0.54 -0.39%

1 1.60 1.11% 1.60 1.13% 1.58 1.02%

15% 2 1.25 -0.26% 1.42 0.33% 1.51 0.68%

5 -0.03 -4.62% 0.37 -2.46% 1.06 -0.77%

1 2.36 1.64% 2.36 1.67% 2.33 1.50%

20% 2 1.85 -0.39% 1.02 0.49% 2.24 1.01%

5 -0.07 -5.16% 0.54 -3.63% 1.57 -1.13%

Table 6.4: Optimal portfolio weights for three different jump scenarios, three different

ways of jump risk compensation, and for three different required portfolio returns. The

jump scenarios include (i) µ = −10% and λ = 1/10, (ii) µ = −25% and λ = 1/50, and

(iii) µ = −50% and λ = 1/200. The variance process and the equity risk premium are

in each case adjusted such that the mean and the variance of the stock return remain

the same.

6.6.2 Asset allocation in jump models

In this section optimal portfolio choice is investigated in a world where jumps in the risky

stock can occur. There are no assets available that offer separate exposure to diffusive

and jump risk. In the spirit of Liu and Pan (2003), the out-of-the-money put option is

chosen as the asset that disentangles jump risk from diffusive risk most effectively. The

value of this asset has low sensitivity to small movements in the underlying asset and a

high sensitivity to big downward movements of the risky stock. The choice of the jump

parameters is based on Liu and Pan (2003). This means that three different jump cases

are considered: (i) µ = −10% and λ = 1/10, (ii) µ = −25% and λ = 1/50, and (iii)

µ = −50% and λ = 1/200. Although not very realistic, these parameters will be used to

compare outcomes to Liu and Pan (2003). The variance of the return jumps is assumed

to be zero, i.e. σ2
J = 0. The long term average of instantaneous volatility is adjusted

such that total return volatility for each jump case equals 15%. The choice of the price

diffusion risk premium also depends on the jump case. For each choice of the jump risk

premium the total equity risk premium is fixed at 6.76% a year.
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Figure 6.10: Efficient frontiers for several investment opportunities (risk free asset, stock,

and 0.95 out-of-the-money put option) in a jump-diffusion world with an equity risk

premium of 6.76% and idiosyncratic volatility risk.

The optimal portfolio weights of the risky stock and the 0.95 out-of-the-money put

option are presented in Table 6.4. The put option has a maturity of two months and the

investment horizon is chosen as one month. The results show some important qualitative

differences with the outcomes of Liu and Pan (2003). In the first case, for instance,

mean-variance investors take short positions in the stock as a hedge against the short

positions in out-of-the-money put options. In contrast, power utility investors are not

willing to take such a large position (in absolute value) in the put option because of the

downside risk involved. As a consequence, Liu and Pan (2003) reports positive weights

in the risky stock for all risk aversion levels. The case of very infrequent but very large

negative jumps in the risky stock (case 3) shows also different positioning for power

utility investors and mean-variance investors. Independent of the compensation and the

level of risk aversion, power utility investors do not take negative jump exposure. The

optimal policy for them is to hedge the long position in the stock by buying put options.

The reported numbers in Table 6.4 show that mean-variance investors take, in case of

sufficient compensation, short positions in put options. From the results in Table 6.4

can be concluded that at least for some cases the mean-variance criterion is not able to

take the right side of the option position.

Another result of Liu and Pan (2003) is that the largest portfolio improvements

occur for the final jump case combined with the lowest level of risk aversion. Figure 6.10

shows that, under these model assumptions, the efficiency improvement is small in the

mean-variance setting. This occurs for several cases in Table 6.4. Hence, for some
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Figure 6.11: Efficient frontiers for several investment opportunities (risk free asset, stock,

and 0.95 out-of-the-money put option) in a jump-diffusion world with an equity risk

premium of 6.76% and idiosyncratic volatility risk.

cases mean-variance analysis cannot identify the economic value of taking jump risk

exposure. In mean-variance sense the largest improvements are observed in the first

case. The explanation of the differences between the power utility approach and the

mean-variance approach lies again in the model assumptions with respect to investors’

preferences.

Finally, the influence of jumps on optimal straddle positions is examined. Straddles

are not the type of instruments used for taking jump exposure because these instruments

provide exposure to both volatility risk and jump risk. Figure 6.11 presents the efficient

frontiers for several assumptions regarding volatility premia and jump premia. In the

first case only jump risk is priced and in the second case the uncertainty in volatility

is priced as well. The jump parameters are based on the estimations in Pan (2002),

i.e. λ = 0.19, λ̃ = 4.52, µJ = −0.8%, and σ2
J = 0.0015. From Figure 6.11 can

be concluded that the priced jump component leads to a considerable improvement

of portfolio efficiency. Unreported results show that for both cases the mean-variance

investor optimally takes a short position in the delta-neutral straddle. In this way, the

mean-variance investor profits from the compensation for volatility risk and jump risk.

Note here that the power utility investor would most probably take smaller positions (in

absolute value) than the mean-variance investor because of the aversion against crash

states of the risky stock.
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6.7 Summary

This chapter examines the mean-variance characteristics of option based investment

strategies. The focus is first on performance measurement in the mean-variance model

and subsequently on optimal portfolio choice in a setting where mean-variance investors

have access to the options market. These analyses can be performed because this chap-

ter provides a general methodology for the calculation of the conditional expectation,

the conditional variance, and the conditional covariance of option returns for all option

pricing models that can be classified in the class of affine jump-diffusion models. The

resulting moment conditions depend on the spot volatility, model parameters, the hold-

ing period, the option’s maturity, and moneyness. The findings show that in all models

in which only market risk is priced, CAPM α cannot be used as a performance measure

for nonsymmetric option return strategies. This conclusion changes when delta-hedged

straddles are considered although CAPM α is still not useful when besides market risk,

volatility risk or jump risk is priced. From the optimal portfolio allocation outcomes can

be concluded that there are no qualitative differences in optimal portfolio weights be-

tween mean-variance investors and power utility investors when straddles are considered

as separate investment opportunities. This conclusion holds in a stochastic volatility

world. In a setting with stochastic volatility and jumps, power utility investors and

mean-variance investors make qualitatively different investment decisions in some set-

tings. Finally, large efficiency gains are observed for mean-variance investors that take

short straddle positions in a world where both volatility risk and crash risk are priced.

6.A Benchmark Model Derivations

To calculate expected option returns knowledge on the joint characteristic function of

log St+h and σ2
t+h is required. For the benchmark model (6.9) the characteristic function

can be derived from the general result in Duffie, Pan, and Singleton (2000) and is given

by

EIP
t

(
exp

{
iφV σ2

t+h + iφS log St+h

})
= exp

{
A (φV , φS, h) + B (φV , φS, h) σ2

t + iφS log St

}
,

(6.23)
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with

A (φV , φS, h) = µiφSh− κσ2

σ2
σ

[
(γP + bP ) h + 2 log

{
1− (γP + bP ) + σ2

σiφV

2γP

(
1− e−γP h

)}]

+λh
[
(1 + µJ)iφSe

iφS
2

(1+iφS)σ2
J − 1− iφSµJ

]
,

B (φV , φS, h) = −a
(
1− e−γP h

)− iφV

[
2γP − (γP − bP )

(
1− e−γP h

)]

2γP − (γP + bP ) (1− e−γP h)− σ2
σiφV (1− e−γP h)

,

where

a = iφS + φ2
S,

bP = σσρiφS − κ,

γP =
√

b2
P + aσ2

σ,

µ = r + ηS + µJ

(
λ− λ̃

)
.

The expectation of P2,t+h can be derived as

EIP
t (P2,t+h) =

1

2
+

1

π

∫ ∞

0

Re

[
e−iφS log K+CEIP

t

(
exp

(
iD

i
σ2

t+h + iφs log St+h

))

iφs

]
dφs,

with

C(α, τ) = riατ − κσ2

σ2
σ

[
(γQ + bQ) τ + 2 log

{
1− (γQ + bQ)

2γQ

(
1− e−γQτ

)}]

+λ̃τ
[
(1 + µJ)iαe

iα
2

(1−iα)σ2
J − 1

]
− λ̃τ iαµJ , (6.24)

D(α, τ) = − a (1− e−γQτ )

2γQ − (γQ + bQ) (1− e−γQτ )
, (6.25)

where

bQ = σσρiα− (
κ + ηV

)
,

γQ =
√

b2
Q + aσ2

σ.

The expectation is obtained by evaluating (6.23) in
(

D
i
, φS, h

)
. Finally, this leads to an

expression which is again of the form

EIP
t (P2,t+h) =

1

2
+

1

π

∫ ∞

0

Re

[
e−iφS log K exp {F + Gσ2

t + iφS log St}
iφs

]
dφs,
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with

F = riφSτ − κσ2

σ2
σ

[
(γQ + bQ) τ + 2 log

{
1− (γQ + bQ)

2γQ

(
1− e−γQτ

)}]

+λ̃τ
[
(1 + µJ)iφS(1−e

−γQh)e
iφS
2

(1−iφS)σ2
J − 1

]

−λ̃τ iφSµJ + µiφSh− κσ2

σ2
σ

[
(γP + bP ) h + 2 log

{
1− (γP + bP ) + σ2

σD

2γP

(
1− e−γP h

)}]

+λh
[
(1 + µJ)iφSe

iφS
2

(1−iφS)σ2
J − 1

]
− λhiφSµJ , (6.26)

G = −a
(
1− e−γP h

)−D
[
2γP − (γP − bP )

(
1− e−γP h

)]

2γP − (γP + bP ) (1− e−γP h)− σ2
σD (1− e−γP h)

, (6.27)

where τ = T − h. The expectation of St+hP1,t+h can be derived in a similar way

EIP
t (St+hP1,t+h) =

1

2
Ste

µh+
1

π

∫ ∞

0

Re


e−iφS log K+C̃EIP

t

(
exp

(
i D̃

i
σ2

t+h + i (φs − i) log St+h

))

iφs


 dφs,

with

C̃(α, τ) = riατ − κσ2

σ2
σ




(
γ̃Q + b̃Q

)
τ + 2 log



1−

(
γ̃Q + b̃Q

)

2γ̃Q

(
1− e−γ̃Qτ

)







+λ̃τ(1 + µJ)
[
(1 + µJ)iαe

iα
2

(1+iα)σ2
J − 1

]
− λ̃τ iαµJ , (6.28)

D̃(α, τ) = − ã
(
1− e−γ̃Qτ

)

2γ̃Q −
(
γ̃Q + b̃Q

)
(1− e−γ̃Qτ )

, (6.29)

where

ã = −iφS + φ2
S,

b̃Q = σσρiα− (
κ + ηV

)
+ σσρ,

γ̃Q =
√

b̃2
Q + ãσ2

σ.

Now, the joint characteristic function (6.23) needs to be evaluated in
(

D̃
i
, φS − i, h

)
.

The final expression has got again the same convenient form

EIP
t (St+hP1,t+h) =

1

2
Ste

µh

+
Ste

µh

π

∫ ∞

0

e−iφS log K exp
{

F̃ (φV , φS, h) + G̃ (φV , φS, h) σ2
t + iφS log St

}

iφS

dφs,
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with

F̃ = riφSτ − κσ2

σ2
σ




(
γ̃Q + b̃Q

)
τ + 2 log



1−

(
γ̃Q + b̃Q

)

2γ̃Q

(
1− e−γ̃Qτ

)







+λ̃τ(1 + µ̃J)

[
(1 + µ̃J)iφS

e
iφS

2 (1+iφS)σ2
J − 1

]
− λ̃τ iφSµ̃J + µiφSh

−κσ2

σ2
σ




(
γ̃P + b̃P

)
h + 2 log



1−

(
γ̃P + b̃P

)
+ σ2

σD̃

2γ̃P

(
1− e−γ̃P h

)





 (6.30)

+λh(1 + µJ)
[
(1 + µJ)iφSe

iφS
2

(1+iφS)σ2
J − 1

]
− λhiφSµJ ,

G̃ = −
ã

(
1− e−γ̃P h

)− D̃
[
2γ̃P −

(
γ̃P − b̃P

) (
1− e−γ̃P h

)]

2γ̃P −
(
γ̃P + b̃P

)
(1− e−γ̃P h)− σ2

σD̃ (1− e−γ̃P h)
, (6.31)

where, finally

b̃P = σσρiα− κ + σσρ,

γ̃P =

√
b̃2
P + ãσ2

σ.

6.B Second Moment of Option Returns

Consider the second moment of a call option price at time t + h,

EIP
t

(
C2

t+h

)
= EIP

t

(
St+hP1,t+h −KP2,t+h

)2
(6.32)

= EIP
t

(
S2

t+hP
2
1,t+h

)− 2KEIP
t (St+hP1,t+hP2,t+h) + K2EIP

t (P2,t+h)
2 .

These expectations are treated separately,

EIP
t

(
P 2

2,t+h

)
= EIP

t

(
1

2
+

1

π

∫ ∞

0

Re

[
ϕt (φS) e−iφS log K

iφS

]
dφS

)2

=
1

4
+ EIP

t

(
1

π

∫ ∞

0

Re

[
ϕt (φS) e−iφS log K

iφS

]
dφS

)

+EIP
t

(
1

π2

∫ ∞

0

∫ ∞

0

Re

[
ϕt (φS) e−iφS log K

iφS

]
Re

[
ϕt (αS) e−iαS log K

iαS

]
dφsdαs

)
.
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Only the final term is not known yet. In order to calculate this expectation ϕt (φS) is

replaced by ea+bi and ϕt (αS) by eã+b̃i. Then

Re

[
e−iφS log Kea+bi

iφS

]
= ea Re

[
(cos (φS log K)− i sin (φS log K)) (cos (b) + i sin (b))

]

= ea

{
cos (φS log K) sin (b)− sin (φS log K) cos(b)

φS

}

= ea

{
sin (b− φS log K)

φS

}
.

Using this result in the double integral above yields
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sin (b− φS log K) sin

(
b̃− αS log K

)

φSαS

dφsdαs




= EIP
t


 1

π2

∫ ∞

0

∫ ∞

0

e(a+ã)
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.



134 MEAN-VARIANCE PROPERTIES OF OPTION RETURNS

This can be solved by using the joint characteristic function of log St+h and σ2
t+h. Now,

attention is turned to the first expectation at the right hand side of (6.32). The deriva-

tions are more or less the same given that the numerator of the integrand only consists

of exponentials

EIP
t
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S2
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2
1,t+h

)
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t
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π
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iφS

}
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iαS
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)
.

Focusing again on the final expectation
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0
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eã+b̃ie−iαS log K

iαS

]
dφsdαs

)

= EIP
t


 1

π2

∫ ∞

0

∫ ∞

0

Re
[
eC̃(−φs)+C̃(αS)+(D̃(−φs)+D̃(αS))σ2

t+h+i(αS−φS−2i) log St+he−i(αS−φS) log K
]

2φSαS

−
Re

[
eC̃(φs)+C̃(αS)+(D̃(φs)+D̃(αS))σ2

t+h+i(αS+φS−2i) log St+he−i(αS+φS) log K
]

2φSαS

dφsdαs


 .

Finally, the cross-term in (6.32) is considered. The end result to which the joint char-

acteristic function can be applied is
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 .

In the same spirit, the second moment of the future put price and the covariance between

options can be calculated.
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6.C Proofs

Proof of Lemma 6.1

For notational convenience the discount rate is taken to be equal to a constant rate r.

First consider P2,t. A proof is needed for the following
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Proving this part by part and starting with the first part
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where the first equality sign is by definition of ψ (·). For the second part observe that
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Consider now StP1,T in (6.3). For this part we need to prove that

ψ (1, Xt, t, T )

2
− 1

π

∫ ∞

0

Im (ψ (1− iφS, Xt, t, T )) eiφS log K

φS

dφS =

St

(
1

2
+

1

π

∫ ∞

0

Re

[
ϕt (φS − i) e−iφS log K

ϕt (−i) iφS

]
dφS

)

Again proving this part by part and starting with the first part
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And finally,
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Proof of Lemma 6.2
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,

with F ,F̃ ,G, and G̃ functions that only depend on Ti, h, and the model parameters.

Expressions V1 and V2 are rewritable as function of moneyness
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Using this, the expected gross return on a call option is
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(6.33)



CHAPTER 7

Conclusions and Future Research

The usage of option contracts in portfolio management has tremendously expanded in

the last two decades. The payoff profile and the risk-return characteristics of options

can be used by asset managers to construct financial products that tailor the needs of

their clients. This thesis focuses on the informational content of standard European

plain vanilla option contracts that are written on a stock index. The main findings, the

practical relevance, and some directions for future research are summarized in this final

chapter.

7.1 Summary and conclusions

In Chapter 2 we give an extensive overview of the continuous time option pricing litera-

ture. Starting from an earlier paper by Bachelier (1900) the continuous time literature

on the modeling of index returns and option prices has expanded in various ways. We

identify three streams of literature that utilize plain vanilla options in a methodologically

different manner. First, option prices are used to calibrate parameters in parametric op-

tion pricing models. Usually, the information in both stock (index) prices and option

prices is used for estimating the model parameters. Option prices are necessary to iden-

tify parameters that are not solely identifiable by stock (index) returns. Well-known

examples can be found in Chernov and Ghysels (2000) and Pan (2002). Secondly, plain

vanilla option prices contain information on the risk-neutral distribution of the stock
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(index) price at a future point in time. Numerous nonparametric methodologies have

appeared in the literature that provide estimates of the future risk-neutral distribution of

stock (index) prices. A leading reference in this area is Jackwerth and Rubinstein (1996).

Finally, there is a stream of literature that studies the dynamics of the Black-Scholes

implied volatility smile/skew. This literature is aimed to find estimates of future option

prices given the history of implied volatility smiles and implied volatility term struc-

tures. Recently, there is a growing interest in the properties of empirical option returns.

The most simple option strategies have impressive Sharpe ratios. However, theoretical

explanations for the performance of option based investment strategies are still lacking.

Coval and Shumway (2001) provides an intuitive treatment of empirical option returns

on S&P-500 and S&P-100 index options.

In Chapter 3 we propose an option pricing model that allows for different behavior of

stock prices during the periods that exchanges are closed. This is an option pricing model

that explicitly takes this microstructural effect into account. The overnight nontrading

periods are modeled by means of a single jump from the closing time on the one day to

the opening time on the next day. We find that this additional jump component is of

significant importance in explaining S&P-500 index option prices. To be more precise,

the overnight jump component captures approximately one third of total jump variation

in low volatility periods and about a quarter of total jump variation in high volatility

periods. Moreover, we find that an option pricing including random jumps and overnight

jumps outperforms standard stochastic volatility and jump models in terms of empirical

fit of S&P-500 index option prices.

Chapter 4 presents a nonparametric technique for the estimation of the joint risk-

neutral density of stock (index) return and future instantaneous volatility. This method-

ology uses the information in a set of option prices to estimate the future risk-neutral

volatility density nonparametrically. We add a new dimension to the implied distribution

literature. Concerning the marginal risk-neutral return we confirm negative skewness.

This indicates that jumps with average negative jump size are necessary in a parametric

study of option pricing. The results on the marginal risk-neutral density of future volatil-

ity strongly indicate the presence of a negative volatility risk premium. The volatility

risk premium seems to depend on initial volatility in a non-linear way. Furthermore, the

estimated risk-neutral probability of high volatility are high even when current volatil-

ity is low. This means that investors pay high prices for products that give protection

against states of high volatility. Finally, we find that the Heston model is not able to

describe the marginal risk-neutral return density and the marginal risk-neutral volatil-
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ity density simultaneously. The results point to the direction of a parametric model

including jumps in the return process and in the volatility process.

The issue of parameter estimation in models that contain latent variables is dis-

cussed in Chapter 5. These latent variables appear in the conditional moments of the

stock return which makes GMM estimation rather complicated. We show that this issue

can be solved theoretically by applying a simple trick. This results in moment condi-

tions that are independent of the latent variables. From a simulation experiment in a

stochastic volatility world we deduce two main findings. First, we find that parameters

are estimated more precisely if ’GARCH’-instruments are used instead of the classi-

cal instruments. These ’GARCH’-instruments are based on the GARCH estimators of

stochastic volatility time series. Secondly, the moment conditions in combination with

the chosen ’GARCH’-instruments do not provide a proper empirical identification of the

mean-reversion parameter in the stochastic volatility model. Apparently, this parameter

can only be empirically identified by using conditional estimation techniques.

Chapter 6 studies mean-variance based performance measurement of option based

strategies and mean-variance asset allocation in models that imply different preferences

than mean-variance preferences. To perform these analyses, we provide a methodology

that allows for the calculation of the conditional expectation and the conditional variance

of returns on options that are not necessarily held to maturity. The methodology applies

to all models that fit into the class of affine jump-diffusions. Additionally, the covariance

between the stock and the option and between options that have different strikes can

be calculated by means of the same method. We find that CAPM α cannot be used as

a performance measure for nonsymmetric return strategies. For instance, shorting an

out-of-the-money and fairly priced put option in the Black-Scholes world would generate

positive α. Also for stochastic volatility and jump-diffusion models, simple α-generating

strategies are easily found. As a second application, we calculate optimal asset allocation

rules for an investor who has access to derivative markets. We find that both mean-

variance investors and power utility investors take short positions in straddles if the

volatility diffusion risk premium is negative in a stochastic volatility world. Overall,

we find no qualitative differences between mean-variance investors and power utility

investors when straddles are considered as separate investment opportunities. In jump

models, mean-variance investors and power utility investors sometimes take different

investment decisions. In a setting of very infrequent but very large downward movements

in the risky stock, power utility investors always take a long position in the out-of-the-

money put option in order to hedge the crash risk in the long stock position while, in case
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of sufficient compensation, the mean-variance investor is willing to take the short side

of the put position. We observe large efficiency gains in the mean-variance sense when

delta-neutral straddles are included in the investment opportunity set in a stochastic

volatility world with stochastically varying jump sizes.

7.2 Directions for future research

Parameter estimation in models containing latent variables remains a hot issue. Al-

though the method in Chapter 5 circumvents the problem by constructing moment

conditions independent of the latent variables, the method has the disadvantage of poor

empirical identification of the time scale parameters in stochastic volatility models. This

issue can only be solved by considering conditional estimation techniques. These tech-

niques require an estimate of the instantaneous variance time series. Pan (2002) uses

option prices to extract an estimate of the variance series. In a second step, that paper

uses the variance estimates as an input to conditional moments of the stock return dis-

tribution and the instantaneous variance distribution. In future work, the conditional

moments could be replaced by conditional probabilities which would lead to a maximum

likelihood estimation technique. Given that the characteristic functions of returns and

future volatility is known in most models, this is conceptually not complicated. How-

ever, for the practical implementation of such a procedure more computational power

is necessary. In addition, unconditional moments could be used as explicit restrictions

in order to stabilize the optimization procedure. The conditional moments that are de-

rived in Chapter 6 could be utilized in estimation procedures to get a better empirical

identification of model parameters.

For the practical implementation of affine jump-diffusions in portfolio management,

an easy-to-use and stable estimation procedure for affine jump-diffusion is of crucial im-

portance. As a consequence of the results on implied distributions of future stock index

values, which are confirmed by the findings in Chapter 4, investment strategies based on

the difference between the empirical risk-neutral return distribution and a parametric

estimate of the objective return distribution are extensively tested. These strategies typ-

ically take long positions in states that have a positive expected return (states for which

the estimated objective probability is higher than the estimated risk-neutral probability)

and short positions in states that have a negative expected return. Obviously, a good

estimate of the parametric objective distribution is very important. Over longer invest-

ment horizons, the normal distribution provides a reasonable fit of empirical stock index
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returns. However, these long investment horizons are not always desirable. For shorter

investment horizons the normality assumption of stock index returns is no longer appro-

priate and therefore models more dynamic than the Black-Scholes model are necessary

to implement buy-and-hold investment strategies over shorter horizons.

The analysis in Chapter 4 can be extended in numerous different ways. One of the

possibilities is to estimate the joint risk-neutral distribution of the return on a stock

and the realized variance of a stock index. The increased liquidity in variance swaps

indicates that the market is interested in products whose payoff is related to the realized

variance of a stock index. Options on realized variance would probably be more popular

than variance swaps. However, the theoretical valuation of options on realized variance

is much more complicated than the valuation of variance swaps. This issue could be

solved by the aforementioned extension of the methodology of Chapter 4.

The results in Chapter 4 also gives new insights to the model specification part of

parametric option pricing. The results on the marginal volatility density imply that

the volatility risk premium parameter should depend on the current level of instanta-

neous volatility. Furthermore, the same density clearly supports the inclusion of a jump

component in the volatility process.

An obvious extension of the research in Chapter 6 is to use the derivations in an

empirical study of option returns. The literature on option pricing returns reports

surprising results on the performance of several option strategies. Is there a parameter

set that gives a description of empirical option returns across moneyness categories for

a fixed holding period? How do the optimal fitting parameters vary with changes in the

investment horizon? Does there exist a parameter set that fits both option returns and

stock (index) returns simultaneously?

Finally, in the world of active portfolio management CAPM α plays an important

role. The higher α the more satisfaction among clients. Chapter 6 has shown that

CAPM α is often a bad performance measure for option based strategies. Further

research should be directed into an adjustment of CAPM β such that CAPM α can be

interpreted as a performance measure again.
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Nederlandse Samenvatting (Dutch Summary)

In de laatste twee decennia is het gebruik van financiële afgeleide instrumenten op het

gebied van financieel management enorm toegenomen. Derivaten worden bijvoorbeeld

tegenwoordig veelvuldig gebruikt in de dagelijkse toepassing van risicobeheer en ver-

mogensbeheer. De opmerkelijke ontwikkeling in de liquiditeit van derivaten is vooral

te verklaren door de algemene ontwikkeling van financiële markten, behoeften van in-

vesteerders en regelgeving.

De voornaamste motivatie voor het schrijven van dit proefschrift schuilt in het

toegenomen gebruik van derivaten. In dit proefschrift zal de nadruk liggen op de in-

formatie die bevat is in de prijzen van één specifiek financieel product, namelijk de

standaard Europese index optie. Een groot aantal artikelen is reeds verschenen dat de

informatielading van Europese index opties bestudeert. Echter, er zijn ook nog steeds

een aantal interessante onderzoeksvragen onbeantwoord gebleven. In dit proefschrift

worden vragen beantwoord worden die bijvoorbeeld betrekking hebben op het prijzen

van index opties, risico-neutrale kansverdelingen die worden gëımpliceerd door index op-

ties en rendementen die behaald kunnen worden als index opties worden aangehouden.

Twee voorname vraagstukken binnen de literatuur van financiële producten zijn de

prijsvorming van deze producten en het afdekken van de risico’s die het aanhouden van

deze producten met zich meebrengt. Om de prijs van een afgeleide product te kun-

nen uitrekenen zijn drie theoretische concepten van eminent belang. Dit zijn (1) het

process dat de onderliggende waarde van de optie volgt in de werkelijke wereld, (2) de

compensatie voor alle systematische risico’s die in de gemodelleerde werkelijke wereld

aanwezig zijn en (3) de stochastische ontwikkeling van de onderliggende waarde van de

159
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optie in de risico-neutrale wereld. Deze drie concepten definiëren een financieel model

waarbinnen opties en allerlei andere derivaten gewaardeerd kunnen worden. Een be-

langrijk voorbeeld van zo een prijsvormingsmodel is het beroemde Black-Scholes model.

De voorwaarden waaronder dit prijsvormingsmodel is afgeleid zijn dusdanig sterk dat

het model praktisch niet (meer) toepasbaar is. Er zijn veel artikelen verschenen die

de tekortkomingen van het Black-Scholes model behandelen en mogelijke alternatieven

voordragen. Hoofdstuk 2 geeft een uitgebreid overzicht van deze artikelen. Daarbij

wordt de literatuur die zich bezighoudt met de tekortkomingen van het Black-Scholes

model opgedeeld in drie verschillende stromingen. Eerst worden artikelen behandeld die

alternatieven voordragen zoals het stochastisch volatiliteitsmodel in Heston (1993) en

de klasse van sprong-modellen in Duffie, Pan en Singleton (2000). Vervolgens is ruime

aandacht geschonken aan een serie van artikelen die de risico-neutrale verdeling van aan-

delenrendementen probeert te onttrekken aan geobserveerde optieprijzen die geschreven

zijn op dit aandeel. De verkregen impliciete verdeling is strijdig met de Black-Scholes

aannamen. Tenslotte is kort de literatuur beschreven die de dynamiek van Black-Scholes

impliciete volatiliteiten bestudeert, beschreven. Naast een uitgebreide opsomming van de

prijsvormingsliteratuur zijn in hoofdstuk 2 ook artikelen behandeld die de rendementen

op opties als uitgangspunt nemen.

In hoofdstuk 3 is het effect van gesloten aandelenmarkten op optieprijzen onder-

zocht. De motivatie voor dit onderzoek is gelegen in het feit dat traditionele waarder-

ingsmodellen perioden waarin niet gehandeld wordt, buiten beschouwing laten terwijl de

empirische literatuur heeft aangetoond dat de verdelingseigenschappen van handelsperi-

oden substantieel verschillen van perioden waarin niet gehandeld wordt. In rendementen

van opening naar opening valt bijvoorbeeld meer variatie waar te nemen dan in de ren-

dementen van de slotkoersen. Een ander voorbeeld is dat de rendementen tussen de

opening en de slotkoers beweeglijker zijn dan de rendementen tussen de slotkoers en de

opening. Tot nu toe is het effect van gesloten financiële markten alleen onderzocht voor

aandelenrendementen. Hoofdstuk 3 bestudeert vooral de invloed op optieprijzen. Daar-

toe is een optiewaarderingsmodel gepresenteerd waarin de niet-handelsperioden expliciet

zijn meegenomen. Dit is gedaan door het verschil tussen de slotkoers van de ene handels-

dag en de openingskoers van de volgende handelsdag te modelleren met één sprong in

de aandelenindex. Gedurende de handelsdag is aangenomen dat de ontwikkeling van de

aandelenindex wordt beschreven door een proces met stochastische volatiliteit waarin op

ieder willekeurig tijdstip een sprong kan plaatsvinden. Het continue deel van het proces

geeft de normale bewegingen in de aandelenindex weer terwijl het spronggedeelte het
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arriveren van belangrijke nieuwe informatie representeert. Gegeven het veronderstelde

statistische proces voor een aandelenindex is het mogelijk (na een transformatie van de

kansmaat) om theoretische optieprijzen uit te rekenen. De resulterende formules zijn

vervolgens gebruikt om met behulp van S&P-500 index opties de risico-neutrale model-

parameters te schatten. Dit wordt gedaan in twee verschillende dataperioden namelijk

een periode van lage volatiliteit (1992-1997) en een periode waarin de volatiliteit ”nor-

male” waarden aanneemt (1999-2003). De belangrijkste conclusie van hoofdstuk 3 is

dat de toegevoegde sprongcomponent voor niet-handelsperioden een belangrijke invloed

heeft op S&P-500 index optieprijzen. Deze extra component beschrijft ongeveer een

kwart van de totale variatie in de sprongen. Een andere belangrijke conclusie is dat een

optiewaarderingsmodel dat stochastische volatiliteit, een willekeurige sprongcomponent

en een vaste sprongcomponent bevat, de beste beschrijving geeft voor SPX opties.

In hoofdstuk 4 is een nieuwe methode gëıntroduceerd waarmee de gezamenlijke risico-

neutrale verdeling van indexrendementen en de toekomstige volatiliteit geschat kan wor-

den. Hiertoe is alleen gebruik gemaakt van standaard opties die geschreven zijn op de

desbetreffende index. De toegevoegde waarde van dit deel van het proefschrift is dat

niet alleen de risico-neutrale verdeling van rendementen bepaald kunnen worden, maar

ook de risico-neutrale verdeling van de toekomstige volatiliteit. Een methode waarmee

de risico-neutrale verdeling van de toekomstige volatiliteit bepaald kan worden, is nog

niet eerder gepresenteerd in de literatuur. De huidige literatuur baseert zich vooral op

het resultaat dat de risico-neutrale verdeling van aandelen(index)-rendementen verkre-

gen kan worden door de tweede afgeleide te nemen van de optiewaarderingsformule voor

calls met betrekking tot de uitoefenprijs. Deze benadering is vruchteloos bij het bepalen

van de risico-neutrale verdeling van volatiliteit omdat er geen derivaten voorhanden zijn

waarvan de uitbetaling perfect is gecorreleerd met de toekomstige volatiliteit. Theo-

retisch gezien, is de methode die wordt gëıntroduceerd in hoofdstuk 4, gebaseerd op

de ”First Fundamental Theorem of Asset Pricing”. Deze methode is geverifieerd voor

verschillende stochastische volatiliteitsmodellen waaronder het Heston (1993) model.

De resultaten tonen aan dat de methode in staat is om de analytische gezamenlijke

verdeling te onttrekken aan analytische prijzen die volgen uit het gekozen stochastische

volatiliteitsmodel. Deze conclusie verandert niet wanneer in de schattingsprocedure niet

de geobserveerde volatiliteiten worden gebruikt maar de EGARCH-schatters daarvan.

Het toepassen van de methode op empirische data geeft een aantal nieuwe inzichten met

betrekking tot de geschatte risico-neutrale verdeling van toekomstige volatiliteit. De

resultaten laten namelijk zien dat de volatiliteitsverdeling naar rechts verschuift als de



162 Nederlandse Samenvatting (Dutch Summary)

initiële volatiliteit een hogere waarde heeft. Verder heeft de geschatte volatiliteitsverdel-

ing positieve scheefheid welke het meest aanwezig is in tijden van lage volatiliteit. Dit

komt overeen met de theorie dat investeerders een grote aversie hebben jegens on-

verwachte positieve schokken in de volatiliteit. De eigenschappen van de geschatte

risico-neutrale indexverdeling komen overeen met die reeds gerapporteerd zijn in de

literatuur. Voor deze verdeling is bijvoorbeeld een negatieve scheefheid gevonden. Wan-

neer de niet-parametrische verdelingen geconfronteerd worden met parametrische op-

tiewaarderingsmodellen dan blijkt dat de risico-neutrale volatiliteit van volatiliteit veel

kleiner is dan wordt voorspeld door het Heston (1993) model. Dit is een sterke aanwi-

jzing dat een sprongcomponent in het rendementsprocess moet worden opgenomen om

de risico-neutrale rendementsverdeling te kunnen beschrijven. Tenslotte geven de schat-

tingsresultaten aan dat de risico-neutrale volatiliteit van volatiliteit niet beschreven kan

worden middels één enkel diffusieproces.

Hoofdstuk 5 behandelt het probleem van het schatten van parameters in stochastis-

che volatiliteitsmodellen. Het schatten van parameters in deze modellen is ingewikkeld

omdat de huidige volatiliteit verschijnt in momentencondities terwijl deze variabele in

de werkelijkheid latent is. In hoofdstuk 5 is aangetoond dat het gebruik van oncondi-

tionele momenten in plaats van conditionele momenten leidt tot een slechte empirische

identificatie van de modelparameters. De resultaten van een simulatiestudie laten zien

dat instrumenten die samengesteld worden op basis van GARCH parameterschatters

leiden tot een grotere efficiëntie van de parameterschatter dan wanneer traditionele in-

strumenten worden gebruikt. Echter, de standaardfouten zijn dusdanig hoog dat de

schattingsprocedure geen praktische relevantie heeft.

In hoofdstuk 6 is de aandacht verschoven naar rendementen die behaald kunnen wor-

den op het aanhouden van opties in een beleggingsportefeuille. In het bijzonder zijn de

mean-variance eigenschappen van optie rendementen behandeld. Er zijn enorm veel ar-

tikelen die het optiewaarderingsvraagstuk behandelen, maar er zijn slecht enkele artike-

len beschikbaar die de theoretische en empirische eigenschappen van optierendementen

nader beschouwen. De mean-variance eigenschappen konden onderzocht worden, omdat

in hoofdstuk 6 een methode is gëıntroduceerd waarmee de (conditionele) verwachting, de

(conditionele) variantie en de (conditionele) covariantie van optierendementen uitgerek-

end kan worden voor alle modellen die behoren tot de klasse van affine sprongmodellen.

Hierbij is gebruik gemaakt van het feit dat de karakteristieke functie van de toekom-

stige waarde van de toestandsvariabelen bekend is voor deze klasse van modellen. De

resulterende expressies worden gebruikt om de eigenschappen van de CAPM α en de
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CAPM β te analyseren voor portefeuilles die opties bevatten. De uitkomsten tonen

aan dat de CAPM α de natuurlijke interpretatie als prestatiemaat verliest wanneer op-

tiestrategieën beschouwd worden. Dit kan worden verklaard doordat aan de ene kant

het CAPM een lineair model is terwijl aan de andere kant optierendementen extreem

niet-lineair zijn. Verder is ook aangetoond dat bij gebruik van de CAPM regressiev-

ergelijking bij het valideren van optiewaarderingsmodellen goed bekeken moet worden

of aan de onderliggende OLS veronderstellingen is voldaan.

Wanneer de formules worden gebruikt om optimale portefeuilles te bepalen op ba-

sis van het mean-variance criterium, is aangetoond dat mean-variance investeerders

kwalitatief gezien dezelfde portefeuillegewichten nemen in delta-hedged straddles als

power-utility investeerders. Deze conclusie is afgeleid in een wereld waarin stochastische

volatiliteit geprijsd is en er geen sprongen op kunnen treden in het rendementsprocess

van de onderliggende waarde. Na het toevoegen van geprijsd sprongrisico veranderen

de conclusies. Het blijkt dat in zo een setting en onder bepaalde voorwaarden mean-

variance investeerders en power utility investeerders kwalitatief verschillende invester-

ingsbeslissingen nemen. De mean-variance investeerder is eerder geneigd om het risico

van een short out-of-the-money put optie in de portefeuille op te nemen. Tenslotte

zijn grote efficiëntievoordelen waargenomen voor mean-variance investeerders die short

straddle posities nemen waarin zowel de onzekerheid in volatiliteit als de onzekerheid

in de sprongcomponent geprijsd zijn. Daarbij is ook van belang dat de spronggroottes

stochastisch worden verondersteld.


