l_‘._l
TILBURG 0‘5%?@ ¢ UNIVERSITY
lf:fl

Tilburg University

Extracting Information from Spoken User Input
Lendvai, P.K.

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Lendvai, P. K. (2004). Extracting Information from Spoken User Input: A Machine Learning Approach. [n.n.].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. Nov. 2022


https://research.tilburguniversity.edu/en/publications/e6cdf799-a109-4cb7-aeac-5ee9e456d74e

L%
“ﬁ‘ B 3 : .‘
(‘@ g‘f\a }.ﬁ,:.‘* AR

2 EXTRACTING A

'3; S T

o ¥

4 INFORMATION SE3S

i FROM SPOKEN
USER  INPUT

. e & 4 .
“'.‘-"-‘\',\."_ g2
Lo T

- .

PLROSKA
KORNELIA -
LENDVAI

.




*

- | |
UNIVERSITEIT 0%0 VAN TILBURG
-\;’l

BIBLIOTHEEK
TILBURG

PIROSKA KORNELIA LENDVAI

EXTRACTING INFORMATION FROM SPOKEN USER INPUT

A MACHINE LEARNING APPROACH



The project of this thesis was funded by soBU (Samenwerkingsorgaan Brabantse Universiteiten;
Organisation for cooperation between universities in the Brabant region)

(© 2004 Piroska Kornélia Lendvai
ISBN 90-9018874-6

Printed in Enschede

Typeset in BTEX
Cover: Yubileyny, St. Petersburg 2004



I.I

UNIVERSITEIT & ﬁo VAN TILBURG

l.l

BIBLIOTHEEK
TILBURG

Extracting Information from Spoken User Input

A Machine Learning Approach

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Tilburg,
op gezag van de rector magnificus,
prof. dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen ten overstaan van
een door het college voor promoties aangewezen commissie
in de aula van de Universiteit
op maandag 20 december 2004 om 10.15 uur

door

Piroska Kornélia Lendvai

geboren op 24 december 1972
te Bonyhad, Hongarije



Promotores: Prof. dr. W.P.M. Daelemans
Prof. dr. H.C. Bunt

Copromotores: Dr. A.P.J. van den Bosch
Dr. E.J. Krahmer



Presenter:
Anne Elk:

Presenter:
Anne Elk:
Presenter:
Anne Elk:
Presenter:
Anne Elk:
Presenter:
Anne Elk:

Presenter:
Anne Elk:

Presenter:
Anne Elk:
Presenter:
Anne Elk:

Presenter:
Anne Elk:

Presenter:
Anne Elk:
Presenter:
Anne Elk:

You have a new theory about the brontosaurus...

Can I just say here Chris for one moment that I have a new theory about the
brontosaurus?

Uh... exactly. What is it?

Where?

No — no, what is your theory?

What is my theory?

Yes!

What is my theory that it is? Yes — well, you may well ask what is my theory.
I am asking.

And well you may. Yes, my word, you may well ask what it is, this theory of
mine. Well, this theory, that I have, that is to say, which is mine — is mine.

I know it’s yours! What is it?

Where? Oh, what is my theory? Ah! My theory, that I have, follows the lines
that I am about to relate...

Oh, God...

The theory, by Anne Elk...

Right...

[clears throat] This theory, which belongs to me, is as follows — [clears throat]

This is how it goes — [more throat clearing] The next thing that I am about to
say is my theory — [clears throat] Ready? The theory, by Anne Elk, brackets,
miss, brackets. My theory is along the following lines...

God!

All brontosauruses are thin at one end, much, much thicker in the middle, and
then thin again at the far end. That is the theory that I have, and which is
mine, and what it is, too.

That’s it, is it?

Right, Chris.

Well, Anne, this theory of yours seems to have hit the nail right on the head...
And it’s mine.

(From: Monty Python's Brontosaurus Theory Sketch)



Acknowledgements

I would like to express my thanks towards those who helped me in the past three and a
half years while I was engaged in the process of bringing this thesis into existence.

I feel honoured that Walter Daelemans was willing to be my PhD advisor (promotor).
Next to the substantive comments made on my study, the sophisticated knowledge base
developed by his pioneering research in language technology influenced me a lot. I am
thankful to Harry Bunt for encouraging me to apply for a ‘Learning to Communicate’
project at Tilburg University. His critical remarks, especially on prefinal versions of the
manuscript, enabled me to considerably strengthen theoretical aspects of my work.

I am most indebted to my daily supervisors, Antal van den Bosch and Emiel Krahmer,
for their dedicated support and guidance through all the stages of my project, exhibiting
striking patience, excellent mentorship, and being a cheerful company day by day. They
demonstrated an unbelievable amount of creative thought and willingness to consult me
on various aspects of research, intellectual interests, and my stay in the Netherlands. I am
especially grateful for the immediate, essential comments, tireless advocacy on rephrasing,
and ideas received from Emiel and Antal during writing the thesis text. This work is the
product of our close cooperation, which I enjoyed a lot.

I am glad for having the possibility to conduct research with Marc Swerts (Tilburg
and Antwerp Universities), Laura Maruster (Eindhoven and Tilburg Universities), and
Sander Canisius (Tilburg University); this dissertation shows the impact of our joint work.
Jacques Terken has been kind to act as my SOBU supervisor at the Eindhoven University of
Technology and to provide useful comments on the manuscript. Acoustic data processing
was done courtesy of Leo Vogten (Eindhoven University). Special thanks to Antal for
the wps program and a number of data processing scripts, to Jan Kooistra for software
support, to Emiel for standardising the Dutch summary, and to the authors of the TiMBL
manual.

It has been a pleasure to work in the inspiring environment of the Department of
Computational Linguistics and the Induction of Linguistic Knowledge research group.
Thanks to all colleagues, in particular to Ielka van der Sluis, who made the past years
comfortable and fun: Anne Adriaensen, Bertjan Busser, Elias Thijsse, Els van Loon, Erik
Tjong Kim Sang, Erwin Marsi, Hans Paijmans, Iris Hendrickx, Jakub Zavrel, Jeroen
Geertzen, Ko van der Sloot, Martin Reynaert, Menno van Zaanen, Olga van Herwijnen,
Paul Vogt, Reinhard Muskens, Roser Morante, Sabine Buchholz, Yann Girard, and the
friendly people of the Faculty of Arts.

I am pleased that Ielka and Jan undertook the responsible task of being paranymphs,



providing trusted help and company in moments quite different from watching odd films,
going to retro-concerts, performing deep aesthetic analysis of travel photos, and the like.

My deepest thanks to Yevgen Rudenko for standing by me in all moments, as well as
to our families, for all precious emotions and cultural heritage.

The incomplete list of friends who have been keeping up my spirit during this period
includes Adrien Haraszti, Anne-Marie van den Bosch, Arthur and Barbara Zhuravlov, Bea
Nemes, Bernadett Kérész, Boris Yakshov and Galina Pronicheva, the Bagry family, Edit
Gaal, Eszter Zakéanyi, Gergely Thurécezi, Miklés Urbdn, Levente Bejdek, Nomi Vereckei,
Olga Vybornova, Paul Meijer, Péter Simon, Tamds Bird, the Van der Sluis family, Zs6fi
Fekete, Zsolt Miiller, Zsolt Varga, and Zseby Zoltdan Wojnischek.

Especially on this day I would like to convey my respect and emphasised affection
towards the art created by Evgeni Plushenko, as well as to the numerous (for some rea-
son USSR-related) actors, directors, writers, musicians, and other performing artists, who
impressed me every single day. Thank you for providing essential motivation for going on.

Tilburg, 3 November 2004.

viii



Contents

1 Introduction

Ll
1.2
1.3

1.4

2.1

2.2

2:3

24

3.1

3.2

3.3

The complexity of interpreting user input in spoken dialogue systems . . . .
Machine learning for extracting information from spoken user input

Research ObJectives . « v« « v 4 o w s o s wws « s s 6 s ¢ 6 ¢ 56 84 5 6 5
L3.). A robust SPProsch . o o 5 w5 v cw @ v s E EE s fow e mEE 5 v ¥
1.3.2 Detecting task-related acts . . . . .. . .. ... . ...
1.3.3  Detecting information units . . . . ... .. ... ... ... ... ..
1.3.4  Detecting forward-pointing problems . . . . . . .. .. ... ... ..
1.3.5  Detecting backward-pointing problems . . . . . . . .. .. ... ...
Overview . . . . . . .

Computational Interpretation of Spoken User Input

Natural language understanding in spoken dialogue systems . . . . . . . . .
Analysis levels in interpreting spoken user input . . . . . .. ... .. ...

221 Task-related €S .« « 54 s ¢ s w0 s F fEmmE F B G e E s § o5 s
222 Informaticn ORItS « v o v s « s s o4 s s @ as § 5 B EEEDE § 8 6
2.2.3 Forward-pointing problems . . . . ... .. ... ... ........

2.24 Backward-pointing problems . . . ... ... ... ...
Potential information sources for interpretation . . . . .. . ... ... ...
2.3.1 Cues in analysing task-related acts . . . .. . ... ... .......
2.3.2  Cues in analysing information units . . . . .. ... ... ... ...
2.3.3  Cues in analysing forward-pointing problems . . . . .. ... .. ..
2.3.4 Cues in analysing backward-pointing problems . . . . . ... .. ..
Summary . ...

Machine Learning as a Research Environment

Algorithm choice . . . . . . . .. ...

3.1.1  Memory-based learning . . . . .. ... .. ... ... ... ... ..
3.1.2 Ruleinduction . ... .. .. ... ... ...
Experimental methodology . .. .. ... ... ... .. ... ........
3.2.1 Algorithm parameter optimisation . . . ... ... ... .......
BT cvoeorotrdd iRREEE i 068S § S oBOEESE & 208 d

[N

[V

10
12

13
13
16
17
18
20
21
22
23
23
24
25
26



Chapter 1

Introduction

1.1 The complexity of interpreting user input in spo-
ken dialogue systems

Spoken dialogue systems (SDSs) are developed to assist people at controlling devices and
at accessing various computer-based services. When human users interact with a SDS, a
specific type of communication takes place that is referred to as task-oriented dialogue.
In task-oriented dialogues the dialogue partners want to reach some common goal, one
that represents the purpose of the utilised device or service. Our study focuses on SDSs
that are information-providing systems. In such SDSs the common goal is to transfer
information from the system to the user. SDSs of this kind can also be seen as speech
interfaces to databases, enabled by a successful interaction to perform a database search:
the database is consulted and information is retrieved by the system when enough query
constraints are obtained from the input supplied by the user. The query constraints are
pieces of information that are inferred from what the user says during the dialogue. In
other words, interaction with the SDS proceeds via a series of dialogue exchanges, i.e.,
pairs of system and user turns, which lead to a computational state where the database
query can be performed. When the query result is delivered to the user, the goal of the
interaction is fulfilled.

A crucial subprocess of the interaction is thus that the dialogue system infers the con-
tent of user turns. This takes considerable effort; at least three major factors contribute
to the complexity of such automatic interpretation. One factor is that the spoken ma-
terial may contain noise. Apart from environmental and channel-related auditory noise,
linguistic noise may also be present in spoken input: ungrammatical linguistic construc-
tions are frequently uttered by people, and the presence of so-called disfluent elements
such as stuttering, repetitions, and filled pauses, which do not belong to the intended
informational content of the utterance, is not uncommon. In addition, the results of
automatic speech recognition (ASR) implemented in a SDS are often incorrect, espe-
cially when the ASR engine has to operate on large domains. Errors in SDS-internal
measurements can also occur, and may lead to noise in the material from which in-



Chapter 1: Introduction 2

formation needs to be extracted by the SDS. Additionally, noise has been found to be
difficult to automatically distinguish from linguistic subregularities and exceptions (cf.
[Daelemans et al. 1999, Rotaru and Litman 2003]).

The second factor accounting for complexity in interpreting user input is that in a
task-oriented dialogue a user turn is typically some concise utterance that amalgamates
manifold communicative aspects. [Traum 2003] identifies three inherent levels of questions
and answers in human-machine communication: (i) the performance level of dialogue acts,
(ii) the semantic level of basic values, and (iii) the interactional level of the conversation.
For example, a typical user reply to an information-demanding system prompt (i.e, the
machine’s utterance, e.g. ‘How may I help you?’) can be considered to simultaneously
perform the acts of information providing, supplying the particular pieces of information
that were requested, and giving feedback on how the interaction is progressing (e.g., ‘1
would like to know about recreational activities in Tilburg.’). [Krahmer et al. 2001b]
find that a positive feedback (i.e., signalling that the communication proceeds without
problems) is often represented by a zero element in the utterance, that is, the user will
usually not say explicitly that the interaction progresses well.

The third factor explaining why it is not trivial to infer the content of a user turn is
that language technology employed to automatically extract this content is error-prone:
substantial research has been carried out on the complex task of user understanding, but
present applications still seem to require innovative enhancements to allow for successful
human-machine communication on a more general scale. This calls for devising robust
techniques that work with extensive coverage of spoken language phenomena and sufficient
precision at the same time (cf. [Maynard et al. 2002, He and Young 2004]).

1.2 Machine learning for extracting information from
spoken user input

In recent years there has been an increased interest in using statistical and machine learn-
ing approaches for the processing of user utterances in spoken dialogue systems. Dialogue
act classification is an example for which this approach has been relatively successful. The
goal of this task is to determine what the underlying intention of an utterance is (e.g., sug-
gest, request, reject, etc.). Various techniques have been used for this purpose, including
data-driven language models [Reithinger and Maier 1995], maximum entropy estimations
[Choi et al. 1999], mixed stochastic techniques [Stolcke et al. 2000], transformation-based
learning [Samuel et al. 1998b], and others. For processing and understanding the units
of information that represent the content of spoken user utterances, statistical techniques
have also proven their usefulness, either in combination with rule-based grammars (e.g.
[Cettolo et al. 1996, Van Noord et al. 1999, Wahlster 2000, Cattoni et al. 2001]) or with-
out them (for example [Allen et al. 1996, Nakano et al. 1999]).

Another task for which machine learning approaches have been applied is automatic
problem detection. Given the frequent occurrences of communication problems between
users and systems due to misrecognitions, erroneous linguistic processing, incorrect as-
sumptions, and the like, it is important to detect problems in the interaction as soon as
possible, or even try to anticipate them (cf. [Hirschberg et al. 2000, Litman et al. 2000,



3 1.3 Research objectives

Walker et al. 2000a, Hirschberg et al. 2004]). Various researchers have also shown that
users signal communication problems when they become aware of them, and that it is
possible to pinpoint utterances that reveal that the user acquired knowledge (perhaps
not even fully consciously) about a communication problem (cf. [Hirschberg et al. 2001,
Van den Bosch et al. 2001]). Such turns are sometimes referred to as awareness sites, a
term which we will also use in our study.

Interpreting the acts performed and the information units supplied by the user, pre-
dicting, as well as identifying communication problems are all highly relevant tasks in
processing user input in SDSs. Still, none of the studies in the literature addresses these
issues in combination. Such a combined approach would establish a complex interpretation
module for SDSs, extracting information about semantic aspects (such as the content of
the user’s utterance) and pragmatic aspects (the performed act, source of communication
problems, feedback about the status of the dialogue) of the user input.

1.3 Research objectives

In this study we propose an architecture for a module that performs shallow analysis of
user input in a SDS and provides a complex interpretation of user turns. We refer to the
interpretation process as ‘shallow’ since no deep linguistic analysis is performed on the
user input in order to infer the interpretation, and the material utilised by the module
is obtained by simple means from the speech recogniser and the dialogue manager of the
SDS. The output produced by the module is a four-level representation of the user turn,
consisting of the following components:

e the performed basic task-related act(s),

e the information unit type(s) for which information was provided, in our study cor-
responding to the slots of the query to be completed,

e whether the turn is the source of communication problems,

e whether the turn exhibits user awareness of communication problems.

Figure 1.1 shows the interpretation module in a schematic SDS architecture. After
the user input is supplied, it is processed by the ASR. The output of the ASR is fed into
the language interpretation module, of which shallow interpretation forms a submodule.
The shallow interpretation module receives input from the dialogue manager module as
well. The dialogue manager (DM) module is typically the central coordinating unit of a
SDS, responsible for maintaining the interaction by incorporating the content of the user
input, and designing an adequate response strategy to that user input (for details see for
example [Flycht-Eriksson 1999, Traum and Larsson 2003, Popescu-Belis et al. 2003]).

The next step in the process described in Figure 1.1 is that the shallow interpretation
module extracts the above pieces of information based on the material received from the
ASR and the DM, whereby a four-level interpretation of the user turn is obtained. If
performed accurately, arguably, such a complex interpretation is able to improve language
processing in a dialogue system in many ways. Apart from facilitating full understanding



Chapter 1: Introduction 4

2
//%\"V\ \\
,/? \\‘ \\ 1\\
\ N
i )
/ : \
- ' “
= speech ‘ % g
/“i Dialogue |
' '/ Manager \\
| \
e,
- - 4 '
___________ - language
i ’ generation
P d
— y/
full |
language
\ interpretation

Figure 1.1: The shallow interpretation module (indicated by the dark box, situated in a full
language interpretation module) in a possible SDS architecture. The dashed arrows sym-
bolise potential connections between the shallow interpretation module and other modules
of the SDS.

of the input, the resulting interpretation can be fed back to the speech recognition and
the dialogue manager of the SDS that can utilise this information in a number of ways.
For example, knowledge about the information unit types supplied in the user turn may
enable the speech recogniser to be more confident about some hypothetical analysis of the
utterance (cf. [Ringger and Allen 1997, Stolcke et al. 1998b, Zechner and Waibel 1998]).
Likewise, from the obtained interpretation the DM may receive an indication that the
user is signalling a problem, or that the user input is likely to be erroneously processed.
This would enable the DM to adapt to the given situation, for example by changing the
recognition engine, or by switching to a different error recovery or confirmation strategy
(cf. e.g. [Hirschberg et al. 2004], and the references therein).

Arguably, by broadening the module we could additionally aim at extracting the actual
values the user provides in the turn in case slot-filling activity is detected. However, it is
not among the goals of our study to cover this issue.

The present work aims to be an interdisciplinary study: we integrate the components
of the proposed shallow interpretation module in a machine learning framework. The
learning task in this framework involves simultaneous task-related act and information
unit type classification, as well as bidirectional problem detection. Corresponding to the
four-level interpretation, the learning tasks in the module are the following:



5 1.3 Research objectives

e identify basic task-related act(s),

e identify the information unit type(s), i.e., query slot(s), for which information is
provided (if any),

o identify forward-pointing problems, i.e., whether the turn is a source of miscommu-
nication,

e identify backward-pointing problems, i.e., whether the turn exhibits user awareness
of miscommunication.

Arguably, generating such a combined pragmatic-semantic interpretation is a difficult
task since there are many ways in which an input may contain these different components.
Natural language phenomena are often claimed to be ambiguous, since they yield various
ways in which the spoken input may be interpreted. In addition, some of the components
will be difficult to identify, e.g., whether a user turn indicates that the user is accepting a
system error rather than that the user is providing positive feedback, or whether the user
turn is likely to be erroneously processed or not.

In particular, our goal is to investigate the following research issues in our study:

(i) to what extent certain machine learning techniques can be used for shallow inter-
pretation of user turns in spoken dialogue systems,

(ii) whether the complex learning task of four-level interpretation can be optimised by
decomposing it to subtasks, and

(iii) whether filtering noise from spoken input on the basis of higher-level linguistic infor-
mation leads to improved learning performance on the shallow interpretation task.

Corresponding to (i), we train two supervised machine learning algorithms to extract
information in terms of the four-level interpretation from user turns. This can be seen as
a disambiguation task applied to spoken language material: the learning algorithms need
to assign one complex interpretation to each user turn. [Daelemans et al. 1997] claim
that complex tasks in natural language processing may be decomposed as sequential or
parallel subtasks. Therefore, corresponding to (ii), we also test whether decomposing the
complex four-level interpretation task into subtasks is more optimal for the extraction
of pragmatic-semantic information from user input. Finally, corresponding to (iii), we
devise techniques that attempt to block noise (such as syntactically or lexically incorrect
or superfluous words that may have a negative effect on the interpretation task) from
the algorithms. We use the method of automatic filtering to remove from our data (a)
disfluent words, (b) syntactically less dominant words, and (c) words that may carry less
informational value in the given human—machine interaction. We observe whether filtering
the user input by these means yields improvement over using unfiltered data in the shallow
interpretation task.

The goal of performing all learning experiments by two machine learning algorithms
is to introduce a broader technical scope to our investigation: the two algorithms are
representatives of different branches of supervised learning techniques, namely of memory-
based learning and of rule induction. We train the algorithms on a large set of labelled



Chapter 1: Introduction 6

examples derived from the OVIS corpus of spoken human-machine dialogues with a Dutch
train travel information system [Boves et al. 1995]. Information used by the algorithms
comes from different sources, and is obtained by means that are affordable in most dialogue
systems. We train the memory-based learner and the rule induction learner under identical
conditions, and report on the experimental results of testing their performance on the
shallow interpretation task.

1.3.1 A robust approach

The proposed shallow interpretation module aims to be robust in three respects, namely:
e to cope with noise in spoken input and in the shallow representation of such input,
e to account for multi-layeredness in the input content, and
e to deploy adequate machine learning techniques that form the core of the module.

To design a robust technical approach, we deal with noisiness on several levels. We
attempt to design learning experiments in a way that tolerates approximative, erroneous,
and hypothetical measurements in the data representing the spoken input, since the data
comes from possibly imperfect measurements and hypotheses of the SDS itself (e.g., the
ASR module). [He and Young 2004] claim that a spoken language understanding system
should be able “to correctly interpret the meaning of an utterance even when faced with
recognition errors”. Additionally, the filtering techniques indicated above are another
attempt to devise mechanisms that compensate for noise both in the spoken input (i.e.,
the words uttered) and its representation in the SDS (e.g., the ASR hypotheses).

At the same time, we also try to automatically learn whether certain types of user
input can be identified as problem sources that themselves introduce noise into the in-
teraction with a SDS. Moreover, problem detection is attempted without carrying out a
fine-grained typology of the occurring problems. Rather, two main groups of phenomena
are defined and learnt: forward-pointing problems (i.e., problem source), and backward-
pointing problems (i.e., feedback on the communicative situation).

In order to account for multi-layeredness in the input content, we extract information
related to the pragmatic and semantic levels of the user input: on the pragmatic level
task-related acts, problem source, and problem awareness are detected, on the semantic
level the supplied information unit types are identified (if any). We hypothesise that
identifying a few simple categories on the pragmatic and syntactic level yields robustness:
for example, we identify that a user is supplying information in the given turn, as well as
the query slot(s) to which this information corresponds, but it is not determined how the
input globally influences the interaction, neither the functions the user intends to perform
by such input (i.e., to correct something, to assert, or to agree, etc.), nor the way the
content of the current input relates to the content of the previous input (i.e., whether the
input contains repeated information, etc.), and so on. Rather, the user utterances are
projected into basic supercategories of actions in the task domain (sometimes referred to
as domain actions, cf. [Cattoni et al. 2001]), by which we aim to ensure applicability and
transferability of the approach.



7 1.3 Research objectives

Shallow interpretation is conceptualised as a classification task, and our third goal in
devising a robust approach is to design adequate machine learning techniques for optimal
performance on this task. The techniques aim at attaining high classifier performance at
a relatively low cost: the machine learners utilise information that is easily obtainable
from the SDS, and that is represented in the experiments in a shallow way. No higher-
level linguistic information, which is often computationally expensive to obtain, is used
in the learning experiments. Even the filtering approaches, which attempt to implicitly
incorporate higher-level linguistic information in the SI task, primarily draw on shallow,
generally applicable machine-learning-based approaches.

The design of the shallow interpretation module is hypothesised to result in robust
performance, whereby our goal is to develop a general method for shallow interpretation
of user input by establishing a straightforward approach, implying that its successful
transportation to a new domain of task-oriented human-machine interaction would involve
the adjustment of the set of interpretation classes, and re-training on dialogue data from
that domain.

Below we explain the significance of the four components of the shallow interpretation
module in more detail.

1.3.2 Detecting task-related acts

The linguistic term ‘dialogue act’ refers to both general and specific types of intentions
of the speaker that are manifested in and conveyed by the utterance of the speaker. The
speaker’s intention in an utterance is largely formed by and is dependent on the situation
in which it takes place. Since dialogue acts reflect the relationship between utterances and
context-dependent communicative functions, dialogue acts are pragmatic in nature.

The discipline of computational pragmatics is concerned, among others, with the auto-
matic detection and processing of dialogue acts (see for example [Bunt and Black 2000]),
either in order to discover the underlying mechanisms of natural language dialogue in
general, or to utilise these in natural language processing applications (see for example
[Bunt 1989]). It is not trivial to infer what kind of dialogue act is being performed in
a given utterance, even in a dialogue that takes place in a more restricted, for example
task-oriented way. As described earlier, this is partly related to the fact that the speaker’s
intentions within a turn are typically manifold; and more than one communicative in-
tention may be expressed by one speaker turn. For example, in interacting with a SDS
that provides information about recreational activities, the imaginary but plausible user
turn ‘I did not say biking, I said hiking’ can be seen to simultaneously convey rejection,
correction, information providing, repetition, and so forth. [Bunt 2001] suggests that it is
beneficial for the utilisation of dialogue acts in practical applications to “consider an ut-
terance as multifunctional rather than as (functionally) ambiguous”, which we also pursue
in the present work.

A wide-branching taxonomy of dialogue acts exists in the literature (cf. for example
[Bunt 2001, Popescu-Belis et al. 2003]), opening up many choices on how fine-grained di-
alogue acts may be defined in an actual interaction model. If the goal is to examine subtle
communicative processes, it is probably useful to define many fine-grained categories of
dialogue acts. However, we hypothesise that for a shallow interpretation module it suffices



Chapter 1: Introduction 8

to define a limited set of simple actions that a user may execute in interacting with an
information-providing SDS, to which we refer as task-related acts, and to perform robust
pragmatic analysis of user input on the basis of such task-related acts.

Note that certain members of task-related acts may pertain to classical dialogue acts,
whereas others may be of a different type. We emphasise that our study deliberately does
not concern the full level of dialogue acts (i.e., the established notions of all-purpose, as
well as specific categories describing user intentions), but solely the pragmatic level of
task-related acts which are carried out by users interacting with a SDS. Nonetheless, as
we show later in more detail, our set of task-related acts aims to represent general notions,
scalable to other types of dialogue as well.

Even if we restrict the automatic detection of user acts to those of task-related acts,
the difficulty of automatic identification of these acts remains. One factor adding to this
difficulty is that a user may digress from schematic anticipations in his or her reply to a
system prompt: for example, the expectation that an information-demanding prompt
will be followed by an information-providing answer does not apply to all situations,
especially when speech- and language processing of the previous input has not been perfect.
People may in such cases react with a range of utterance types. Consider for example
the interaction with a train travel information system given in Figure 1.2. The SDS in
this interaction prompts the user for values of slots it needs to fill in order to retrieve a
particular train connection from a database. (The dialogue is sampled from the OVIS
corpus, which we introduce later. Utterances are translated from Dutch; the original
transcriptions are shown in Figure 1 of the Appendix.)

In the first exchange of the interaction the system prompts for departure and arrival
station names, but the user fills only the departure slot, which is an action not uncommon
in human-machine interaction. The system incorrectly thinks the user answered both
slots, and proceeds by prompting the user for the next slot it requires (i.e., travel time).
The user becomes aware of the system error from the prompt in the second system turn
(S2), because information understood from the first input (U1) is implicitly verified by
the SDS there. The user immediately signals that there is a communication problem: this
is done by notifying the system that it has made an error, and not providing information
for the required slot of departure time. This input again leads to misrecognition (see
S3) since the system expected date and time information, but instead it heard the word
‘error’ (and perhaps this word is not in its vocabulary). In turn U4 the user changes his
strategy and supplies the information that has been incorrectly confirmed. Unfortunately
the user hangs up the telephone after this turn, perhaps because he had no more patience
to continue the interaction.

1.3.3 Detecting information units

While task-related acts are pragmatic in nature, the information units that are related
to the content of a turn concern the semantic level of the user input. Traditionally, in
task-oriented dialogue such information units are the factual values entered by the user,
which exist independently of the general context of the dialogue. Alternatively, and in our
study, the supercategories to which certain groups of these factual values refer to can be
considered as information unit types. Such supercategories are in other words the query



9 1.3 Research objectives

Turn Utterance

s1 From which station to which station do you want to travel?

Ul From Amsterdam.

S2 When do you want to travel from Almelo to Amsterdam Central Station?

U2 Error.

S3 I'm sorry I did not understand you. Could you repeat when you want to
travel from Almelo to Amsterdam Central Station?

U3 Go back, it's incorrect.

S4 I'm sorry, again I did not understand you. Could you say when you want
to travel from Almelo to Amsterdam Central Station?

U4 I want to go from Amsterdam to Emmen.

Figure 1.2: User reactions to system error in a train timetable SDS (OVIS, dialogue
nr. 002/005).

slots that are filled in when a user provides factual values. Identifying which slots are
being filled can in inself be of practical value in task-oriented dialogue, for example to
ascertain that a value that may be supplied for more than one slots (e.g., for both the
departure and the arrival station name) is assigned to the right slot.

Again, the difficulty in extracting such information from the user turn is manifold. In
the first place, speech recognition is a main source of problems, since incorrect recognition
can put the process of inferring treated slots or slot values on the wrong track. Addition-
ally, the values entered by the user are often difficult to recognise due to limitations in
typical ASR vocabularies, especially since these values can form an infinite set in some
domains. For example, in a train travel SDS a large number of station names and time
indications need to be recognised, whereas in the recreational activities domain the user
may name some lesser known sports type or geographical area that is not in the vocabulary
of the ASR. In these cases it is difficult to extract the actual values provided for the slots.

Moreover, as mentioned above, in case of communication problems users tend to be-
come confused and either not fill the demanded slots (see the turns U2 and U3 in Figure
1.2), or fill other slots than the system prompted for (see turn U4 in Figure 1.2). Another
frequent phenomenon is that the user is providing more, or less information than was
sollicited by the corresponding system prompt (see turn Ul in Figure 1.2).

1.3.4 Detecting forward-pointing problems

In studies dealing with human-machine interaction, assessment of SDS performance is
often based on two measures: on word accuracy, i.e., the percentage of words correctly
recognised by the SDS, and concept accuracy, i.e., the percentage of semantic concepts
correctly recognised (cf. [Boros et al. 1996]). In our study it is the lack of full concept
accuracy in processing the user’s turn that is regarded as a communication problem (also
called miscommunication). Below we motivate why and how we attempt robust detection
of miscommunication between the human user and the SDS.



Chapter 1: Introduction 10

Problems that ‘point forward’ are ones that originate in the current turn of the dialogue,
and will have consequences in the following turn. Typically, these are cases when an
utterance is erroneously processed (due to e.g., speech recognition flaws and incorrect
language understanding, an issue that we are going to cover later), or the prompt generated
in reaction to it is improper: typically, it requires practical insight into a given SDS to
decide whether the former or the latter is the problem source in a given case. The user
turns Ul, U2, and U3 in Figure 1.2 are examples of a forward-pointing communication
problem, because they lead to extracting incorrect values from the user input (in the case
of Ul), or to extracting nothing from the user input (in the case of U2 and U3).

Identifying whether the current user utterance will cause problems is supposedly diffi-
cult, since it is not straightforward to understand what makes an input improper in the
forward-pointing dimension. This component not only has to cover technical issues that
pose problems to the given dialogue system itself (such as its inability to cope with hyper-
articulated speech, dialects, out-of-vocabulary words, or noisy input), but also problems
that are due to cognitive misunderstandings between the two parties, such as assump-
tions and presuppositions, as well as unforeseen circumstances, for example that a user
gets distracted by something, and so on. Yet another difficulty of automatically detecting
forward-pointing problems is that the machine learning algorithm has less information
available for learning this task, since it cannot yet rely on the user’s feedback.

In sum, the task of identifying forward-pointing problems consists of spotting problems
that originate in the current turn, resulting in conceptual inaccuracy in the system. De-
tecting forward-pointing problems is useful since it enables the dialogue manager to expect
what types of user input are going to be well or badly processed. Obtaining such knowledge
is important in order to correctly reject the recognition hypothesis of potentially badly
received turns, and to be more confident about having understood other turns correctly
[Hirschberg et al. 2004]. At the same time, identifying user input that could potentially
put the interaction at risk would enable the dialogue manager to adapt its strategy to a
more optimal one [Litman and Pan 1999, Walker et al. 2000a, Walker et al. 2000b]. For
example, if a certain type of user’s turns are poorly recognised, the system could switch to
a very explicit prompting strategy, or could re-prompt for the input and try to recognise
it using a differently trained ASR [Hirschberg et al. 2004].

1.3.5 Detecting backward-pointing problems

Giving feedback is an essential mechanism of dialogue. To comply with the require-
ments of communication, the information exchanged by the dialogue partners needs to
be grounded, i.e., established by acknowledgement from time to time (cf. [Traum 1994,
Traum and Heeman 1997]). Grounding can be seen as the management of communication
in order to reach mutual understanding. Providing feedback is one of the ways by which
grounding operates, requiring that the partners provide feedback on how successful the
information exchange was. Grounding can be seen as an action, the function of which is
the management of the interaction.

Feedback is given by each conversational partner in a dialogue: in human-machine
communication the machine too should return information to the user on how well the
input is received. In SDS this is mostly realised via implicit verification prompts or



11 1.3 Research objectives

explicit verification prompts. Implicit verification prompts present to the user what was
understood from the previous turn, and at the same time prompt for new information
concerning unfilled slots. Turns S2, S3, and S4 in Figure 1.2 are implicit verifications
of the (incorrect) departure station and the destination station values. When the user
notices from these prompts that the system misunderstood him, making corrections is
often difficult, since the SDS is asking for new information already. Users are generally
puzzled in such cases, not knowing how to correct and supply information at the same time
[Weegels 2000]. Note that [Krahmer et al. 2001b] find that signals concerning information
grounding can either be positive (‘go on’) or negative (‘go back’), where “negative cues
are comparatively marked, as if the speaker wants to devote additional effort to make the
other aware of the apparent communication problem ([Swerts et al. 1998])”.

Just like humans may signal with a zero element that communication progresses as
intended, SDSs may also simply proceed when they assume having understood everything
correctly. The system turns S2, S3, and S4 in Figure 1.2 illustrate that, with respect to
awareness in communication problems, SDSs can be in two states when processing user
input: they either assume having obtained the correct processing of the user input (which
assumption might or might not be correct; e.g., in S2 this is incorrect), and continue the
dialogue in due order, or they assume that the user turn could not be correctly processed
(which again might or might not be the case). In the latter case the system typically
produces a clarification prompt, requesting the user to re-enter his input. For examples
on how and why these system states can emerge, see [Streit 2003].

Typically, certain prompt types reveal that the system realises it has interpretation
problems. Meta-prompts (‘Try saying a short sentence’), apology (‘I'm sorry I did not
understand you’), repeated prompts, and prompts asking the user to repeat information
all mark that the system is not confident enough in the processing results of the previous
input. Obviously, the important part of problem detection is to point out cases when the
system was incorrectly confident in some interpretation, which implies that it will also be
detected when the system was correctly confident in some interpretation.

It is important to note that giving feedback is traditionally regarded as a dialogue
act. However, we do not treat the full diversity of feedback phenomena in this study (for
details see for example [Bunt 2001]). Rather, we focus on the — from the point of view of
human-machine communication — important phenomenon of awareness in communication
problems. We refer to the detection of this phenomenon as the detection of backward-
pointing problems. In sum, the task of identifying backward-pointing problems consists
of spotting turns in which the user became aware of the system’s incorrect processing of
the input. If aware sites are detected, they can provide an important cue for the system
about the user noticing communication problems (of which the system might not yet be
aware), so that the SDS can launch some error recovery strategy on time.

We hypothesise that it is important to distinguish problems with respect to the time
line of their effect (i.e., forward- vs backward-pointing problems), because in this way
a two-fold approach is designed to problem detection in SDS. As certain utterances are
unproblematic in the current turn (i.e., in the forward-pointing dimension) but at the same
time reflect awareness of problems that occurred in the previous turn (i.e., in the backward-
pointing dimension), different problem categories can be assigned to the properties (i.e.,
the words, the intonation, the situational context, etc.) of a turn. By differentiating these



Chapter 1: Introduction 12

two tasks based on the direction of their effect we can reuse research material in a unified
but dual-perspective way for error detection, enabling classification of subtle processes
taking place within a user turn.

1.4 Overview

The structure of our study is the following. Chapter 2 discusses our four components in
shallow interpretation by surveying previous work in the field of automatic processing of
spoken input. We touch upon the issues of data annotation, as well as the information
sources employed in machine-learning-based research. In Chapter 3 we introduce the
discipline of machine learning and describe the two learning algorithms we work with.
Our experimental methodology, as well as the general experimental set-up are explained.

Chapter 4 starts with introducing our research material, the OVIS corpus. We describe
the corpus annotation and the information we employ in our machine learning experiments.
Subsequently, the results of the learning experiments on the complex shallow interpretation
task are presented. We provide an analysis of the obtained results at the end of the chapter.

In Chapter 5 we attempt to optimise learning performance on the shallow interpreta-
tion task. This is carried out by the method of information partitioning. A systematic
search is conducted for the optimal class and feature group composition for each compo-
nent of the shallow interpretation task (i.e., of the task-related acts, information units,
forward-pointing problems, and backward-pointing problems). We provide qualitative and
quantitative analysis of the experiments per component.

In Chapter 6 we conduct information filtering. We test machine learning-based, general
filtering techniques on our data, aiming at eliminating material from the user input that
may interfere with the shallow interpretation task. Three filtering techniques are applied
to the task design optimised in Chapter 5. We compare the performance of the machine
learning algorithms on the filtered and the unfiltered input. We present the conclusions
of our research on shallow interpretation in Chapter 7.



Chapter 2

Computational Interpretation
of Spoken User Input

The current chapter outlines some important aspects of computational processing of spo-
ken user input. We discuss previous work related to shallow interpretation (SI), pointing
out similarities and differences between work done in this area by other researchers, and
our approach. The survey elaborates on the issue of annotating spoken dialogue corpora
for learning tasks in SI. We examine what components, present in our four-level SI ap-
proach, are treated in other studies, and what attributes machine learners use in those
works.

2.1 Natural language understanding in spoken dialogue
systems

In order to infer the content of user input, often a language processing module is imple-
mented in SDSs. Computational processing of natural language aims to model langnage
so that computer programs can analyse language material on various levels. From the
scientific point of view the emphasis in natural language processing (NLP) lies in creating
a computational theory of language comprehension and generation. However, in practical
applications this mainly comes down to providing solutions for the automatic processing
of certain linguistic aspects of natural language utterances, by “methods that can work
on raw text as it exists in the real world” [Manning and Schutze 1999].

NLP may draw on many different disciplines in discovering and modelling regularities
of language, whether of a structural or a cognitive nature. [Jackson and Moulinier 2002]
differentiate empirical NLP from symbolic in the sense that, in order to construct a model
of language, empirical NLP “looks for patterns and associations, some of which may not
correspond to purely syntactic or semantic relationships”. Indeed, our approach to SI
can be seen as a direct mapping of a bulk of natural language material to linguistically
cross-categorical concepts that incorporate four dimensions that are pragmatic-semantic

13



Chapter 2: Computational Interpretation of Spoken User Input 14

Figure 2.1: Word graph of the user input in turn U4 of Figure 1.2 ‘ik wil van Amsterdam
naar Emmen’ (I want to go from Amsterdam to Emmen). Hash marks stand for pauses,
the confidence score of each word hypothesis is given after the slash.

in nature. As stated in the previous chapter, our goal is to assign to user turns in a SDS
a representation that incorporates task-related act(s), information unit(s), forward- and
backward-pointing problems. Our approach is in line with [Eisele and Ziegler-Eisele 2002]
who claim that “some [language] technologies cannot be assigned to one specific [linguistic]
level, because they serve a more generic purpose”, and pinpoint the treatment of noise in
the input as being such a purpose.

Natural language understanding (NLU) focuses on the comprehension part of NLP.
Understanding human speech technically consists of two parts, speech processing and
language processing, both making use of some kind of language modelling, traditionally in
the form of a lexicon and a grammar. Statistical methods are widely used in NLU as these
have proved to be simple and successful, drawing on n-gram distributions of linguistic
units (phonemes, words, etc.) in the user input.

SPEECH PROCESSING In the first part of the NLU process, methods of speech technology
are applied to analyse various acoustic-phonetic parameters of the speech signal in the form
of amplitude, frequency, energy and possibly other measures. Based on these measures
and a language model employed in the ASR, the speech recogniser produces a list of
hypothetical sequences of words corresponding to the speech signal. The ASR’s hypotheses
of a user utterance in this way consist of an n-best list of word strings. This output is
often combined in a lattice, which is a directed acyclic graph in which the nodes are time
points and the arcs are word hypotheses. Figure 2.1 shows this word graph for the input
of user turn U3 in Figure 1.2. It can be observed that the first part of this turn (‘I want
to go from Amsterdam to’) is processed by the ASR without any branching in the graph
(i.e., only one word string is hypothesised), whereas concerning the arrival station name
six different hypothesised tokens are provided. A lot of branching in this part of the graph
indicates that the ASR had difficulties with recognising the arrival station name.

Each hypothesised word in the word graph is assigned a score (corresponding to the
number after the slash in the figure) that represents a certain confidence of the ASR
in recognising that word at that position of the input. These confidence scores are de-
rived from the speech signal and the language model. The best path of words is often
selected from the word graph based on the recognition confidences. At the end of the
recognition process the ASR yields a hypothetical transcription of the user input, typ-
ically consisting of one string of words (i.e., a 1-best word list). Confidence scores are
furthermore often used in error detection (cf. [Litman et al. 1999, Walker et al. 2000b,



15 2.1 Natural language understanding in spoken dialogue systems

Litman et al. 2001]), although they turned out to not be fully utilisable since often there
is no reliable correlation between a high confidence score and a correct recognition result
[Hirschberg et al. 2004]; [Litman et al. 2000, Hirschberg et al. 2004] found that prosodic
properties of the user input more reliably indicated speech recognition problems than con-
fidence scores alone. For a detailed explanation on speech recognition for user interfaces
see for example [Balentine et al. 1999].

LANGUAGE PROCESSING Methods for processing the linguistic structure of the ASR output
can range from statistical to knowledge-based. Closely depending on the application’s goal,
the key task of language understanding in SDSs is to relate the processed input to the
slots that need to be filled. In state-of-the-art NLU systems often heuristic techniques are
implemented when it comes to interpreting user input, such as word— or concept-spotting
(cf. for example [Aust et al. 1995, Allen et al. 1996]). The goal of concept spotting is to
process the input for values that satisfy the slots in the system query, for example by
searching for station names in the input. This technique fails in many cases when non-
standard answers are provided by the users, for example when certain slot values are being
corrected or rejected.

An effective solution for robust understanding may be the combination of statisti-
cal and knowledge-based techniques. For instance, [Cettolo et al. 1996] claim that the
domain knowledge needed for understanding should be obtained in two ways: from the
data itself, and from the expertise of the designer of an understanding module. Like-
wise, [Rayner and Hockey 2003] devise an interpretation architecture that combines data-
driven and rule-based approaches and find that the hand-crafted rules serve as a back-
off mechanism to which interpretation can retreat in case the data-driven method be-
comes unreliable (mainly due to data sparseness). Hybrid methods show their useful-
ness for understanding spoken input in speech-to-speech translation applications as well
[Cattoni et al. 2001, Wahlster 2000]. The number of actual computational approaches to
implementing NLU tools is vast; for an overview we refer to [Manning and Schutze 1999,
Jurafsky and Martin 2000, Mitkov 2003]. No matter the actual approach taken, linguistic
analysis of user input is supposed to yield a content-related representation of the input.

Empirical approaches to analysis rely on training data, and weight alternative analyses
of strings based on some method that draws, e.g., on frequency counts, generated prob-
abilities, rules, etc. The method used in our study is classification of natural language
data, a bottom-up method for creating a model by identifying patterns in the data. One
advantage of a bottom-up approach is that it can be domain or language independent to
some extent, so that the method used for one language is transportable to other languages
via re-training on the new language.

Traditionally, there are several processing subtasks in analysing spoken input, which
are organised in a cascaded fashion, so that output of one module serves as input to
subsequent modules. The layers of the cascade depend on the desired goal and the fine-
grainedness of the computational analysis required by the actual SDS. Besides sequential
modularisation it is possible to have more complex solutions used for the speech and
the language processing parts, enabling these to directly influence each other’s perfor-
mance: the more information is received from components of the processing cycle, the
more confident a certain interpretation of an utterance can be (see e.g. [Allen et al. 1996,



Chapter 2: Computational Interpretation of Spoken User Input 16

Zechner and Waibel 1998, Nakano et al. 1999, He and Young 2004]). Alternatively, paral-
lel interpretation of different processing levels can make applications more robust, for ex-
ample by making processing less prone to errors [Heeman 1998, Uszkoreit 2002]. Recently,
researchers also began to devise applications whose goal is not to produce a transcribed
word string, but to transform the speech signal into a representation of the main intentions
of the speaker. This can be seen as a direct mapping from speech to dialogue act. Aspects
of the work of [Nakano et al. 1999] could be considered as being such an attempt.

The current study shares its main line with these non-sequential approaches to the
processing of user input, since we use properties of the ASR output and the dialogue
manager to interpret user turns on several levels simultaneously. Nonetheless, we model a
stand-alone NLU system, since our module has no access to the internal processes within
the ASR and DM modules of a dialogue system. This situation often occurs when NLP
modules are being developed for SDSs, since typically the various modules of a SDS are
designed and deployed by different project teams.

2.2 Analysis levels in interpreting spoken user input

In the previous section we situated SI (shallow interpretation) of user input in the field
of NLP. In the current section we give a survey on how data are collected and annotated
to enable research on components of SI. An essential prerequisite of empirical research is
the availability of (large collections of) material, in our case of spoken dialogue. Spoken
dialogue corpora are built according to a number of design criteria that may depend on
specific research aims: they may contain samples representative of conversational topic,
diverse levels of situation spontaneity, speech register, dialectal language use, speaker
gender, and the like. In other cases a corpus contains quite specific material, e.g., consisting
solely of interactions with a given application. An important aspect of speech corpora is
that besides the transcribed dialogue they contain audio material as well.

Typically, to enable research on the collected material, corpora are enriched with extra
information on certain phenomena (again, depending on the research aims): the speech
(transcriptions) are analysed and annotated, either manually or semi-automatically. Mark-
up may be assigned to various levels of segmentation (word-, phrase-, sentence-, utterance
level, etc.). This allows for examining patterns of the annotated categories, for developing
rules that describe aspects of language use, and other types of empirical research.

Experts have created a number of international mark-up standards for corpus-based
research: these are guidelines for orthographically transcribing spoken language, and to
use annotation schemes for labelling (cf. [Gibbon et al. 1997]). The standards allow for
more consistency in empirical research across different groups of scientists, providing guid-
ance in many aspects of linguistic mark-up, as well as a starting point for creating one’s
own labelling scheme (as in our case). One of the broadest annotation standards to be
mentioned is the MATE framework [Dybkjaer and Bernsen 2000]. MATE was designed
after reviewing more than 60 existing annotation schemes, encoding levels of prosody,
(morpho-)syntax, co-reference, dialogue acts, communication problems, and cross-level is-
sues, with the aim of developing a standard framework for annotating spoken dialogue
corpora at multiple levels. For a thorough survey of dialogue data and annotation we refer



17 2.2 Analysis levels in interpreting spoken user input

to [Popescu-Belis et al. 2003].

It is important to see that regardless of the standardised use of annotation, inconsis-
tencies often occur in data labelling. This is on the one hand due to different perceptions
of cross-categorial concepts (situated in different context). Inter-annotator agreement
scores serve to reflect the level of consistency in the labelling of a corpus, cf. for ex-
ample [DiEugenio and Glass 2004]. On the other hand, annotation inconsistencies also
occur due to errors during the labelling process, since semi-automatic annotation is often
used for large corpora. When evaluating corpus-based research results it has to be noted
that inconsistency in mark-up may introduce a certain level of noise into the material.
Another issue in data-oriented research is the amount of material available for explo-
ration. It has been the goal of many empirical studies to find out in what way the scaling
of training material contributes to optimal results; concerning NLP tasks see for exam-
ple [Banko and Brill 2001, Curran and Osborne 2002, Van den Bosch and Buchholz 2002]
and their references.

In the remainder of this section we look at how components of SI (the task-related
acts as well as traditional dialogue acts, the slots and other information units, the source
of communication problems, and awareness of communication problems) are annotated in
speech corpora.

2.2.1 Task-related acts

The definition of task-related acts can be regarded as a nontraditional issue. Since it draws
on the traditional notion of dialogue acts, in the current subsection we survey research
pertaining to dialogue acts. The dialogue act (DA) of an utterance reflects the main inten-
tion(s) conveyed by the speaker in that utterance. Since DAs are typically defined and in-
vestigated on various levels of grain size, it has been found that segmentation of a user turn
into smaller units is crucial for correctly identifying DAs (cf. [Traum and Heeman 1997,
Finke et al. 1998, Nakano et al. 1999, Reithinger and Engel 2000, Cattoni et al. 2001]); a
process which is however not trivially executable by automatical approaches (cf. e.g.
[Stolcke et al. 1998b]). Annotation schemes for labelling DAs are typically very complex
as they aim at capturing all types of actions that occur in dialogue; sometimes DA anno-
tation even incorporates semantic concepts (cf. [He and Young 2004]).

A commonly used annotation scheme for communicative actions is DAMSL (Dialog Act
Mark-up in Several Layers, [Allen and Core 1997]). The label set of DAMSL is designed to
capture the multiple functions within speaker turns by marking turns along four orthogonal
dimensions that reflect their purpose and role in the dialogue: communicative status
(marking whether the turn is intelligible), information level (characterising the content
of the turn on a meta-level), forward-looking communicative function (characterising the
effect of a turn on the subsequent turn), and backward-looking communicative function
(indicating how the turn relates to the previous turn). DAMSL is a deliberately simple
but robust tag set. It is emphasised by the designers of the scheme that some turns can
be multi-dimensional in a complex way, for which guidelines are offered that restrict the
co-occurrence of certain labels.

Below we present the label supersets that belong to each dialogue dimension in DAMSL.
Note that each superset includes more refined subcategories, those being the actual DAMSL



Chapter 2: Computational Interpretation of Spoken User Input 18

annotation labels. This indicates that the annotation scheme contains many fine-grained
(nonetheless intended as all-purpose) categories of user intentions. For example, the cat-
egory AGREEMENT includes the labels ACCEPT, ACCEPT-PART, REJECT, REJECT-PART,
HOLD, and MAYBE.

e Communicative status: UNINTERPRETABLE, ABANDONED, SELF-TALK

e Information level: TASK (‘doing the task’), TASK-MANAGEMENT (‘talking about the
task’), COMMUNICATION-MANAGEMENT (‘maintaining the communication’), OTHER-
LEVEL

e Forward-looking communicative function: STATEMENT, ASSERT, REASSERT, OTHER-
STATEMENT, INFLUENCING-ADDRESSEE-FUTURE-ACTION, OPEN-OPTION, ACTION-
DIRECTIVE, INFO-REQUEST, COMMITTING-SPEAKER-FUTURE-ACTION, OFFER, COM-
MIT, CONVENTIONAL, OPENING, CLOSING, EXPLICIT-PERFORMATIVE, EXCLAMATION,
OTHER-FORWARD-FUNCTION

e Backward-looking communicative function: AGREEMENT, UNDERSTANDING, ANSWER,
INFORMATION-RELATIONS

In the current work we similarly assign interpretations to whole user turns. Our aim in
using DAs is to point out the main, task-related, pragmatic act exhibited by the user
turn, which we call the task-related act (TRA). Since the goal is to carry out an abstract
characterisation of the user turn by the TRAs, some of the categories in the set of TRAs
are defined on the basis of DAs, whereas others stand for nontraditional types of user
actions. It is important to see that TRAs concern only the information level of the user
input (see the second superset in DAMSL). Our TRA labels can be regarded to pertain
to the following information level supercategories in DAMSL:

e TASK (i.e., slot-filling in the SDS)
e TASK-MANAGEMENT (i.e., answering to meta-questions of the SDS)
e OTHER-LEVEL (i.e., providing confusing or irrelevant information to the SDS).

We are going to elaborate on our annotation scheme for TRAs in Section 4.2.

2.2.2 Information units

In the NLU module of a dialogue system usually a semantic parser is deployed that trans-
forms the user’s utterance into a formal semantic representation or a semantic frame.
[Cettolo et al. 1996] explain that a semantic frame includes a frame type, which represents
the main goal of the query (e.g., retrieving a train connection), and the slots, representing
the constraints the query has to satisfy (e.g., origin, destination, etc.). For example, the



19 2.2 Analysis levels in interpreting spoken user input

sentence ‘I want to travel from Amsterdam to Tilburg on the fourth of February’ might
be translated into the following frame (cf. [Veldhuijzen van Zanten et al. 1999)):

destination tilburg
origin amsterdam (2.1)
month february
day 4

The standard formalism for building such semantic structures is the grammar for-
malism of head-driven phrase structure grammar (HPSG) that employs typed feature
structures [Pollard and Sag 1987, Pollard and Sag 1994]. Other, classical formalisms com-
bining syntactic and semantic information are Montague grammar [Montague 1974] and
generalised phrase structure grammar (GPSG) [Gazdar et al. 1985].

The semantic representation of an utterance may also be set out in the form of a propo-
sitional expression, since the semantic content of an utterance is traditionally computed
according to a schematic notion of meaning, called the logical form, onto which the entered
values are mapped (cf. [Allen 1995]). An example for this notation can be

has_departure_time: [date,time=[day:4]]]

for the utterance segment ‘[travel] on the fourth’ (cf. [Reithinger and Engel 2000]). Se-
mantic parsers are traditionally built using hand-crafted semantic grammar rules (cf. e.g.
[He and Young 2004]), which may be combined with grammatical parsers (see for exam-
ple [Van den Berg et al. 1994, Allen et al. 1996]). Furhter examples include the Verbmo-
bil corpus in which the propositional content of utterances is converted into a modified
form of HPSG-like semantics, using a domain description language that unifies several
discourse representation structures [Bos et al. 1996], and a grammar formalism described
in [Bonnema et al. 1997] where each word or phrase is associated with a feature structure,
in which both syntactic and semantic information is represented in a combined way. Typi-
cally, these formalisms have to generate a semantic expression used to update the dialogue
state in a SDS.

We observe that, similar to the annotation of DAs that are pragmatic in nature, an-
notation of information units in utterances takes place on various levels of detail in the
literature. On the one hand, such content-related labels are of various levels of struc-
tural fine-grainedness themselves (cf. e.g. the embedded structure in the above nota-
tion), and on the other, we observe that the scope of utterance segmentation in labelling
is also at variance; i.e., labels are assigned on the level of turn, phrase, word, and so
on. For example, semantic roles may be assigned to syntactic constituents of a turn (cf.
[Allen 1995]), and/or the contents of the turn can be annotated for the meaning they
carry. [Weber and Wermter 1996] label each word in a corpus of interactions at a railway
counter according to basic, task-related semantic categories such as LOCATION, DESTINA-
TION, TIME, and the like. [Reithinger and Engel 2000] extract the contents of a turn from
bigger sub-turn segments. [Rayner and Hockey 2003] define a set of semantic atoms that
represent primitive domain concepts, as well as values of these concepts, specifying the set
of legitimate combinations among these.



Chapter 2: Computational Interpretation of Spoken User Input 20

In our study information unit types are labelled on the turn level. The labels concern
exclusively the task-related slots for which information is supplied by the user (more details
on our annotation of slots will be provided in Section 4.2). Our aim is to identify the query
concepts for which information is entered by the user (e.g., items similar to the ones in
the left column in the expression shown in 2.1), without identifying the particular values
associated with these concepts (e.g., the items in the right column in expression 2.1).

Studies dealing with semantic representation often either aim at detecting the full,
deep semantic structure of some input, or keep their research at the level of DAs. In
the latter cases, it is often observable that DA categories unify both pragmatic and se-
mantic information from a domain (e.g., [He and Young 2004]), which may lead to many
low-frequency labels. Our shallow approach attempts to eliminate such a skewed label
distribution by defining labels that account for general pragmatic-semantic information
types.

2.2.3 Forward-pointing problems

General mark-up of communication problems can be found in few works: research often
focuses on some subgroup of communication problems since it is difficult to address a
general class of problems. For example, in the MATE annotation scheme the labelling
of communication problems proceeds in a detailed way whereby problems are “tagged as
types of violation of the guidelines for cooperative spoken dialogue”. Such an encoding
is however a non-trivial task to accomplish, and the designers explicitly state that it is
difficult to analyse utterances correctly in order to “determine which guidelines they violate
and how”; for example, a user supplying the time of the travel by saying ‘at 9 o’clock’
may count as violation of the cooperativity guideline that prescribes to avoid ambiguity,
since not all parameters of the travel time, namely morning or evening, are fully stated
by the user in this input.

[Aberdeen et al. 2001] describe a method for detecting errors in task-based human-
computer dialogues by automatically deriving them from fine-grained semantic tags. This
suggests that the components of our shallow understanding module such as the semantics-
related information types and the pragmatics-related communication problems may be
closely related to each other. Investigating whether such relations can be automatically
discovered forms one of our research issues, since such information may play an important
role in the class label design of the SI task.

Annotation of forward-pointing problems in the literature is diverse: we observe again
that the annotation of what counts as a problem source defines a range of phenomena.
Moreover, the level of segmentation at which these problems are annotated is of several
grain sizes. [Litman et al. 1999] perform automatic detection of poor speech recognition
at the dialogue level, tagging complete dialogues as featuring good or bad ASR perfor-
mance. [Walker et al. 2000a] likewise tag whole dialogues as exhibiting task success or
task failure, the latter consisting of either the user hanging up on the system, or a hu-
man operator interrupting the conversation, or an incorrect query retrieval by the system.
[Litman and Pan 1999] identify sequences of dialogue turns as featuring good or bad ASR
performance, whereas [Litman et al. 2000] annotate single dialogue turns as featuring good



21 2.2 Analysis levels in interpreting spoken user input

or bad ASR performance.

In the study of [Walker et al. 2000b] dialogue turns are identified either as causing NLU
errors or as being correctly understood. Two error classes are distinguished in this work:
mismatch and partial match between the user input and what the system understood from
it. The partial match category denotes cases when the user input’s pragmatic-semantic
aspect (defined as the act of referring to a task in the domain) is correctly recognised, but
the deep semantic aspect (i.e., the actual slot value entered by the user) is misrecognised.
[Hirschberg et al. 1999] annotate correctly and incorrectly recognised utterances scored by
hand for semantic accuracy, while [Hirschberg et al. 2000, Hirschberg et al. 2004] identify
ASR misrecognitions in terms of concept accuracy and word error rate. [Kamm et al. 1998]
characterise user utterances in terms of recognition scores and ASR rejections.

The forward-pointing problem concept of [Van den Bosch et al. 2001] overlaps fully
with that of the current study, since it served as a pilot study of certain issues of the
present research. In the work of [Van den Bosch et al. 2001] user utterances are assigned
PROBLEM or NO PROBLEM labels on the turn level, depending on whether these originate
a communication problem on the conceptual level or not. Recall that our primary concern
in problem detection is to discover whether the system attains perfect concept accuracy
or not; in the latter case we talk about a communication problem.

2.2.4 Backward-pointing problems

Examining previous literature on backward-pointing problems in dialogue, we see that
[Krahmer et al. 1999] investigate user turns in terms of their providing ‘go back’ vs ‘go
on’ signals to the system, whereas [Levow 1998] and [Litman et al. 2001] both annotate
problems in terms of system misrecognitions (specified as “erroneous system grounding”
in [Litman et al. 2001]), or system rejections, aiming at distinguishing user reactions to
them automatically. Problem annotation in [Van den Bosch et al. 2001], as noted above,
lies fully in line with that of our study: backward-pointing problems are defined as the
system’s conceptual misinterpretation of the user input provided in the previous turn,
which the user notices in the current turn.

In surveying the literature on annotating awareness of communication problems we ob-
serve that this phenomenon is often marked by labels representing dialogue acts. Namely,
some of the back-channeling DA types defined in DA taxonomies correspond to what
is researched as awareness sites. Such labels may indicate (indirectly) that one of the
parties is having a difficulty in the conversation, and are typically called REJECT (‘Well,
no.’), NO-ANSWER (‘No.”), SIGNAL-NON-UNDERSTANDING (‘Excuse me?’), APOLOGY (‘I'm
sorry.’) e.g. in the merged Switchboard-DAMSL encoding, cf. [Jurafsky et al. 1997]. Of
course, not all of the utterances receiving the above tags signal problems, thus the decision
about problem signalling requires close investigation of the whole dialogue. Our approach
to detecting backward-pointing problems is to collapse the relevant subset of such utter-
ances into a general backward-pointing problem category, instead of many fine-grained
backward-pointing problem categories.



Chapter 2: Computational Interpretation of Spoken User Input 22

2.3 Potential information sources for interpretation

In the previous section we described the ways spoken corpus material is annotated on
components of SI. In this section we pay attention to how other studies treat information
sources available from speech corpora for learning these components. We examine what
particular pieces of information are utilised for detecting DAs, information units, problem
source, and problem awareness in user turns of task-oriented human-machine interaction.

The largest unit examined in this study is the speaker turn, which may consist of
one or more utterances, or, characteristically of information-seeking dialogues, only of an
elliptical (i.e., incomplete on some linguistic level) phrase. We aim at exploiting a wide
range of contextual properties for the identification of the interpretation. Observing the
overwhelming and successful utilisation of (word) n-gram sequences in NLU tasks, it is
straightforward to assume that the main cue in discovering patterns in language is context.
Context is aptly defined in [Bunt 2001] as “the totality of conditions that may influence
the understanding and generation of communicative behaviour”, and [Allen et al. 1996]
indeed suggest that the extensive use of context enhances robustness in NLU.

We henceforth refer to a user turn that needs to be interpreted as the ‘focus turn’. A
focus turn’s context consists of a large number of attributes, such as the words contained
by the focus turn and the preceding turns, the intonation with which these are uttered, the
time span during which they are uttered, the prompt upon which the input follows, and
so on. It is an empirical question which attributes are useful for automatically learning to
interpret a user turn. The choice of utilising one or another property necessarily depends
on what sources and types of information are regarded to be relevant for the underlying
task either intuitively, or based on previous work. In empirical research the attributes
used in assigning some representation to a user turn are often simply selected on grounds
of their supposed predictive power towards the component(s) the representation contains.

In studies that treat components of SI, contextual attributes, also called cues, are em-
ployed with a wide range of grain size that range from primitive to sophisticated. Primitive
cues are typically simple representations of whether a condition is true or false for an at-
tribute, e.g., whether a certain word is present or absent in the focus turn. Sophisticated
cues can be high-level linguistic concepts (e.g., syntactic information, semantic informa-
tion) or meta-level concepts such as the identity of slots that have been treated in the
interaction up to the current point, or the kind of grammar the ASR used in processing
a given input. Naturally, the cues differ also in the effort that has to be made to obtain
them: some are easily extractable in real time from various modules of the SDS (for exam-
ple utterance duration), others are often computationally more expensive to obtain (for
example syntactic information).

Attributes of the actual spoken and textual material in the turns constitute the per-
ceivable and measurable context of dialogue turns. Besides, cognitive types of context are
also present in a dialogue situation, such as world knowledge, beliefs, social obligations,
and the like (cf. [Bunt 2000]). Such cognitive phenomena are difficult to optimally define
and infer in a NLU system, often making it expensive to build a SDS when such context
is implemented in it extensively. Moreover, cognitive context is mostly of use for the DM
modules of the system that traditionally need to perform reasoning.

[Bunt 2001] argues that context can be optimally utilised only in case it is defined such



23 2.3 Potential information sources for interpretation

that it is “both sufficiently powerful to form an adequate basis and sufficiently restricted
to be manageable”. Our research is an attempt to use context in a restricted but powerful
way, unifying usefulness and low cost of contextual attributes when these are used in
machine learning of SI. Before explaining our motivation and actual selection of cues
(described in Section 4.3), the remainder of the current chapter surveys what attributes
other studies utilise for analysing SI-related aspects of user input.

2.3.1 Cues in analysing task-related acts

The work of [Samuel et al. 1998a] provides a good overview of machine learning approaches
to the computation of DAs. It notes that the attributes used in all surveyed studies include
the dialogue act labels of the preceding utterances, since dialogue structure information,
provided by DA sequences, is supposed to be predictive of the identity of the next DA.
An important difference between such approaches and our work is that we do not use
the computed TRAs of user input in the detection of the focus turn’s TRA, as this could
accumulate error in the learning task (cf. [Qu et al. 1997]).

It is also observed by [Samuel et al. 1998a] that “some systems utilized basic features of
the current utterance: specific words found in the utterance, the utterance’s length (num-
ber of words), and the speaker direction (who is talking to whom)”. Moreover, lezical cues
are also often extracted from utterances in order to identify DAs [Samuel et al. 1998b,
Choi et al. 1999, Keizer 2003], since for example the presence of the token ‘yes’ can indi-
cate an AFFIRMATIVE DA, or the presence of 'from’ may be predictive of INFO-PROVIDING,
etc. Prosodic properties are utilised e. g. in [Jurafsky et al. 1996, Stolcke et al. 1998a,
Taylor et al. 1998, Shriberg et al. 1998, Shriberg et al. 2001]. Prosody may play a sup-
portive or disambiguative role in classifying one or another DA label. Evidence for this
provided by [Stolcke et al. 1998a] is that a YES/NO QUESTION that is in statement form
(i.e., includes no wh-inversion) is typically marked by a sentence-final rise of the voice
pitch. At the same time, [Beun 1989] finds that in 20% of the cases when a question
is posed in the form of a statement, no sentence-final pitch raise can be observed. The
two contradictory findings indicate that some contextual cues that are found useful on
some data set may not always generalise to other data sets, especially when research is
conducted with non-robust methods involving a small data set.

Other widely used attributes in learning DAs include the micro-syntaz of an utterance:
verb tense, the presence of wh-inversion, auxiliary verbs, subject type, and the like, as
well as punctuation marks, etc. may point to certain types of DAs [Jurafsky et al. 1996,
Choi et al. 1999, Keizer 2003]. For instance, wh-inversion in some turn might indicate
that the turn is an INFO-REQUEST, whereas in the opposite case the turn might be a
STATEMENT, and so on. For further comparisons we refer to [Popescu-Belis et al. 2003]
who provide useful pointers to a large number of studies on automatic dialogue act tagging.

2.3.2 Cues in analysing information units

[Traum 2003] emphasises that for understanding answers to questions properties of the
local dialogue structure are needed. It is a common technique to first detect the DA
of an utterance, and subsequently in a separate step identify information units, i.e., se-



Chapter 2: Computational Interpretation of Spoken User Input 24

mantic information, since the latter is often regarded as the argument of the DA (cf.
[Reithinger and Engel 2000, Cattoni et al. 2001]). [He and Young 2004] however first use
a semantic parser to process the output of the ASR, re-scoring the word graph n-best
output, and subsequently identify the DA of the most confident string.

Typically, statistical, as well as lexical properties of the ASR output and those of
syntactic analysis are widely utilised for performing semantic analysis (cf. for example
[Van den Berg et al. 1994, Bonnema et al. 1997, Rayner and Hockey 2003]).

For an overview of knowledge sources used in computational interpretation of informa-
tion units in the user input see [Flycht-Eriksson 1999]. This study concludes that knowl-
edge sources utilised by SDSs are often not clearly separable from the actual dialogue
model implemented in a system; the employed cues are often inherent to the implemented
dialogue model, which yields limited reusability of such approaches.

2.3.3 Cues in analysing forward-pointing problems

Researchers have utilised a variety of contextual properties for identifying forward-pointing
problems for SDS. Many of these are simple, such as the lezical output of the ASR mod-
ule of the SDS [Walker et al. 2000b, Van den Bosch et al. 2001], as well as prompt history
[Walker et al. 2000b, Van den Bosch et al. 2001]. Others use additional system-internal
information that represents prompting strategy, or the NLP grammar implemented in the
system [Hirschberg et al. 1999, Walker et al. 2000a, Walker et al. 2000b], as well as auto-
matically extractable acoustic cues [Litman et al. 1999, Walker et al. 2000a], and confi-
dence scores output by either the ASR module [Litman et al. 1999] or the dialogue man-
ager [Walker et al. 2000b].

[Hirose 1995, Hirschberg et al. 1999, Hirschberg et al. 2000, Litman et al. 2000] find
evidence that prosodic properties of user input are predictive of forward-pointing prob-
lems in SDSs. It was found that utterances produced with marked prosodic settings
are typically prone to error [Oviatt et al. 1996, Swerts et al. 2000] — presumably because
general-purpose recognisers are not trained to deal with a speaking style which differs
critically from the ‘average’ speaking style on which these recognisers are trained. Detect-
ing hyperarticulation (louder and higher voice, and slower speech rate) might therefore be
a good way to spot forward-pointing problems. However, for some SDSs hyperarticula-
tion is shown to cause no recognition problems [Batliner et al. 2003, Goldberg et al. 2003].
On top of this, some users are simply less well recognised than others, and research
has found a number of prosodic properties distinguishing these people from others (cf.
[Hirschberg et al. 1999, Hirschberg et al. 2000]).

Sophisticated attributes that need to be manually annotated are also employed in some
studies: these mainly concern semantic content relating to the interaction. Such dialogue
attributes represent inconsistency between system prompt and user reply, topic shifts,
salience-coverage, and the like [Hirschberg et al. 1999, Walker et al. 2000b]. The effect of
the user being an exzperienced user or a novice one is probably one considerable factor in
this respect, making user-modelling an important part of SDS design. Low recognition
scores and ASR rejections are reported to occur more often in the case of novice users than
in the case of expert users (cf. [Kamm et al. 1998]). The age and the gender of a user may
likewise contribute to recognition success or failure (see [Walker et al. 2000a, Privat 2003]),



25 2.3 Potential information sources for interpretation

since some voice types associated with these factors are better recognised than other voice
types.

Speaking style is another dominant factor that can determine ASR success (cf. e.g.
[Weintraub et al. 1996]). Speaking style can cause diversity with respect to prosodic, lexi-
cal and syntactic patterns in speech. Depending on the purpose of a given SDS, the domain
of interaction in actual systems is mostly a quite limited one, which restricts speaking style
to a to-the-point task-oriented conversation. However, there are also applications that al-
low for more spontaneous dialogue, necessitating large-vocabulary recognisers.

2.3.4 Cues in analysing backward-pointing problems

Arguably, communication problems and user reactions to them very much depend on
the dialogue situation in which they occur. For instance, [Litman and Pan 1999] and
[Swerts et al. 2000] have shown that some dialogue strategies, like user-initiated interac-
tions, lead to more errors than others, and that, accordingly, some system prompt types are
more likely to trigger misrecognitions than others. Research by [Krahmer et al. 1999] has
brought to light that users may react markedly differently to errors occurring in explicit
versus implicit verification of information. Furthermore, it turned out that the speaking
style of users’ first corrections of system errors is different from that of corrections that
occur in a chain of corrections [Swerts et al. 2000].

The reason to investigate prosody for the purpose of error detection is motivated
by the fact that it functions well as a cue to problems in human-human interactions
(see e.g. [Shimojima et al. 1998]). Consequently, if it would be possible to automati-
cally locate places in the dialogue where speakers switch to a special prosodic style, they
can become indicative of errors. An important cue in spotting backward-pointing er-
rors may be that in response to the system’s processing errors people may sometimes
react with a hyperarticulate speaking style. This tendency occurs widely when people
are confronted with communication problems in interacting with other people, and these
findings appear to generalise to human—machine interactions as well [Shriberg et al. 1992,
Oviatt et al. 1998]. Additionally, the wording, syntaz, duration, etc. properties, of such
reactions can be markedly different from answers to non-problem-revealing prompts, see
for example [Krahmer et al. 2001b]. Therefore, researchers have also started to explore
whether prosody may be useful as a resource for error detection (see e.g. [Levow 1998,
Litman et al. 2001]).

The aware turn of the user supplies important cues for detecting problems that orig-
inate in the previous turn. Studies that aim at spotting aware user turns in SDSs make
extensive use of both primitive and complex cues. Primitive cues include confidence scores
in the ASR module of the system [Litman et al. 2001], lexical output of the ASR module
of the SDS [Van den Bosch et al. 2001], the amount of slots filled [Krahmer et al. 1999],
dialogue history [Litman et al. 2001], as well as the presence of certain lezical attributes in
the user input [Krahmer et al. 1999, Litman et al. 2001], and the presence of repeated lex-
ical items [Hirschberg et al. 2001]. High-level features involve aspects of syntaz in the user
answer (utterance length, word order) [Krahmer et al. 2001b]. Attributes of the preced-
ing turns [Litman et al. 2001], and ezperimental parameters and aspects of the underlying
ASR grammar [Litman et al. 2001] are also often employed in automatic detection of user



Chapter 2: Computational Interpretation of Spoken User Input 26

awareness of communication problems.

2.4 Summary

In this chapter we have surveyed previous work on processing components of SI (task-
related acts that pertain to dialogue acts, as well as semantic information units, backward-
and forward-pointing communication problems) in two respects: how these are annotated
in corpora, and what information is utilised in their automatic detection. We emphasised
the differences between the approach of previous research and that of the current study:
contrary to most of the surveyed work, we deliberately define general categories of task-
related acts, information unit types, and communication problems. Additionally, our study
utilises unsophisticated, low-level cues in the classification of the SI components, keeping
the approach shallow, thus, supposedly, robust.

We conclude that our approach is more complex in its goals than most of the sur-
veyed work, since we attempt the detection of a four-level representation of pragmatic and
semantic aspects of user input to a SDSs. We hypothesise that this is a difficult task, how-
ever, we believe that predicting such a complex representation for new utterances improves
natural language understanding in human-machine communication.



Chapter 3

Machine Learning as a
Research Environment

The current study uses machine learning as a research environment for developing and test-
ing modules that perform shallow interpretation of user turns in spoken dialogue systems.
In this chapter we introduce the general empirical set-up in which shallow interpretation
takes place. In the first section of the chapter we describe the algorithms employed: a
memory-based ‘lazy’ learner, and an ‘eager’ learner, a rule induction algorithm. In the
second section we pay attention to two methodological issues of machine learning that
play an important role in our research, namely the evaluation of algorithm performance,
and algorithm parameter selection.

Machine learning (ML), a research area within the discipline artificial intelligence (Al),
provides an algorithmic approach to model a phenomenon by estimating its parameters
on the basis of examples and to improve the performance of predicting new instances of
that phenomenon. In case the learning algorithm is trained on examples that are labelled
in terms of classes that collectively describe the phenomenon, we speak of supervised
learning. In the current study supervised learning techniques are used; in this way we can
make good use of our labelled corpus data.

In order to learn the model, a supervised ML algorithm processes the examples which
typically consist of fixed-length feature vectors containing attributes, i.e., features, of the
phenomenon in the form of conjuncted variable values, as well as the class that represents
a distinctive category of the phenomenon. If the learning task is to classify the examples,
the algorithm, called classifier, learns a function that maps the examples’ features to the
set of classes. ML is a cornerstone of Al since learning algorithms (also called learners)
are able to extract knowledge from the examples they are supplied with, and to improve
with experience, which are primary characteristics of intelligence.

The training of an algorithm is the process during which knowledge is gained from
the examples so that the algorithm becomes able to map the features to the set of prede-
fined classes. Assessment of the adequacy of the learnt model takes place by testing the

27



Chapter 3: Machine Learning as a Research Environment 28

algorithm on how well it classifies unseen examples (called test instances). Test instances
consist of a feature vector but not the class, which needs to be assigned by the algorithm.
The working principle of inductive ML is that a model that converges to the target func-
tion on the learning examples will do so on similar, previously unseen test instances. For
an introduction to the theory of ML, primary ML algorithms, and examples of practical
applications to real-world problems, cf. [Mitchell 1997].

Many studies have investigated the extent to which ML-based empirical methods can be
utilised in natural language processing, and it is generally claimed that linguistic issues can
be (re)formulated as learning tasks; see for example the collection of [Wermter et al. 1996],
as well as [Daelemans et al. 1997], and their references. [Daelemans 1995] discusses that
all computational NLP problems can be formulated either as a disambiguation task or
a segmentation task: when performing classification of natural language data, the class
symbols represent linguistic categories, respectively boundaries between linguistic units.

3.1 Algorithm choice

It is still an open issue which ML techniques are the most suitable for which NLP tasks. An
important point to make is that the working principles, i.e., the bias of ML algorithms differ
largely in terms of “what can be represented as an induced hypothesis, and how the search
for a hypothesis is heuristically guided” [Daelemans and Hoste 2002]. For example, the
knowledge acquired through learning can be largely different among classifiers in terms of
comprehensibility, re-usability, and storage. As a result, the algorithm choice may depend
on the research purposes: for example, one algorithm is more suitable for gaining a compact
model of some phenomenon, another is for modelling low-frequency or irregular examples
in a domain, a third is for utilising feature independence, and so on. On investigating a
number of existing supervised classification ML methods on benchmark NLP tasks see for
example [Marquez 2000, Zavrel et al. 2000].

At the same time, the recent work of [Daelemans and Hoste 2002] has provided empir-
ical evidence that “interaction between algorithm parameter settings and feature selection
within a single algorithm often accounts for a higher variation in results than differences
between different algorithms or information sources” (the latter referring to the employed
features). The fact that, irrespective of the learning task and an algorithm’s bias, per-
formance differences between different algorithms might be of a much smaller scale than
those by the same learner under differing conditions, suggests that for certain NLP tasks it
might not matter significantly which algorithm is employed, given identical experimental
conditions, and sufficient data. Contrary to this, [Rotaru and Litman 2003] have found
that learning algorithms with a different bias can produce significantly different perfor-
mance depending on several factors such as the task, the number of features, and the type
of features.

In our study two ML algorithms with a different bias are trained and tested on all
tasks. Our primary goal is not to plot a competition between ML algorithms, but, as
set out in Chapter 1, to ensure the validity of our investigation as well as its generalis-
ability to other ML algorithms, by applying two different biases to the same classification
tasks. The two algorithms used by us, namely a memory-based learning algorithm, 1B1,



29 3.1 Algorithm choice

and a rule induction algorithm, RIPPER, are representatives of different classes of machine
learners: [Daelemans et al. 1997] regard memory-based learning and rule induction as ex-
tremes in terms of the amount of effort invested in learning and the technique of knowledge
representation. Below we discuss the technical details pertaining to 1B1 and RIPPER.

3.1.1 Memory-based learning

The 1B1 algorithm is a memory-based learning algorithm, a descendant of the k-nearest
neighbour (k-NN) classifier [Fix and Hodges 1951, Cover and Hart 1967, Aha et al. 1991,
Cost and Salzberg 1993]. Memory-based learning is a type of ‘lazy’ learning, because
the classifier simply stores a representation of all training examples in memory, without
abstracting away from individual instances during the learning process. This stands in
contrast with our other learner which is typically referred to as an ‘eager’ learner, see
Section 3.1.2.

Memory-based learning algorithms classify new instances by looking for the most sim-
ilar (i.e., ‘nearest’) examples in memory and extrapolating from their class the new in-
stance’s class. Taking the classical k-NN approach to classification entails that when k
is set to 1, IB1’s strategy is to return the class of the immediate nearest neighbour. The
nearest neighbour is searched for among the training examples that are stored in memory:
it is the memory example that has the least difference, according to a similarity metric,
with the test instance. Memory-based learning algorithms thus do not search for a target
function that covers all examples, but for a local function that is based on the examples
closest to the focus (i.e., test) instance. Research found that due to its bias a memory-
based classifier may yield more precise results than classifiers that discard low-frequency
items from the induced knowledge model, in case these low-frequency items constitute
exceptions that re-occur in test data [Daelemans et al. 1999].

The TiMBL software package [Daelemans et al. 2003] incorporates a variety of memory-
based pattern classification algorithms, among others the 1B1 algorithm (the default in
TiMBL). We employ 1B1 in the TiMBL package version 5.0.0, and henceforth refer to it as
the memory-based learner, MBL. The classification procedure by MBL has two subprocesses:
learning, during which examples are stored in memory, and classification, during which
k-NN examples are found and subsequently the class is extrapolated from k-NNs to the
new instance.

For classification of a test instance Y, the set of k memory examples closest to Y is
determined. The amount of nearest neighbours defines the amount of memory examples
that are used to extrapolate the class of the test instance. In MBL classification takes
place by searching for the nearest distances (instead of nearest neighbours). Search for
the nearest distances implies that when the same distance is measured for more than one
neighbour, these are regarded as being equally similar to the test instance. In this way, if
for example k is set to 1, the number of examples from which the class is extrapolated may
be more than 1, since several nearest neighbours may occur at the same nearest distance.
We will however refer to nearest distances throughout this study with the term ‘nearest
neighbours’.

MBL computes the distance between a memory example X and the test instance Y for
each feature according to some metric A(X,Y), so that the distance of X and Y is defined



Chapter 3: Machine Learning as a Research Environment 30

as the sum of the differences between the features:

n

AX,Y) =) wib(zi,u:), (3.1)

=1

where n is the number of features, 4 is the distance per feature — since x; is the (value
of the) ith feature in X and y; is the ith feature in ¥ —, and w; is a weight marking the
ith feature’s importance in the task.

The kernel of this distance function in our study can be one of the following four
metrics:

e Overlap metric

e Numeric metric

Modified Value Difference Metric (MvDM)

Jeffrey divergence metric.

OVERLAP The overlap metric computes the distance function according to the following
formula:

Ly 0 3f & =9 o
thJ—{l if iy s (3.2)

NUMERIC In case the feature values are numeric, and the feature is declared as numeric,
the distance is computed by MBL as

Ty — i
mar; — min;

Oz yi) = |( (3.3)
where max; and min; are the maximum value and the minimum value of the ith feature.
The calculation of the numeric distance ensures that numerical feature values will be
treated appropriately when computing their distance, i.e., will not be treated as symbols
but as real numbers.

MVDM The Overlap distance metric regards values either as identical. or as different.
However, in many symbolic tasks there is a graded dissimilarity of feature values: for
example, the filling of the departure station slot may be more similar to the filling of the
arrival station slot than to answering a yes/no question.

The MvDM distance metric assigns to each pair of values of a particular feature
an index representing the distance between the values: the similarity of the values of
a feature is determined by looking at the co-occurrence of values with target classes
[Cost and Salzberg 1993]. For the distance between two values vy and v of a feature
the difference is computed as the conditional distribution of the classes C; for these val-

ues:




31 3.1 Algorithm choice

8(v1, ve) chw—P@m» (3.4)

where n is the number of classes, and v; and vy are values of x (i.e., the distance is
calculated for all value pairs of all examples in the training data). [Daelemans et al. 2003]
warn that data sparseness may result in unwanted effects when the MVDM metric is used:
if there are feature values occurring only a few times or once in the whole data set, and
always with the same class, MvDM will regard those as identical, whereas if they occur
with two different classes, their distance will be maximal. In such cases it is preferable
to use the Overlap metric instead of MvDM. TiMBL offers such a back-off from MVDM to
Overlap through a frequency threshold which is activated when one or both of a pair of
matched values occur fewer times in the training data than this threshold.

JEFFREY DIVERGENCE Finally, the Jeffrey divergence metric computes the distance be-
tween class distributions of two values of a feature. Jeffrey divergence works similarly to
MVDM, but instead of computing a geometrical distance between two class distribution

vectors it uses a logarithm term:

n
P(Cijv) P(C; |‘f 2)
d(v1,v2) = P(Ci|vy )log———— _—
(v1,v2) Z((a|1)9 =

i=1

P(Cilvs)log ): (3.5)

where m is computed as

m = PACH) + P(Cilus) (3.6)

Compared to MvDM, Jeffrey divergence assigns larger distances to value pairs of which the
class distributions are more orthogonal so that zero probabilities become more marked,
making Jeffrey divergence more robust on sparse data [Daelemans et al. 2003]. As with
MVDM, it is possible to set a frequency threshold to back-off from Jeffrey divergence to
the Overlap metric.

As yet another option of the distance function, it is possible to rank the features according
to their estimated importance in the classification. This is done by assigning weights
(represented by w; in Equation 3.1) to the features, which is computed by a feature-
weighting metric. Weighting features in k-NN by their classification prediction strength
implies that examples are regarded as more similar to each other when they share more
of the higher-weighted features. The weighting function used in the distance function can
be one of the following:

e No weighting, all features have the same importance
e Information Gain weighting
e Gain Ratio weighting

e Chi-squared (x?) weighting



Chapter 3: Machine Learning as a Research Environment 32

e Shared variance weighting.

INFORMATION GAIN (1G) IG is an information-theoretic metric, measured by computing
the difference in entropy between the situations with and without knowledge of the value
of the feature concerned. Entropy is a numerical measure of informativity, measuring
uniformity in the representation of information [Shannon and Weaver 1949]. The entropy
H is computed by estimating probabilities of class labels from relative frequencies in the
training data:

=— Z P(c)log, P(c), (3.7)

ceC

where (' is the set of class labels. The IG of feature 7 is thus measured as

IG;=H(C) - )_ P(v) x H(C|v), (3.8)
veV;

where V; is the set of values for feature i. This entails that the more uniform the probability
distribution of classes, the greater the entropy, i.e. uncertainty, in the task. IG tends to
assign high weights to features with a lot of values, which may have an unfavourable effect
on classification.

GAIN RATIO (GR) GR feature weighting aims at balancing this effect out via normalising
the IG feature weight by the entropy of the feature value. It is an information-theoretic
heuristic established by [Quinlan 1993]. To compute the GR of a feature, its IG is calcu-
lated and normalised for features with different numbers of values. GR is thus IG divided
by si;, standing for split info which equals to the entropy of the feature value:

1G;
GR; = —, (3.9)
Sty
where
si; = — Z v) log, P(v). (3.10)
veV;

x? WEIGHTING The GR measure may still show an unwanted bias towards features with
more values, since the GR statistic is not corrected for the number of degrees of freedom
in the contingency table of classes and values; the x? weighting metric may correct this
[Daelemans et al. 2003]. The y? statistic is computed by the following formula:

ZZ (Ei; — Oiy)” _O” (3.11)

where O;; is the observed number of cases with value v; in class ¢;j, and Ej; is the expected
number of cases which should be in cell (v;, ¢;) in the contingency table, if the hypothesis



33 3.1 Algorithm choice

that no predictive association exists between feature and class is true.

SHARED VARIANCE WEIGHTING Another method to correct for the degrees of freedom is
to use the shared variance measure:

x?
~ N x (min([CL Vi) = 1)
where |C| and |V;| are respectively the number of classes and the number of values of

feature 7, and N is the number of instances. For more details on feature weighting in the
1B1 algorithm we refer to [Aha 1998, Daelemans et al. 2003].

SV (3.12)

CrAss VOTING Finally, in the process of extrapolating the class from k-NNs to the new
instance, it is possible to define the prominence of each NN in voting for the new class.
The weight of a NN is computed as a function of the NN's distance from the test instance,
allowing closer NNs to have a more prominent vote in the classification. Class voting may
take place on the basis of class majority (in this case all neighbours are assigned the same
weight), as well as on the basis of linear, inversed, and exponentially-decayed distance
weighting.

To summarise, MBL has the following important working parameters:
e number of nearest neighbours used for extrapolation (default: 1)
e distance metric (default: overlap)
o feature weighting metric (default: GR)

e class voting of the nearest neighbours (default: majority class voting).

MBL provides no direct explanation of its classification output, which is a disadvantage
for understanding the results obtained. In order to point out problematic cases for the
learner, classifier-internal logs can be examined that record the parameter use and its
effect on the test data: by observing the NNs it is possible to determine on which basis
MBL extrapolated the class, providing an indirect explanation for the decision.

3.1.2 Rule induction

In contrast to the ‘lazy’ learner MBL, our other classifier is an ‘eager’ learning algorithm,
RIPPER [Cohen 1995], used in version 2.5. RIPPER is a rule induction algorithm that
is designed to be fast and efficient even on noisy datasets. The original rule induction
algorithm on which it draws is described in [Firnkrantz and Widmer 1994]. The bias of
rule induction is to discover regularities in the data and represent those by the simplest
possible rule set. The induced rule set is then used to classify new instances.

The most dominant type of rule induction algorithm is the sequential covering algo-
rithm, of which RIPPER is one variant. The kernel of the classical sequential covering



Chapter 3: Machine Learning as a Research Environment 34

algorithm is to incrementally build up a set of rules that collectively cover all positive
examples (cf. [Clark and Niblett 1989, Michalski et al. 1986]). The algorithm learns one
rule at a time, after which the examples covered by this rule are removed from the training
set, and a new rule is learnt. Each rule states that satisfying a condition (which, depending
on the employed grammar, may be a conjunction of conditions, or a conjunction of dis-
junctions, etc.) implies membership in a particular class: if <feature test> then <class>.
In each iteration rules are built up greedily. The algorithm starts with the most general
rule that covers all instances. Then a set of extensions is generated in which conditions
on attribute-value pairs are added to the initial rule. These extensions are evaluated by
some measure, such as accuracy of prediction (i.e., the number of correct classifications)
over the instances covered by the conditions, or entropy. The goal is to find a rule that
has high accuracy, but not necessarily high coverage [Mitchell 1997].

This routine is repeated until some stopping criterion is reached, for example that
all training examples are covered, or the performance of the rules does not improve any
more on some test part of the training data. The set of rules is then ordered according
to some criterion (e.g., from low coverage to high coverage). Note that this may influence
effectivity, i.e., learning time, as when a new instance needs to be classified, the rule set
is traversed from top to bottom to search for the first rule that fires.

The approach of rule induction to classification is also related to that of decision tree
learning (see [Quinlan 1986, Quinlan 1993]) as both aim at discovering patterns in data by
some heuristics, for example based on accuracy or coverage metrics. However, in contrast
with decision tree learning that generates an embedded tree structure in a parallel fashion,
rule induction algorithms generate ordered lists of rules sequentially.

Since the sequential covering algorithm does not backtrack (a property that is also
inherent in decision trees), it is not guaranteed to find the smallest or best set of rules
[Mitchell 1997]. Therefore, and also to prevent overfitting of the rules (meaning that they
would fit the training data well but the test data less well), pruning is often used as post-
processing the learnt rule set (again, similarly to decision tree learning) [Fiirnkrantz 1997].

The drawback of rule induction algorithms, described in [Cohen 1995], is that they
cannot work optimally if the sample size is small. However, they are very powerful and
fast general learning tools, and can reach very good results, especially when the number
of classes in the data is small. An advantage of rule induction algorithms is that by
reading the induced rules it is possible to interpret the generated output, which provides an
explanation about the model’s estimated parameters. RIPPER is often used in studies that
deal with problem detection in human-machine communication (cf. [Litman et al. 2000,
Walker et al. 2000b, Litman et al. 2001, Hirschberg et al. 2004]).

Below we describe the kernel of our rule induction algorithm, RIPPER, to which we
henceforth refer as the rule induction learner, RI. RI starts learning by separating the
training set in two. On the basis of one part it induces rules, maximising coverage and
accuracy for each rule, where the employed heuristic is to minimise entropy in the data
set by each rule induced. According to RI's default rule grammar, the condition part of
each rule may consist of one or more conjoined feature value tests. The heuristic used
by RI for growing the rules is to add a test on a feature value if using that condition
results in more accurate segmentation of the data, which is estimated by the IG function.
When the induced rules classify instances in the test part below a certain threshold, they



35 3.1 Algorithm choice

are not stored. Rules are induced per class; by default their ordering proceeds from low-
frequency classes to high-frequency ones, leaving the most frequent class as the default
rule (which is generally beneficial for the size of the rule set). The stopping criterion RI
uses draws on the idea of the minimum description length [Rissanen 1978]. The minimum
description length principle states that the length with which regularities in the data are
described corresponds to the success of discovering those regularities, so that regularity in
the data can be used to compress it, i.e. to describe it using fewer symbols than needed
to describe the data literally [Griinwald et al. 1998]. RI uses this as a heuristic to decide if
the induced rule set needs to be pruned. It post-prunes the generated rules by the reduced
error pruning technique [Cohen 1995].

When classifying a new instance, the rule set developed by RI is traversed from top to
bottom. As soon as a rule fires (i.e., its feature-value test conditions match with those of
the test instance), the class of the rule is returned and the traversal through the list is
stopped.

In sum, RI amalgamates entropy minimisation in the form of sequential covering and
generation of rules in accordance with the minimal description length, as well as some
heuristics, such as pruning. Below we list the parameters most significant for our study
in RI:

e amount of learning examples to be minimally covered by each rule (default: 2)

e hypothesis simplification (simplify more/less, default: simplify less, i.e., multiply
coding cost of theory by 0.5)

e negative tests on feature values allowed or disallowed (default: disallowed)
e number of optimisation rounds on the induced rule set (default: 2)
e class ordering (default: order by increasing frequency)

e loss ratio of false positives/false negatives (default: 1)

expect data noisy /non-noisy (default: expect noisy).

Hypothesis simplification in R1 is possible by setting the coding cost of the theory generated
by a grammar based on the minimum description length principle. Negative tests on
feature values enable to assign a class on the basis of an instance not having a certain
feature value. Optimisation rounds are carried out per rule set per class, for example by
merging similar rules into a more general, pruned rule. Setting the loss ratio manipulates a
cost function in RI that determines the trade-off between the false positives (i.e., instances
falsely selected for a particular class, see below) and the false negatives (i.e., instances
falsely unselected for a particular class, see below) of the rules, thereby determining the
importance of the type of misclassification for a class.

Additionally, R1 also allows for declaring features as numeric. This option enables
segmenting the data by rules with ‘smaller_than’/ ‘larger_than’ conditions (i.e., discreti-
sation) at numeric value boundaries, which might be beneficial for the classification task
as opposed to ‘has_value’ treatment of numeric features (which is for example the default
in MBL).



Chapter 3: Machine Learning as a Research Environment 36

selected target

Figure 3.1: A diagram facilitating the illustration of our evaluative measures, reproduced
from [Jurafsky and Martin 2000]. ‘tn’ denotes true negatives, ‘tp’ denotes true positives,
‘fn’ denotes false negatives, ‘fp’ denotes false positives.

3.2 Experimental methodology

In our general experimental set-up, training and testing is done by 10-fold cross-validation.
The data are randomly split into ten partitions, each roughly the same size. This is carried
out by means of dialogue-based partitioning, thereby ensuring that no material from the
same dialogue could be part of the training and the test set. Learning experiments are
conducted so that each partition acts as a test set once, while nine-tenth of the data serves
as training material. n-fold cross-validation (CV) is a generally accepted method in the ML
community for conducting and presenting performance measurements on some task, see
for example [Weiss and Kulikowski 1991]. 10-fold CV allows for estimating classification
performance on previously unseen material, measuring the prediction strength of a learner.
In our study the performance of learners will be evaluated according to four mea-
sures. To illustrate how these are computed, consider Figure 3.1 that we reproduced from
[Jurafsky and Martin 2000]. The target set contains the instances that need to be assigned
a particular class, the selected set contains the instances to which the learner assigned a
particular class. Based on the diagram, a contingency table can be made, which we present
in Table 3.1. Based on the diagram and the contingency table, the evaluative measure
accuracy can be seen to represent the percentage of correctly classified test instances:

t 1
Ace = A .
tn+ fp+tp+ fn

(3.13)

The other three measures, precision, recall, and F-score, are common measures of perfor-
mance in information retrieval, and are somewhat newer in NLP. Precision is the ratio
of correctly classified instances in a class to the total number of instances identified as



37 3.2 Experimental methodology

r l Target Non-target _]
Selected tp fp
Not selected | fn tn

Table 3.1: Contingency table of evaluating a classifier’s prediction in terms of target and
non-target classes. ‘tn’ denotes the amount of true negatives, ‘tp’ denotes the amount of
true positives, ‘fn’ denotes the amount of false negatives, ‘fp’ denotes the amount of false
positives.

members of the class:

t
Pre E

= (3.14)

Recall is the ratio of correctly identified instances in a class to the total number of instances
in the class:

tp
EE — 15
Rec e+ In (3:15)

The F-score metric represents the harmonic mean of precision and recall, of which we
employ the unweighted variant, defined as

2PreRec
F=—. Al
Pre + Rec s

In evaluating a classifier’s performance the F-score value (on a particular class, or propor-
tionally computed based on all classes) is often more informative than predictive accuracy:
accuracy can be opaquely biased to the majority class(es), whereas the F-score charac-
terises the rate of precision and recall for the prediction of the target, penalising for
disharmonic divergence between precision and recall [Van Rijsbergen 1979).

For evaluative purposes often a baseline learning approach is conducted on the data.
The baseline strategy typically employs some straightforward heuristic, for example to
assign the majority class label of the training instances to all test instances. Baseline
learners in this study will be defined per learning task.

3.2.1 Algorithm parameter optimisation

Both MBL and RI have parameters that bias their performance. It is unknown beforehand
which (combination of) parameter settings yield the best generalisation performance on
some task. Research, among others by [Daelemans and Hoste 2002], shows that it is often
not optimal to use the default parameter settings of a learning algorithm, whereas it is
beneficial to tune the settings to suit the type of data and task better. Ideally one would



Chapter 3: Machine Learning as a Research Environment 38

want to tune algorithm parameters automatically: such a procedure however contains a
search problem for finding optimal parameter settings given a particular data set and a
particular task, where the search space to be explored can be large since it consists of all
possible combinations of parameters.

The method of wrapped progressive sampling (WPS, [Van den Bosch 2004]) offers a
solution to this, involing a heuristic search algorithm. The procedure implemented in WPS
includes finding a set of optimised algorithmic parameters for a range of machine learn-
ing algorithms (‘classifier wrapping’, [Kohavi and John 1997]), combined with progressive
sampling of training data [Provost et al. 1999], by testing decreasing amounts of setting
combinations on increasing amounts of training data. The approach is claimed to search
the space of parameter setting possibilities considerably more thoroughly than economic
search heuristics such as Monte Carlo sampling (e.g., [Samuel et al. 1998a]).

WPS makes an estimation of optimal parameter settings by performing experiments
on the training material itself (since it is not allowed to use test material to make that
estimation): parameter setting combinations are tested on a random 20% of the training
data. The best performing settings, evaluated by performance accuracy, are retained and
re-run in another round of testing, already on a larger amount of data. This routine is
iterated over a growing amount of data, producing a list of accuracies from which badly-
performing setting combinations are discarded. The process is iterated until only one
parameter setting is left, or, in case several settings remain, either the default setting is
returned if it is among the settings, or a random selection is made from the settings.

The method is reported in [Van den Bosch 2004] to show little improvement on bench-
mark tasks for algorithms that offer few parameter variations, but may yield marked
improvements for algorithms offering many possible parameter combinations. We tested
the effect of WPS in [Lendvai et al. 2003], where the performance of MBL on classifying
disfluent language phenomena was found to increase from 95.7% to 97.0% accuracy and
from 72.3 to 80.0 F-score when optimised algorithm parameters (combined with an atten-
uation technique, see Section 6.1.1.3) were used instead of the defaults. For more details
on WPS we refer to [Van den Bosch 2004].

We employ WPS version 1.0 throughout the experiments in the current study, unless
stated otherwise. This entails that for both classifiers a learning process will consist of
two parts per data partition: parameter search, and the experiment itself, in which the
parameter setting estimated as optimal by WPS is applied to the full 90% training set,
and is tested on the yet unseen 10% test set.

For MBL the following metrics are optimised in WPS, testing with the indicated values (in
total 925 setting combinations):

e number of NNs used for extrapolation: 1, 3, 5, 7, 9, 11, 13, 15, 19, 25, 35

e distance metric: Overlap, MvDM, Jeffrey divergence, the latter two with frequency
thresholds 1 and 2

e feature weighting: no weighting, IG, GR, x?, shared variance weighting

e NN weighting for class voting: majority class voting, linearly-inversed distance



39 3.3 Summary

weighting, inverse distance weighting, exponential-decay distance weighting with o
set to 1, 2, or 4.

For the RI algorithm the metrics and values tested in WPS are the following (in total 648
setting combinations):

e amount of learning instances to be minimally covered by each rule: 1, 2, 5, 10, 20,
50

e multiply coding cost of a hypothesis with 0.5, 1.0, 2.0

e negative tests on the feature attributes: allowed, disallowed
e number of optimisation rounds on induced rule set: 0, 1, 2
e class ordering: increasing frequency, decreasing frequency

e loss ratio of false-positives/false negatives: 0.5, 1.0, 2.0

e expect noisy data, expect non-noisy data.

It is important to emphasise two points concerning the use of WPS in our study. First,
we expect that the resulting optimised parameter settings are often going to differ per
experiment (i.e., per data partition); such a tendency simply indicates that the data
are heterogenous across the data sets, which is common knowledge, and entails that the
parameter settings may not be reused on new data, since they do not fully generalise. It
is exactly this eventual diversity in the resulting optimal parameters that enables us to
estimate the generalisation performance of the method of optimising algorithm parameters,
preventing to report on results produced by an overfitted set of parameters. At the same
time, even if there is variation in the selected parameters for different cross-validations,
it is possible to decide on a final setting to be used for new test data, for example by
conducting parameter search on the complete data set, or by reusing the settings that are
found optimal for the majority of the cross-validations.

Second, it is not the primary aim of the current study to measure the gain WPS adds
to the shallow interpretation method, rather, we use WPS as a tool that is incorporated
as a plug-in in both classifiers. Therefore, we report on the resulting optimised algorithm
parameter settings only in case these provide non-trivial insight into the nature of the SI
task.

3.3 Summary
In this chapter the methodology employed in our study was described. In Section 3.1 the is-

sue of algorithm choice was explained, after we gave a description of the two classifiers used
throughout the study. We emphasised that memory-based learning and rule induction are



Chapter 3: Machine Learning as a Research Environment 40

regarded as extremes in terms of their learning effort and classification effort, and it is un-
clear, given the contradictory findings of [Daelemans et al. 1999, Daelemans and Hoste 2002]
and [Rotaru and Litman 2003] whether it can be expected that the performance of memory-
based learning and rule induction is going to be different on our task.

In Section 3.2 we provided the details of the general experimental set-up used in this
work: we perform 10-fold CV combined with wrapped progressive sampling in the experi-
ments, so that MBL and RI are trained and tested under identical conditions. Classification
performance is measured and evaluated on the basis of four measurements: accuracy, pre-
cision, recall, and F-score. We pay most attention to the figures characterising the F-score
obtained on the task, since this figure represents an informative aggregate of classification
precision and classification recall.



Chapter 4

Shallow Interpretation Module:
Data, Experiments, and Results

In this chapter we present the architecture of the SI module, as well as the results of
applying ML algorithms to the complex task of interpreting spoken user turns. After
introducing our research material, the OVIS corpus, we explain the process of annotating
user turns in the corpus according to the four components in SI (Section 4.2). We then
describe the design of the ML experiments. We explain the class label design for our
task in Section 4.2. Subsequently we describe the features and give an account of how
they are obtained in Section 4.3. The chapter is completed by reporting on the results
of ML experiments, performed both with MBL and RI (Section 4.4.2). We summarise the
experimental outcomes in Section 4.5.

4.1 OVIS
4.1.1 The OVIS system

In this section we introduce our research material, collected from interactions with the
OVIS dialogue system. ‘OVIS’ is an acronym for ‘Openbaar Vervoer Informatie Systeem’
(Public Transport Information System). The blueprint for the OVIS experimental spoken
dialogue system for Dutch was based on the German Philips automatic train timetable
information system [Aust et al. 1995]. OVIS was developed in the Dutch national research
project ‘Language and Speech Technology’ which ran from 1995 to 2000, funded by the
Dutch Organisation for Scientific Research (NWO). The modules of the OVIS system
were developed by different groups at different sites. The project’s goal was to develop
a telephone-interfaced speaker-independent SDS that travellers could call by telephone
for enquiries on train connections in the Netherlands. The SDS had three development
versions. OVIS1 was implemented in 1995. For speech processing a word-transition-
based, statistical language model was implemented in the ASR. For language processing
two alternative NLP modules were developed: a data-oriented (i.e., probabilistic), and a

41



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 42

grammar-oriented (i.e., rule-based) parsing module. The goal of OVIS1 was to build a
demonstrator via which realistic human-machine dialogues could be acquired, to facilitate
further development of the OVIS system [Boves et al. 1995].

In later phases of the project two more versions were developed of the SDS. In OVIS2
the ASR was made adaptive to enable interaction between the ASR, NLP, and DM mod-
ules. The major difference between OVIS2 and the subsequent installment, OVIS3, was
in the capability and quality of the system components [Boves et al. 1995]. For details on
the components of the OVIS architecture see the following literature: [Strik et al. 1997] on
speech recognition, [Van Noord et al. 1999] and [Bonnema et al. 1997] on the NLP com-
ponents, [Theune 2003] on language generation, and [Veldhuijzen van Zanten 1998] on the
dialogue manager of the system. Furthermore, [Veldhuijzen van Zanten et al. 1999] pro-
vide an evaluation of the NLP components of OVIS2.

The OVIS1 system prompted the user for four slot values in order to retrieve infor-
mation from an on-line database of train timetables. In particular, the user needed to
provide the departure and arrival station names, as well as the date and time (i.e., hour
and minute, and, if needed, time of the day) of either the departure or the arrival. The
strategy employed was primarily system-initiative, however, it allowed the user to provide
unsollicited information in reply to any of the prompts. The OVIS1 system always gave
feedback to the user on what it had understood from the user input, by means of either
implicit or explicit verification prompts. This entailed that users could (in principle) al-
ways become aware of communication problems from the following system question. The
system was able to retrieve more than one connection, from which it presented the first
suitable one, asking the user afterwards if she wanted to hear the remaining connections
as well. Dialogues could in principle continue (i.e. a new query could be started) after
some connection was retrieved from the database.

4.1.2 The OVIS corpus

During the development of the OVIS1 demonstrator a corpus of dialogue transcriptions
with syntactic and semantic annotations was compiled. This material consisted of tran-
scribed dialogues that were sampled from a range of telephone calls of test users of OVIS.
The test users knew that they were subjects in an experiment and were requested to call
the system regularly. Figure 4.1 is an illustration of the type of dialogues contained in
this corpus. We indicate the implicit or explicit verification prompts in the figure. We
provide here the English translation of the system and the user turns; the original Dutch
transcription is given in Figure 2 in the Appendix.

The material used in the present study consists of 441 transcribed dialogues coming
from the corpus of user interactions with OVIS1. We henceforth refer to this material
as the OVIS corpus. Audio files containing the recorded user input, the transcribed,
semantically annotated user utterances, as well as the ASR output containing word graphs
were available to us for research. The dialogues amount to 3,738 pairs of system and user
turns. We had no access to user identification numbers, therefore it cannot be stated
to what extent these dialogues involve different speakers. By listening to the acoustic
material however, we can infer that the vast majority of the dialogues are conducted with
different users. The number of turn pairs in the dialogues range from 2 to 29, the average



43 4.1 OVIS
Turn  Utterance Ver. type
S1 Good morning. This is the automatic information system of

public transportation. This system provides information exclu-
sively about train travels from a National Railways station to a
National Railways station. From which station to which station
do you want to travel?
U1l I want to go from Voorschoten to The Hague Central station.
S2 When do you want to travel from Voorschoten to Utrecht Cen- IMPL
tral station?
U2 I want to go to The Hague Central station.
S3 When do you want to travel from Voorschoten to The Hague IMPL
Central station?
U3 The day after tomorrow.
S4 At what time do you want to travel the day after tomorrow? IMPL
U4 Somewhere in the evening.
S5 So you want to travel between eighteen and twenty-four hours? EXPL
U5 Yes.
S6 I am sorry I did not understand you. Could you repeat whether EXPL
you want to depart between eighteen and twenty-four hours?
U6 Yes.
S7 There are five connections. This is the earliest: (...). Do you
want me to repeat the connection?
L7 Yes, repeat it.
S8 I am sorry I did not understand you. Could you say again if
you want me to repeat the connection?
U8 Yes.
S9 I repeat the connection. (...) Do you want me to repeat the
connection?
U9 No.
S10 T am sorry I did not understand you. Could you say again if
you want me to repeat the connection?
Ul0  No, don't repeat.
S11 I am sorry but again I did not understand you. Could you say
again if you want me to repeat the connection?
U1l No.
S12 Do you want to have information about the next connection?
U12 No.
S13 Do you want to have information about another connection?
U13 No.
S14 I am sorry I did not understand you. Could you say again if
you want to have information about another connection?
U14 No, I don’t want to know another connection.

Figure 4.1: English translation of dialogue nr. 001/007 sampled from the OVIS corpus.
The original Dutch transcription is provided in Figure 2 in the Appendix. System prompts
are marked for verification type, where IMPL stands for implicit verification and EXPL for
explicit verification.



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results pe

number of turn pairs is 8. The number of words uttered in a user turn ranges from 1 to
15, the average number of words being 3. 43.2% of the turns are inaccurately recognised
by the system, which seems to be somewhat higher than the misrecognition rate reported
for other systems (e.g. in [Barkhuysen et al. 2005, Hirschberg et al. 2004]) who claim that
30-32% of misrecognised user utterances is generally representative of speaker-independent
SDSs in real life settings. For details on the linguistic aspects of user turns in the OVIS
corpus see [Van Noord et al. 1996].

The following sections focus on how the corpus material was made processible for
machine learning experiments. This includes the labelling of the four components of
SI in the user turns, as well as the extraction of features that the learners draw on in
classification. The class label, i.e., the output side of the SI module is explained first.

4.2 Class label design

The four SI components in each user turn are labelled in terms of four sets of simple and
straightforward labels. The labelling process is carried out automatically, since it was pos-
sible to draw on two earlier annotations of the OVIS corpus: [Veldhuijzen van Zanten 1996]
and [Van den Bosch et al. 2001]. Manual annotation in terms of the label sets would have
also been possible simply by observing the transcribed dialogues. Below we describe in
detail the inventory of our labels.

4.2.1 Task-related act labels

The first label set consists of labels that represent the TRA in a user turn. As indicated
earlier, these labels stand for basic acts on the information level of the dialogue that a
user may perform in information-seeking dialogues, conducted with a SDS of a dominantly
system-initiative prompting strategy. Our approach to defining the TRAs is to consider
task-oriented communication as consisting primarily of transitions between a small number
of distinguishable states [Feinman 1997] that on the user’s part correspond to basic answer
types (modelled e.g. in [Levin et al. 2000]). We find that five labels are sufficient to
represent the basic task-related acts in the OVIS corpus. These user TRAs are as follows:

o s (‘slot-filling’), provide information with respect to the query (e.g. ‘from Amsterdam
to Tilburg’)

e Y, give an answer that expresses affirmative input in the given dialogue context (e.g.
‘yes’, ‘that’s right’, ‘indeed’, ‘please do’, etc.)

e N, give a negative answer (e.g. ‘no thanks’, ‘it’s not necessary’, ‘go back’, ‘this is
incorrect’, etc.)

e A, accept incorrectly verified information (e.g., by not signalling a system error)

® NSTD, give a non-standard reply (e.g., to remain silent, to provide a fully irrelevant
input).



45 4.2 Class label design

These task-related acts incorporate a lot of the traditionally established dialogue acts:
for example, S can often be seen as pertaining to one of the categories STATEMENT, ASSERT,
REASSERT, etc. (in the Forward-looking communicative function of the dialogue) defined
in DAMSL (cf. Section 2.2.1), and also to the categories AGREEMENT, UNDERSTANDING,
or ANSWER (in the Backward-looking communicative function in DAMSL). However, we
simply denote by s that on the Information level of the dialogue the user is ‘doing the
task’ (quoting the definition of DAMSL), i.e., is filling the required slots.

Likewise, Y and N denote input in which the user is ‘talking about the task’ (in terms
of affirmation and negation) with the system, since he or she answers yes/no questions or
meta-questions with an affirmative or a negative act. Traditionally, most of the Y and N
utterances could be regarded as ASSERT (note that this category incorporates the DAs AC-
CEPT, ACCEPT-PART, REJECT, REJECT-PART, HOLD, and MAYBE, cf. Section 2.2.1), or RE-
ASSERT in the Forward-looking communicative function of the dialogue defined in DAMSL,
and as UNDERSTANDING, ANSWER, or INFORMATION-RELATIONS in the Backward-looking
communicative function, and so on.

Note that the N act does not always indicate that the user rejects a system verification;
N can also be a simple negative answer (e.g., a refusal) to a yes/no question such as ‘Do
you want to know another connection?’. Likewise, a Y act does not always indicate that
the user confirms the system prompt as being correct: observe in Table 4.1 that part of the
turns labelled as acceptance (i.e., A) co-occur with the affirmative (i.e., Y) TRA. Since the
user’s conducting a Y or an N TRA might be an important indication that the interaction
is unproblematic, respectively problematic, we regard it useful to explicitly learn whether
the user input exhibits these acts (combined with other TRAs, if applicable).

Even more so (and partly concerning these labels), as by observing the interactions in
our corpus we conclude that the ASR of this system is often unable to confidently recognise
input containing ‘yes’ and ‘no’, even if these are contained in the word graph. Furthermore,
[Hockey et al. 1997, Krahmer et al. 2001a] show that answering a yes/no question without
including ‘yes’ or ‘no’ overtly may still communicate a clear ‘yes’ or ‘no’ meaning — we
will find out whether our approach can capture this phenomenon. At the same time, ‘yes’
and ‘no’ are lexical items that are often used as cues in automatic DA classification (for
example in [Keizer 2003], cf. Section 2.3.1), and it is important to investigate to what
extent the presence of these items can be automatically detected.

It may happen in human-machine interactions that users accept incorrect system ver-
ifications. Acceptance may take place by explicitly uttering ‘yes’, but also by simply not
saying explicitly to the SDS that there is a problem (e.g., by objecting to the verified infor-
mation). Since the words uttered in an acceptance turn, and sometimes in a non-standard
input, are often identical to those in a regular (i.e., S) input, it will be important to see
whether it is possible to find other, not necessarily verbal cues (to be explained in Section
4.3) to detect acceptance.

In many cases more than one TRA label can be assigned to a user turn. Next to
acceptance, another example is the user input ‘No, I want to depart at 11 in the evening.’,
in our annotation N;S: the user employs both negation and slot-filling within the same
turn. Combinations of the basic TRA labels yield four more labels (A;Y A;S Y;S N;S),
totalling to nine TRA labels for our data.



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results

TRA Label | Occurrence ]

S 2,033
N 693
¥ 516
N;S 177
A;S 153
NSTD 81
AY 66
g 19

Table 4.1: Occurrence of task-related act labels in the OVIS corpus, sorted by frequency.

Table 4.1 shows the frequency of TRA labels in the OVIS corpus. The most frequent
TRA label is s: 2,033 turns are labelled to exhibit only slot-filling activity. There are 693
turns that are labelled as negative TRAs, and 516 turns that are labelled as affirmative
TRAs. The remaining labels occur as indicated in the table. Note that acceptance of
system errors occurs 153 times in combination with s and 66 times with v, but never in
isolation.

The fact that we define the pragmatic acts of the user only on the Information level of
the dialogue is related to our practical goals: by incorporating TRAs in the SI module we
hope to interpret basic, task-oriented notions in the input of a user who interacts with a
limited-domain SDS, rather than to set up a framework of dialogue act definitions, which
is already extensively attempted (cf. the survey in Section 2.2.1), or to reason about the
intentions of the user and its effects on the interaction, which is typically taken care of by
the DM module of the SDS. Our hypothesis is that defining TRAs in an unsophisticated
way is more robust with respect to the end result of the SI module than a fine-grained
approach, and also more optimal for the portability of the approach.

Therefore, the TRAs in our work represent a limited set of answer types in task-
oriented dialogue with a system-initiative SDS (i.e., the user only supplies answers to
the system prompts), without being concerned about intentions behind utterances, or
effects of utterances. We assume that these categories are able to reflect core information
level actions taken in interacting with an information-providing SDS in such a way that
detecting these is sufficient to contribute to interpreting the user input in human-machine
interactions.

4.2.2 Information unit labels

Our second label set consists of shallow semantic labels that concern the task-related
information units (i.e., the slots) for which information is supplied by the user. These are
the following:

e Vv (‘vertrek’, departure station)

e A (‘aankomst’, destination station)



47 4.2 Class label design

e D (day_of_travel)
e T (time_of_day_of_travel, i.e., morning, afternoon, evening)
e H (hour_and_minute_of_travel).

Note that these are the slots in the travel query the system needs to fill in order to
perform the database search, therefore these labels will always co-occur with a slot-filling
activity (defined by an s label, Section 4.2.1).

Two further labels are added to this set for technical reasons. In case no slots are
treated in the turn, the label

® VOID

is inserted into the annotation. This applies to all cases when the user does not perform
slot-filling, for example when he or she answers a yes/no question. The index

e @

marks that the D, T, or H value entered refers to the arrival part of the travel, and not
to the departure, which is the default for the above slots. If, for example, to the prompt
‘When do you want to travel from Amsterdam to Tilburg?’ a user said ‘I want to arrive
in Tilburg at eight in the evening.’, the slot labelling is ATHQ@, whereas if the user turn is
‘At eight in the evening.’, the slot labelling is TH. '@’ occurs 88 times in user turns in the
corpus, distributed among various combinations of the D, T, and H labels (which are not
among the most frequent labels shown in Table 4.2).

Our seven slot labels may also combine with each other, as often more than one slot
is being filled in a turn, for example because the system may also ask for multiple slots
simultaneously. This happens typically in reply to the opening prompt (‘From which
station to which station do you want to travel?’) that prompts for v and A simultaneously.
The number of unique slot labels totals to 30. Table 4.2 shows the ten most frequent slot
labels in the OVIS corpus. The most frequently occurring slot label is vOID (1,356 times),
whereas 14 labels are assigned to less than 10 turns in the data.

It is important to note that user turns such as ‘I want to travel in the evening.” and
‘I want to know the last connection.” are both labelled as T. Similarly, if the user says
‘I want to travel now.’, this is regarded as slot filling of H. Likewise, if the user says ‘I
want to know the return trip.’, the turn is labelled as slot filling of v and A. In this way
(and similarly to the TRA labels) our classifiers will be forced to learn cases where several
types of wording (including relative time references and elliptic constructions) refer to the
same concept. Another characteristic of our labelling scheme is that slots that are being
corrected by the user are marked only in case information is (re-)entered for those. For
example, the turn ‘I did not say Amsterdam.’ is labelled vOID, whereas ‘Not to Amsterdam
but to Amersfoort.” is labelled as A (i.e., arrival station slot).

4.2.3 Forward-pointing problem labels

For annotating communication problems two labels suffice: ‘problem’ and ‘no problem’.
These two labels mark communication problems in the forward-pointing dimension. We



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 48

| Slot Label | Occurrence |

VOID 1,356
VA 917
D 453
H 262
v 225
_ 109
TH 90
DT 57
DTH 53
DH 53

Table 4.2: Occurrence of the ten most frequent slot labels in the OVIS corpus.

label each user turn as problematic (PROB) if it gave rise to incorrect system reactions,
or OK if it did not. The majority of user turns are unproblematic in the forward-pointing
dimension: 2,125 turns are annotated as OK, whereas 1,613 turns are annotated as PROB.

4.2.4 Backward-pointing problem labels

Our fourth label set annotates the backward-pointing dimension of communication prob-
lems. The PROB label here is associated with user utterances that follow a question—answer
pair in which the user’s answer caused some communication problem, for instance (and
most often) because it was misrecognised. Therefore, the PROB label of the fourth SI com-
ponent identifies the point at which the user became aware of the communication problem,
since he or she has just heard a system prompt not in accordance with information pro-
vided in the previous (or earlier) exchanges in the dialogue. As above, the label OK is
used to annotate cases when no communication problems occur in the backward-pointing
dimension.

The majority of the user turns are unproblematic in the backward-pointing dimension:
2,125 turns are annotated as OK, whereas 1,613 turns are annotated as PROB. The identical
distribution of labels in the forward- and backward-pointing dimensions is due to the fact
that all user turns that are labelled as problem source yield an incorrect system response,
which, due to the verification strategy of this system, can in principle be noticed by the
user from the following prompt. Note that such a principled difference between the two
problem dimensions may not have the same ‘trivial’ label distribution in other SDSs: if
the verification strategy of a SDS is not always immediately verifying information, then
users may not become aware of communication problems from the immediately following
system prompt.

4.2.5 Global class label

The global class label design in our machine learning experiments is the following. Each
user turn is assigned one label consisting of the four components in SI: user turns are



49 4.3 Feature design

| Global Label ] Occurreuce—|
N_VOID_OK_OK 399
Y_VOID_OK_OK 372
S_VA_PROB_OK 296
S_VA_PROB_PROB 222
S_VA_OK_OK 197
S_D_OK_OK 163
N_VOID_OK_PROB 133
S_VA_OK_PROB 129
N_VOID_PROB_OK 101
S_V_PROB_PROB 99

Table 4.3: Occurrence of the ten most frequent global class labels in the OVIS corpus.

represented as a combination of task-related acts, slots, forward-, and backward-pointing
problems. This means that one symbol incorporates all four components of the SI. The
labels of the four components are concatenated so that the general format of the class
assigned to a user turn is

TASK-RELATED ACT_SLOT_FORWARD-POINTING PROB_BACKWARD-POINTING PROB.

The number of different labels composed of the four components is 148 in the OVIS
material. This means that our classifiers will learn to classify 148 different classes in the
data. Table 4.3 shows the ten most frequent global class labels in the OVIS corpus. The
most frequently occurring slot label is N_vOID_OK_OK (399 times). This means that the
most common user reply in the OVIS corpus is a negative answer (possibly to a yes/no
system question), which is going to be processed correctly by the system, and which does
not show awareness of communication problems. The second most frequent class label is
an affirmative answer which is going to be processed correctly by the system, and which
does not show awareness of communication problems (Y_vOID_OK_OK). The third most
frequent class label marks filling the slots for departure and arrival, showing no awareness
of communication problems (e.g., this might be the first user turn), that is going to be
erroneously processed.

Figure 4.2 shows the annotation of an example dialogue from the OVIS corpus. The
user turns in this figure are annotated according to the four components of the SI task.
System prompts are analysed in terms of TRAs and slots in a similar fashion, to be
described in Section 4.3.1.

4.3 Feature design

We utilise a number of cues in our machine learning experiments for learning the combined,
four-layered SI class. In this section the input side of the SI module is described: how
feature values are extracted from the corpus data and how they are preprocessed. The
primary hypothesis underlying our study is that shallow interpretation correlates with



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 50

Turn Utterance Annotation

S1 Good evening. This is the automatic information sys- Q-VA
tem of public transportation. This system provides
information exclusively about train travels from a Na-
tional Railways station to a National Railways sta-
tion. From which station to which station do you
want to travel?
U1 I need to go from Schiphol to Nijmegen on Tuesday S_VAD_PROB_OK

next week.
S2 From where to where would you like to travel on Tues- Q-VAI_D
day twelve December?
U2 From Schiphol to Nijmegen. S_VA_OK_PROB
S3 At what time do you want to travel from Schiphol to Q-H;I_VA
Nijmegen?
U3 Around quarter past eleven in the evening. S_TH_PROB_OK
S4 So you want to leave around eleven thirty-eight in the E_TH
morning?
U4 No, in the evening. N;S_T_PROB_PROB
S5 Please correct me. M
U5 No, I would like to leave at eleven fifteen in the N;S_TH_PROB_PROB
evening.
S6 So you want to leave at twenty-three thirty-eight? E_H
U6 Yes, approximately. A;Y_PROB_PROB
S7 I'm sorry I didn't understand you. Could you repeat RE_H
if you want to leave at twenty-three thirty-eight.
U7 At twenty-three fifteen. S_H_OK_PROB
S8 So you want to leave at twenty-three fifteen? E_H
U8  Yes. [hangs up] Y_VOID_OK_OK

Figure 4.2: Dialogue nr. 004/005 sampled from the OVIS corpus. The original Dutch tran-
scription is provided in Figure 3 of the Appendix. User turns are annotated by our label
set on the four components of SI: TRA, slot, forward-, and backward-pointing problem,
respectively. System prompts are analysed in terms of TRAs and slots (to be explained
in Section 4.3.1).



51 4.3 Feature design

sysBOW
T preveysBow ™
¥ 3 d . /p/?\ //N\ prompt history -;
> p I / / rompt N e S -
diatogue . | B markeup Jw( dlalogue N prevBOW
7y gl . PN Bistery f e POPPR
mahager  » [-2SEFETOMP = e \\\\% =
task-related)
¢ d / BOwW Q act )
7z s i edd
g BF sl < 1 ¥
b P e 4 H ‘x
e tempo I a
T T e i 1
L GlTaBiE ) g 7
A ¥ _word qrap/%\\ /\gi/u) % i\\si‘/"""&improble/m\
‘““'"y’j" L \ﬂﬁd.scom, /Iropconlmng C;//' v\‘ 1  4
e \/4‘\ & top confidence score A i 3
T AREEGK, Y e ittt
x;’f ; + P 1 top confidence difference T o
AR /" duration top confidence per node (_BWD-problem)
PR / 3 N =
S | rawfaudic /.
NI ~ audio N\ Fo -

Figure 4.3: The architecture of the ST module.

shallow properties of the user input and its context that can be automatically obtained
from the SDS. We turn such properties into a vector of features. The features are deliber-
ately shallow: no explicit linguistic processing is needed for obtaining them. These simple
features are obtained from the dialogue system and the audio material recorded by it. The
values associated to these shallow features for each turn are employed in the experiments
either in their raw form, or are computed via straightforward procedures.

Figure 4.3 shows the architecture of the SI module: feature values are obtained from
the dialogue manager and speech recogniser modules of the system. They are then either
directly used (illustrated by arrows leading directly to the back-end of the module where
shallow interpretation takes place), or they are processed by simple procedures (indicated
by the oval nodes), which are explained below. Note that for graphical reasons the various
FO and RMS features are represented by two single arrows, without enumerating all mea-
sures (see the bottom section of Table 4.4). In the remainder of this section we explain the
employed features, their processing, and how they are represented in the feature vector.

Table 4.4 lists the employed features according to their origin: whether they come
directly from the dialogue manager (DM) or the speech recogniser (ASR) of the system,
or whether they come from prosodic processing of the audio recording of the user input
made by the ASR (Prosody). Since some of these features are represented by more than
one bit in the feature vector, the resulting feature vector of each user turn consists of
2,482 items. Note that some of our features may encode certain pieces of information
in a (partly) redundant way, for example the bag-of words representation of the system
prompts, and the prompt history feature.

4.3.1 Source: Dialogue manager

In this section we enumerate the features obtained from the DM of the system. The
dialogue manager component of the SDS prompts the user to enter slot-filling informa-
tion. The logged history of system prompts in the DM component contains the order of



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 52

prompts as they were produced by the system. From the DM we used the words that are
present in the current and the previous system prompt. These are turned into two 467-bit
unstructured bag-of-words (BOW) vectors. Each bit in the BOW stands for a word that
occurred at least once in the prompts (in total 467 words), indicating whether a word is
present (‘1) in the current/previous system prompt or not (‘0’). In case the turn is the
first turn of a dialogue, the BOW vector of the previous system prompt is empty, and
therefore consists of zeroes.

Furthermore, we encode system prompts in terms of a set of structured labels. We
represent the prompts in the feature vector in a similar fashion as user turns are labelled:
in terms of TRAs and slots. Basic TRAs in prompts include the following in this particular
SDS (their mark-up between brackets):

e asking a question (Q)
e performing explicit verification (E)

e performing implicit verification (the simultaneous occurrence of a question and a
verification: Q;I)

e repeating a prompt (R)
e asking a meta-question (M)

e offering travel advice (final result, FR).

Note that these labels overlap extensively with traditional dialogue acts (cf. e.g. the
DAMSL encoding described in [Allen and Core 1997] and treated in Section 2.2.1, as well
as the Switchboard-DAMSL encoding [Jurafsky et al. 1997]), differing in this respect from
the TRAs that are used to represent classes of user input in pragmatic terms. It is
important to see that the labels of system prompts are only employed as feature values in
the classification task, and never form part of a class label.

The prompted slots partly overlap with those defined for user turns (see Section 4.2.2).
These are the following: the departure and arrival stations (v and A, respectively), the
corresponding day, time of day (i.e., morning, noon or night) and hour (standing also
for hour and minute) of the departure (D, T, and H, respectively). The time slots may be
prompted for simultaneously by the system (‘wanneer’; when, Q_-DTH), or in isolation (e.g.,
‘hoe laat’; at what time, Q_H). Additional prompted slots mark cases when the system
asks whether the user wants to have the travel advice repeated (repeat connection, Q_RC),
or whether the user wants to have information about another connection (Q_0c), the next
connection (Q_NXC), and so on. In acse the user enters information about the arrival time,
time of day, or day (instead of the default departure time, time of day, or day), the system
is able to verify slots with respect to the arrival data, which we again mark with the ‘@’
sign. The dialogue in Figure 4.2 shows prompt analyses along these lines.

To represent dialogue history, we extract the current and the nine previous system
prompt types. This can be seen as a (partial) representation of the dialogue history:
a sequence of ten prompts form a set that is usually large enough to contain all the
prompts the system posed to the user up to the focus turn. Furthermore, as the given



53

4.3 Feature design

Aspect

Feature

DM: prompt
DM: lexical

> sequence of last 10 prompt types (prompt history)
> bag-of-words of current prompt (sysBOW)
> bag-of-words of previous prompt (prev sysBOW)

ASR: confidence

ASR: branching

ASR: lexical

> highest summed confidence score in current word graph (topconf)
> highest summed confidence score normalised by number of nodes
in path (topconfpernode)

> score difference between most confident and second-most confident
path in current word graph (topconfdiff)

> branching factor in the word graph of current utterance (BF)

> branching factor in the word graph of previous utterance (prevBF)
> bag-of-words of current user turn (BOW)

> bag-of-words of previous user turn (prevBOW)

> word string in most confident path in current word graph (topconf-
string)

> length of most confident string (wordnr)

Prosody: pitch

Prosody: loudness

Prosody: duration

Prosody: speech rate

> maximum FO (FOmaz)

> minimum FO (fOmin)

> position of maximum FO (FOmazxpos)

> position of minimum FO (FOminpos)

> mean FO (FOmean)

> standard deviation of mean FO (FOstdev)
> maximum energy (RMSmaz)

> position of maximum RMS (RMSmazpos)
> mean RMS (RMSmean)

> standard deviation of mean RMS (RMSstdev)
> duration of turn (dur)

> duration of initial pause (ipause)

> tempo (tempo)

Table 4.4: Overview of the employed features.

SDS employs an immediate verification strategy, it is very unlikely that a prompt history
of more than ten steps could contain relevant information with respect to the focus turn
(cf. [Koeling 2002] on the contribution of limited dialogue history to NLP tasks). In case
the dialogue up to the focus turn contains less than nine previous prompts, the remaining,
non-existing prompts are marked by a special null symbol in the feature vector.

Note that the prompt history encodes various pieces of information in an implicit
(therefore shallow) way: for example, the slots for which the system thinks it has acquired
the correct value, the number of times a prompt is repeated in the course of the interaction,
recurrent prompt sequence patterns that possibly indicate dialogue substructures, and so

on.



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 54

Prompt structure ] Occurrence

Q-VA 555
Q_DTH;I_VA 359
FR:Q_RC 354
RQ_VA 270
QuOC 244
Q_H;I_D 224
RQ_DTH:RI_VA 130
Q_V;I_A 118
RQ_V;RI_A 107
E_D 96
E_H 85

Table 4.5: Occurrence of the ten most frequent system prompt structures in the OVIS
corpus.

4.3.1.1 Co-occurrence of turn pairs

After representing the system turns according to this scheme, we performed a simple analy-
sis on our data counting co-occurrences of labelled system prompts and the corresponding
user answers. Note that the figures in this analysis pertain to the specific OVIS application;
however, the scale of occurrences may be indicative for other SDS as well. The primary
aim of this subsection is to describe the OVIS corpus in more detail, not to present general
findings about human—machine task-oriented dialogues.

The number of different system prompts in the OVIS corpus is in total 94. The ten
most frequent structures are shown in Table 4.5. The most frequent structure of system
prompts is Q_VA (‘From which station to which station do you want to travel?’, 555 cases).
We see that asking for the time of the travel and simultaneously verifying the departure
and arrival stations is the second most frequently asked prompt in this SDS (Q_DTH;I_VA,
359 cases), whereas the third most frequently occurring prompt is the one providing the
user with travel advice and asking whether the user would like to have this repeated
(FR;Q_RC). The fourth most common prompt is to repeatedly ask for the departure and
arrival stations. Further down the list are prompts such as asking the user whether to
start a new query (‘Do you want to know another connection?’, Q_0c), asking for the time
of travel, while simultaneously verifying the day of travel (Q_H;1_D), and so forth.

Given this information, it is interesting to examine the patterns formed by adjacent
pairs of system prompts and user responses. We find that there are 708 different pair
combinations between system and user turns in the corpus; this illustrates well that there
is no obvious mapping from a system prompt to a particular user reaction, indicating that
modelling prompt and answer correspondence in a classification task is probably quite
ambitious.

In order to illustrate how these pairs combine, we compiled Table 4.6 that shows the ten
most frequent pairs of system prompt and user replies. It turns out that the most common
system turn — user turn pair is Q_VA — S_VA_PROB_OK: the system asks for the slots of



55 4.3 Feature design

| Prompt structure User turn class label ] Occurrence_]

Q_VA S_VA_PROB_OK 290
FR;Q_RC N_VOID_OK_OK 230
Q_VA S_VA_OK_OK 193
RQ_VA S_VA_PROB_PROB 156
Q_OC N_VOID_OK_OK 134!
Q_DTH;I_VA S_D_OK_OK 115
RQ_VA S_VA_OK_PROB 83
Q_0C Y_VOID_OK_OK 65
FR;Q-RC N_VOID_PROB_OK 55
Q_DTH;I_VA S_D_PROB_OK 52

Table 4.6: Occurrence of the ten most frequent pairs of system prompt and user reply in
the OVIS corpus.

departure and arrival station and the user fills these slots which are erroneously processed
by the system, whereas the user turn exhibits no awareness of previous communication
problems — probably because the input occurs at the first turn of a dialogue. This prompt
and reply combination is present 290 times in the corpus. It is a noteworthy finding that
most frequently a user answer to the opening prompt in this SDS is erroneously processed.

The second most common turn combination is FR;Q_RC — N_VOID_OK_OK with 230
occurrences: presenting the travel advice to the user, and asking whether to repeat the
connection, to which the user answers with negation that is going to be correctly processed
by the system, and that exhibits no awareness of a previous communication problem. The
third most frequent pair is Q_VA — S_VA_OK_OK in the corpus (193 times), which represents
yet another user reaction type to the opening prompt: the user provides the departure
and arrival station names, showing no awareness of previous communication problems,
and this slot-filling is correctly recognised.

It is noteworthy that in reply to the system question about travel time (‘when’), com-
bined with implicitly verifying the departure and arrival stations most users provide only
the travel day (in unproblematic context, i.e. Q_DTH;I_VA — S_D_OK_OK, 115 times, line 5
of the table). Expecting such a user answer is usually not trivial in SDSs that are designed
on the basis of hand-made rules. This suggests that data-driven approaches to SDSs may
be useful, among others to account for potential deficiencies of hand-crafted rules in such
applications (cf. [Rayner and Hockey 2003]).

Likewise, it is noteworthy that to the system prompt ‘From which station to which
station do you want to travel?’ 22 different answer types can be found in the OVIS corpus.
In 290 cases these are S_VA_PROB_OK, in 193 cases S_VA_OK_OK, 13 times S_VA_PROB_PROB,
etc. Note that in five cases the users answered to this prompt by filling in the date of the
travel (S_D_OK_OK). The ten most frequent user reaction types to the opening prompt are
shown in Table 4.7. This illustrates our earlier note on the fact that the opening system
turn elicits user input that is a problem source in the majority of the cases in the corpus.
What seems to aggravate this situation is that if the user reply to the opening prompt is



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 56

[ Prompt structure  User turn class label | Occurrence |

Q_VA S_VA_PROB_OK 290
S_VA_OK_OK 193
S_VA_PROB_PROB 13
S_VAD_PROB_OK |
S_VA_OK_PROB 8
S_V/A_PROB_OK i
S_D_OK_OK 5
S_V_PROB_OK 4
S_D_PROB_OK 4
S_V_OK_PROB 3

Table 4.7: Occurrence of the ten most frequent user reaction types to the opening prompt
in the OVIS corpus.

I Prompt structure User turn class label | Occurrence |

RQ_VA S_VA_PROB_PROB 156
S_VA_OK_PROB 83
S_V_PROB_PROB 11
S_V_OK_PROB d
S_V/A_OK_PROB 2
S_A_PROB_PROB 2
N_VOID_PROB_PROB 2

Table 4.8: Occurrence of the seven most frequent user reaction types to the repeated
opening prompt in the OVIS corpus.



57 4.3 Feature design

not confidently recognised and the SDS repeats this prompt, 14 different answer types are
received from users, and the majority of those are again incorrectly recognised. The seven
most frequent user reaction types to a repeated opening prompt are shown in Table 4.8,
the remaining seven answer types occur only once in the corpus. Some user reactions are
labelled s_v/A_OK_PROB. In these cases the user provides only one station name to the
system, and it is impossible to determine even in context whether it is the departure or
the arrival station name. Such user input occurs 16 times in the corpus.

It is also intriguing to look at the various ways how users react to explicit verification
prompts. For example, to the system’s explicitly verifying the day of travel (E_D) 16
different user replies are annotated in the corpus. 52 times Y_VOID_OK_OK replies are
received, 17 times Y_VOID_PROB_OK replies; Further answer types to this prompt include
N;S_D_OK_PROB (5 times), A;Y_VOID_OK_PROB (4 times), etc. The ten most frequent user
reaction types to the explicit verification prompt of the day of travel are shown in Table
4.9.

In [Lendvai and Maruster 2003] we conducted further research on the OVIS material
(note that our corpus contained 442 dialogues in this study instead of 441). We ap-
plied process mining techniques to the data in order to discover relations between system
prompts and user answers. The method analysed global interaction processes taking place
with this particular SDS, inducing an interaction model underlying these dialogues in the
form of a dependency/frequency graph. In this graph it was possible to specify those
system prompts during the various stages of the dialogue that received more problematic
than non-problematic user input.

We reproduce the interaction model discovered by this method in Figure 4.4. The
frequency counts of user input types are given in the node labels. Note that only the
TRA, slot, and backward-pointing problem (‘pr’) components are marked in the user
labels. Forward-pointing problems are represented by the arcs that lead to problematic
input. These are printed in bold to differentiate them from unproblematic forward-pointing
relations. Frequency counts are given for the arcs as well. A dialogue progresses from the
top of the graph, starting with the opening system prompt (label Q_vA) to the bottom.
Two end state labels are present in the graph, OK_END for successfully ending dialogues,
and PR_END for unsuccessfully ending dialogues where no query result was provided to the
user. Since this graph represents a simplified interaction model based on a subset of the
dialogues, the frequency counts differ from the ones reported in the current study. The
graph illustrates well that even for a relatively simple dialogue strategy (i.e., prompting
for a limited number of slots) the user action space can be relatively large, and mostly not
trivially predictable.

4.3.2 Source: Speech recogniser

The ASR component of OVIS produced a number of features that can potentially be
useful for SI. In particular, the material available to us contains the word graph associated
to each user turn in the corpus. The word graph is often easily accessible from internal
recognition logs in most SDSs. It has several properties that could be of potential use
for extracting pragmatic-semantic information (cf. Sections 2.1 and 2.3). Apart from the
words that it contains, the sequencing of these can also be extracted from the lattice (if



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results

41

20

Figure 4.4: Simplified interaction model induced from the OVIS corpus by process dis-
covery techniques described in [Lendvai and Maruster 2003]. Arcs leading to problematic
input in reply to a system prompt are printed in bold.



59 4.3 Feature design

Prompt structure User turn class label LOccurrence ]

E_D Y_VOID_OK_OK 52
Y_VOID_PROB_OK
N:;S_D_OK_PROB
N_VOID_PROB_PROB
A;Y_VOID_OK_PROB
S_D_PROB_PROB
N_VOID_OK_PROB
N;S_D_PROB_PROB
Y_VOID_PROB_PROB
Y_VOID_OK_PROB

=
~

il P SR RSN SN

Table 4.9: Occurrence of the ten most frequent user reaction types to the explicit verifi-
cation prompt of the day of travel in the OVIS corpus.

the graph is turned into n-best paths). The confidence scores for each recognised word
can likewise be obtained from the word graph. Structural properties of the word graph
can also be computed, for example the thickness of the graph, represented by the number
of simultaneous arcs in it, or the degree to which the arcs branch off, and so on.

For our study from each word graph we extract the recognised words (including the
potentially incorrect ones) and encode these as two 759-bit, unstructured BOW vectors.
The 759 bits represent all words that occurred at least once in the word graphs (i.e.,
forming the set of words recognised in the corpus). In each BOW vector we indicate
whether a word is present in the corresponding word graph (‘1’) or not (‘0’). Note that
the BOW representation of the speech recognition results yields a larger set of material
to exploit, than only the highest-ranked recognition result. At the same time, the way
in which this complex information is represented in our study is utterly shallow (i.e.,
unsophisticated), since no information pertaining to (syntactic) structure, word form, or
frequency is represented in the BOW.

We represent the recognition results of the previous user turn as well, since these may
contain potential cues for the prediction of one or another SI component. For example,
overlapping word hypotheses in the current and the previous user turn may signal that
the user re-entered some slot value because it was incorrectly recognised, and so on. If the
focus turn is the first turn of the dialogue, the previous word graph is empty.

From the word graph we furthermore extract the degree of branching both in the
current and the previous word graphs, measured by the amount of branch-offs from the
nodes. No branching means there is only one path in the graph. This branching factor
characterises the degree of confusion in the word graph by indicating the average branching
per node in the graph; much branching may be an indication of system uncertainty or
noisy user input. Note that if the focus turn is the first turn of the dialogue, the previous
branching factor is undefined, marked by a special character in the feature vector.

As illustrated in Figure 4.3, the confidence measurements of the ASR are also converted
into features: we sum the confidence scores over the word transitions in the lattice, and



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 60

the path in the lattice that has the highest summed confidence score is used to create
three separate features: we use the highest summed confidence score in the word graph
itself, the concatenated string of words in the most confident path, as well as the number
of words in the most confident path. Moreover, we compute the confidence score difference
between the most confident and second-most confident path. Confidence scores are often
used in classification of user turns, especially for error correction (cf. Sections 2.3.3 and
2.3.4) although these system-internal measurements do not always provide reliable cues
(cf. Section 2.1).

4.3.3 Source: Speech prosody

Our third information source for the SI task is formed by prosodic attributes of the spoken
user input. We incorporate prosodic features in the feature vector since those have been
reported to function well for problem detection purposes (cf. Sections 2.3.3 and 2.3.4).
From the digital audio recordings of the OVIS system we automatically extracted a number
of measurements using the GIPOS software package. GIPOS generates and manipulates
waveforms, spectrograms, and other forms of speech data [Vogten and Gigi 1998]. The
processing yielded the following measurements.

The pitch of the user’s voice is measured in terms of F0, i.e., fundamental frequency.
The method used to determine FO is Hermes' method of sub-harmonic summation (cf.
[Hermes 1988]), combined with dynamic programming to smooth the F0 contour and
remove any possible pitch measuring errors. Six features are computed that characterise
pitch: the value of the maximum and the minimum F0 in the turn, the mean FO and its
standard deviation, as well as the position of the maximum and minimum FO0 in the time
line of the signal.

Loudness is measured in terms of RMS; i.e, the root mean square amplitude of the
acoustic wave signal. Four features are extracted concerning RMS: the value of the maxi-
mum RMS in the turn (the minimum RMS is always zero), the time position of the
maximum RMS, as well as the mean RMS and its standard deviation. The duration of
the utterance is defined in seconds, and is automatically measured from initial silence to
final silence in the recording of the user input.

From the word graph we furthermore extract the duration of the initial pause, again on
the basis of the most confidently recognised string. The initial pause is measured in frames
as the length of the silence that precedes the beginning of the speech signal. This feature
may cue the degree of hesitation of the user in responding, cf. [Krahmer et al. 2001a].

From the word graph yet another prosodic feature, speech tempo, is computed. The
speech tempo of the turn corresponds to the number of uttered syllables per second.
The memory-based syllabifier tool of [Busser 1998] is used to automatically compute the
number of syllables in the most confidently recognised string (recall that this may often
only partially overlap with the actual utterance). The ratio of the number of syllables and
the duration of the turn (in seconds) yields the tempo feature. Naturally, other simple
(automatic) methods can also be used for approximating the number of syllables in a
string of words, for example counting the number of vowel strings in it (combined with
rules specifying vowel combinations in the given language).

Note that most of our features represent the data in a noisy way, since they are derived



61 4.3 Feature design

on basis of potentially corrupted measurements. For example, in calculating tempo both
the basis of the computation (i.e., the noisy most confidently recognised word string),
and the tool that computed the amount of syllables (i.e., the imperfect syllabifier) add
to the discrepancy between the original speech rate and our tempo feature. We hope
however that the computed features represent the main tendencies in the focus turn's
context, supplying sufficient information for robust extraction of SI components. Our
choice in the current study is not to perform active selection of features but simply gather
a large, assumed-to-be-comprehensive feature set. This is motivated by findings of e.g.
[Batliner et al. 1999] who employ a large number of features in a prosodic processing task
and find that the effort needed for determining an optimal feature set does not pay off in
classification performance.

Note that the OVIS audio material is incomplete for a number of dialogue turns caused
by technical conditions during the collection process: 108 turns are missing from the
recordings, meaning that for these turns we have no prosodic feature values. Since the
employed learning algorithms are able to handle missing values, we mark the prosodic
feature values of these turns by a question mark in the feature vector.

The current study aims to gain insight into the relative importance of prosody in SI-
related analysis of user turns in SDSs. Therefore, below we provide more insight into our
data through descriptive statistics of the gained prosodic attributes.

4.3.3.1 Descriptive statistics

Our goal in this section is to find out whether prosodic tendencies observed in other,
primarily American English systems (cf. Sections 2.3.3 and 2.3.4), also hold for our data.
Therefore, we computed a series of basic statistics over the prosodic features measured over
all user utterances, distinguishing between the problematic and non-problematic instances
according to the backward-pointing-problem labelling. We performed an independent
samples test on these pairs of means to check whether the differences between them are
of statistical significance. Note that since we do not have information about user identity
in the corpus, this analysis is carried out by collapsing all prosodic measurements into
a pool, entailing that the findings reflect general prosodic tendencies across speakers,
which might not hold for individual speakers. This distinction seems to be important,
since [Hirschberg et al. 2004] come to the conclusion that “relative differences in speakers’
prosodic values, not deviation from some ‘acceptable’ range, distinguishes recognition
failures from successful recognitions”.

Our tests reveal that, in line with observations reported in the literature, problematic
turns differ significantly in important aspects from unproblematic turns. Table 4.10 high-
lights a selection of the most significant outcomes. Averaged over the complete data set
the figures indicate that turns that feature awareness of communication problems tend
to be significantly longer, have higher pitch maxima and pitch means than unproblem-
atic user turns. Aware utterances furthermore exhibit significantly more energy (i.e., are
louder) and a faster speech tempo than utterances signalling unproblematic grounding.

It is worth noting that in a certain sense this bird’s-eye-view on the data is misleading.
A closer look reveals that the scale of difference between the prosodic means is highly
dependent on the kind of system prompt to which the given user responds. To examine



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 62

| Feature | Difference in means  Signif. |

FO Max (Hz) 109 *

F0O Mean (Hz) 6l =
RMS Max 95.8

RMS Mean 16.4 *
Ipause (frames) 0.3

Duration (s) 04 **
Tempo (syll/s) 0.2 ==

Table 4.10: Statistical comparison of prosodic means in the backward-pointing task (i.e.,
mean of turns showing backward-pointing problems minus mean of turns showing no
backward-pointing problems). ‘*’ denotes outcomes of an independent samples test with
p < .05 significance; “**’ denotes p < .01 significance.

the prosodic behaviour of users in reply to certain system prompts, we create prompt
super-categories. The Explicit verification group (E) covers all prompts with a label ‘E_",
irrespective of what slot types are being confirmed by the system. Likewise, Implicit
verification (1) groups all prompts in which the second part of the label contains “;1_7,
irrespective of what slot types are being asked for or being confirmed by the system. The
prompt type Open question (0) stands for system questions asking for slot information,
without verifying other slots (‘Q_"). Yes/no question (Y) stands for all prompts that require
a confirmation from the user; such prompts are typically given by the system at the end
of the interaction (e.g., ‘Do you want to know another connection?’, Q_0c). We group the
prosodic characteristics of user turns according to the prompt super-categories. We refer
to this grouping of (properties of) user turns as ‘informed data splitting’. The information
used to split the data is the prompt super-categories, to which we refer as prompt types.

Table 4.11 highlights the comparison of prosodic properties on the data split according
to the four most frequent prompt types. The table compares the differences in the means
for problematic minus unproblematic turns according to the most recently asked system
prompt in the backward-pointing dimension. Figures for the remaining prompt types
(meta-prompt, repeated prompts) are not included in the table; they occur less frequently
and produce more unreliable outcomes. Typically, other FO and RMS measurements
correlate with certain prompt types as well, for example a high FO maximum often is
accompanied by a high FO mean measurement.

If we compare the value differences of the means for problematic turns according to
the most recently given system prompt, we find that some values deviate strongly from
the overall average (displayed in Table 4.10). The differences in means vary across prompt
types: the independent samples test reveals that the scales of the differences between
means of problematic and unproblematic turns depend on the system prompt given in
the most recent system turn. An obvious example is duration (see the corresponding row
of Table 4.11). The difference in the utterance duration of aware of problems/unaware
of problems turns is generally smaller after an implicit verification prompt than after
an explicit verification prompt, or after a yes/no question. This means that aware and




63 4.3 Feature design

Feature Difference in means
Data split according to last system prompt type

E (474) || T(966) || O (591) || Y (665)
F0 Max (Hz) 26.7 ¥ 6.4 362 *¥ 52.0
FO Mean (Hz) 91 * 44 137 * 33.9
RMS Max 12029 * —213.6 —700.9 179.3
RMS Mean 1133 ** 7.8 —-57.6 * 48.8
Ipause (frames) -1.3 -0.9 54 ** 1.7
Duration (s) 0.9 ** 05 ** -0.2 08 %
Tempo (syll/s) 05 == 2.3 —0.5 ** 0.6/ *

Table 4.11: Statistical comparison of differences in prosodic means in the backward-
pointing dimension per prompt types. Statistics for split data according to last system
prompt type are shown for four system prompt types, the number of cases covered given
between brackets. ‘*’ denotes outcomes of an independent samples test with p < .05
significance; ‘“**’ denotes p < .01 significance.

unaware turns are of a more similar duration after 1-than after e.g. E or Y. Observing the
RMS values we find similar subtleties. For instance, a user’s answer following an implicit
verification of misunderstood information does not tend to be spoken significantly louder
(since the subtraction produces a negative value), as one would expect in consequence
of hyperarticulation (found in [Hirschberg et al. 2000, Oviatt et al. 1998]). Judged by the
outcomes of the independent samples test, characteristics of some of the prosodic attributes
are in accordance with findings concerning hyperarticulate speech, but others are clearly
not, when distinguishing according to the actual prompt type.

What follows from these findings is that the type of system prompt may be relevant for
detecting (backward-pointing) problems, and perhaps for the other components of SI as
well. The fact that statistically significant differences exist between means does not entail
that such differences are useful for the automatic detection of (components of) the SI label
of user turns. Moreover, the statistical findings on turn type co-occurrences presented in
Section 4.3.1 showed that, when the SI label is composed of four components, the most
recent prompt can be followed by many types of (low frequency) user turns, and it is
doubtful whether the correlations are strong enough to be utilised in ML. In Chapter 5
we will investigate in more detail to what extent these prosodic features contribute to
components of ST when employed in a machine-learned classification task. Additionally, in
[Lendvai et al. 2002a] we present statistics with respect to the forward-pointing problem
dimension as well, and describe the potential use of informed data splitting for ML-based
problem detection purposes. We now present the experimental outcomes on the SI task
using all extracted features.



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 64

4.4 Results

4.4.1 Baseline

One possible baseline strategy for predicting the four-layered class label is to always predict
the majority class tag. The most frequent label among the 3,738 user utterances in the
corpus is N_VOID_OK _OK (the user gives a negative answer but it does not signal a problem,
and it is correctly processed, e.g., ‘No, thank you.”). This label occurs 399 times in the
corpus, and the strategy of always predicting this label yields 10.7% accuracy. This simple
majority-class baseline is very low, and since it has no recall on the majority of other class
labels, it is not informative for evaluation.

Given that certain types of user input are much more likely to follow certain types of
system prompts (cf. Section 4.3.1), a better baseline, directly computable from the data,
is to predict user input classes on the basis of the most recently asked system prompt.
Always guessing the class occurring most frequently in response to the last system prompt
type (averaged over the 90% training sets, in the same 10-fold partitions as used by
the learners) produces a baseline of 41.9% accuracy. This simple strategy provides us
with a sharp baseline, which we consider more relevant in assessing the performance of
our learners than the majority-class baseline. We call this informed baseline as ‘prompt
baseline’.

The detailed scores, including precision, recall, and F-score on the four components of
the task, are given in the top section of Table 4.12. The prompt baseline reaches a 78.7
F-score on predicting the task-related act performed in the user turn, an F-score of 77.8 on
predicting the types of filled slots, an F-score of 55.3 on the detection of forward-pointing
communication problems, and an F-score of 81.3 on the detection of backward-pointing
communication problems. The diversity among the classification results per partition is
characterised by the standard deviation figures.

4.4.2 Performance on the complex SI task

In two series of experiments we train MBL and RI on all features to classify user turns in
terms of the four components of SI. Below we describe the results obtained by the two
learners, and compare those to the prompt baseline results, and to each other. Table 4.12
displays the performance of the two learners on the shallow interpretation task. Note
that the overall accuracy score is not regarded as the most informative evaluative metric
about the performance of the learners on the SI task; it is a complex measurement that is
computed by proportionally weighting correct vs incorrect classifications of the individual
SI components. Furthermore, as explained in Section 3.2, accuracy can sometimes in itself
be uninformative about the actual performance on the task. Since the overall accuracy
measurement is nonetheless often indicated in research, for practical reasons we also report
on this score, besides the more informative precision, recall, and F-score.

Looking at overall accuracy, MBL attains 49.3%, and R1 45.5%. The difference between
the accuracy of the prompt baseline and that of MBL is statistically significant in a paired
t-test (t = 7.3, p < 0.01), likewise, the difference between the accuracy of the prompt
baseline and that of RI is statistically significant (¢t = 5.0, p < 0.01). The optimised MBL



65 4.4 Results

algorithm outperforms the optimised RI algorithm in classification accuracy, and their
difference is statistically significant in a paired t-test (¢t = 3.8,p < 0.01).

If we look at the detailed sub-measures (accuracy, precision, recall, and F-score) in-
dicated per component for each classifier, we see that in general MBL performs better
than the baseline learner, whereas RI performs worse, or the same, as the baseline. MBL
improves over the baseline and over RI by a broad margin in all but one aspect: on the
forward-pointing problem component: 55 points of F-score is the maximum that can be
attained on this subtask for all three learners, no matter the classification strategy.

The component for which both MBL and RI achieve the highest F-score is the task-
related act label (89 and 80.9, respectively). Backward-pointing problems and filled slot
types are classified with a comparable score (87.7 and 83.4 F-score, respectively). RI
clearly performs poorer than MBL, and its performance is less stable, which is reflected
by the standard deviation figures of the 10-fold CV. This suggests that the rule induction
strategy tends to produce rule sets that cover unseen data less effectively than the strategy
of extrapolating the class from examples that are nearest neighbours.

4.4.3 Parameter and feature use in MBL

Parameter optimisation led to a variety of settings for MBL: the optimised k is at least
five or higher. Jeffrey divergence is the similarity metric picked most often (in seven
partitions). The optimal feature weighting metric turns out to be shared variance (on the
same seven partitions as Jeffrey divergence).

We took a general look at the weights MBL associated with the features in order to see
which features were regarded informative by the learner. Grouping the higher-weighted
features according to their source, we find that features that receive high weights include
the following (lexical items are translated to English):

e DM prompt history: current prompt type, previous prompt type

e DM lexical, current prompt: ‘from’, ‘to’; various words present in the opening
prompt

e DM lexical, previous prompt: ‘from’; ‘to’, ‘you’, ‘want’
e ASR confidence: topconf, topconfpernode, topconfdiff

e ASR lexical, BOW (recognised user words in current turn): ‘from’, ‘to’, ‘no’, ‘yes’,
‘o’clock’

e ASR lexical, prevBOW: ‘from’, ‘to’, #pause#
e ASR lexical: topconfstring.

Shared variance weighting (used together with Jeffrey divergence similarity metric)
regards the lexical features most informative. IG-weighting (with MVDM similarity metric,
employed once) associates the highest weights to the ASR confidence measures and to the
DM prompt history features. Chi-square-based weighting (with overlap similarity metric,
employed twice) regards the confidence measures most informative.



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results

Algorithm Component Metric
acc pre rec F
prompt baseline ALL 41.9
1.6
TRA 74.8 81.7 T76.0 78.7
2.5 3i2 2.7 29
SLOT 73.8 87.8 69.9 77.8
2.6 2.0 3:2 2.2
FWD PR 64.8 61.3 50.6 55.3
2.4 3.8 3.3 2.7
BWD PR 862 962 707 813
2.3 1.9 b 3.9
MBL ALL 49.3
2.8
TRA 84.1 924 859 89.0
2.4 2.2 2.1 2.0
SLOT 79.1 884 79.0 834
2.8 2.5 4.0 3.1
FWD PR 66.7 654 48.3 55.4
2.5 3.9 4.5 3.8
BWD PR 90.2 94.0 82.3 87.8
2.5 3:5) 4.4 3.8
RI ALL 45.5
2.4
TRA 74.7 82.2 79.8 80.9
4.9 4.7 6.3 5.4
SLOT 733 827 TOT 757
3.0 7.9 6.4 3.6
FWD PR 66.2 64.1 50.6 55.6
2.5 4.0 11.8 7.0
BWD PR 83.6 89.6 70.8 78.6
2.6 4.7 8.1 3.9

Table 4.12: Scores with standard deviation produced by MBL and RI on complex shallow
interpretation, averaged over 10-fold CV experiments: overall accuracy, as well as accu-
racy (acc), precision (pre), recall (rec), and F-score (F) on task-related acts, filled slots,
forward-pointing and backward-pointing communication problems. The prompt baseline

performance is provided for comparison.



67 4.4 Results

In order to point out problematic cases for the learner, we examined the classified ma-
terial, and found that most classification errors were made on the forward-pointing com-
ponent. In particular, the label S_-VA_PROB_OK is frequently misclassified as S_-VA_OK_OK
(an incorrect prediction of the forward-pointing problem), whereas label S_-VA_OK_OK is
frequently misclassified as S_-VA_PROB_OK (an incorrect prediction of the forward-pointing
non-problem). Similar misclassifications on the forward-pointing component include the
labels N_vOID_<...>, S_D_<...>. Likewise, A;Y_vOID-type of labels are often classified as
Y_vOID labels, as well as A;S_D_<...>-type labels are often classified as s_D_<...> labels,
suggesting that acceptance in the user input is difficult to point out.

4.4.4 Parameter and feature use in RI

For RI, parameter estimation yielded very varied algorithm settings, from which few clear
tendencies are observable. In general, covering a minimal number of 1-5 instances per
rule is found to be beneficial for R1. This might indicate that it is optimal for RI to
make specific rules that cover only a few examples. The rule sets induced during training
are large, consisting of 54-340 rules (223 rules on average). The low performance of the
algorithm indicates however that part of the induced rules are locally optimal but too
specific to generalise to unseen (i.e., test) data.

For illustrative purposes we trained RI on the total data, where parameter search
resulted in the following algorithm settings:

e amount of learning instances to be minimally covered by each rule: 2 (default)
e hypothesis simplification: 1, i.e., leave hypothesis as it is (default: simplify less)
e negative tests on the nominal feature attributes allowed (default: disallowed)

e number of optimisation rounds on the induced rule set: 2 (default)

e class ordering: by decreasing frequency (default: order by increasing frequency)

e loss ratio of false-positives/false negatives: irrelevant, since loss ratio is only sup-
ported for two-class problems.

RI induced 207 rules from the total data. In general, we see that the algorithm made
use of all kinds of features provided to it. Most use is made of the ASR and DM lexical
features (i.e., the BOWSs of both the user input and the system prompt), as well as of the
most recent prompt type, the topconf, and the topconfpernode features. Many of the rules
have multiple conditions, on average there are 2-3 conditions in a rule. Rules are induced
for 73 classes, the number of rules induced per class is 1-13: on average three rules are
induced per class. Rules are first induced for the most frequent class (N_vOID_OK_OK).

Below we present seven rules from this rule set in order to show the type of rules on
basis of which RI obtains the reported results. Note that the rules are meant to illustrate
the way RI operates, not the interpretation of user input. We select rules that cover a
relatively large number of examples. The structure of a rule is

If <feature test> and <feature test> (etc.) then class. (n/m)



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 68

where <feature test> is a test on the presence of a nominal feature value, the presence of
an element of a set feature, or a range of a numeric feature. n indicates the number of
instances a rule covers, m the number of false predictions. Lexical items are translated
from Dutch into English. Feature names are the following: prompt t: current prompt
type; prompt t-1: previous prompt type: prompt t-2: previous-previous prompt type (and
so on); other feature names are as introduced in Table 4.4.

1 If ‘connection’ € sysBOW A ‘sorry’ &€ sysBOW A ‘no’ € BOW then (380/108)
N_VOID_OK_OK.

2 If 'so’ € sysBOW A ‘at’ € sysBOW A ‘no’ ¢ BOW A topconf < 701.06 then (125/32)
Y_VOID_OK_OK.

3 If ‘whether’ € sysBOW A topconf < 690.24 A FOminpos > 1 then (34/5)
Y_VOID_OK_PROB.

4 If ‘which’ € sysBOW A tempo > 1.95312 then S_VA_OK_OK. (65/10)

5 If prompt ¢ = Q_DTH:;I_VA A tcpernode > 137.13 A prevBF < 1 A rmsmaxpos (22/2)
< 0.42 then $_D_OK_OK.

6 If ‘day’ € sysBOW A a7 = {empty} A BF < 2 then A;S_D_OK_PROB. (8/6)

7 If ‘time’ € sysBOW A ‘six’ € sysBOW A FOmax < 210 A BF < 21 then (4/0)

S_TH_PROB_OK.

The first rule assigns N_vOID_OK_OK to turns where the user BOW contains ‘no’, and the
system said ‘connection’ but did not say ‘sorry’. The second rule assigns Y_VOID_OK_OK
to turns in which the system says ‘so” and ‘at’ (which is probably an explicit verification
of the time slot), and the user answer is recognised with a smaller top confidence score
than 701.06, whereas ‘no’ is not recognised in the input. The third rule classifies input
as an affirmative answer that reflects awareness of problems (Y_vVOID_OK_PROB) in case
the system asks a question including ‘whether’ (probably as part of the phrase ‘could you
repeat whether ...") and the user input is recognised with a lower top confidence score
than 690.24 whereas the pitch minimum is reached after at least 1 second.

Rule 4 fires in case the system prompt included the word ‘which’ and the tempo
of the user input is faster than 1.95312 syllables per second; such input is classified as
unproblematic slot-filling of departure and arrival station. This rule represents earlier
findings claiming that problematic turns have a slower speech rate than unproblematic
ones. Rule 5 shows that if the most recently asked system prompt is Q_DTH;I_VA (asking
for travel time, and implicitly verifying departure and arrival station) and the normalised
top confidence score in the ASR output is higher than 137.13, the loudest part of the input
occurs earlier than 42 seconds of the input, and the branching factor in the word graph of
the previous user input is smaller than 1 (i.e., there is no branching in the graph), then
the user is filling the day slot. no communication problems have occurred, and the user
input is going to be well processed. Rule 6 indicates that in case the input took place not
later than at the sixth exchange of the interaction (since the seventh item in the prompt
history is empty), and to the system prompt which contains the word ‘day’ the user’s reply
is recognised with a smaller branching factor than 2, then in that turn the user accepts a
system error, as well as provides the value for the day slot.



69 4.4 Results

The seventh rule classifies slot-filling of time of day and hour of travel in an unprob-
lematic dialogue situation, and this input is going to be erroneously processed: the system
prompt contains the word ‘time’ and ‘six’ (the latter obviously a verified slot value),
whereas the user’s answer exhibits a pitch maximum not higher than 210 Hz and branch-
ing factor smaller than or equal to 21. This rule illustrates that there are many factors
determining the class of user input: acoustic and prosodic features, probably contributing
most to the problem components of SI (for example, the branching factor and pitch may
be good cues to erroneous processing and dialogue feedback), whereas lexical properties
may determine the task-related act(s) and the slot(s) in the input.

4.4.5 Detailed analysis of task-related acts and information units

Tables 4.13 and 4.14 show the classification results decomposed by TRA labels and slot
labels, respectively. We see that the TRA label that is overall classified best is slot-
filling (s). The classification results of other TRA labels are roughly in line with the
relative frequency of the given label: v, the third most common TRA label in the corpus,
is classified with a good score by both algorithms (90 F-score by MBL and 85 by RI).
Both algorithms outperform the baseline by a broad margin on this label. The label N
is classified with a similar score by MBL (86.1 F-score), but with a much lower result by
RI (73.4 F-score), that is not better than the baseline strategy. As was to be expected,
acceptance is difficult to classify, not only due to its low frequency but also because this
act closely resembles truly slot-filling or truly affirmative TRAs.

Looking at the results decomposed by slot labels (Table 4.14), we can observe a similar
tendency: labels that occur with high frequency in the data (e.g. voID, Vv, A, cf. Table
4.2) are better learnt than low frequency classes. Learner performance on the non-slot
label voID is calculated in the sub-component evaluations shown in the table; however,
performance on classifying voID is ignored in the calculation of the global precision, recall,
and F-score of the slot component of SI (displayed in Table 4.12), since VOID is not some
slot to be filled, but rather signals the absence of the slot-filling activity.

Note that there are extremely large standard deviation figures for a number of TRA
or slot types, such as NSTD, T, or acceptance. This is due to the way in which scores are
summarised over the ten data folds: whenever no numerical score is obtained in a fold (for
example because some slot type is not present in some fold, resulting in illegal arithmetic
operations), we assume the score to be zero, so that means can be still calculated. Observe
that the NSTD TRA type can likewise not be calculated by the baseline strategy. In fact,
this suggests that giving a non-standard input is not a TRA that depends on the type of
the most recent system prompt.

4.4.6 Discussion

According to Table 4.12, the component for which MBL achieves the highest F-score is
the task-related act label (89.0 F-score), and the result obtained on backward-pointing
problems (87.7 F-score) is quite similar to this. The classification results of filled slot
types are of somewhat lower scale (83.4 F-score). The component that is learnt most
successfully by RI is, likewise, the task-related act label (80.9 F-score), and similarly to



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 70

Algorithm TRA label Metric

pre rec F

prompt baseline S 95.7 873 91.3

0.7 2.5 1.4

s 68.7 64.6 66.3

5.6 8.1 5.9

N 64.0 746 68.8

6.6 4.7 4.8

A 40.3 18.1 24.5

19.7 =T 105

NSTD - - -

MBL S 96.7 939 95.3

0.9 1.8 0.9

Y 86.6 93.1 89.7

6.2 5.4 5.0

N 92.4 80.8 86.1

3.8 49 3.3

A 64.6 155 224

329 7 9.3

NSTD 55.1 46.1 46.7

221 226 168

RI S 96.7 82.1 88.2

1.4 124 6.9

Y 83.2 894 85.1

172 3.6 10.8

N 67.1 85.1 734

16.1 6.0 8.1

A 371l 178 23.6

21.3 118 145

NSTD 77.5 43.6 523

238 2219 224

Table 4.13: MBL and RI performance decomposed by TRA labels on complex shallow
interpretation, averaged over 10-fold CV experiments in terms of precision, recall, and
F-score. The top section shows scores with standard deviation according to the prompt
baseline, the middle section shows results of MBL, the bottom section shows results of RI.



71

4.4 Results

Algorithm Slot label Metric
pre rec F
prompt baseline v 949 878 91.1
2.2 5.1 27
A 929 770 84.1
3.8 5.6 3.8
D 71 TR 757
4.8 6.4 4.1
T 15.0 (0 Jerd 1.3
32.0 1.4 2.6
H 79.8 49.5 60.7
5.4 8.4 6.7
@ 20.0 1.7 32
40.0 3.5 6.4
VOID 80.8 93.0 86.4
3.0 1.6 1.9
MBL A 942 925 933
2:T 4.2 2.8
A 93.3 88.2 90.6
3.6 4.8 3.8
D 7.7 780 775
4.6 8.7 4.9
T 60.4 13.3 20.0
28.7 88 116
H 83.1 67.3 74.0
5.4 T3 4.3
@ 84.8 40.5 49.2
16.0 124 194
VOID 89.8 943 92.0
2.7 1.9 1.6
RI v 94.3 84.7 89.1
2.2 4.8 2.6
A 91.2 81.5 86.0
2.2 5.3 3.4
D 762 B57.7 636
11.2 149 7.8
i 60.3 333 397
21.6 147 121
H 68.0 54.7 58.1
84 187 11.0
(@ 47.0 41.0 38.2
209 15.8 127
VOID 779 94.7 84.7
13.2 2.8 74

Table 4.14: MBL and RI performance decomposed by slot labels on complex shallow

interpretation.



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 72

the results of MBL, the backward-pointing problem (78.6 F-score) is classified second-best.
Filled slot types are classified with somewhat less success (75.7 F-score). Both algorithms
attain the lowest score on the forward-pointing problem component, which is equal to the
prompt baseline strategy (55.3 F-score).

Prediction of TRAs, slots, and backward-pointing problems is done better by MBL than
by the baseline strategy and by the rule-induction learner. This suggests that MBL is able
to learn the complex SI class more optimally from the data than RI. This finding seems
to be in line with the conclusions of [Rotaru and Litman 2003] who claim that, depending
on a number of factors, MBL and RI can outperform each other (cf. Section 3.1). However,
note that in our experimental matrix MBL is systematically better than RI. Due to their
classification method, rule induction algorithms generally perform worse when the instance
space is complex, and when there are no homogeneous class or feature subsets on which
the data can be efficiently partitioned. In our material there are 148 classes in the data,
and no class has real majority. In addition, these classes are represented by a large number
of features, and possible patterns of the feature values may not be optimally captured by
rule conditions.

The results of parameter estimation support this observation: while MBL is able to
cover the data by a more homogenous set of parameters, RI applies much data-specific
settings to each data subset that probably do not generalise to unseen data; the fact that
the classification accuracy of the rules induced with these settings is quite low may indeed
indicate that these are over-fitted on the training material. As opposed to it, the fact that
a larger nearest neighbourhood size turns out to be more optimal for MBL reflects that
the memory-based learner is able to effectively flatten the instance space by comparing a
large number of nearest neighbours that vote for the class according to their distance.

The prompt baseline strategy yields relatively high scores because there appear to be
strong correlations between system prompts and typical user answers that follow it. This
is not surprising; the hard part of the task is to predict those cases where the user gives a
different response than what is most likely. MBL is able to find similarity between memory
examples and new instances with a 49% overall accuracy, meaning that this algorithm can
classify almost half of the user turns perfectly in terms of task-related acts, slots, problem
awareness, and problem origin. This at the same time provides further evidence that
despite the observed statistical co-occurrences between system prompts and user answers,
it is not obvious to predict the type of answer most probably triggered by a prompt, for
example that yes/no type system prompts trigger Y and N task-related acts.

It is an important finding that both classifiers use lexical information, presented as
an unspohisticated bag-of-words, both from the system and the user turns to a large
extent. This may indicate that not only continuous (i.e., numerical), but also symbolic
(i.e., lexical) items are able to separate the data well in terms of class labels. This is
obviously related to the nature of the SI task as defined by us, since some aspects of
some SI labels, in particular the task-related act labels Y and N, may be strongly lexical-
oriented. It is however a non-trivial knowledge, gained from our experiments, that the
shallow bag-of-words representation encodes information that can be well utilised by the
learners, as opposed to information encoded by features that are more structured, such as
the prompt history features. Namely, we found that the system prompt representations
are utilised to a smaller extent in classifying the complex class than their corresponding



73 4.5 Summary

BOW representations, despite the fact that they quite systematically encode traditional,
hierarchical notions of dialogue acts. This suggests that a fine-grained representation of
pragmatic-semantic information is not necessarily more informative for interpreting user
input in task-oriented dialogues with a SDS than other, less structured pragmatic-semantic
primitives.

4.5 Summary

In this chapter we have described our research material, the OVIS corpus, and presented
results on machine learning of the complex SI class of user turns in this corpus. We dis-
cussed the task design of these experiments by explaining the class labelling scheme applied
to the corpus, and by giving an account on the features employed in the learning experi-
ments. We explained in detail that the class labelling incorporates all four components of
the information we want to extract from the user turns: the conducted task-related act
(TRA), the slots that are being filled (SLOT), whether the turn is going to cause commu-
nication problems between the user and the dialogue system (FWD PR), and whether the
user shows awareness of communication problems (BWD PR).

We emphasised that the employed features serve the purpose of providing context for
the focus turn in the learning experiments at a low level and in a straightforward way.
We presented some statistical findings with respect to the system’s prompts and prosodic
properties of the users’ replies to these prompts. We also investigated whether there are
co-occurrence tendencies between a particular prompt and a particular user reply (both
described in terms of our annotation scheme).

Finally, we presented the outcomes of a series of learning experiments conducted with
the memory-based and the rule induction classifiers that were optimised with respect
to their parameters. We found that MBL attained higher performance in general, when
compared to either RI or an informed baseline that assigns the majority class given the most
recent prompt. MBL produced 49.3% overall learning accuracy on the complex SI task,
whereas RI gained a significantly lower overall classification accuracy, 45.5%. Learning
performance differed substantially for the four included components. The task-related act
of a user turn was learnt best: MBL reached an 89-point F-score on this component (RI:
80.9). Backward-pointing problems were identified with a similar score by both classifiers.
Slots were predicted with a somewhat lower precision and recall (MBL: 83.4 F-score, RI:
75.7). Neither MBL nor RI could significantly outperform the baseline for forward-pointing
communication problems (55.3).

An important finding is that the statistical tendencies of prosodic, as well as prompt co-
occurrence phenomena are not reflected in the actual classification results. The analysis
of the learning process furthermore indicates that structured information (i.e., prompt
history represented in terms of dialogue acts and slots) is not necessary more informative
for the SI task than unstructured information (i.e., prompt history represented in terms
of a bag-of-words).

Analysis of the classification results led us to the conclusion that the complex SI task
is difficult, since some (aspects of) components make it hard for the learners to correctly
assign the class of a user input. For example, the acceptance TRA cannot be reliably



Chapter 4: Shallow Interpretation Module: Data, Experiments, and Results 74

detected by the algorithms, possibly because it closely resembles the slot-filling TRA.
Most importantly, it is very hard to predict whether some input is going to be correctly or
erroneously processed by the given SDS. The fact that the prompt baseline best identifies
forward-pointing problems might indicate that this fairly unpredictable component is at
least partly dependent on the system’s prompting.

Given these difficult aspects of shallow interpretation, our next goal is to find more
effective ways for inferring the SI of user turns from our data. In the next chapter we
investigate whether it is possible to improve these scores if the data are presented in a
different way to the classifiers.



Chapter 5

Partitioning Information

The goal of this chapter is to investigate two issues raised by the findings of the previous
chapter: the influence of class label design and that of feature design on learner perfor-
mance in the SI module. The approach we take is to partition information in the data
provided to the learners. The outline of the chapter is the following. For each component
we conduct two consecutive series of experiments with both MBL and RI. In the first series
we perform class partitioning, in the second feature partitioning. We present and analyse
the obtained results per SI component.

The class and the feature partitioning experiments provide a possibility to compare
memory-based learning and rule induction to a considerable extent: all experiments are
conducted by both MBL and RI under identical conditions, while the tasks, as well as the
features, are systematically varied. By these experiments we attempt to further investigate
whether, as observed in [Rotaru and Litman 2003], it is dependent on the task, the number
of features, and the type of features whether memory-based learning or rule induction
performs better.

In the discussion we recapitulate the results of the information partitioning experiments
conducted in this chapter by pointing out the major findings with respect to task and
feature design in the SI task.

5.1 Method

The results of Chapter 4 indicate that some SI components are more difficult to classify
than others, which might have caused low overall scores. In fact, in the complex task de-
sign described in the previous chapter we took a naive approach to SI using all features to
classify all components simultaneously; the question arises whether our data can be used
in a more optimal way. To this end we first design experiments in which the classifiers are
trained to learn each SI component in all possible combinations of components. The class
label is partitioned so that components are learnt either in isolation or in combination
with one or two other SI components. We refer to the phenomenon of learning compo-
nents together as co-learning. Our aim is to see whether a different class label design

75



Chapter 5: Partitioning Information 76

yields improvement for learning a particular component over the results presented in the
previous chapter. Note that the experiment conducted in that chapter investigated the
most complex co-learning task, since all four components were simultaneously co-learnt:
we refer to that experiment as the complex experiment.

5.1.1 Class partitioning

In the first experimental series we test all component combinations for each SI component,
running seven learning experiments per component: on the component in isolation, as well
as in combination with one or two other components. The experiments are carried out
with the same set-up as the complex experiment: we train and test the classifiers in 10-fold
cross-validation combined with algorithm parameter optimisation. The obtained results
are characterised in terms of accuracy, precision, recall, and F-score, computed in relation
to the given component. For comparative purposes both the prompt baseline scores and
the results of the complex task are provided in the tables that display the results of the
class partitioning experiments. All statistical significance tests are reported on the basis
of paired t-tests.

Note that each component combination has a different class label distribution: in the
experiments where a component is learnt in isolation, the number of classes is the lowest
in that component’s series, whereas in all other experiments in that series the number of
classes is higher. The number of class labels in an experiment defines the entropy in the
classification task.

If the class labels are uniformly distributed, the entropy (see Equation 3.7) of a task
is maximal. This situation almost occurs in some of our tasks (namely, in the forward-
pointing and in the backward-pointing isolated tasks, as well as in the combination of
these two components), however, in most tasks the distribution of the labels in a task is
skewed to some degree (cf. the simple statistics given in Section 4.2).

At the same time, it might be informative to calculate the ratio of the actual entropy,
given the number of actual classes, to the maximum entropy. This ratio, which we call
actual entropy ratio, AER, defined in Equation 5.1, characterises how much uncertainty
a class distribution contains compared to the maximally uncertain, uniform-distribution
entropy:

H(actC)

ERSS H(uniC)’

(5.1)

where H (actC') is the actually measured entropy, based on the actual frequencies of classes
actC, and H(uniC) is based on the same number of classes but with uniform frequencies.
The AER figure characterises the reduction in uncertainty with respect to the maximum
uncertainty in the classification task, given the actual number of class labels in the task.
Table 5.1 displays the figures of the actual class label number and the AER per component
combination.

We may also assume independence between the labels, hypothesising that each class
label of each component co-occurs with each class label of each other component, and



fii 5.1 Method

Component(s) ] Actual nr of classes AER IER I
TRA 8 .66 .66
SLOT 30 ST .87
FWD PR 2 99 .99
BWD PR 2 99 .99
TRA_SLOT 63 .63 47
TRA_FWD PR 16 J2 72
TRA_BWD PR 15 72 .69
SLOT_FWD PR 48 66 .62
SLOT_BWD PR 47 .66 .62
FWD PR_BWD PR 4 .98 .98
TRA_SLOT_FWD PR 104 .69 52
TRA_SLOT_BWD PR 90 67 5l
TRA_FWD PR_BWD PR 29 .76 .68
SLOT_FWD PR_BWD PR 81 48 44
| TRA_SLOT_FWD PR_BWD PR | 148 74 54 ]

Table 5.1: Class label number and entropy ratios per class label combination, for details
see equations 5.1 and 5.2.

also that these combinations are uniformly distributed. Such uniform distribution and
such independence of components’ class labels is in our study obviously not the case, since
e.g. a slot-filling TRA never co-occurs with a voID slot label. However, to analyse the
reduction in entropy with respect to this ‘independent entropy’, we define the independent
entropy ratio measure (IER). IER characterises the ratio of the actual entropy and such
a component-independent maximum entropy:

H(actC)

IFR= ————
’ H (indepC)

(5.2)

where H (actC') is the measured entropy in the task given the actual frequency of classes
actC, and H(indepC) is the ultimate maximum entropy in the task, given uniformly
distributed classes of all possible class label combinations, indepC'. The rightmost column
of Table 5.1 displays the IER per component combination. Generally, the IER values
characterise not only the ratio of reduction of uncertainty in the task, but the predictability
of dependency between the components in a given combination as well.

From the table we can establish that most class partitioning tasks are much less entropic
than would be expected under independence and uniform distribution assumptions, since
most of the AER and IER figures are smaller than 1. It is an intriguing issue whether
these figures are predictive about how the classifiers perform on some task. Notably,
one conjecture might be that low AER or IER would predict a high degree of success in
learning.



Chapter 5: Partitioning Information 78

5.1.2 Feature partitioning

The findings of the previous chapter indicated that the classifiers made use of all kinds
of features provided to them. At the same time, as noted earlier, there is redundant
representation of the same information by some of the features we employ. In order to see
the extent to which the different information sources contribute to the SI task, we design
separate experiments in which the classifiers draw on information from only one feature
group at a time: on features that are obtained from the dialogue manager (henceforth:
DM feature group), on features that are obtained from the word graph output of the
speech recogniser (henceforth: ASR feature group), or on the prosodic features measured
in the recorded user input (henceforth: PROS feature group).

After finding out the optimal class label design for a ST component in the class par-
titioning experiments, in a second series of experiments we analyse the contribution of
each feature group to the classification of that component. The task here is to measure
performance on the three isolated feature groups in classifying the optimal component
combination obtained from class partitioning. Here we are primarily interested in the
relative importance of the isolated feature groups, hence we do not test all combinations
of feature groups.

It is interesting to note that the three feature groups differ in the way they encode
information. The DM group contains exclusively symbolic features: prompt types and
prompt words, the PROS group contains exclusively numeric features, whereas the ASR
group contains a mix of both (cf. Table 4.4). The number of features contained by each
group is different, too. There are 944 features in the DM group, 13 features in the PROS
group, and 1,525 features in the ASR group.

The set-up of the feature partitioning experiments is to reuse in 10-fold CV the optimal
parameter settings obtained in the class partitioning experiments. This can be regarded
as the semi-optimisation of algorithm parameter settings.

5.2 Task-related acts

5.2.1 Class partitioning

The first component we investigate concerns the task-related acts in the user input. The
experimental results of co-learning the different class combinations for the TRA, as well
as of the isolated experiment, are shown in Table 5.2.

BEST SCORES We see that the scores of MBL are overall somewhat higher than those of RI;
however, most of these differences are statistically insignificant. MBL attains the highest
score when the TRA component is learnt in isolation (91.7 F-score), whereas RI obtains its
highest F-score of 90.5 points in co-learning the TRA and the backward-pointing problem;
the difference between the two learners is statistically insignificant. It is remarkable that
RI produces a near-10-point improvement over its complex experiment’s F-score (¢ =4.9,
p <0.01; the italicised bottom line of the table), indicating that class partitioning is
beneficial for this classifier for this component. The best F-score of MBL also improves
significantly over the F-score of the complex experiment (¢t =5.0, p <0.01). In terms of



79 5.2 Task-related acts

Algorithm  Class label Metric
acc pre rec F
baseline 74.8 81.7 76.0 787
2.5 3.2 2.7 2.9
MBL TRA 86.6 94.3 89.3 91.7
0.7 15 1.0 0.7
TRA_SLOT 86.4 93.5 89.3 913
1.2 12 0.8 0.6
TRA_FWD PR 86.3 944 88.3 91.2
0.8 1.3 1.0 0.9
TRA_BWD PR 86.8 94.1 89.3 91.6
1.0 1.3 1.2 0.9
TRA_SLOT_FWD PR 82.3 93.7 86.9 90.1
0.5 1.3 1.0 0.7
TRA_SLOT_BWD PR 85.6 92.8 88.7 90.7
1.4 1.7 1.3 1.2
TRA_FWD PR_BWD PR 85.9 942 87.8 909

1.2 1.6 15 13
TRA_SLOT.-FWD PR.BWD PR | 84.1 92.4 859 89.0
24 22 21 20

RI TRA 84.8 91.9 87.8 89.8
1.4 2.5 1.2 1.5

TRA_SLOT 84.7 91.5 88.8 90.1
1.9 2.1 17 1.6

TRA_FWD PR 83.9 91.3 86.9 89.0
2.2 3.4 2.0 2:2

TRA_BWD PR 86.0 92.0 89.1 90.5
1.7 2.0 1.5 1.5

TRA_SLOT_FWD PR 785 86.5 83.1 84.7
3.5 3.5 3.6 3.1

TRA_SLOT_BWD PR 82.1 89.1 86.7 87.9
2.9 3:2 1.3 1.9

TRA_FWD PR_BWD PR 84.8 91.2 87.9 89.8

19 24 14 17
TRA_SLOT_-FWD PR.BWD PR | 74.7 82.2 179.8 80.9
49 47 68 54

Table 5.2: Scores with standard deviation produced by MBL and RI on shallow interpreta-
tion of the TASK-RELATED ACT component, averaged over 10-fold CV experiments:
accuracy, and proportionally weighted precision, recall and F-score measured on the clas-
sification of task-related act type. The highest score is set in boldface. The italicised
bottom lines show the results of the complex experiment. Scores of the prompt baseline
are provided in the top row.



Chapter 5: Partitioning Information 80

F-score, RI achieves a large, 50% error reduction on the TRA task compared with the
complex experiment, whereas MBL produces a 24% error reduction. (In terms of accuracy,
RI produces a 40% error reduction, and MBL a 10% error reduction.)

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS The outcomes of sta-
tistical significance tests show that the F-scores among the class partitioning experiments
do not differ significantly from each other when the task is learnt in isolation or when not
more than two components are combined (corresponding to the scores in the first four lines
of each section in the table), even if one of the components is the difficult forward-pointing
problem. The entropy ratios (ERs) of these tasks (cf. Table 5.1) show no correspondence
with the attained scores, likewise, the actual number of class labels in an experiment does
not seem to have an impact on the learning performance either. Consider for example
that the class combination TRA_LFWD PR_BWD PR has fewer classes (29) than the class
combination TRA_SLOT (63), but the former is still learnt with a significantly lower score
than the latter.

However, we observe that when more than two classes are co-learnt, no matter whether
the forward-pointing problem is included, scores get significantly worse for both classifiers
(again in no apparent correlation with the number of classes or ERs). It is furthermore
noteworthy that both classifiers improve significantly with respect to their complex exper-
imental results in all but one class combination: in the co-learning of TRAs, slots, and
forward-pointing problems, where both MBL and RI attain a statistically insignificantly
higher score than in the complex experiment. Again no apparent deviations can be read
out from the entropy figures that would indicate such a performance.

CONCLUSION On the basis of the outcomes of the class partitioning experiments concern-
ing the TRA component we can establish that class partitioning has a substantial, positive
influence on the scores produced by our classifiers, and it results in practically equal per-
formances of MBL and RI1. We assume that it is the optimisation of class label combination
together with the optimisation of algorithm parameters that leads to this result, providing
further evidence for the conclusions made by [Daelemans and Hoste 2002] (cf. Section
3:1).

Another remarkable outcome of the experimental matrix is that co-learning the task-
related act component with the backward-pointing problem component has a positive
effect on both learners: RI obtains its best score on this combination, and the difference
between the score attained on this combination and the best score by MBL is insignificant.
This suggests that combinations between these two components show patterning in our
data that the learners are able to utilise to the same extent. As we pointed out in Section
4.2, signalling awareness of communication problems can be regarded as a backchannelling
act; it might be the consistent occurrence of certain labels of the awareness component
with certain labels of the TRA component that lead to this result.

5.2.2 Feature partitioning

Below we report on the experiments in which the classifiers are trained on partitioned
feature groups. In these experiments MBL is trained to classify the task-related act label in



81 5.2 Task-related acts

Algorithm  Optimal class label  Feature group Metric
acc pre rec F
MBL TRA ALL 86.6 943 89.3 91.7
0.7 1.5 1.0 0.7
DM 77h 845 79.1 8L7
2.6 35 24 2.8
ASR 82.8 90.8 85.4 88.0
1.4 1.8 1.5 1.3
PROS 64.5 73.8 68.0 70.8
3.0 3.7 2.0 2.7
RI TRA_BWD PR ALL 86.0 92.0 89.1 90.5
1.7 2.0 1.5 1.5
DM 76.8 844 776 809
24 3.0 2.5 2.7
ASR 82.3 89.6 86.0 87.7
1.9 2.4 2:1 1.7
PROS 60.5 69.5 64.9 67.1
3.2 4.1 3.3 3.2

Table 5.3: Performance of the three feature groups in experiments by MBL and RI on the
TASK-RELATED ACT component with optimised class labelling. The highest score is
set in boldface. The italicised top rows in the sections show the scores of learning on all
features.

isolation, whereas RI is trained to classify the task-related act combined with the backward-
pointing problem component. The employed algorithm settings are the ones optimised on
all features. Table 5.3 presents the outcomes of feature partitioning. For better displaying
the scores obtained using all features are also reproduced in this table, corresponding to
the top row of each section.

We see that the trends are similar for both learners across these scores. An important
outcome is that none of the isolated information sources is able to produce the same
or better classification results than when all features are used; this implies a number of
findings. It suggests that our approach requires no explicit feature selection (which is
usually computationally expensive), working equally well when all available information
is presented to the learners. We also find evidence that none of the information sources is
eligible in itself to produce the best results on classifying TRAs. The ASR group attains
the highest scores, suggesting that information encoded by the speech recogniser’s output
is most important for learning the task-related act of the user input. The ASR group’s
F-score is 3.7 points lower for MBL and 2.8 points lower for RI than that on all features.
These differences are significant (MBL: t =9.4, p <0.01, RI: t =3.3, p <0.01).

In Section 2.3.1 we noted that lexical and (micro-)syntactic cues are widely used for
the automatic detection of dialogue acts in speech. We hypothesised that the ASR’s
recognition lattice is capable of encoding and providing part of this information in a



Chapter 5: Partitioning Information 82

shallow way that does not require possibly expensive computation of those cues. Since
the ASR group is used with almost the same success for interpreting simple task-related
acts as all the features together, we might assume that our results support this hypothesis
(recall that most of our task-related acts correspond to aspects of traditional dialogue
acts, cf. Sections 2.2.1 and 4.2.1).

Prosodic information contributes least to detecting the task-related act of the input,
whereas the impact of the information coming from the dialogue manager is between
those of the ASR and the PROS groups. Note that the features in the DM group do not
encode the user’s utterance at all; it is surprising that these features are more predic-
tive of the task-related acts in the user input than prosodic attributes of the user utter-
ance. Even if prosody contributes least to the identification of TRAs, the scores attained
by this feature group are in line with those of previous studies of [Jurafsky et al. 1996,
Reithinger et al. 1996, Samuel et al. 1998b, Stolcke et al. 1998a, Shriberg et al. 2001] are
able to utilise prosodic information for detecting (more fine-grained) dialogue acts to a
roughly similar extent.

5.2.3 Detailed analysis

In order to gain more insight into the extent to which the different TRA types are classified,
in Table 5.4 we display the scores calculated for each TRA type. The figures in the table
are obtained in the highest-scoring class partitioning experiment for both MBL (TRA) and
RI (TRA_BWD PR). Compared to those of the complex experiment (Table 4.13), we observe
that in general the scores improve. Note that for identifying a slot-filling act both learners,
but especially R1, benefit substantially from optimising the class label: MBL improves from
a 95.3 F-score (given in the first line of the middle section in Table 4.13) to 97.3 (t =7.5,
p <0.01), and RI from a 88.2 F-score (given in the first line of the bottom section in Table
4.13) to 96.4 (t =3.5, p <0.01). This means that our SI module — optimised with respect
to algorithm settings and class labels — can detect rather extensively whether the user is
supplying slot-filling information in the input.

We observe that both learners classify affirmative answers (Y) to a significantly better
extent than negative answers (N) (MBL: ¢ =5.1, p <0.01, RI: ¢t =2.4, p <0.05), which was
also the case in the complex experiment, signalling that in our data it is easier to detect
affirmative input than negative input. Note that the lower F-score of N is the result of
a much lower recall on this class than on Y, indicating that the algorithms often fail to
guess N. The high precision scores show at the same time that retrieving N is done rather
accurately. This tendency requires further investigation since it is likely to have serious
consequences for the detection and correction of errors that emerge during interacting with
the given SDS.

The only TRA type for by MBL for which class partitioning yields a lower result than
in the complex experiment is acceptance. Acceptance turns out to be the hardest TRA
phenomenon to learn anyway, in line with the findings of the previous chapter. This is
likely to be due to the arbitrariness of whether a user is inclined to ignore system error;
furthermore, the sparseness of A in the data causes highly divergent scores per fold (cf.
the large standard deviations).

For classifying non-standard user input (NSTD) the opposite holds: MBL benefits to a



83

5.2 Task-related acts

Algorithm TRA label Metric
pre rec F
MBL S 97.3 974 973
0.7 1.4 0.6
Y 95.1 929 93.9
3.6 4.3 3.5
N 97.7 85.3 88.3
4.2 25 24
A 40.7 14.7 204
23.0 9.8 11.7
NSTD 76.9 706 70.7
173 253 196
RI S 95.6 97.2 96.4
L6 0.9 0.9
Y 89.4 915 904
5.0 24 30
N 90.1 86.5 88.2
3.4 4.1 2.8
A 43.2 20.3 273
19.5 11.3 128
NSTD 77.7 449 54.8
30.8 231 232

Table 5.4: MBL and RI performance on interpreting TASK-RELATED ACT TYPES,
averaged over 10-fold CV experiment in terms of precision, recall, and F-score. The scores
are obtained with the most optimal class label composition: MBL: TRA, RI: TRA_BWD PR.

large extent from class partitioning, since the F-score of learning this TRA type improves
from 46.7 to 70.7. It is an intriguing issue what exactly effectuates the decrease of A and
the increase of NSTD in class partitioning. Below we list and discuss the most interesting
rules induced by RI on these two classes. Note that the class label includes two components
since the optimal class co-learnt by RI is TRA_BWD PR. Naturally, the rules induced on
our data probably do not generalise, and, as emphasised earlier, the rule set is presented
to supply information about the internal mechanisms, especially the use of feature types,
in RI, thus not for the purpose of describing general human-machine interaction types.

1
2
3

If ‘'so’ € sysBOW A ‘and’ € sysBOW A topconf < 559.76 then A;Y_PROB. (20/15)
If ‘yes’ € BOW A RMSstdev > 1040 A ‘and’ € sysBOW then A;Y_PROB. (7/2)
If ‘so’ € sysBOW A ‘between’ € sysBOW A FOmax < 223 A ‘correct’” € BOW (6/1)

then A;Y_PROB.

If ‘to. PP’ € prev sysBOW A ‘to PP’ € sysBOW A ‘o'clock’ € sysBOW A  (24/10)

topconfpernode > 119.247 then A;S_PROB.

If ‘from’ € prev sysBOW A ‘to_ PP’ € prev sysBOW A ‘o’clock’” € sysBOW A (12/1)
RMSmean > 266 A FOmin > 75 then A;S_PROB.



Chapter 5: Partitioning Information 84

The first rule set displays rules induced for classes containing acceptance. We see that
the rules cover a relatively small number of examples with quite a few counter-examples.
Conditions are made on particular values of lexical and prosodic context, making the rules
highly situation-specific. In cases when acceptance co-occurs with affirmative input (rules
1-3), lexical conditions are made on items present in the current user BOW such as ‘yes’
and ‘correct’, which are (not necessarily) present in the recognition hypothesis, on items
present in the current system BOW (‘so’; dus, always cuing an explicit verification prompt),
and, interestingly, on prosodic features (loudness, pitch). The latter may indicate that it
is possible to pinpoint particular prosodic values in an utterance containing acceptance.

In cases when acceptance co-occurs with slot-filling (rules 4-5), conditions are made
on items present in both the current and the previous system BOW (e.g., indicated by
‘to_PP’, i.e., the preposition ‘to’; naar), indicating repeated system prompts, as well as
on prosodic and confidence-related features of the input (loudness, normalised highest
confidence score).

The second rule set displays selected rules induced on the NSTD task-related act type.
We see that users give non-standard input both when they react to a previous problem
(class label: NSTD_PROB, rules 3-4), and when communication is unproblematic (class
label: NSTD_OK, rules 1-2). Examples corresponding to the latter case can be characterised
by no pauses in the input (cf. rule 1 — the input is probably empty, since all non-empty
word graphs contain pauses), as well as by interaction-specific conditions such as the
particular station slot value ‘groningen’ in rule 2 (probably because supplying a station
name at that point of the dialogue was not appropriate).

1 If ‘#pause#’ ¢ BOW then NSTD_OK. (8/1)

2 If RMSmaxpos < 0.13 A ‘groningen’ ¢ prev BOW then NSTD_OK. (7/5)

3 If dur < 1.28 then NSTD_PROB. (27/16)

4 TIfdur < 1.28 A FOmin < 74 A prompt ¢t # Q_DTH;I_VA A prompt t # E_H then (17/5)
NSTD_PROB.

RI learns from the data that non-standard answers in reaction to system error may
consist of a very short (or, possibly, empty) input, lasting for 1.28 seconds or less (rule 3), or
of a short answer in combination with a particular pitch height and dialogue situation, e.g.,
where the most recent prompt is neither asking for travel time while implicitly verifying
departure and arrival stations, nor an explicit verification of hour (rule 4). The rules
again cover a relatively low number of examples in the data, and have relatively many
counter-examples.

5.3 Information units

5.3.1 Class partitioning

BEST SCORES The experimental results of class partitioning for the slot component are
shown in Table 5.5. The most important outcome of this matrix of experiments is that
the best scores attained by the two classifiers do not significantly differ from each other.



85

5.3 Information units

Algorithm  Class label Metric
acc pre rec F
baseline 73.8 87.8 699 77.8
2.6 2.0 32 2:2
MBL SLOT 82.3 89.7 839 86.7
2.5 2.2 3:1 2.0
TRA_SLOT 83.5 90.7 84.9 87.7
22 1.8 2.6 2.0
SLOT_FWD PR 81.5 90.5 81.2 85.5
2.0 0.9 3.8 2.3
SLOT_BWD PR 82.1 90.1 83.2 86.5
1.8 1.2 2.8 1.8
TRA_SLOT_FWD PR 80.9 90.0 80.6 85.0
156 .1 3.0 1.8
TRA_SLOT_BWD PR 82.1 89.9 835 86.6
2.4 1.8 3.6 2:3
SLOT_FWD PR_BWD PR 79.2 885 79.0 834
2.1 1.8 4.0 2.8
TRA_SLOT_-FWD PR_BWD PR 79.1 88.4 79.0 83.4
2.8 2.5 4.0 3.1
RI SLOT 82.6 88.4 82.9 85.5
24 4.4 3.8 2.8
TRA_SLOT 80.7 80.9 83.2 82.0
2.6 4.0 2L 3.2
SLOT_FWD PR 779 858 T77.1 80.9
1.7 7.0 3.4 2.6
SLOT_BWD PR 80.9 88.1 80.7 84.2
1.5 8.1 2.4 1.8
TRA_SLOT_FWD PR 76.8 81.5 T8 793
2.8 T 4.0 310
TRA_SLOT_BWD PR 78.7 825 80.0 81.1
2.7 Bl 32 3.3
SLOT_FWD PR_.BWD PR 749 80.3 76.6 77.7
2.3 76 3 2.3
TRA_SLOT_FWD PR_BWD PR 73.8 82.7 707 5.7
3.0 7.9 6.4 3.6

Table 5.5: Scores with standard deviation produced by MBL and RI on shallow interpre-
tation of the SLOT component, averaged over 10-fold CV experiments: accuracy, and
proportionally weighted precision, recall and F-score measured on the classification of slot
type. The highest score is set in boldface. The italicised bottom lines show the results of
the complex experiment. Scores of the prompt baseline are provided in the top row.



Chapter 5: Partitioning Information 86

MBL learns the slot component best when combined with the TRA component, yielding
a 87.7 F-score. The improvement of MBL over the F-score of the complex experiment
is statistically significant (t =5.2, p <0.01). It seems intuitive that co-learning the task-
related act type helps in classifying the filled slots (but not necessarily the other way round,
see the outcomes in the previous section), since these two components license each other.
However, RI classifies the slot component best in isolation (85.5 F-score), again improving
considerably over its complex experimental score. RI's best score is also significantly better
than its second-best score (co-learning of slots and backward-pointing problems). In terms
of F-score, MBL produces a 26% error reduction, whereas RI achieves a 40% error reduction
on the SLOT task compared to the complex experiment.

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS It can be observed that
MBL produces no statistically different scores between co-learning three or four components
in case one of the components is the forward-pointing problem (cf. the experiments on
TRA_SLOT_FWD PR, SLOT_FWD PR_BWD PR, and the complex learning), while ER figures
are at a variance in these experiments. Only the one not including the FWD PR is capable
of outperforming the complex experiment. Note that this cannot be inferred from the
AER or IER of this task, since the ERs are not particularly lower than those of the three-
component experiments. In experiments with RI the scores produced by co-learning three
(or four) components in which one of the components is the forward-pointing problem
produce some significant differences between each other, but none of these outperform the
prompt baseline.

The fact that MBL learns the slot component best in combination is interesting since
in the combined experiment there are more than twice as many class labels (63) as in
the experiment where slots are classified in isolation (30), and also because the ERs of
the better experiment are higher. The difference in F-score between the scores of these
two experiments is significant (¢ =2.9, p <0.05). Another remarkable result is that RI’s
best score (on the isolated component) does not differ significantly from the result on
co-learning the slot and the backward-pointing problem component (84.2 F-score), which
again shows higher entropy ratios. This may indicate that the presence or absence of the
act of signalling awareness of communication problems might contribute to detecting the
kind of slots the user is filling; an explanation for this can be that when users become
aware of problems, they often do not fill the demanded slots (i.e., the classifier has to
predict voID), and constellations of vOID and BWD PR may appear in distinctive patterns
in the data.

For the slot component it is not the case that learning more than two components
aggravates the scores, considering e.g. that the result of SLOT_BWD PR of MBL is practically
the same as that of TRA_SLOT_BWD PR, or that the result of TRA_SLOT of RI is practically
the same as that of TRA_SLOT_BWD PR, and so on. In general, the experiments do not show
a clear trend about how class partitioning determines which class combination yields the
best scores. The number of co-learnt components, the number of class labels or entropy
in the task, and the presence of the forward-pointing problem component seem to affect
performance in an intertwined way.



87 5.3 Information units

Algorithm  Optimal class label  Feature group Metric
acc pre rec F
MBL TRA_SLOT ALL 83.5  90.7 84.9 87.7
2.2 1.8 2.6 2.0
DM 71.0 786 740 761
3.6 4.5 31 27
ASR 78.4 86.2 79.6 82.7
2.1 1.9 2.2 1.6
PROS 51.1 48.1 49.7 489
3.3 3.4 3.9 3.5
RI SLOT ALL 82.6 884 829 855
2.4 44 388 28
DM 71.0 87.8 654 746
4.8 2.9 8.4 5.6
ASR 76.8 85.9 77.2 81.2
24 4.4 3.9 3.2
PROS 51.4 599 389 45.0
5.0 9.1 11.9 8.2

Table 5.6: Performance of the three feature groups in experiments by MBL and RI on the
SLOT component with optimised class labelling. The highest score is set in boldface. The
italicised top rows in the sections show the scores of learning on all features.

CONCLUSION The outcomes of the class partitioning experiments on learning the slot com-
ponent support our preliminary findings that class partitioning has a substantial, positive
influence on the scores attained by our classifiers, resulting in eliminating performance
differences between MBL and RI, since the best scores obtained by the two classifiers show
practically identical performance. Again, the scores attained by RI in this experimental
matrix are overall somewhat lower than those of MBL.

Another remarkable outcome of the experiments, also in line with the findings on
classifying TRAs, is that a task’s entropy does not seem to determine performance; the
lowest ERs in the matrix are associated with experiments that are not the ones attaining
the best score by any of the classifiers. At the same time, the ERs assigned to two-
component experiments are roughly the same, but there are significant differences in the
results of these experiments.

5.3.2 Feature partitioning

Table 5.6 presents the outcomes of the feature partitioning experiments conducted for
classifying slots. Remarkably, the same trends can be observed here as in the feature
partitioning experiments for task-related acts. In particular, both learners attain lower
scores when some of the feature groups are removed from the experiment. Again the ASR
group produces the highest scores, coming closest to the result of the experiment utilising



Chapter 5: Partitioning Information 88

all features (marked in italics), but the difference between the F-score of these experiments
remains statistically significant (MBL: ¢ =5.5, p <0.01, RI: t =4.2, p <0.01). This means
that information encoded by the speech recogniser’s output is most useful for learning the
slot type treated in the user input. The ASR group is the one containing most features,
which might imply that it contains the most or best information as well. However, we
believe that its informativity is much more related to its content than to its quantity: the
large number of features in this group is due to a lot of redundancy, as well as to the
binarisation of the features (cf. Section 4.3.2), whereas e.g. [Rotaru and Litman 2003]
find that performance improves in case the number of relevant features is increased.

Information encoded by the DM group contributes less to detecting what slot(s) the
user is filling in a turn, which is somewhat surprising given the correlations described in
Section 4.3.1. As in the case of task-related acts, in these experiments prosody contributes
least to the detection of slots in the user input. We believe that the interaction between
features in different feature groups is very important for learning the slot component, for
which we also found evidence in the rule sets presented above, where conditions are made
on features from all three sources.

5.3.3 Detailed analysis

To provide details about the extent to which different slot types are classified by MBL and
RI, we display these scores in Table 5.7.

Compared to the complex experiment (Table 4.14), a general observation is that all
scores improve through class partitioning. Both classifiers produce the largest improve-
ment on the day, time of day, hour, and arrival value slot types (D, T, H, @, respectively).
For example, classification of the D slot improves from 77.5 to 81.3 F-score for MBL, and
from 63.6 to 77.7 F-score for RI; that of H from 74.0 (MBL), respectively 58.1 (RI) to 85.2,
respectively 80.0.

Below we present rules with the largest coverages and relatively small number of
counter-examples induced by RI on these labels.

1 If ‘when’ € sysBOW A testringlength < 4 A tempo > 0.977199 A ‘o'clock’ ¢  (171/23)

BOW then b.
2 If ‘when’ € sysBOW A topconfpernode > 136.334 A ‘to PP’ ¢ BOW then D. (137/5)
3 If ‘when’ € sysBOW A topconf < 886.4 then D. (186/29)
4 If ‘time’ € sysBOW A ‘o’clock’” € BOW then H. (139/16)
5 If ‘arrive’ € BOW A ‘to PP’ € BOW A dur > 2.81 then HQ. (38/6)
6 If prompt t = Q_DTH;I_VA A ‘afternoon’ € BOW then DT. (6/0)
7 If ‘when’ € sysBOW A ‘o'clock’ € BOW A ‘tomorrow morning’ € BOW then (12/3)

DTH.

User turns are classified as filling the D slot if the system prompt contains ‘when’ and
the most confident lattice path of the user reply consists of four or less words, none of
them being ‘o’clock’ (which is an indicator of H rather than D), uttered with a speech
rate of 0.97 syllables per second or more (rule 1); the latter indicates that slot-filling is
often performed by a short (probably elliptical) sentence. Likewise, the system prompt



89

5.3 Information units

Algorithm  Slot label Metric
pre rec F
MBL % 95.3 94.2 94.7
1.6 2.9 1.7
A 93.0 925 92.7
2.6 3.2 2.6
D 86.2 Tr.d &l.3
4.6 BT 4.0
T 68.1 31.6 42.1
12.00 101 7108
H 86.0 84.5 85.2
3.9 4.6 4.0
@ 924 66.1 75.9
8.4 13.7 9.7
VOID 92.8 949 938
1.1 1.5 03¢
RI \% 94.1 89.6 91.7
31 52 2.5
A 93.4 88.8 91.0
2.8 3:56 2.6
D 83.5 81 Ta
8.1 5.0 4.5
T 72.7 60.6 64.2
11,7 181 14.2
H 80.6 80.0 80.0
5.6 7.8 5.0
@ 7.3 T4.6 733
16.5 18.7 114
VOID 87.7 94.8 91.0
5.5 2.9 2.7

Table 5.7: MBL and RI performance on interpreting SLOT TYPES, averaged over 10-fold
CV experiment in terms of precision, recall, and F-score. The scores are obtained with
the most optimal class label composition: MBL: TRA_SLOT, RI: SLOT.



Chapter 5: Partitioning Information 90

containing ‘when’, whereas the user reply not containing the preposition ‘to’, and the
normalised top confidence being greater or equal to 136.33 refers to the D slot (rule 2),
indicating that after a ‘when’ prompt users often (repeatedly) provide the destination
station name, since this is the stage where they can first infer from the implicit verification
(which is always present in a ‘when’ prompt) that the system misrecognised their previous
input. Rule 3 illustrates classification of the D slot in case the system prompt contains
‘when’ and the highest confidence of the recognised user reply is maximally 886.4.

Rule 4 aims at classifying user turns as filling the H slot with the simplest approach:
in case the system prompt contains the word ‘time’ and the user answer contains the
word ‘o’clock’. Rule 5 is an example of classifying the arrival hour conditioning on the
prosodic duration feature as well as on the presence of the word ‘arrive’ and the absence
of the preposition ‘to’ in the answer’s recognition lattice, the latter excluding potential
examples that would refer to arrival station. In six cases with no counter-examples rule
6 covers user input as filling day and time of day if the system asks for travel time while
implicitly verifying departure and arrival stations, and the word graph of the user turn
contains ‘afternoon’, i.e., a particular slot value, while no conditioning is made on potential
references to the day slot. The last rule illustrates classifying the combined label DTH in
case the system asked a ‘when’ prompt and the user answer contained both the words
‘tomorrow morning’ (i.e., morgenochtend) and ‘o’clock’.

It is also interesting to see some of the rules that cover non-slot input, i.e., the slots
marked with the voID label. Below we show some of the general rules concerning this slot

type.

1 Ifdur < 1.79 A tempo < 0.653595 then voID. (705/14)
If ‘connection’ € sysBOW A topconf < 779.72 then voID. (251/3)

3 If ‘to PP’ & sysBOW A ‘which’ ¢ sysBOW A ‘that’ € BOW A topconf < (66/0)
692.91 then voOID.

Again we see that conditions are made on features from all three feature groups: rule 1
conditions on prosodic features, whereas rule 2 and 3 on features from the DM and the ASR
group. It is remarkable that the absence of slot-filling activity is characterised sufficiently
by the absence of words that would refer to slot-prompting (rule 3), indicating a yes/no
question (e.g., about the connection, as in rule 2). The user answer of VOID input type is
best characterised by its tempo (probably due to answers to yes/no questions being short),
recognition confidences, and the pronoun ‘that’ (i.e., dat), frequently employed in user’s
phrases such as ‘No, that is not necessary.’, respectively ‘Yes, that’s right.” in answers to
yes/no questions.

5.4 Forward-pointing problems

5.4.1 Class partitioning

The figures in Table 5.8 show the results obtained in classifying forward-pointing problems
with class partitioning.



91 5.4 Forward-pointing problems

BEST SCORES A remarkable outcome of these experiments is that both MBL and RI produce
the highest F-score by the same task design: co-learning of forward-pointing problems and
task-related acts. RI is able to outperform MBL in this experiment, although not signifi-
cantly. Remarkably, the best score attained by MBL is not enough to perform significantly
better than the prompt baseline, whereas that of RI shows a significant improvement over
it (t =4.0, p <0.01). The scores are overall low. Despite the high standard deviations,
there is a significant improvement with respect to the complex experiment both by MBL
(t =4.3, p <0.01) and RI (t =3.0, p <0.05), an error reduction of 9% by MBL and 16% by
RI.

Even though the baseline F-score and the complex experiment’s F-score are practically
identical, there is improvement by MBL only on one of them. This is due to the nature of the
paired t -test that penalises for inconsistent differences between partitions of experiments.
The same applies for the case when RI has a statistically smaller improvement of over its
complex experiment than MBL, despite RI producing a 7-point improvement as opposed
to the 4-point improvement of MBL.

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS It is surprising that the
scores the classifiers produce on the isolated task are lower than those in the co-learning
experiments, even though the ERs are the highest for the isolated task. In particular,
rule induction is generally supposed to perform better when it has to classify fewer classes
but our empirical results do not comply with this expectation. Due to the high standard
deviations (which at the same time indicate that classification is very much dependent on
the data sets for the FWD PR component), the differences between the isolated and the
best experiment are statistically insignificant.

Again no direct correlation can be observed between the entropy figures and learner
performance. In particular, the experiments with the smallest ERs do not produce better
results than those with higher ERs. We see no trend that would suggest that the number
of components to learn influences good or bad performance. In general, other than for
the best scores, there are no significant differences between the scores in this experimental
matrix.

CoNCLUSION The outcome of class partitioning on the forward-pointing problem compo-
nent is in line with those of the previous two components, producing nearly identical top
scores for MBL and RI. Both classifiers significantly improve with respect to the complex
experiment, but only RI with respect to the baseline.

A remarkable finding of this matrix of experiments is that it is beneficial to learn
forward-pointing problems together with task-related acts. Since this has also been found
earlier (in Section 5.2.1), we assume that TRAs show a consistent patterning with the
presence of forward-pointing problems. In Section 5.5 we investigate this issue in more
detail.

5.4.2 Feature partitioning

Table 5.9 displays the results obtained on learning the forward-pointing problem based
on isolated feature groups. The feature partitioning experiments on the forward-pointing



Chapter 5: Partitioning Information 92

Algorithm  Class label Metric
acc pre rec F
baseline 648 61.3 506 553
24 3.8 3.3 2.7
MBL FWD PR 68.1 67.7 49.6 57.0
2.6 4.9 7.0 5D
TRA_FWD PR 68.6 67.1 53.5 59.4
2.6 4.4 5.4 4.1
SLOT_FWD PR 07.8 654 BlL7 &7
34 4.5 71 5.5
FWD PR_BWD PR 67.6 656 52.4 58.0
2.0 4.9 5.3 4.3
TRA_SLOT_FWD PR 67.5 662 504 57.1
2.8 4.2 4.9 4.3
TRA_FWD PR_BWD PR 68.5 67.0 53.0 59.1
2.6 4.1 4.7 4.0
SLOT_FWD PR_BWD PR 65.7 63.4 48.1 54.6

9 28 54 #9
TRA_SLOT.FWD PR.BWD PR | 66.7 654 483 55.4
25 39 45 38

RI FWD PR 64.8 63.9 54.9 548
B2 8.0 23.4 115

TRA_FWD PR 65.6 59.8 68.5 62.6
3.0 5:5 13.4 5.2

SLOT_FWD PR 66.4 65.0 50.2 56.2
2.9 2:3 730 3T

FWD PR_.BWD PR 67.8 673 50,5 BT2
2. 5.3 7.6 4.8

TRA_SLOT_FWD PR 66.4 64.3 50.3 55.7
3.0 4.5 1.5 0.8

TRA_FWD PR_BWD PR 66.3 63.2 552 57.8
1.9 4.8 12.4 61

SLOT_FWD PR_BWD PR 66.1 64.1 50.8 55.5

1.4 4.4 9.9 6.1
TRA_SLOT-FWD PR_BWD PR 66.2 64.1 50.6 55.6
2.5 4.0 11.8 7.0

Table 5.8: Scores with standard deviation produced by MBL and RI on shallow interpre-
tation of the FORWARD-POINTING PROBLEM component, averaged over 10-fold
CV experiments: accuracy, and proportionally weighted precision, recall and F-score mea-
sured on the classification of slot type. The highest score is set in boldface. The italicised
bottom lines show the results of the complex experiment. Scores of the prompt baseline
are provided in the top row.



93 5.4 Forward-pointing problems

Algorithm  Optimal class label — Feature group Metric
ace pre rec F
MBL TRA_FWD PR ALL 68.6 671 53.5 594
26 44 Hd 4
DM 66.8 62.5 57.4 59.8
3.0 4.3 4.7 4.1
ASR 64.5 61.1 482 53.6
1.8 2.8 73 5.2
PROS 58.2 51.5 53.8 525
2.3 1.5 4.3 2.2
RI TRA_FWD PR ALL 65.6 59.8 68.5 62.6
3.0 5.8 184 5.2
DM 62.8 56.6 682 59.8
3.5 6.4 18.8 9.7
ASR 65.0 57.9 72.1 63.5
2.0 3.9 12:2 4.7
PROS 509 46.2 819 57.7
4.7 37 220 8.4

Table 5.9: Performance of the three feature groups in experiments by MBL and RI on the
FORWARD-POINTING PROBLEM component with optimised class labelling. The
highest score is set in boldface. The italicised top rows in the sections show the scores of
learning on all features.

problem component diverge at some points from the trend observed so far (i.e., that the
ASR group contributes most to classification).

It turns out that MBL outperforms the experiment utilising all features when it uses the
isolated DM group, although statistically this difference is not significant. Remarkably,
although RI also attains the exact same score on the isolated DM group, this is not RI's
best score on the forward-pointing problem component: RI utilises the ASR group to the
highest extent in the feature partitioning experiments, since this group outperforms the
experiment on all features (although not significantly).

This means that the two classifiers make use of the ASR group to a different extent
in predicting FWD PR: MBL benefits less from the ASR group than RI does, attaining a
lower score in that experiment than on all the features. Comparing the highest scores
obtained by the two classifiers (i.e., the F-score on the isolated DM feature group for MBL
and the F-score on the isolated DM feature group for RI), we again find that these scores
are statistically indistinguishable.

It can be established that the improvements are the result of an increased recall with
respect to the experiments with the total feature vector. Namely, the recall of MBL arises
from 53.5% to 57.4%, and that of RI from 68.5% to 72.1%. At the same time, the precision
scores drop. Looking at the classification logs we indeed find that in the experiments that
use the isolated feature groups there is less misclassification of the PROB cases of the



Chapter 5: Partitioning Information 94

FWD PR component, and more misclassification of the oK cases, leading to the modified
precision and recall figures.

5.4.3 Detailed analysis

When looking at the induced rule sets using the DM group, we see that on all but one
data set the class left as default in the rule set is $_PROB, indicating that it is best for
RI's accuracy to leave this frequent class as majority class. On the remaining class labels
that contain the PROB label (e.g.. A:S_PROB, N;S_PROB, N_PROB) both the coverage and
the precision of the rules are low. In order to examine the conditions more thoroughly, we
run an experiment on the full data set with r1. Below we reproduce the induced rule set.

1 If‘from’ € sysBOW A prompt t —3 = EMPTY then S_PROB. (493/300)
2 If 'to PP’ € sysBOW A prompt t = Q_vA then S_PROB. (53/45)
3 If ‘to_PP’ € prev sysBOW A ‘again’ € sysBOW then s_0K. (95/44)
4  If‘to PP’ € prev sysBOW A ‘when’ € sysBOW A ‘the’ € sysBOW then s_oK. (52/42)
5 If ‘connection’ € sysBOW then N_OK. (489/308)
6 If 'so’ € sysBOW A ‘and’ & sysBOW then N_OK. (193/146)
7 If ‘whether’ € sysBOW then v_ok. (44/40)
8 Else A:;Y_PROB. (3/1391)

There are 8 rules in the obtained rule set. The default class is sS_PROB. We see that
only rule 1 and 2 contain PROB cases. It is clear that both rules 1 and 2 refer to the same
dialogue context. Rule 1 predicts communication problems in case the system asks about
the departure station, which typically happens in the very first system turn or in case
the prompt is repeated. Note that the second condition, made on the dialogue history,
also indicates this: the third prompt is empty, meaning that only two prompts have been
given up to that point of the interaction. Rule 2 predicts communication problems in
case the system asks about the destination station (first condition) and the departure
station simultaneously (second condition). Although the precision of these two rules is
not high. they reveal that the opening prompt is a major problem source in our dialogues.
The finding that MBL utilises the isolated DM group optimally in classifying forward-
pointing problems relates to the frequency-based observations in Section 4.3.1 that already
suggested that some system prompts correlate strongly with forward-pointing problems.
In accordance with the findings in [Lendvai and Maruster 2003], these results suggest that
the prompt design of the OVIS system might be the cause of certain communication errors.

In order to see what information in the ASR features contributes to the relatively high
classification scores, we examine the rule sets induced by RI on the isolated ASR group.
The rules show most conditioning on the length of the most confident string: e.g.. if this
is relatively long (i.e., consists of nine or more words), or, if the top confidence score is
above a certain value, then the input is predicted to cause a problem. Interestingly, a lot
of conditions are made on the presence of the words ‘no’ and ‘not’, indicating that turns
in which users signal a problem are often misrecognised again in the next turn.

Since so far we have looked at rules in which FWD PR is co-learnt with TRA, it is also
interesting to see what rules are induced when the forward-pointing problem component




95 5.4 Forward-pointing problems

is learnt in isolation. In the isolated experiment the induced rule sets are very small,
consisting of 4-7 rules. The optimal parameter setting automatically found by parameter
search in most data sets (8 partitions) is to induce rules for the majority class (i.e., OK,
cf. Section 4.2.3), leaving the minority class PROB as the default class on which no rules
are induced. In the remaining two partitions the following rules are induced for the PrOB
class:

Partition 2:

1 If‘to PP € sysBOW A BF > 3 A ‘'I' € BOW A ‘again’ & prev sysBOW then (173/35)
PROB.

2 If ‘connection’ & sysBOW A BF > 2 A ‘one’ & prev sysBOW A ‘to PP’ € (114/25)
BOW A RMSmean < 285 then PROB.

3 If testringlength > 4 A ‘from’ € prev sysBOW A ‘again’ ¢ sysBOW A tempo (64/16)
< 2.05761 then PROB.

4 If ‘connection’ & sysBOW A ‘from’ € sysBOW A ‘yet’ € prev sysBOW A (55/8)
‘#pause#’ € prev BOW A topconf < 760.83 then PROB.

5 If topconf > 775.47 A BF > 1 A ‘again’ € sysBOW A ‘want” € BOW A ‘from’ (51/11)
€ prev sysBOW A RMSstdev < 695 then PROB.

6 Else ok. (1805/989)

Partition 5:

1 If topconf > 781.91 A BF > 2 A prompt t —3 = ‘#empty#’ A RMSmax < (65/6)
5248 A FOmax < 177 A ‘good morning’ & prev sysBOW then pRrOB.

2 If ‘to PP' € sysBOW A BF > 3 A ‘but’ € sysBOW A FOmax > 236 A (88/10)
RMSmean < 285 then PROB.

3 If testringlength > 4 A ‘yvet’ & prev sysBOW A topconfpernode < 120.439 A (44/5)

‘from’ € prev sysBOW A RMSstdev > 564 A FOmax > 245 then PROB.

4 If topeconf > 785.33 A BF > 2 A ‘me’ ¢ prev sysBOW A ‘to_.PP’ € BOW then (235/110)
PROB.

5 If‘to PP’ € sysBOW A topconfpernode < 137.984 A ‘but’ € sysBOW A ‘where’ (108/43)
€ sysBOW then PROB.

6 If ‘connection’ € sysBOW A tcpernodediff > 0.008469 A ‘sorry’ & prev sys- (61/15)
BOW A tepernodediff > 0.132225 A topconfpernode > 115.57 then PROB.

7 If ‘connection’ & sysBOW A ‘yes’ € BOW A ‘but’ € sysBOW A ‘o’clock’ € (155/145)
BOW then PROB.

8 Else oK. (1485/584)

We see that the rules refer to highly specific and complex dialogue situations, informing
about a number of subtilities. For example, the first rule induced on Partition 2 describes
the situation when the system asks the user to repeat the input concerning the destination
station. The system asks this prompt for the first time (i.e., ‘could you say again’ is not
in the previous system BOW). The branching factor of the user input is high, probably
also contributing to incorrect processing of the user’s reply.




Chapter 5: Partitioning Information 96

It can be established from the rule sets that RI makes extensive use of features that are
numeric (i.e., confidence-based features as well as prosodic features), probably because it
can efficiently separate classes on the basis of numeric splits. Lexical elements are also
widely used in the conditions, both from the system and the user BOW.

5.5 Backward-pointing problems

In the first chapter of our study we noted that in case the dialogue system assumes it is
unable to correctly process the user input, it typically repeats its prompt. A repeated
prompt thus always means that there is a communication problem between system and
user and the system is aware of this. Naturally, our goal is to discover all other commu-
nication problems (as well), not only the ones that are signalled by the system anyway.
We computed what the performance of a ‘system-knows’ strategy is in problem aware-
ness. This baseline strategy is to always assume a backward-pointing problem (i.e., the
user becomes aware of a communication problem) when the system repeats its previous
prompt (972 times in the corpus). However, the scores of this baseline are lower than those
of the prompt baseline: although the precision of this strategy is 100%, its recall is only
60.2%, yielding a 75.1 F-score and 82.8% accuracy. Although the system-knows baseline
is interesting from the point of view of error reduction with respect to the given SDS,
from the point of view of the improvement of classification performance of our learners it
is more informative to compare those to the (higher) prompt baseline.

5.5.1 Class partitioning

The class partitioning experimental matrix on backward-pointing problems is displayed in
Table 5.10.

BEST sCORES In the performance of MBL there is no significant difference between the
best score produced in co-learning TRA_SLOT_BWD PR and the score of TRA_BWD PR. In
the performance of RI there are two identical best scores produced in co-learning TRA_BWD
PR and BWD PR in isolation. This is a unique result since in no other class partitioning
experiment were two identically highest scores produced. Both learners improve over
the complex experiment in their best scores significantly (MBL: t =2.7, p <0.01, RI:
t =7.3, p <0.01), as well as over the baseline. With the best scores both learners obtain
a substantial error reduction on the F-score of the complex experiment: the reduction is
24% for MBL, and 46% for RI.

The most noteworthy outcome of the class partitioning experiments on the backward-
pointing problem component is that both classifiers produce scores that are highest, or
insignificantly different from the highest, by co-learning the BWD PR with the TRA com-
ponent. This is remarkable, since the situation was the same in the class partitioning
experiments of the task-related act component (cf. Table 5.2).

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS The results of combina-
tions of three components are somewhat lower for RI than the results of combinations of



97 5.5 Backward-pointing problems

Algorithm  Class label Metric
acc pre rec F
baseline 86.2 96.2 70.7 81.3
2.3 1.9 BLT 3.9
MBL BWD PR 89.9 950 80.7 87.2
1.4 1.3 3.3 2:3
TRA_BWD PR 91.5 943 854 89.7
0.8 17 22 1.4
SLOT_BWD PR 91.5 925 874 89.9
1.2 2:3 2.2 15
FWD PR_BWD PR 90.0 94.0 82.1 87.6
1l 2.5 3.9 1.8
TRA_SLOT_BWD PR 92.3 93.7 88.1 90.8
0.9 2.5 2l 1.2
TRA_FWD PR_BWD PR 90.4 95.2 81.8 87.9
i ) 2.4 3.9 2.1
SLOT_FWD PR_BWD PR 89.6 93.5 81.5 87.0

1.6 2.9 4.5 2.7
TRA_.SLOT_-FWD PR_.BWD PR | 90.2 94.0 82.3 87.8
2.5 3.5 4.4 3.8

RI BWD PR 90.5 92.4 85.1 88.5
1.4 3.5 3.9 1.8

TRA_BWD PR 90.5 92.1 85.1 88.5
sl 1.5 2.6 1.6

SLOT_BWD PR 88.9 91.0 826 86.4
2:5 3.9 5:0 3.2

FWD PR_BWD PR 89.2 948 794 86.3
0.9 2.6 3.4 1.6

TRA_SLOT_BWD PR 87.0 899 788 839
2.0 3.9 3.4 2.5

TRA_FWD PR_BWD PR 88.4 93.5 787 854
1.2 T.5 2.7 1.7

SLOT_FWD PR_BWD PR 85.6 88.2 T7.8 822

19 51 75 29
TRA_SLOT_-FWD PR.BWD PR | 83.6 89.6 70.8 78.6
26 47 81 39

Table 5.10: Scores with standard deviation produced by MBL and RI on shallow interpre-
tation of the BACKWARD-POINTING PROBLEM component, averaged over 10-fold
CV experiments: accuracy, and proportionally weighted precision, recall and F-score mea-
sured on the classification of slot type. The highest score is set in boldface. The italicised
bottom lines show the results of the complex experiment. Scores of the prompt baseline
are provided in the top row.



Chapter 5: Partitioning Information 98

less components; however, this is not the case for MBL. The presence of the FWD PR com-
ponent does not seem to influence the performance of R1 (note that for example the F-score
of the FWD PR_.BWD PR experiment is only 0.1 point lower than that of the SLOT_BWD PR
experiment, while the latter does not include the difficult FWD PR component), but seems
to influence that of MBL (compare e.g. the same combinations).

The isolated experiment, in which ERs are almost maximal, leads to a relatively lower
result for MBL (the F-score of this experiment is even lower than that of the complex
one), however, RI produces (one of) its highest score on it; this outcome again signals
the difference of working principle between our two classifiers, and illustrates well that an
algorithm’s bias can lead to skewed results on an unoptimalised task.

CONCLUSION As in the case of the three other SI components, based on the class partition-
ing experiments on the backward-pointing problem component we can establish that class
partitioning has a substantial, positive influence on our classifiers, resulting in practically
identical performances of MBL and RI.

Again, co-learning the task-related act component with the backward-pointing problem
component has a positive effect on both learners: RI obtains (one of) its best score on
this combination, and the difference between the score attained on this combination and
the best score by MBL is insignificant. These results point to the same trend that was
observed in Section 5.2.1, suggesting that awareness of problems is useful to be regarded
as a backchannelling act, since we have found some evidence that BWD PR is closer in
its patterning to the task-related acts than to the isolated conceptual category ‘problem
awareness’.

5.5.2 Feature partitioning

The outcomes of the feature partitioning experiments are displayed in Table 5.11. Note
that for RI we run experiments on both of the winning class combinations.

The results of the feature partitioning experiments indicate that, similarly to the per-
formance of MBL on the FWD PR component, most information comes from the DM features
when classifying BWD PR. It is noteworthy that scores of the learners on the DM group
improve above the system-knows baseline by a large margin, indicating that the classifiers
reduce a large part of the errors the system is not aware of by drawing on information
from the dialogue manager itself. Both MBL and RI (in the isolated experiment) produce a
34% error reduction with respect to the system-knows baseline (note that their accuracy
is the same, 88.7%, on the DM-group experiment).

Obviously, the information encoded by the DM features provides most clues to the
identification of a communication problem for the BWD PR component; however, our em-
pirical investigation shows that other features contribute to this identification as well, since
in the experiment drawing on all features a significantly higher score is attained by both
classifiers (MBL: t =11.9, p <0.01, RI: t =5.4, p <0.01).

We observe that the contribution of prosodic features is less than we expected on
basis of their correlation with the BWD PR class (cf. Section 4.3.3.1). This indicates that
in our study prosody provides less information to detecting awareness of communication
problems than in other works (cf. Section 2.3.4).



99 5.5 Backward-pointing problems

Algorithm  Optimal class label Feature group Metric
acc pre rec F
MBL TRA_SLOT_-BWD PR ALL 92.3 937 88.1 90.8
0.9 2.5 2.1 1.2
DM 88.7 90.5 82.6 86.3
i 31 2.8 11374
ASR 768 773 660 710
1.7 4.6 2T 1.8
PROS 54.4 470 42.8 44.6
29 4.8 5.4 4.3
RI BWD PR ALL 90.5 92.4 85.1 88.5
14 3.9 3.9 b2
DM 88.7 94.1 78.8 85.7
1.3 3.4 4.0 1.8
ASR 74.8 76.7 633 67.7
2.9 8.0 13.0 6.3
PROS 56.4 50.5 37.6 38.8
23 4.2 20.3 16.9
TRA_BWD PR ALL 90.5 92.1 851 885
1.1 1.5 2.6 1.6
DM 88.4 95.7 76.6 85.0
1.5 14 3.9 2.5
ASR 752 785 59.6 66.9
2.8 44 10.4 6.1
PROS 57.4 542 6.5 10.8
2.9 237 5.8 8.8

Table 5.11: Performance of the three feature groups in experiments by MBL and RI on the
BACKWARD-POINTING PROBLEM component with optimised class labelling. The
highest score is set in boldface. The italicised top rows in the sections show the scores of
learning on all features.



Chapter 5: Partitioning Information 100

Since the outcomes of the feature partitioning experiments show the same trend across
learners and within learners, we conclude that the outcomes of feature partitioning are
dependent on the component to be classified, but possibly not on the class partitioning
type, i.e., the composition of the class label (see the comparison of BWD PR and TRA_BWD
PR). To substantiate this hypothesis would however require more comparisons, which is
beyond the scope of the current study.

5.5.3 Detailed analysis

When looking at the induced rule sets from the DM group features, we see that only
on two data sets is the default class S_PROB; this shows that in general it is easier for
RI to induce rules for the isolated PROB class (note that this was not the case for the
FWD PR component). In order to examine classification by RI more thoroughly, we run an
experiment on the full data set. The settings we use are the majority values of the settings
optimised by WPS in the experiment utilising all features: cover at least 20 examples, find
rules for least frequent classes first, i.e., order rules by increasing frequency, expect noisy
data, allow negation in conditions, don’t simplify hypothesis (i.e., multiply coding cost by
1), set loss ratio to 1, optimise 1 time. Below we reproduce the induced rule set.

1 If ‘not’ € sysBOW A ‘T" € sysBOW then PROB. (849/3)
2 If ‘where’ € sysBOW then PROB. (312/19)
3 If ‘and’ € sysBOW then PROB. (109/54)
4 If ‘to_ PP’ € prev sysBOW A ‘which’ € sysBOW then PROB. (44/26)
5 Else oK. (2023/299)

There are five rules induced from the data. It illustrates the bias of Rl well that the
first two rules capture our system-knows baseline. The first rule covers situations when
the system apologises for not understanding the user input, the second rule refers to a
repeated prompt about the departure and/or destination place (since the first time the
system poses a prompt with the word ‘where’ is the opening prompt, in an answer to
which the user can never signal awareness of problems). The third rule conditions on the
word ‘and’ that is in system prompt that verifies travel time (e.g., ‘Do you want to travel
between four and twelve in the morning?’). The fourth rule seems to indicate a repeated
system question about the destination place.

The rule set reveals that most often users become aware of system problems from
apologising and repeated prompts. Interestingly, no rules are made that would characterise
cases where the system’s erroneous implicit verification reveals incorrect input processing;
this suggests that these cases are hard to capture on the basis of prompt words only.
Note that none of the conditions includes prompt types (e.g. Q_VA). We hypothesise that
prompt types are better captured by other, user-input-related features (e.g., the lexical
items in the user’s word graph), which explains why the isolated DM feature group is
unable to outperform the experiment that uses all features.

To ascertain this, we run an experiment on the full data set with all the features
available. The settings we use are identical to those used for the DM full experiment
above. The induced rule set is displayed below.



101 5.6 Discussion

1 If ‘not’ € sysBOW A ‘' € sysBOW then PROB. (849/3)
If ‘where’ € sysBOW then PROB. (312/19)

3 If ‘o’clock’ € prev sysBOW A topconf > 777.2 then PROB. (97/24)

4 If ‘to PP’ € prev sysBOW A prev BF > 2 A ‘to. PP’ € sysBOW A ‘uh’ ¢ prev (33/7)
BOW then PROB.

5 If ‘o’clock’ € prev sysBOW A ‘at’ ¢ sysBOW then PROB. (71/33)

6 If ‘to_PP’ € prev sysBOW A ‘when’ € sysBOW A ‘time’ € sysBOW A ‘yes’ & (26/4)
BOW A ‘which’ € prev sysBOW then PROB.

7 Else OK. (2035/225)

The first two rules, as above, learn the system-knows baseline. The fourth rule seems to
be an extended variant of rule 4 from the DM rule set: a repeated system question about
the destination place. It includes conditions on the branching factor and the absence of a
filled pause (‘uh’) in the previous input’s recognition; these values seem to indicate either
that in the previous turn the user was already aware of a problem (the filled pause may
cue hesitation), or that the previous user turn was problematically processed (note the
large branching factor) and hence needs to be re-entered now. We also see that this rule,
although it covers somewhat less examples than its ‘simpler’ version, is more precise (33/7
vs 44/26).

5.6 Discussion

On the basis of our extensive investigation of learner performance on the four components
of the SI task, we came to the following conclusions.

5.6.1 Class label design

We investigated task design via systematic class partitioning. The observed trends suggest
that class label design has a substantial impact on learner performance. We can establish
that it is beneficial to perform class partitioning for the SI task, since all components
improved significantly over the score attained in the complex experiment, and also over
the prompt baseline (the latter with the exception of MBL on the FWD PR component).
A general trend seems to be that it is optimal to combine at most two SI components
(optimal in 7 cases out of 8), and, in case two components are combined, one of them
should be the TRA component.

It turns out to be optimal for both the TRA and the BWD PR component to be co-
learnt, which implies that BWD PR could be best labelled as a task-related act and merged
in the TRA component of the SI module. This might seem to reflect common knowledge,
however, note that previous work on detecting BWD PR (cf. Section 2.2.4) has not drawn
such a conclusion. Given this finding, it might in general be advisable for the automatic
detection of awareness sites to learn those in combination with other dialogue-act-like
class labels (i.e., to detect ‘problem’ and/or ‘slot-filling’ and/or ‘negation’, etc.), instead
of learning it in a two-class fashion (i.e., detect ‘problem’ or ‘no problem’).

Entropy in a task does not seem to determine performance. Note that the entropy
figures in Table 5.1 are based on sheer counts of class labels, not taking into account that



Chapter 5: Partitioning Information 102

in the empirical experiments the information in the features and the classifier’s bias largely
determine learning performance.

5.6.2 Feature design

We have found that in the majority of cases (5 times out of 8) the ASR feature group
provides most information to classifying a component. Note that this group contains the
largest number of features (1,525). In one case the ASR feature group attains a higher
score than the full feature experiment, although not on a significant scale. Three times
the DM feature group, containing 944 features, provides most information for classify-
ing a component, once for classifying forward-pointing problems, and twice for classifying
backward-pointing problems. In one case this group outperforms the full feature experi-
ment (although not significantly).

Prosodic features (the smallest number of features, 13) in general contribute least to
the tasks, suggesting that although it is possible to analyse (components of) the SI task in
prosodic terms (in accordance with the findings of e.g. [Hirschberg et al. 2004]), it might
be more optimal to combine these features with other, automatically available pieces of
information. At the same time, since [Hirschberg et al. 2004] find that prosodic anomalies
within a certain speaker’s input are more important for predicting recognition problems
than anomalies across speakers, our prosodic features might produce better performance
when normalised with respect to speaker identity. We conducted a pilot study on problem
detection using normalised prosodic features, however, it has not led to more success of
the problem components of SI.

We conclude that processing the information coming from all sources turns out to be
best for classification, implying on the one hand that it is the largest set of features that
seems to be most useful for our task, and on the other, that the SI task may not require
explicit selection of features, which is typically a computationally expensive enterprise. On
more large-scale investigation of individual features in detecting communication problems
see [Lendvai et al. 2002b).

5.6.3 MBL and RI compared

Our empirical investigation shows that learning performance becomes practically identical
for both the memory-based learner and the rule induction learner when the tasks are
optimised by class partitioning. Most importantly, when the best score of MBL and RI is
compared per component, we observe that on all tasks MBL and RI produce statistically
indistinguishable performance. This outcome further supports the hypothesis and the
evidence supplied for the findings of [Daelemans et al. 1999, Daelemans and Hoste 2002],
whereas it contradicts those in [Rotaru and Litman 2003] (see Section 3.1).

In general, the scores produced by RI are somewhat lower than those by MBL, and also
exhibit more variation. RI produces improvement in the class partitioning experiments on
a larger scale than MBL; obviously, it has a much larger margin to improve on as compared
to the complex experiment, in which MBL produced relatively high scores already. We see
that RI often provides insight into the features that it can use particularly well in a task.
It would be possible to analyse feature usage in MBL as well, for example by observing



103 5.6 Discussion

assigned feature weights and selected nearest neighbours; however, such an analysis lies
out of the scope of the current study.

5.6.4 Evaluation

The extent to which we are able to classify the individual SI components is not easy to
compare with those in other studies, since many important factors are quite different in
most of the surveyed studies (cf. Section 2.2); not only the learners, the computational
costs of the method, and the fine-grainedness of classes, but the employed evaluative
measures as well. For an easy overview, in Table 5.12 we reproduce the best scores attained
on the individual SI components in the information partitioning experiments described in
this chapter.

Algorithm  Class label Metric
acc pre rec F
MBL TRA 86.6 94.3 89.3 91.7
0.7 1.5 1.0 0.7
SLOT 83.5 90.7 84.9 87.7

2.2 1.8 2.6 2.0
FWD PR 68.6 67.1 53.5 59.4
2.6 4.4 5.4 4.1
BWD PR 92.3 93.7 88.1 90.8
0.9 2.5 2.1 1.2

RI TRA 86.0 92.0 &89.1 90.5
1.7 2.0 1.5 1.5
SLOT 82.6 884 829 8&5.5

2.4 4.4 3.8 2.8
FWD PR 65.0 57.9 721 62.6
2.0 3.9 122 5.2
BWD PR 90.5 924 &85.1 &88.5
1.4 3.5 3.9 1.5

Table 5.12: Best scores produced by MBL and RI on the shallow interpretation components
in optimal class- and feature design, averaged over 10-fold CV experiments.

The best scores reported in the literature on classifying dialogue acts (note that these
are more large-scale than our TRAs) are in the range of 70-80% accuracy, recall, or F-
score (cf. the surveys in [Choi et al. 1999, Reithinger and Engel 2000]). The work that
describes the study most similar to ours about classification of slots is [Cettolo et al. 1996],
who report 67.2% accuracy on classifying recognised speech in terms of slots in the
travel domain (by combining a rule based module with binary classification trees). At
the same time, [Rayner and Hockey 2003] attain 77.8% accuracy on extracting semantic
atoms from spoken utterances, combining rule-based and n-gram-based methods. On clas-
sifying forward-pointing problems [Litman et al. 2000] and [Walker et al. 2000b] report



Chapter 5: Partitioning Information 104

a top 93.5%, respectively 86.2% accuracy. On classifying backward-pointing problems,
[Litman et al. 2001] report 80.7% precision and 81.1% recall.

5.7 Summary

We hypothesised that learning the complex class label incorporating the four SI compo-
nents (cf. Chapter 4) might not yield the optimal performance that can be attained with
our shallow approach to extracting pragmatic-semantic information from spoken user in-
put. Our goal in the current chapter was to learn an optimal class and feature combination
for each SI component. The experimental results support our hypothesis that automat-
ically searching for optimal class label combinations is possible, and that the results of
this can substantially improve ML performance on a task. Feature partitioning however
proved not to be beneficial for the learners on the SI task, suggesting that our learners
best utilise information from all knowledge sources in the SI task.

On the basis of the conducted analyses we can state that MBL and RI produce practi-
cally identical results on the SI task when both their parameters and the task composition
are optimised. We find no evidence that memory-based learning and rule induction at-
tain different performances depending on the task — reflected by the four different SI
components — or the employed features — reflected by the three different feature groups.

The fact that some members of some feature groups seem to supply more information
to the learners than others might seem to be a data-specific finding (see the analyses of
the induced rules). We would like to emphasise however that the goal of our study is not
to generate observations pertaining to the specific feature values reported here, but to
estimate the extent to which our method, pursued by a shallow approach for the detection
of a limited set of basic user input types — that nonetheless aim to be general — of
human-machine interaction, is capable of producing a shallow interpretation of user input
to a SDS. From an explanatory perspective however, inspecting the rules induced from
feature values can ex



Chapter 6

Filtering Information

The findings of the previous chapters revealed that our classifiers successfully use the
ASR word graph features in the SI module. However, noise that is supposedly present
in these features, especially in the bag-of-words features, might interfere with their opti-
mal utilisation. In 1.1 we emphasised that both the user input to a SDS and the ASR
output are often noisy. Disfluencies such as filled pauses, repetitions, stutters, and un-
grammatical constructions are a main example of noisy user input; in fact, the occurrence
of disfluencies in user utterances is regarded as a stumbling block for speech recognition,
aggravating imperfect NLU (cf. [Stolcke et al. 1998b, Duchateau et al. 2003]). The ASR
output often contains incorrectly recognised words, for instance because input contain-
ing words that are not covered by the ASR grammar may become completely garbled
[Rayner and Hockey 2003].

Another cause of noise in the input might be the following. [Cettolo et al. 1996] claims
that not all semantic contents of an utterance may be relevant to the communication.
For example, based on the literature, syntactic head words seem to be more important
in NLP tasks than non-head words. Since it could be that some of the ASR features
represent noise or superfluous information that may have negative effect on interpreting
the spoken input, we hypothesise, based on the literature, that removing such items may
lead to improved performance of the SI module.

Recently there is an increased interest in applying natural language processing tech-
niques directly to the word graph or the n-best list output of an ASR, which is claimed
to increase robustness of the interpretation system [He and Young 2004]. Some of these
approaches (e.g., [Van Noord et al. 1999]) are deployed in a task and language dependent
way, implying that they need to be redeveloped for each new system. Others use statistical
techniques to model errors in the ASR output, and utilise the outcome of such processing
for information extraction purposes [Palmer and Ostendorf 2001], or to disambiguate the
ASR output [Koeling 2002]. At the same time, hand-crafted rules combined with various
data-driven classification techniques are also utilised for a variety of NLU tasks that incor-
porate the treatment of noise, e.g. disfluency detection [Stolcke et al. 1998b], recognition
error correction [Ringger and Allen 1997, Stolcke et al. 1998b, Zechner and Waibel 1998],
interpretation of command and control tasks [Nakano et al. 1999, Rayner and Hockey 2003],

105



Chapter 6: Filtering Information 106

speech-to-speech translation [Kiefer et al. 2000].

Needless to say, directly processing the raw ASR hypotheses is a complicated task.,
since instead of a linear sequence of words a graph or a large number of word strings (i.e.,
the paths generated from the graph) need to be treated. Furthermore, [Boves et al. 1996]
emphasise that such input may be defective since the recogniser may miss essential words
completely, whereas [Zechner and Waibel 1998] claim that the paths themselves may be
ungrammatical in a different way than disfluencies.

In the current chapter we investigate whether filtering the word graph output, trans-
formed into n-best paths, improves performance of the SI module. We describe three
approaches that attempt to filter out those items from the n-best lists that may corre-
spond to noise or to superfluous information in the spoken input: (i) disfluencies, (ii)
words that are not the head of their syntactic chunk, and (iii) words that do not belong
to the set of 15 most frequent words in the bag-of-words. Filtering is applied to the user’s
BOW contained in the feature vector, and the filtered feature vector is subsequently used
in learning the SI task as optimised in the previous chapter.

The first filtering method attempts to remove potential disfluencies from the word
graph automatically, since previous work suggests that this might be beneficial for auto-
matic processing of natural language (cf. e.g. [Heeman and Allen 1994, Spilker et al. 2001,
Spilker et al. 2000]). We describe ML-based techniques that aim at filtering disfluencies
from the BOW vector: classification of disfluencies is carried out both by MBL and RI
that are trained on the Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN). The
disfluency filtering technique is first evaluated on the CGN, and is subsequently applied
to the word graph material of the OVIS corpus.

Our second approach to filtering is to edit the user BOW based on syntactic knowledge.
Syntactic information is often used in interpretation tasks (cf. Section 2.3). We again take
a shallow approach: syntactic analysis of the recognition lattice paths is performed with
a memory-based shallow parser tool, based on which all words but syntactic chunk heads
are removed from the set of recognised words. The words that are syntactic chunk heads
in the word graph paths are then used in the shallow interpretation task. Syntactic chunk
head words are claimed to represent semantic aspects of the entire chunk well enough to
be utilised in higher-level NLP tasks (cf. e.g. [Buchholz 2002, Hacioglu et al. 2004]). Our
technique of chunk non-head filtering allows to test the performance of syntactic chunk
heads in the SI module.

The third filtering method is based on word frequency. The approach taken in the work
of [Rotaru and Litman 2003] is to select the 9, as well as the 15 highest-ranked features
out of 141 according to their information gain calculated in various language learning
tasks (among others in classifying speech recognition errors and user awareness in spoken
dialogues). We take a slightly different approach by selecting the same amount (15) from
the most frequent words in the user’s BOW, and filter out all other words from the BOW.
The impact of frequency-based filtering is again measured directly on the SI task.

The structure of the chapter is the following. In Section 6.1 we describe disfluency
filtering: we introduce the notion of a disfluency, and report on earlier work on automated
processing of disfluencies. In the first part of the section our approach to ML-based
disfluency detection is explained, introducing the training material (the CGN corpus),
and reporting on the performance of our technique on the CGN corpus. In the second



107 6.1 Filtering disfluencies

part we give an account of how disfluency detection is performed on the OVIS word graph
paths, and finally present the experimental findings about incorporating the disfluency
filtered BOWs into the SI module.

In Section 6.2 we utilise a memory-based shallow parser to identify syntactic chunk
heads in the OVIS material, after which the chunk heads are used (together with the
other features) to classify the SI components. Finally, in Section 6.3 we give an account of
frequency-based filtering. The chapter is concluded by discussing the findings about the
filtering approaches, and by summarising the treated issues.

6.1 Filtering disfluencies

The group of speaker phenomena commonly referred to as disfluencies includes hesitations,
filled pauses, laughter, repetitions, false starts, abandoned grammatical constituents, in-
completely uttered words (also called as fragments), self-corrections, and the like. Al-
though human listeners are good at handling disfluent items in spoken language utter-
ances (cf. [Levelt 1989, Shriberg 1994]), they are likely to cause confusion when present
in the input to automatic NLP systems, resulting in poor human-computer interaction
[Nakatani and Hirschberg 1994, Eklund and Shriberg 1998].

It has not been established in the literature in what ways precisely disfluencies intro-
duce ungrammaticality into the structure of an utterance. Figure 6.1 shows part of an
utterance that has disfluent elements in it. The example, taken from the CGN corpus,
features a fragmented word (‘interne—, i.e., an incomplete version of the word ‘internet’)
within the larger chunk of the abandoned constituent ‘van interne’, which is corrected by
the speaker after the editing term ‘sorry’ by replacing it with ‘van electronic commerce’.
As the example shows, often there is structure in and around disfluent chunks: before
the interruption point (i.e., where the speaker interrupts himself) there may be word(s)
meant to be erased (called the reparandum), whereas the word(s) that follow it (called
the repair) may be intended to replace the erased part.

Traditional implementations of speech recognisers, taggers, and parsers do not treat
disfluent passages in the input as constituents of the sentence but rather as items that
need to be discarded [Bear et al. 1992, McKelvie 1998, Nakatani and Hirschberg 1994,
Oviatt 1995, Spilker et al. 2001]. As opposed to this, some research has also focused on
processing ill-formed input: for example, [Charniak and Johnson 2001] claim that once a
parser is trained on ungrammatical data, ill-formedness in new material does not have a
negative effect on the parser.

In many situations disfluent items can play a discourse role (cf. [Levelt 1989] on
context-sensitive monitoring), which may be useful to take into consideration for a number
of NLP tasks. Our approach in the current study is simply to locate and remove disfluent
passages in the word graph lattice of recognised dialogues, and investigate whether doing
so improves further processing of these dialogues.



Chapter 6: Filtering Information 108

... het veilig gebruik [van interne--' ? sorry®]* van electronic commerce’ ...’

. the safe usage of interne— sorry of electronic commerce ...

Figure 6.1: Example disfluency from the CGN corpus, sample nr. fn000056. Notation: 1:
reparandum, 2: interruption point, 3: editing term, 4: disfluent chunk, 5: repair. Note
that usually the first occurrence of a repeated word is regarded as disfluent (e.g. in our case the
first occurrence of ‘van’ is marked as inside the disfluent chunk).

6.1.1 Filtering disfluencies from transcribed words

Researchers who have worked on automatic disfluency detection in the past decades include
[Hindle 1983, Bear et al. 1992, Heeman and Allen 1994, Nakatani and Hirschberg 1994],
[Oviatt 1995, Shriberg et al. 2001]. Most of their work involves relatively small datasets,
since annotating discourse for disfluencies is a difficult and time-consuming process. In ad-
dition, many of these studies tend to focus on a subset of disfluent phenomena, such as re-
pairs or fragmented words, and are usually concerned with (American) English. Exceptions
include [Eklund and Shriberg 1998, Eklund 2004] on Swedish, and [Spilker et al. 2001] on
German. Many studies invest in trying to group disfluencies according to various aspects,
which is often a hard task since these phenomena are manifold in nature, an issue which
is extensively treated in [Eklund 2004].

In the literature it is often assumed that once the interruption point is determined
(most often by identifying an incompletely pronounced word), it is possible to carry out
complete reconstruction of the correct sentence structure automatically [Bear et al. 1992,
Heeman 1999, Shriberg et al. 2001]. The presence of a fragmented word is often regarded
as an integral property of a speech repair and is employed as a readily available feature
in automatic processing of disfluencies (cf. [Nakatani and Hirschberg 1994]), although
[Spilker et al. 2001] and [Heeman 1999] observe that finding word fragments automatically
is an unsolved problem, since automatic identification of a fragmented word is not straight-
forward. In [Lendvai 2003] we concentrated on the automatic detection of fragmented vs
non-fragmented words. Our pilot study concluded that classification of fragmented words
could be carried out by memory-based learning with a 74.9 F-score. Moreover, unlike
some disfluency types, for example filled pauses (‘uhm’), fragmented words are typically
not recognised by ASRs.

In the current study we aim at detecting any types of disfluencies via classification by
MBL and RI. Since disfluencies are not systematically indicated in the transcriptions of user
input in the OVIS corpus, we lack the possibility to train on OVIS. After listening to the
recorded speech material of the OVIS corpus however, we concluded that OVIS contains
artificially clean transcriptions, since some user turns contain disfluent or ungrammatical
items that are not transcribed in the corpus. In addition, [Eklund 2004] reports that
disfluencies frequently occur in human-machine travel booking dialogues.

Therefore, in the current study our two classifiers are trained on the CGN which
contains annotations of disfluencies. Classification performance is first evaluated on the
CGN, after which the same technique is applied to the paths in the speech recognition
lattice of the OVIS dialogues. The impact of filtering is directly measured on the SI task.



109 6.1 Filtering disfluencies

6.1.1.1 Introduction to the CGN corpus

The CGN contains human-human dialogues, monologues, and multilogues that are sam-
pled from different regions of the Netherlands and the Flemish area of Belgium. This
corpus is designed to provide a research source for language and speech engineers and
linguists. It consists of 1,000 hours of orthographically transcribed speech from adult
speakers of contemporary standard Dutch. For approximately 100 hours of speech, which
is about one million words from the total material, detailed annotations are made on the
phonetic and syntactic levels. The discourses are of various levels of spontaneity, ranging
from television broadcasts to telephone conversations. The number of speakers in CGN
spans from 1 (in newsreading files) to 7 (in parliamentary sessions). Each speaker is as-
signed a unique identification code. For details on the overall design of the corpus see
[Oostdijk 2002].

For the current study we made use of CGN Release 6. As disfluencies are reported to
occur both in dialogue and monologue [Shriberg et al. 2001, Eklund 2004], we make use of
1-speaker data as well. Our material comprises a representative sample of 1,322 full dis-
courses, consisting of 1,009,968 lexical tokens in 129,932 utterances. This means that one
dialogue consists of 100 sentences on average. Utterance segmentation is performed auto-
matically in the corpus, based on the detection of longer pauses in the speech material. The
punctuation marks at the end of segments can be period ‘.”, question mark ‘?’, and a row of
three dots *...", the latter standing for unfinished sentences. The average utterance length
is 7.8 words in the corpus. All sentences are orthographically transcribed, part-of-speech-
tagged, lemmatised, and morpho-syntactically tagged [Van der Wouden et al. 2002]. In
addition, a full syntactic dependency tree is manually built for each utterance.

We illustrate the CGN material in Figure 6.2, featuring the first turns of a spontaneous
dialogue, and in Figure 6.3, showing a more restricted 2-speaker discourse from the corpus.
The dialogues are translated into English. The Dutch transcriptions are provided in
Figures 4 and 5 of the Appendix.

In the CGN tokens are marked for several speech phenomena, among others for disflu-
encies. These include the following, their amount in our material given in brackets:

e filled pauses (31,682): ‘uh’, ‘uhm’, ‘hu’, ‘hm’, ‘mmm’, ‘mm-hu’, etc.

e editing terms, empty coordinating conjunctions, discourse markers (56,832): ‘oh’,
‘tjonge’ (gee), ‘hoor’ (an emphasiser), ‘he’ (huh), etc.

e mispronounced but complete words, (self-created) onomatopoeic words (1,298): ‘hij
blelde [belde] niet’ (he did not clal [call))

e fragmented words (9,073): ‘hij be— belde niet’ (he did not c¢— call)
e garbled material (6,921)
e laughter, coughing, crying (8,045).

[Eklund and Shriberg 1998, Eklund 2004] describe a rare disfluency phenomenon: a
filled pause occurring inside a word, observed in Germanic languages that heavily use
compounding as a word-formation method. The filled pause in such cases stands mostly



Chapter 6: Filtering Information

110

Turn  Utterance

S1 I have to go to uhm Hilde whose uh whose upper body is of course still
in plaster.

S2 mm-hu.

S1 and then I have to go to tae-bo.

S2 well they won’t know how to spell that, want to bet?

S1 and [ also have to... haha no.

S2 haha. no seriously.

S1 yes? tae-bo that is T A E hyphen B O but this name is must not be used
anymore.

52 oh?

S1 because... haven’t you heard it?

S2 no.

S1 because uh Billy Blanks the guy who uh invented tae-bo is uhm...

S2 you don’t need t— e~ you don’t need to explain. it's not about the con-
tents.

S1 no but I'd like to tell this to you. GARBLED.

S2 GARBLED. yeah OK yeah but I know who you mean yeah.

S1 yeah well tae-bo... so Billy Blanks has this uh has a lawsuit.

S2 yeah?

S1 and so this concerns that that so this name tae-bo was so to speak in-
vented by him and it took him fifteen years to develop all that and so
on.

S2 yeah.

S1 and so he thinks that only he should be allowed to use it. so that only
he should be allowed to sell the videotapes and so that sports schools
shouldn’t use the name tae-bo.

S2 without that they GARBLED yeah.

S1 without that they pay a whole lot of money to h—... so he just wants to
earn a whole lot of money with that. and of course he just earns oh tons
of money with that tae-bo.

S2 yeah yeah.

Figure 6.2: The first turns of a spontaneous dialogue sampled from the CGN corpus
(sample nr. fm000451), translated into English.



111 6.1 Filtering disfluencies

Turn  Utterance

S1 the Flemish government has a new health care insurance planned starting
in the middle of next year. the heavily disabled are to receive financial
compensation for their non-medical costs. this amount may be between
three thousand five hundred and six thousand five hundred francs per
month. the system is financed by the Flemish government as well as by
the citizens. these pay thirty francs per month via their governmental or
private health insurance. Johny Vansevenant.

S2 the decision that a health care insurance should be introduced was made
already by the previous Flemish government. but its actual realisation
has not yet been carried out. the system will now be organised via the
governmental or private health insurance companies. these will collect a
contribution of thirty francs per month from their members.

Figure 6.3: The first turns of a broadcast dialogue sampled from the CGN corpus (sample
nr. fv600473), translated into English.

between two stems in a compounded noun (e.g., ‘beach-uh-volley’), but — in highly rare
cases — also within morphological constituents of a word (e.g., ‘daar-uh-door’; there-uh-
fore). In our material such a filled pause is present 202 times.

At the same time, disfluency phenomena happening at the sentence level, such as
repairs of ill-formed phonetic, syntactic or semantic constituents of the sentence, aban-
doned grammatical constructions, repetitions, and the like, are not explicitly marked in
the corpus. However, part of these can be inferred from ‘..." punctuation marks (marking
abandoned sentences that may or may not be continued), and from the syntactic depen-
dency tree annotation of a sentence, in which disfluent items are not connected to the full
tree. Figure 6.4 contains an example sentence from the CGN corpus with the complete
morpho-syntactic analysis tree. Note that certain leaves are not connected to the tree: in
the given sentence such left-out leaves consist of a false start (‘ik uh’; I uh), a filled pause
‘ub’ after the word ’scepsis’ (scepticism), and a repetition (zo'n; such a).

By definition, we consider all items that are not incorporated under the syntactic tree
as disfluencies. These include some, but not all, of the word-level encodings listed above.
Some disfluencies are still connected to the syntactic tree when they have a full pragmatic,
semantic, or syntactic role in the sentence. This is of course hard to annotate consistently,
which probably introduces some noise into the mark-up, despite the clear-cut annotation
guidelines and transcription protocols of CGN (cf. [Van der Wouden et al. 2002]). It also
entails that some out of the 11,648 abandoned sentences (i.e., the utterances ending with
‘...7) are still incorporated in (bigger) syntactic trees.

[Oviatt 1995] finds that in human-human dialogues there are more disfluencies than
in human-computer dialogues, due to the lack of constraints in the presentation form of
the former. Spontaneous spoken dialogue is especially abundant in disfluent events. Such
dialogues are less focussed on a topic or a task, resulting in a more relaxed way of speech
construction and speech planning. According to our criteria, in our full material there are



Chapter 6: Filtering Information 112

PPAR’T
nl:|
[mod]
@
jQ] ] 1 [ T [oe] [l ]
@O%Q @D @D ® @ @
T501a Too1 T501a T301 T701 T602 T202 Tio1 To01 Usz8d 00 T701 Ti07 us2se us28e Tz T320 Too?
met de nodige gang 20 20 jaar  aangekeken

Figure 6.4: Example sentence with full morpho-syntactic tree from the CGN: ‘ik uh ik
heb met de nodige scepsis uh deze gang van zaken zo'n zo'n jaar aangekeken’ I uh I have
followed this process with uh a certain amount of scepticism for for about a year.

49,577 disfluent items, constituting 34,423 bigger disfluent chunks. This means that 9.1%
of all lexical tokens in the data are part of a disfluent chunk, and a disfluent chunk consists
of 1,4 items on average. In Figure 6.4 we have for example three disfluent chunks.

We assign the class label IN-DISFL to all disfluent words, and the class label OUT-DISFL
to all other words in the corpus. The learning task will be to classify each token in the
corpus in terms of these two classes.

6.1.1.2 Features

In our study the identification of cues for detecting disfluencies is based on close in-
spection of the data and on the literature [Plauche and Shriberg 1999, Heeman 1999,
Shriberg et al. 2001, Nakatani and Hirschberg 1994, Oviatt 1995]. We focus on using word
based information only, in order to investigate the feasibility of disfluency detection with
readily available features. [Heeman and Allen 1994] assume that local context is suffi-
cient in detecting most speech repairs, without taking syntactic well-formedness or speech
prosody into consideration. At the same time, we consider that exploiting the manually
annotated part-of-speech (POS) labels would give too much advantage to our model, as
opposed to a disfluency detection task in a real implementation where no 100%-correct
POS information would be available. Furthermore, in the POS annotation of the CGN
disfluent items have a unique POS label instead of a true syntactic role label, which would
be a give-away feature during the classification task.

Table 6.1.1.2 lists the 31 contextual properties that we extracted automatically from
the corpus material, subdivided into groups according to the aspect they describe. Nine
lexical string features represent the focus item itself and its neighbouring four left and four
right unigram lexical contexts (if any). Our lexical context window is therefore of length
nine. The second feature group consists of 20 binary features that mark whether an overlap
in wording occurs between the focus item and its context window. Two features in the
third group represent overlap in initial letters between the focus item and its immediate



113 6.1 Filtering disfluencies

Aspect Feature

Lexical identity (1) Left4 context item (2) Left3 (3) Left2 (4) Leftl (5) Focus
item (6) Right1 (7) Right2 (8) Right3 (9) Right4

Lexical overlap (1) Left4/Left3 (2) Left3/Left2 (3) Left2/Left2 (4) Leftl/Focus

(5) Focus/Rightl (6) Rightl/Right2 (7) Right2/Right3
(8) Right3/Right4 (9) Focus/Left4 (10) Focus/Left3 (11)
Focus/Left2 (12) Focus/Right2 (13) Focus/Right3 (14)
Focus/Right4 (15) Leftl/Rightl (16) Leftl/Right2 (17)
Left4/Left2 (18) Left3/Left] (19) Rightl/Right3 (20)
Right2/Right4

[ First Letter overlap | (1) Left1/Focus (2) Rightl/Focus |

Table 6.1: Overview of the employed features for the disfluency detection task, grouped
according to their aspect.

left and right context. Matching words or word-initial letters are often to be found both
at the reparandum onset and the repair onset, as in the correction ‘van interne- van
electronic commerce’ (of interne— of electronic commerce) in Figure 6.1.

By employing these features we allow the learners to make use of possible correlations
between certain feature values and the potential presence of a disfluent item. Note that
some features of the overlap groups deliberately re-introduce properties that are implicitly
present in the lexical features already. We found it important to express the word and
letter overlaps explicitly in order to ensure that the learners, that otherwise may be unable
to capture sub-wordform similarities, can utilise potentially relevant information.

6.1.1.3 Experimental set-up

Our first goal is to classify disfluent chunks in CGN based on the above contextual proper-
ties of each utterance. The experimental set-up here is the same as throughout our study:
we train MBL and RI and conduct parameter optimisation by WPS in a 10-fold CV, where
partitioning is based on whole discourses. The performance of the learners is evaluated in
terms of accuracy, precision, recall, and F-score, where accuracy measures the overall per-
centage of correctly predicted IN-DISFL and OUT-DISFL class labels. Thus, in the example
sentence in Figure 6.4 both words in ‘ik uh’ need to be classified as IN-DISFL to count as a
correct classification of the chunk. Likewise, precision, recall, and F-score apply to entire
chunks in our evaluation.

An additional technique we use in these experiments is attenuation. Infrequent or
unknown words are often problematic for machine learning techniques since the occurrence
statistics of such items are unreliable. At the same time, the word form of infrequent items
may contain useful information; for instance, a capitalised word is likely to be a named
entity, a word that contains a number is usually either a digit or the name of an object
(e.g., TU-154), a hyphen tends to indicate compounding. In addition, the final letters of
a word may give away morphological clues, e.g., -ly (adverb) in English, or -dt (verb) in



Chapter 6: Filtering Information 114

Dutch. Attenuation is a masking technique for words occurring below a certain frequency
threshold, retaining some word form information for these while masking the actual word.
Besides addressing the sparse data problem, another advantage of attenuation is that it
reduces the search space since the number of different feature values that need to be
checked becomes much smaller. The attenuation method we use is a simplified version of
[Van den Bosch and Buchholz 2002], which is in turn based on a proposal by [Eisner 1996]:

e If a word occurs less than 100 times in the training data then convert it to MORPH and

— if it contains a number then add -NUM

— if it contains a hyphen then add -HYP

— if its first letter is a capital then add -CAP

— if none of these three tests apply then add the last two letters of the word

e Else retain the original word.

For the example sentence in Figure 6.4 this strategy produces the sequence ‘ik uh
ik heb met de MORPH-ge MORPH-is uh deze MORPH-ng van zaken zo'n zo'n jaar
MORPH-en’ (approximately: I uh I have MORPH-ed this MORPH-ss with uh a certain
MORPH-nt of MORPH-sm for for about a year). The attenuation method is applied
to each training and test data set, creating attenuated versions of both; the frequency
thresholds are established based on the training data sets. We hypothesise that for the
current learning task attenuation will not have a negative effect (and might even have a
positive effect) since the binary overlap features, which are not based on the attenuated
words, are likely to compensate for some of the potential information loss.

6.1.1.4 Baseline

To quantify the performance of our disfluency detection method, we need to define a
baseline. The most straightforward baseline is to always predict the majority class: most
words in the corpus are not disfluencies, thus this baseline amounts to always predicting
OUT-DISFL, resulting in correct prediction in 89.9% of the cases. However, for the class
of interest (IN-DISFL) this strategy leads to a recall of 0 (all disfluencies are missed), an
undefined precision and hence an undefined F-score.

A somewhat more intelligent baseline is the following. The most frequent kind of
relatively easily detectable disfluencies are four basic filled pauses (FPs), transcribed as
‘uh’, ‘uhm’, ‘hu’, and ‘hm’ in the CGN corpus. We define a FP-baseline that predicts that
all filled pauses are disfluencies and everything else is not. This baseline has an accuracy
of 92.3%, a relatively high precision (not 100%, since one in four filled pauses is part of a
larger disfluent chunk), a similar recall (it misses most disfluent chunks) and an F-score
of 74.5 (displayed in Table 6.2).

6.1.1.5 Results of testing on CGIN data

Table 6.2 shows the average performance of MBL in three series of 10-fold CV experiments,
as well as the FP baseline. The result of the experiment is that both classifiers outperform



115 6.1 Filtering disfluencies

Algorithm Metric

acc pre rec F
FP baseline | 92.3 76.0 73.1 745
1.8 5T 5.1 5.2

MBL 97.9 &87.6 849 86.2
0.6 14 212 1.8
RI 97.3 87.1 78.6 826

0.8 2.0 3.4 2.7

Table 6.2: Performance on detecting disfluent chunks in CGN by MBL and RI, averaged
over 10-fold CV experiments, in comparison with the filled pause baseline.

the FP-baseline significantly (MBL: ¢ =7.6, p <0.01, R1: t =4.7, p <0.01). The accuracy of
both classifiers is rather high (MBL: 97.9%, R1: 97.3%). The F-score of classifying disfluent
chunks is 86.2 for MBL and 82.6 for RI, which is a 11.7, respectively 8.1 points increase
compared to the baseline strategy, due to improved precision and recall on the IN-DISFL
class. MBL produces a significantly better F-score than RI (t =7.1, p <0.01).

Note that although the algorithm parameters are optimised in this experiment, the
class design is not, since the task here is to perform binary classification. Optimising the
class label in such cases is not as ‘straightforward’ as we have performed it in Chapter 5.
It is an empirical issue in what ways it would be possible to decompose the global IN-DISFL
and OUT-DISFL classes in a robust way.

The settings resulting from the optimisation process by WPS (wrapped progressive
sampling) show a clear trend of algorithm parameter use. For MBL, in nine folds the
MVDM (modified value difference) distance metric is found optimal, in all but one cases
combined with GR (gain ratio) feature weighting. In general, a k larger than or equal to
3, but smaller than or equal to 19 is used. The most reliable features for the learner are
the focus word itself, as well as whether the focus word overlaps with the immediate right
or second right word in the context window.

For RI, in 8 out of 10 folds it is optimal to cover a single example per rule, and to
simplify the induced hypothesis. In all folds it is optimal to order the rules by increasing
frequency, and to allow negation. We run an experiment on the full data set with RI with
these settings, and display the obtained rule set below. Feature names are the following:
FOC: focus word, L1: immediate left context word, R1: immediate right context word, LX
FOC/L1: lexical overlap between focus word and immediate left context word, LT FOC/R1:
first letter overlap between focus word and immediate right context word, and so on.

1 If rFOC = ‘uh’ then IN_DISFL. (25381/184)

If L1 = EMPTY A R1 = EMPTY then IN_DISFL. (31919/21)

3 IfLX FOC/R1 A FOC # ‘yes’ A FOC # ‘that’ A FOC # ‘no’ A R4 # EMPTY (5072/807)
then IN_DISFL.

4 If LX FOC/R2 A R1 = ‘uh’ then IN_DISFL. (1595/129)

5 If LX FOC/R1 A FOC # ‘yes’ A FOC # ‘you’ A FOC # ‘that’ A FOC # (415/99)
‘no’ A R3 # EMPTY A |LX FOC/L2 then IN_DISFL.

(V]



Chapter 6: Filtering Information 116

6 If FOC = GARBLED A L3 = EMPTY then IN_DISFL. (2194/154)
7 If LX FOC/R1 A FOC # ‘yes’ A FOC # ‘you’ A FOC # ‘that’ A FOC # (349/102)
‘no’ A R2 # EMPTY A !LX R1/R2 then IN_DISFL.
8 If LXx FOoC/R2 A LX L3/L1 A !LX FOC/R1 then IN_DISFL. (960/298)
9 If Foc = ‘uhm’ then IN_DISFL. (2698/28)
10 If FoCc = ‘haha’ then IN_DISFL. (2300/43)
11 If LX FOC/R2 A FOC # ‘yes’ A LX L1/R1 A ILX L1/FOC A R3 # EMPTY (873/170)
then IN_DISFL.
12 If FOC = GARBLED A L1 # ‘the’ then IN_DISFL. (2323/400)
13 IfLT L1/FOC A LX FOC/R1 A FOC # ‘yes’ A FOC # ‘that’ A L2 # EMPTY (168/48)
then IN_DISFL.
14 IfLT L1/FOC A LX FOC/R1 A FOC # ‘yes’ A FOC # ‘that’ A FOC # ‘no’ (82/14)
then IN_DISFL.
15 IfLr L1/FOC A LX FOC/R1 A FOC # ‘yes’ A FOC # ‘that’ A FOC # ‘no’ (52/2)
A L3 # ‘you’ A R4 # EMPTY then IN_DISFL.
16 Else OUT_DISFL. (905519/25698)

We see that RI uses the overlap (most often: lexical overlap) features extensively, both
between the focus word and its context, or between context words. Many conditions are
made on the identity of the focus word: for example, if it is a filled pause, a garbled
item, or laughter, then it is classified disfluent; and when it is carrying some specific, but
apparently, generally important content, such as the words ‘you’, ‘yes’, and ‘no’, then it
is not disfluent. Note that the lexical items are translated into English, but in some cases
this might be misleading since conditioning on the Dutch item ‘de’ can correspond both
to a definite article (i.e., ‘the’) and to a word fragment (i.e., de—); the same may hold for
a number of other short ‘true’ words (e.g., je-, ne—, etc.).

In fact, 59 times ‘de’ is marked as a fragment in the CGN (but not marked as such
in our experimental material, since that would be a give-away cue), and ‘je’ is marked 3
times as a fragmented word. Even if in some cases ‘yes’ corresponds to a fragmented word,
we believe that in the majority of cases conditioning on ‘yes’ and ‘no’ means conditioning
on the affirmative, respectively negative true word (and not a fragmented word). Our
classifiers thus learn that ‘yes’ and ‘no’ are most of the time not annotated as disfluencies
(e.g., as filler words) in CGN.

6.1.2 Filtering disfluencies from recognised words
6.1.2.1 Preprocessing the OVIS data

Having trained on the CGN, the next step is to apply the disfluency filter to the OVIS
material. First we preprocess the OVIS word graph lattices by unfolding all paths in each
lattice. As an illustration of this, consider the word graph in Figure 6.5. This graph
represents the ASR output produced after processing the input ‘ik moet volgende week
dinsdag van schiphol naar nijmegen’ (i need to go next week tuesday from schiphol to
nijmegen), which is the first user turn in the dialogue in Figure 4.2. Unfolding the lattice
results in eight paths: ‘ik moet volgende week dinsdag van schiphol maar nijmegen’ (i
need to go next week tuesday from schiphol but nijmegen), ‘ik moet volgende week dinsdag



117 6.1 Filtering disfluencies

schiphol19634
maar/7472 nijmegen/22035

e 2147, ik/440}
L=

Figure 6.5: Word graph of the user input in turn Ul of Figure 4.2 ‘ik moet volgende week
dinsdag van schiphol naar nijmegen’ (i need to go from schiphol to nijmegen on tuesday
next week). Hash marks stand for pauses, the confidence score of each word hypothesis is
given after the slash.

van schiphol naar nijmegen’ (i need to go next week tuesday from schiphol to nijmegen),
‘ik moet volgende week dinsdag schiphol naar nijmegen’ (i need to go next week tuesday
schiphol to nijmegen), ‘ik moet volgende dinsdag schiphol naar nijmegen’ (i need to go next
tuesday schiphol to nijmegen), and so on. Note that the word graph in principle unfolds
in many more than eight paths, given the various transitions that contain pauses, and/or
tokens with different transition probabilities; however, when generating the word strings,
identical strings are collapsed.

As a result of preprocessing all the word graphs in the OVIS corpus, we have a material
of 17,242 paths with 90,527 words to classify.

6.1.2.2 Results of testing on OVIS data

Since disfluencies are not annotated in the unfolded paths, we cannot directly measure
the performance of the learners on detecting disfluencies in the OVIS material; however,
it is possible to make some observations with respect to the words that are classified as
disfluent. Looking at the classified material, we see that repetitions and filled pauses are
correctly detected in the experiment. Below are four classification examples, the items
classified disfluent marked by brackets, an approximate translation given in italics:

(i) nee [ik wil] ik wil verbinding
no [T want] I want connection

(ii) ik wil graag van Den Haag Mariahoeve naar [van] van Centraal
I want from The Hague Mariahoeve to [from] from Central

(iii) [uh] van of naar Zwolle
[uh] from or to Zwolle

(iv) wil van Zaandam [naar Arnhem] naar Arnhem
want from Zaandam [to Arnhem] to Arnhem.

In fact, we see that disfluency filtering is capable of eliminating proper disfluencies,
however, contrary to what is hypothesised in the literature, this does not seem to result
in more grammatical, or less ambiguous word strings (i.e., the string ‘I want from The
Hague Mariahoeve to from Central’ is syntactically or semantically not substantially better
formed than ‘I want from The Hague Mariahoeve to from from Central’, etc.).



Chapter 6: Filtering Information 118

At the same time, we can establish that stylistic differences between the training and
test data have some unfavourable effects on classification. In particular, in the CGN short
sentences that consist of one or two items are most often regarded as fully disfluent (i.e.,
abandoned) chunks. Therefore, short user input, which is typical in interactions with
a SDS, is often classified disfluent in the OVIS material (by both classifiers). This is
obviously wrong in many cases: for example when the user provides only a station name
or a day in reply to a system prompt. It also often happens that the user answers simply
‘yes’ or ‘no’ (to a yes/no system prompt), and these words are classified as disfluent.

We have seen above in the experiment on CGN material that many times ‘yes’ and
‘no’ are distinctively not classified as disfluencies (see the RI rules). We assume that the
contextual differences around these tokens in the two corpora are large enough to result
in a different treatment (by both learners) of the same tokens (cf. rules 3, 5, 7, 11, 13,
14, 15 in the above rule set). We believe that a simple rule-based pre- or post-processing
procedure would solve some of the anomalies originating in stylistic and annotational
differences between CGN and OVIS, possibly resulting in better classifier performance;
however, testing this empirically lies out of the scope of our study.

In total 3,818 word hypotheses are classified as disfluent by MBL in the full OVIS data
set, and 3,449 by r1. Words that are classified as belonging to a disfluent chunk include all
types of words, ranging from specific slot values to filled pauses and unintelligible material.
Table 6.3 displays the 20 tokens that are most frequently classified as disfluent by the two
learners. The most remarkable finding, illustrated by the two lists in the table, is that
many content words are classified as disfluent by both learners. These include words such
as ‘yes’, ‘no’, and various slot values (‘today’, ‘tomorrow’, ‘Friday’, ‘nine’, etc.) that were
previously found to contribute much to the classification of the SI components (cf. Section
4.4.2, as well as the findings of Chapter 5).

It is noteworthy that regardless of the classification bias, the words that are most
frequently classified disfluent by MBL and RI are very much the same. This may indicate
that the information in the training data as presented to the learners is more determining
for classification results of disfluent phenomena than the kind of algorithmic approach
employed.

In this experiment RI induced a rule set that contains 50 rules and 247 conditions
about the IN-DISFL class. In general, these rules contain up to 6 conditions, have a small
coverage, and many counter-examples.

6.1.2.3 Incorporating the disfluency filtered BOW in SI

The next step in our investigation is to use the disfluency-filtered BOW in the SI task.
Note that the set-up of this experiment is identical to the general experimental set-up
in the SI module (i.e., 10-fold CV combined with WPS), the only difference being that
instead of the full BOW we use the disfluency-filtered BOW. For each component the class
label is as optimised in the class partitioning experiments of the previous chapter.

We preprocess the material as follows. The words classified as part of a disfluent chunk
are removed from the BOW representation by switching the ‘1" indicating presence in the
BOW to ‘0. Since 172 words are always classified as disfluent by MBL, and 170 by RI (which
is again a very similar result), these are always removed from the BOW representation



119 6.1 Filtering disfluencies

MBL RI
frequency  item frequency  item
1057 uh 1057 uh
688 GARBLED 688 GARBLED
420 no 374 no
391 yes 346 yes
129 uhm 166 to-PP
120 to PP 129 uhm
76 want 52 from
53 from 46 tomorrow
51 tomorrow 40 1
42 I 27 want
29 today 23 today
26 o’clock 20 nope
26 at 16 day _after_tomorrow
26 nope 16 at
20 day_after_tomorrow | 16 Z€ero
20 Z€ero 13 Friday
19 Friday 13 not
18 Saturday 12 two
18 nine 12 nine
15 two 10 yes_ EMPH

Table 6.3: The 20 items most frequently classified as disfluent by MBL and rI. ‘EMPH’
indicates the emphatic word form (i.e., jawel).

(i.e., are always ‘0’), thus the net effect of disfluency filtering is that the BOW vector
is reduced from 759 to 587 bits in the MBL classification experiment, and to 589 bits in
the RI learning experiment. Words that are always classified as part of a disfluent chunk
include filled pauses such as ‘uh’ and ‘uhm’, as well as various low frequency words such
as small station names (e.g., ‘jirrenveen’ and ‘zwaagwesteinde’) or discourse markers (e.g.,
‘jazeker’; sure, or ‘welnee’; of course not).

6.1.2.4 Effects of disfluency filtering on SI

The results of the learning experiments are shown in Table 6.4, where scores are given for
each SI component. Compared to the scores gained in Chapter 5, here marked in italics,
we see that the impact of this filtering technique produces only a small improvement or no
improvement over the scores of Chapter 5. Scores that indicate improvement are printed
in bold.

In general, RI gains more from disfluency filtering than MBL: RI yields (seemingly)
improved scores on all four components, whereas MBL only on the SLOT component. This
suggests that filtering might indeed remove words that negatively influence the SI task, so
that better patterning can be discovered in the data (primarily by RI), but discarding these
items does not practically influence the target task of SI, since none of the improvements



Chapter 6: Filtering Information 120

are statistically significant.

The obtained results show that filtering disfluencies does not have a significantly pos-
itive effect on the SI task, although it does not deteriorate the results either. We believe
that the differences between the training and the test material contribute to suboptimal
filtering. For example, the ASR n-best path output never contains fragmented words,
whereas these form one of the main disfluency types in the training material. We assume
that the OVIS lattice paths, on which we attempted disfluency detection, contain distor-
tions on a much larger scale than proper disfluencies (that are difficult or impossible to
recognise by ASR), and that these distortions are ungrammatical in a different way than
disfluencies (cf. [Zechner and Waibel 1998, Palmer and Ostendorf 2001]).

For completeness’ sake, we run two experiments for learning the FWD PR component
by RI, since in feature partitioning the isolated ASR group showed (insignificantly) better
performance than learning on all features (see Section 5.4.2). We tested both the full (but
disfluency-filtered) feature vector, as well as the isolated disfluency-filtered ASR group in
learning FWD PR. The results on the FWD PR component, displayed by the line printed
in small size, however show that using all features outperforms the isolated ASR group
by RI, signalling that non-significant score differences do not hold generalisation power as
the effect of feature partitioning observed in the previous chapter is not exhibited in the
current task. (Note that although for learning the FWD PR component by MBL the isolated
DM group showed better performance than learning on all features (see Section 5.4.2), in
the current experiment on FWD PR we employed all features in order to measure the effect
of disfluency filtering.)

6.2 Filtering non-heads of syntactic chunks

6.2.1 Training on CGN data

Our second method for filtering the word graph is to discard everything from the lattice
except the words that act as syntactic chunk heads. For this end we use the memory-
based shallow parser of [Canisius 2004] developed for Dutch, and automatically assign a
syntactic analysis to each token in the unfolded paths of the word graphs. Since the OVIS
corpus does not provide syntactic annotations, it is not an option to train the parser on
it, and again we use the CGN corpus for training. The memory-based shallow parser is
reported to attain 83.9% precision, 85.9% recall, and 84.9 F-score on tagging and chunking
Dutch spontaneous speech in the CGN corpus material.

Since the ASR output is material claimed to be ill-formed in different ways than spon-
taneous speech (see above), we expect this discrepancy to again lead to suboptimal chunk
head filtering, the inferences of which are not known on the end task.

6.2.2 Testing on OVIS data

The preprocessing step here includes unfolding the paths in each ASR lattice and capital-
ising station names to reduce potential parsing errors. Capitalisation is carried out on the
basis of a fixed-length list of occurring station names; it could also be done internally in
the ASR.



121 6.2 Filtering non-heads of syntactic chunks

Algorithm  Component Metric
acc pre rec F
MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7
87.0 94.1 893 91.6
09 14 09 1.0
SLOT 83.5 90.7 84.9 817
22 1.8 26 20
84.1 92.0 854 88.6
26 22 26 21
FWD PR | 68.6 67.1 535 59.4
2.6 44 54 4.1
66.5 624 57.1 594
25 44 64 38
BWD PR 92.83 93.7 88.1 90.8
0.9 25 21 1.2
91.9 944 86.4 90.2
20 %2 23 23

RI TRA 86.0 92.0 89.1 90.5
1.7 20 15 1.5
86.1 924 889 90.6
1.7 14 16 13
SLOT 82.6 88.4 82.9 855
24 44 88 28
83.4 90.2 846 87.3
28 18 32 22
FWD PR | 65.0 57.9 72.1 62.6
20 39 122 52
65.8 583 76.0 65.3
31 38 124 53
65.2 59.7 66.2 61.4
2.8 5.4 14.8 5.4
BWD PR | 90.5 92.4 85.1 885
1.4 85 39 15
91.0 93.1 856 89.0
15 33 57 26

Table 6.4: Performances by MBL and RI when filtering the user bag-of-words from disflu-
encies, using the optimised class labelling as estimated in the class partitioning experi-
ments (cf. Chapter 5). Performance is averaged over 10-fold CV experiments: accuracy,
and proportionally weighted precision, recall and F-score measured on the classification of
each SI component. The italicised lines show the results of the experiment with unfiltered
features (cf. Chapter 5).



Chapter 6: Filtering Information 122

The shallow parser analyses the paths syntactically: each token is assigned a complex
label that encodes three types of information about the word: its POS tag, its syntactic
chunk tag, and a tag marking whether it is the head in its syntactic chunk. Below is an
illustration of the parsing output of the path that is correctly recognised from the first
user turn of our example dialogue. Syntactic chunks are indicated by square brackets;
head words are marked as HD, for the rest of the syntactic labels in CGN we refer to
[Van der Wouden et al. 2002]. Note that syntactic chunks are generally quite small in
the data; many of them consist of only one word that is then automatically labelled as
the chunk head. In this example only the token ‘volgende’ (nezxt) is classified as chunk
non-head.

{ [NP-SU-1 ik/VNW1i-HD] [SMAIN-1 moet/WW1-HD] [NP volgende/WW11l week/N1-HD]
[NP dinsdag/N5-HD] { PNP [PP van/VZi-HD] [NP Schiphol/N5-HD] } { PNP [PP
naar/VZ1-HD] [NP Nijmegen/N5-HD] } }

6.2.3 Incorporating the chunk non-head filtered BOW in SI

Drawing on the material obtained from shallow parsing, each word marked as the head of
a syntactic chunk is retained in the BOW vector, whereas all non-heads are filtered out
from it by switching their corresponding feature values from ‘1’ to ‘0’. In total 573 words
are always classified as chunk heads in the OVIS material, reducing the chunk head filtered
BOW to 573 bits. The new BOW representations for each user turn are used together
with the other word graph, DM, and prosodic features to classify user input in terms of
SI components by MBL and RI.

Note that the set-up of the following experiments is again the same as the general
set-up in the SI module (10-fold CV combined with WPS), but instead of the full BOW
we now use the chunk non-head filtered BOW. We learn each SI component as optimised
in the information partitioning experiments in the previous chapter.

6.2.4 Effects of chunk non-head filtering on SI

The results of the experiments are shown in Table 6.5 per SI component. We can establish
that in general no improvement follows chunk non-head filtering. We see that filtering non-
head words leads to somewhat higher scores than no filtering only on the SLOT component
for both learners, and additionally on FWD PR for RI. However, the results show that
filtering out words that are not chunk heads does not lead to significantly better or worse
scores compared to no filtering on the BOW. There might be a number of reasons for this.

One obvious limitation of this experiment is again the marked difference between train-
ing and test data that probably produces suboptimal results. Another factor might be
that our shallow parser produces small syntactic chunks, so that relatively few words are
actually filtered out from the BOW vector. At the same time, directly incorporating pos-
sibly imperfect parsing results may lead to the accumulation of error in the end task. We



123 6.2 Filtering non-heads of syntactic chunks

Algorithm  Component Metric
acc pre rec F
MBL TRA 86.6 94.3 89.3 91.7

o 15 10 BT
86.2 94.0 884 91.1
1% 15 13 1.5
SLOT 83.5 90.7 84.9 877
2.2 1.8 2.6 20
83.2 91.1 84.7 87.8
21 1% 28 (s
FWD PR 68.6 67.1 b53.5 59.4
26 44 54 4.1
66.3 626 554 58S
24 41 67 34
BWD PR 92.3 93.7 88.1 90.8
0.9 25 2.1 1.2
91.6 94.2 858 89.8
1.8 25 28 2.3

RI TRA 86.0 92.0 89.1 90.5
1.7 20 1.5 15
83.4 90.7 86.4 885
24 27 20 20
SLOT 82.6 88.4 82.9 855
24 44 388 28
83.2 89.7 84.3 86.9
i8 28 30 18
FWD PR | 65.0 57.9 72.1 62.6
20 389 122 52
645 57.2 744 63.9
28 35 130 55
63.6 56.7 25T 63.0
4.3 4.4 11.2 4.0
BWD PR | 90.5 92./ 85.1 88.5
1.4 85 39 1.5
90.5 934 84.1 884
17 32 82 19

Table 6.5: Performances by MBL and RI when filtering out chunk non-head words from
the user bag-of-words. Classification is carried out in terms of the optimised class labelling
as estimated in the information partitioning experiments (cf. Chapter 5). Performance is
averaged over 10-fold CV experiments: accuracy, and proportionally weighted precision,
recall and F-score measured on the classification of each SI component. The italicised
lines show the results of the experiment with unfiltered features (cf. Chapter 5).



Chapter 6: Filtering Information 124

believe that these issues could be solved to some extent by postprocessing the data, or by
combining simple heuristics (e.g., word-based rules) with classification.

However, the fact that the occurring improvements are statistically insignificant also
suggests some positive outcome of this experiment; namely, that we have evidence about
syntactic chunk heads being predictive about pragmatic-semantic information (as defined
by the SI components), since removing all non-heads does not significantly harm perfor-
mance on the SI task.

6.3 Filtering on the basis of word frequency

Our third filtering method draws on word frequency in the BOWs. In the study of
[Rotaru and Litman 2003] feature subset selection is carried out on the basis of the infor-
mation gain of a feature as measured in classification of various human-machine dialogue
phenomena. In our study however, classification by the memory-based learner is not al-
ways IG-based (since IG is only one of the four possible feature weighting metrics in the
four distance functions, cf. Section 3.1.1). We opted for filtering the BOW on the basis of
word frequency in the speech recognition output, which is established by general counts
in our material.

6.3.1 Incorporating the frequency filtered BOW in SI

Our method is to retain information corresponding to the presence or absence of the 15
most frequent words in the user’s BOW, and filter out all other words from the feature
vector. We again measure the impact of frequency filtering directly on the SI task. Al-
though frequency filtering as implemented in this study draws on simple counts in the
OVIS corpus, an easily implementable ML-based alternative would be to filter on the
basis of automatically assigned feature weights.

The left column of Table 6.6 shows the 15 most frequent words in the ASR output of
the OVIS corpus, whereas the right column of the same table shows the first 15 words
ranked according to their IG as summed over the IG weight calculations of MBL in the
complex experiment. Note that the two lists largely overlap, indicating that a high IG
assigned in the complex experiment often corresponded to a high frequency word. Note
that the assigned IG weights were not used by MBL in the complex experiment except for
one partition, in combination with the MvDM metric, since the feature weighting metrics
optimised by WPS turned out to be different (cf. Section 4.4.3). For completeness’ sake
we reproduce the 100 most frequent words in Table 1 of the Appendix.

6.3.2 Effects of frequency-based filtering on SI

The results of classifying SI components by incorporating the frequency-filtered BOW
in the feature vector are shown in Table 6.7. The scores indicate that frequency-based
filtering has in general a negative effect on classification performance, deteriorating it on
all but one SI component: the FWD PR. All scores are significantly worse than in the
non-filtered experiments on the p < 0.01 level, (¢-scores in order of appearance in the
table: 5.2, 5.1, 6.9 for MBL, and 4.0, 4.3, 3.3 for RI).



125 6.3 Filtering on the basis of word frequency

FREQUENCY-BASED TOP 15 IG-BASED TOP 15
frequency  item ov. MBL ov. RI | IG item ov. MBL ov. RI
4886 to PP + * 570 to PP + *
4113 no + * 511 no + *
3897 from + * 465  from + *
3284 want + * 418  yes 4= *
3267 I - * 381  o’clock +
3254 o’clock + 241  at - *
2670 at + * 197 1 + *
2206 yes + * 194 want + *
1627 uh + .145  nope + *
1605 that 134 arrive
1485 thank 121 ten
1444 on 119 from_ EMPH
1322 not * 109 thank
1305 travel .104  the PN
1293 ten .097 not *

Table 6.6: The 15 most frequent, respectively highest-IG-ranked words of the recognised
input in the OVIS corpus. IG is summarised over the IG weights assigned by MBL in
the complex experiment (Chapter 4). ‘PN’ indicates a proper noun form (i.e., Den),
‘EMPH’ indicates the emphatic word form (i.e., vanuit), ‘+’ indicates overlap of the word
if classified disfluent by MBL, ‘*’ by RI (cf. Table 6.3).

Concerning the FWD PR component, we see that RI seems to improve using the frequency-
filtered BOW, but this is an insignificant increase. Note that it occurs using all features,
whereas when only ASR features are used (printed in small font), the performance seems
to drop, although not significantly. However, it is remarkable that without information
about the prompting context and the prosody of the input (i.e., the DM and PROS fea-
tures) forward-pointing problems seem to be less predictable. Since neither the decrease
nor the increase are significant, we have no clear evidence about the effect of filtering in
combination with feature partitioning; however, as the performance of the other learner,
MBL, does not show a significant decrease or increase in the score on this component, we
may conjecture that frequency-based word graph filtering is not harmful for the FWwD PR
component, but is harmful for all other components.

On the other hand, this seems to indicate that the presence or absence of the most
frequently recognised words is predictive enough about future problems. Other SI com-
ponents need the information supplied by all other recognised tokens as well in order to
predict future problems; apparently, many cues are lost when the representation of the
recognition hypothesis is reduced from 759 to 15 bits.

It is noteworthy that we can also observe a lot of overlap (marked by ‘+’ for MBL and
‘+" for RI) between the lists of the most frequent, respectively highest-IG-ranked words in
Table 6.6, and the list of words that are most often classified disfluent (see Table 6.3).This
means that the majority in the small set of words that are kept in the frequency-filtered
BOW are the ones that are often filtered out from the still quite large set of disfluency-



Chapter 6: Filtering Information 126

Algorithm  Component Metric
acc pre rec F
" MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 07
85.8 93.6 88.0 90.8
1.0 1.3 09 09
SLOT 83.5 90.7 84.9 87.7
2.2 1.8 26 20
79.0 875 784 827
99 98 31 2.4
FWD PR 68.6 67.1 535 594
2.6 44 54 41
67.1 64.1 544 58.7
18 43 39 34
BWD PR 92.3 93.7 88.1 90.8
0.9 25 2.1 1.2
80.8 93.2 823 874
i3 30 22 %9

RI TRA 86.0 92.0 89.1 90.5
1.7 20 1.5 1.5
83.1 90.5 86.5 88.4
I8 T3 L3 ©F
SLOT 82.6 88.4 82.9 85.5
24 44 38 28
76.6 88.1 729 T79.7
B8 36 4% i
FWD PR 65.0 579 72.1 62.6
20 39 122 52
66.9 604 742 65.5
38 6.0 127 5.3
62.1 55.0 65.5 59.3
4.4 5.9 12.2 7.4
BWD PR | 90.5 92.4 851 88.5
1.4 385 89 15
87.9 90.1 81.7 852
16 65 68 2.7

Table 6.7: Performances by MBL and RI on the SI components (in terms of the optimised
class labelling as estimated in the class partitioning experiments, cf. Chapter 5) when the
BOW is filtered using the 15 most frequent words in OVIS. Performance is averaged
over 10-fold CV experiments: accuracy, and proportionally weighted precision, recall and
F-score measured on the classification of each SI component. The italicised lines show the
results of the experiment with unfiltered features (cf. Chapter 5).



127 6.4 Discussion

filtered BOW. Observe that for example a filled pause is among the 15 most frequent
words in the corpus, whereas it is one of the most frequent disfluencies in general.

In fact, this may mean that the experiments using the frequency-filtered BOW are
to some extent complementary to the experiments using the disfluency-filtered BOW.
Although we indeed see that frequency-based filtering aggravates performance on three
SI components, whereas disfluency filtering does not, the obtained results do not clearly
support this hypothesis that would need further investigation. We conjecture that infor-
mation about the SI components is probably carried not by the individual words, but the
co-occurrence of these.

6.4 Discussion

In effect, by the three filtering approaches we investigated the feasibility of incorporating
higher-level information in the SI task. In particular, by disfluency filtering we aimed at
blocking information in the SI module that could be incorrect or superfluous in terms of
syntactic and/or lexical criteria. By chunk non-head filtering we aimed at promoting
information judged syntactically more dominant. By frequency filtering we aimed at
restricting information in the SI module to words that are supposed to carry information
of the highest value in the given SDS’s domain.

Two out of the three filtering approaches, disfluency filtering and chunk non-head
filtering showed an encouraging, but statistically insignificant positive effect on the SI
task, whereas the results for the third method, frequency-based filtering, showed primarily
negative effects on the SI task. We assume that the investigated filtering approaches are
difficult NLP classification tasks in themselves; in particular, we have found that they
exhibit sensitivity to differences between training and test data.

We have to emphasise that the evaluation of the results obtained by testing the filtering
methods directly on the SI task needs to be taken with certain precaution: since the BOW
representation is utterly shallow, the effects of filtering may not reach an optimal effect on
the SI task, for example because the frequency or the syntactic context of a word is not
represented by the BOW. At the same time, incorporating incorrect classification results
(since e.g. neither automatic disfluency detection nore shallow parsing is perfect) in new
classification tasks may yield cumulative error, which deteriorates learning performance.

6.5 Evaluation

The question arises what performance could be expected from the learners on the SI task,
if they had access to perfectly recognised material. Therefore, we will run additional ex-
periments in which the BOW is created on the basis of the transcribed user input. This
emulates the situation where classification of SI components is based on perfectly recog-
nised and ‘perfectly disfluency filtered’ (i.e., left out from the annotation), respectively
automatically chunk non-head filtered and frequency filtered user input. The obtained
results will provide us with the topline scores that could be ultimately attained by the
these filtering techniques.



Chapter 6: Filtering Information 128

I frequency item ]

1018 to_PP
887 from

789 I

770 no

744 want

521 ves

500 o’clock
390 at

211 travel

179 that

174 the PN
140 not

136 groningen
135 you_POL
133 from_EMPH

Table 6.8: The 15 most frequent items in the transcribed utterances of the OVIS corpus.
‘PN’ indicates a proper noun form (i.e., Den), ‘EMPH’ indicates an emphatic word form
(i-e., vanuit), ‘POL’ indicates a polite word form (i.e., u).

6.5.1 Analysis of transcribed utterances in OVIS

Table 6.8 shows the 15 most frequent words in the transcribed OVIS corpus. Note that the
most frequent transcribed words overlap largely with the most frequently recognised words
(Table 6.6). The tokens that are not contained in the list of most frequent transcribed
words are ‘uh’, ‘thank’, ‘on’, and ‘ten’. The ranking of words is somewhat different between
the two lists, suggesting that there are differences in the magnitude of the frequency of
certain words in the word graphs, respectively in transcribed utterances. For example, ‘no’
is found to be hypothesised very frequently (4,113 times, cf. Table 6.6), and ‘yes’ much less
frequently (2,206 times, cf. Table 6.6), whereas in reality these two words occur on a more
similar scale (770 vs 521 times, cf. Table 6.8). Recall that we have found that the N TRA
is more difficult for our classifiers to detect in the input (cf. Section 5.2.3) — it might be
that the ASR of this system has problems with recognising the words corresponding to the
N TRA (which are mainly ‘no’, ‘not’, ‘don’t’; nee, geen, niet). It may be inferred from the
statistics that the ASR hypothesises the occurrence of ‘no’ to a rather substantial extent,
which might indicate that it has difficulties with recognising ‘no’, and/or with recognising
the material that might surround ‘no’ (e.g., a correction of a slot value).

6.5.2 Data preprocessing

Since disfluencies are not transcribed in the real user utterances, the transcribed utteran-
ces can be directly used to emulate ‘perfect’ disfluency filtering. The resulting BOW has
559 bits, which thus comprise the full lexicon based on transcribed utterances. For emu-
lating automatic chunk non-head filtering on the ‘perfectly recognised’ (i.e., transcribed)



129 6.5 Evaluation

Algorithm  Component || Disfluency filt || Non-head filt || Frequency filt
acc F acc F acc F

MBL TRA 89.1 93.3 || 88.6 929 || 88.9 93.1
1.3 0.8 1.0 0.8 i1 0.6

SLOT 86.8 90.8 || 85.6 90.2 || 83.6 88.7

1.6 1.2 1.8 14 1.0 0.7

FWD PR 68.5 61.1 || 68.4 60.9 || 67.8 60.4

2.1 3.7 3.2 3.3 3:3 4.4

BWD PR 93.1 91.8 || 92.8 914 || 93.0 91.6

1 1IN Lsl 1.1 0.9 %8

RI TRA 88.6 92.6 || 88.0 91.9 || 88.0 92.4
1.9 1.6 1.9 1.6 1.4 1.2

SLOT 88.7 91.6 || 85.6 89.8 || 80.9 85.7

L3 1.2 13 1.1 1.0 1.1

FWD PR 65.8 64.9 || 66.1 64.3 || 66.3 61.2

3.2 34 3.0 3.5 3.4 6.7

BWD PR 92.1 90.4 || 92.8 91.4 || 91.7 90.0

1.6 1.5 1.0 1.3 2.2 2.7

Table 6.9: Topline scores in terms of accuracy and F-score produced by MBL and RI using
the transcribed utterance in optimal class- and feature design, averaged over 10-fold CV
experiments. The column Disfluency filt shows performance based on all the features
where the BOW represents the transcribed user utterance from which disfluencies were
removed by the transcribers. The column Non-head filt shows performance based on the
chunk non-head filtered transcribed user utterance. The column Frequency filt shows
performance based on the frequency filtered transcribed user utterance.

input, we again use the shallow parser and analyse the transcribed sentences syntactically,
discarding tokens that are non-heads. The resulting BOW has 490 bits, since 69 tokens
are always classified by the shallow parser as chunk non-heads. For emulating topline
frequency filtering, we discard tokens from the transcribed strings that are not in the 15
most frequent transcribed words. The resulting BOW in this experiment has therefore 15
bits.

The set-up of the topline experiments is identical to the general set-up throughout this
study (10-fold CV combined with WPS for parameter optimisation). In all three topline
experiments we use the filtered BOW as well as our other features to classify user input
in terms of the SI components optimised for algorithm parameters and class labels. We
display the scores of the three experiments with both learners in Table 6.9.

6.5.3 Evaluating filtering on the basis of topline experiments

Since disfluencies are not transcribed in this material, it is not possible to measure the
effect of the disfluency filtering method in the topline experiments, thus the figures in the



Chapter 6: Filtering Information 130

Disfluency filt column of Table 6.9 can be regarded as an illustration of the performance
of the learners when both perfect disfluency filtering and perfectly recognised input is
assumed.

The only comparison we can make is between the scores in column Disfluency filt to
those in column Non-head filt. These scores are practically the same for all SI components,
indicating that, as was the case on the recognised material, filtering out non-chunk heads
from the transcribed user input seems not to have impact on classification performance.

Frequency filtering however seems not to deteriorate performance on the transcribed
material to the same extent as on the word graph material: we see that when the learners
have to draw on the perfectly recognised and frequency filtered user words, performance
decreases only on the SLOT component (recall that on the recognised material it decreased
also on TRA and BWD PR). We assume that the SLOT component requires knowledge about
more than only the top 15 words to keep up learner performance (about findings on the
role of specific words in classifying the SLOT component see Section 5.3.3). The TRA and
the BWD PR components do not suffer from frequency filtering; it might be that in the
transcribed input more consistent co-occurrences can be found between the presence or
absence of the top 15 words and TRA and BWD PR classes, than in those of the recognised
input.

Comparing the topline scores attained on filtering the transcribed user utterance to
those obtained using the filtered word graphs (reported earlier in this chapter, e.g., the
corresponding non-italicised lines in Table 6.4), we can establish the following. For the
majority of tasks both learners produce an improvement of a few points of F-score when
using the actual words uttered by the user instead of using the recognised words. Signifi-
cant improvements are displayed in Table 6.10. Both for MBL and RI the filtering methods
for the TRA and SLOT components perform significantly better on the transcribed word
string than on the word graphs, but not for the FWD PR component. It is difficult to see
a trend for the BWD PR component.

In sum, the topline experiments suggest that all three filtering methods could in prin-
ciple produce higher scores on classifying task-related acts and slots in the user input,
given an improved speech recognition output. However, the fact that none of the filter-
ing methods seems to improve performance on the FWD PR component implies that it is
as efficient to consider the noisy word graph material for identifying user turns that are
sources of communication problems than to consider perfectly understood user words.

Given that there are no significant differences across the filtering methods in the topline
experiments (i.e., across the rows of Table 6.9), and the significant, but relatively small im-
provements of the topline scores over the recognised material, it may be hypothesised that
the room for improvement available for filtering recognised material is rather small. We
conjecture that our SI approach is robust to noise in itself already, so that removing noise
from the feature vector cannot substantially ameliorate ML performance on classifying the
SI components.

6.5.4 Evaluating SI on the basis of the topline experiments

Comparing the topline SI scores (on manually disfluency filtered material, cf. the Disflu-
ency filt column of Table 6.9) with our best scores scores obtained in Chapter 5 (see Table



131 6.6 Summary

Algorithm  Component Statistical significance
Disfluency filt || Non-head filt || Frequency filt
MBL TRA t=387 p< il || t=33 p< 0L t=62 p<.0l
SLOT t=63 p< .0l [|t=45 p< .01 t=89 p< .01
FWD PR - - -
BWD PR - - t=6:8 p<i0l
RI TRA =50 p<.Ol |l t=45 px 0L t=86 p<.01
SLOT t=47 p< .0l [|[t=61 p< .0l | t=108 p< .01
FWD PR - - -
BWD PR - t=50 p<.01 t=31 p< .05

Table 6.10: Statistical significances in a paired t-test of learner performance on filtering
transcribed user input improving over filtering recognised input.

5.12), two trends seem to emerge. Most importantly, we again see that the performance of
MBL and RI is practically identical for all SI components, corresponding to our findings on
recognised material. The extent to which the SI components can be learnt likewise corre-
sponds to our previous findings, namely, that we are able to learn task-related acts most
successfully, followed by the backward-pointing problem and the slot components, and
that forward-pointing problems are very hard to predict on the basis of the user utterance
in shallow context.

Comparing these two tables, it can be observed that the classification performance of
the ST module is a few points below the topline scores in terms of F-score. In the column
showing statistical significance in Table 6.11 we present an evaluation of the improved
performance on transcribed user input over recognised user input (without filtering). The
figures show that when they have access to transcribed material, both learners improve
significantly on the TRA, SLOT, and BWD PR components, but not on the FWD PR com-
ponent.

The rightmost column of Table 6.11 shows how much reduction in errors is produced
on the level of F-score by the learners, given that they have access to transcribed instead
of recognised words in the user input. Both MBL and RI show the largest error reduction
for the SLOT component (MBL: 25%, RI: 42%), followed by the TRA and the BWD PR
components. No significant improvement occurs on the FWD PR by any of the learners.
These figures indicate that with perfect speech recognition and the described shallow inter-
pretation approach it would be possible to further improve the results of the ST module,
especially for detecting which slots are being filled by the user; however, on predicting
forward-pointing problems our shallow interpretation approach is capable of reaching the
performance that would be attained based on perfectly recognised user input.

6.6 Summary

In this chapter we described experimental results of three filtering techniques. Two of these
techniques, namely disfluency filtering and chunk head filtering, can be seen as ML-based



Chapter 6: Filtering Information 132

l Algorithm  Component | Statistical significance | Error reduction

MBL TRA t=46 p< .01 19%
SLOT t=80 mp<.01 25%
FWD PR - 4%
BWD PR t=26 p< .05 10%
RI TRA t=24 p<.05 22%
SLOT t=284 p<.01 42%
FWD PR - 6%
BWD PR t=21 p<j05 16%

Table 6.11: Statistical significances and reduction levels of learner performance on unfil-
tered transcribed user input improving over unfiltered recognised user input.

approaches that process n-best paths in ASR output, filtering out certain words from the
paths automatically. The third approach, frequency filtering, in effect bears resemblance
to weighting-based word filtering, although it draws on simple counts in our corpus. The
filtering methods provide our two classifiers with a subset of the BOW features.

In three series of experiments we trained MBL and RI to learn the SI components (as
optimised in Chapter 5) on the basis of all the features where the word graph features
were systematically filtered with one of the three methods. We observed that stylistic, as
well as annotation differences between the training and the test data interfered with the
correct filtering of disfluencies, respectively chunk non-heads. Our empirical results show
that the filtering techniques in this set-up have modest impact on the SI task. Moreover,
when ‘noisiness’ is radically reduced such as in frequency-based filtering, many pieces of
information are lost, which seems to deteriorate performance on the SI task.

We subsequently conducted topline experiments in which the filtering methods were
applied to the transcribed user words instead of the recognised ones, on the basis of which
the SI was learnt. The outcomes of these experiments signal that filtering that employs
higher-level information only leads to a small improvement on shallow interpretation even
when perfectly recognised user words serve as input. Based on the experiments conducted
on transcribed user turns, our conclusion is that the proposed shallow approach is robust
with respect to noise in the data, thus filtering this noise cannot have much further impact
on classification performance on the four SI components.

We also concluded that if all noise could be eliminated (as simulated in the topline
experiments), this would be beneficial for the TRA, BWD PR, and especially the SLOT
component, but for detecting forward-pointing problems our SI module already produces
the same performance.

A valuable outcome of the experimental series described in this chapter is that across
the performances of the memory-based learner and the rule induction learner again similar
trends can be found, reflecting our previous finding that if task design and algorithm
settings are optimised, MBL and RI are likely to show similar scaling of classification
performance on our NLU tasks.



Chapter 7

Conclusions

The research issues of our study were the following:

(i) determine the extent to which supervised machine learning techniques can be used
for shallow interpretation of user turns in spoken dialogue systems,

(ii) explore whether the complex learning task of four-level shallow interpretation can
be optimised by decomposing it to subtasks, and

(iii) explore whether filtering noise from spoken user input on the basis of higher-level
linguistic information leads to improved learning performance on the shallow inter-
pretation task.

Corresponding to (i), we conducted a case study by training MBL and RI on a corpus
of Dutch dialogues with a SDS in the travel domain. Pragmatic-semantic information
was extracted from spoken user input in a shallow way, i.e., drawing on unsophisticated
features, in terms of a four-level interpretation. Our investigation yielded the following
results.

When the four interpretation levels are combined in a complex class label involv-
ing task-related acts, filled slot types, forward-pointing problems, and backward-pointing
problems, machine learning performance is not optimal, although significantly better than
the score of an informed baseline strategy that draws on the most recently posed sys-
tem prompt. The component for which both MBL and RI achieve the highest F-score
is the identification of task-related acts (89.0, respectively 80.9 F-score), the results ob-
tained on backward-pointing problems are quite similar to these (87.7, respectively 78.6
F-score). Classification results of filled slot types are somewhat lower (83.4, respectively
75.7 F-score), whereas both algorithms attain the lowest score in this task on the forward-
pointing problem component (55.4, respectively 55.6 F-score). Prediction of task-related
acts, slots, and backward-pointing problems is done significantly better by MBL than by RI.
It is difficult to classify the complex label, since some (aspects of) components are harder
to predict than others (e.g., whether users accept system errors, or whether the user input
is going to cause communication problems), which may aggravate learner performance in
general.

133



Chapter 7: Conclusions 134

Therefore, corresponding to (ii), in Chapter 5 we developed a method for improving the
module’s performance by means of partitioning the information presented to the learning
algorithms. For each SI component we conducted two consecutive series of experiments
with both MBL and RI. In the first series we performed class partitioning, in the second
series feature partitioning. The large-scale experimental matrix provided a possibility
to compare MBL and RI to a considerable extent: all experiments were conducted under
identical conditions, but the class labels. as well as the feature groups, were systematically
varied.

Based on the outcomes of this matrix we established that it is useful to optimise the
task composition, i.e., class label, in the module. In particular, we have found that class
partitioning has a substantial, positive influence on the scores produced by both classifiers
for all SI components. The best scores produced by the SI module are displayed in Table
5.12 (page 103). The classification success of the various SI components exhibits the same
trend for both learners as found in Chapter 4: the highest performance is produced on
learning the task-related acts (MBL: 91.7 F-score, RI: 90.5), followed by the detection of
backward-pointing problems (MBL: 90.8 F-score, R1: 88.5). The results for the remaining
components — filled slot types (MBL: 87.7, RI: 85.5) and forward-pointing problems (MBL:
59.4, RI: 62.6) — are lower. The improvements gained by optimising the class label of the
learning tasks account for substantial error reductions, especially for R1, reducing up to 50%
of classification errors in terms of F-score. It is remarkable that in class partitioning MBL
and RI produce statistically identical top performances concerning all four SI components.

We observed that the various groups of information source contributed to a different
extent to the classification tasks, where primarily features of the speech recogniser output
provided most information to classifying a component. Selecting a particular feature
group did not improve our scores: in general, using information coming from all available
sources turned out to be best for extracting pragmatic-semantic information from spoken
user turns.

Corresponding to our third goal (iii), in Chapter 6 our aim was to block those pieces
of information from the optimised learning algorithms that the literature supposes to
negatively effect language processing: we designed three, primarily machine learning-based
methods to automatically filter the speech recogniser’s output from disfluent words, from
syntactically less dominant words, and from words that do not frequently occur in the
recognition hypotheses. We observed that disfluency filtering and chunk non-head filtering
had a positive but statistically insignificant impact on the SI task, whereas frequency-based
filtering deteriorated classification performance.

The experimental outcomes obtained on transcribed user input (emulating the situ-
ation in which speech recognition is perfect and clean of disfluencies) further show that
the effect of noise filtering is overall minor on our module. We conjecture that filtering
cannot substantially improve learning performance on the SI task, probably because in
our optimised experimental set-up the classifiers can internally cope with noise and super-
fluous information by appropriate weighting or selection of features. At the same time, we
hypothesise that the impact of noise filtering would become more prominent with better
stylistic match of training and test data. The topline experiments show that, given perfect
speech recognition, performance of the SI module could further improve.



135

In this study it was our general aim to create a SI module that is robust in several
respects:

e it deploys adequate, generalisable machine learning techniques,

e it copes with noise in spoken input and in the shallow representation of such input,
and

e it accounts for multi-layeredness in the input content.

We conceptualised shallow interpretation as a straightforward classification task. Our
approach led to similar scale and performance tendencies in machine learning experiments
with differently biased classifiers, suggesting that the method can be generally imple-
mented by supervised learning techniques. The tested classification methods proved to be
adequate for the given task, since even the most difficult goal, the complex prediction of
all four levels of the SI task, both MBL and RI produced significant improvements above
baseline learning techniques. Besides the ability to provide a shallow pragmatic-semantic
interpretation of the user turn, we were supplied content-related knowledge about the
human-machine interaction process represented by our corpus. The employed machine
learning techniques produced satisfactory or good results of practical value. All utilised
information was easily obtained from the SDS, making the established approach attractive
for NLU applications.

We have dealt with noisiness on several levels. The learning algorithms drew on ap-
proximative, erroneous, and hypothetical measurements in the data, since the features
extracted from the spoken user input represent a large number of possibly imperfect mea-
surements and hypotheses of the SDS itself. Our experiments show that in the proposed
set-up classifiers can tolerate noisiness, since these interpret user utterances well above the
baseline even when faced with recognition errors. Moreover, when filtering techniques that
incorporate higher-level linguistic information were applied to the noisy speech recogniser
output, the cleaned data were not shown to yield significantly better results in learning to
extract pragmatic-semantic information from user turns.

At the same time, we were also able to learn which factors of human-machine interac-
tion can be identified as problem sources. Certain types of user input, mainly meta-replies
such as accepting errors that the system has made, or providing non-standard answers in-
dependent of the dialogue context, as well as certain properties of the SDS were found to
cause miscommunication, and thus to easily introduce problems into the interaction with
a SDS. In the examined system such properties included the speech recogniser’s difficulty
in processing negative user answers, the design of the opening system question, as well
as aspects of the dialogue manager’s prompting strategy that does not facilitate recovery
from misunderstandings between the human and the machine.

In order to account for multi-layeredness in the input content, we extracted informa-
tion related to pragmatic and semantic levels of the user utterance: on the pragmatic level
task-related acts, potential problem source, and problem awareness were detected, on the
semantic level the supplied information unit types were identified. We came to the conclu-
sion that such complex information is best to extract when the component combination is
optimised, which is possible to determine via a matrix of machine learning experiments.



Chapter 7: Conclusions 136

The outcomes of the experiments furthermore taught us that for shallow interpretation
of user utterances it is optimal to co-learn at most two SI components and, in case two
components are combined, one of them should be the task-related act component. The
results also suggested that the backward-pointing problem component could be merged in
the task-related act component of the SI module.

The goal of this study was to develop and test a general method to be implemented
in a shallow interpretation module of a SDS. We reported on the performance of this
module given a particular data set collected from interactions with a particular system.
Our research is a case study, the details of which are not intended to serve as general
findings about spoken human—machine interaction, but as findings about the described
shallow approach. Its main finding is that drawing on unsophisticated — thus potentially
noisy — features that characterise the dialogue situation (system prompts, full output of
the speech recogniser, acoustic-prosodic measurements of the speech signal), and by per-
forming automatic optimisation of the formulated machine learning task at least in terms
of class labels and algorithm parameter settings, it is possible to extract sophisticated
information of practical pragmatic-semantic value from the spoken user input with robust
performance.

We assume that the method of automatically training classifiers on pragmatic-semantic
tasks can be generally applied to data collected from dialogue systems: the proposed class
design should be portable to other types of task-oriented dialogues that employ a closed
set of domain concepts. We hypothesise that with the use of additional — shallowly
formulated — engineering techniques (e.g., more features, their automatic combination
and selection, more stuctured representation of speech recognition output, combination
of information sources and learning methods) the module’s current performance would
improve. In the future we plan to apply this approach to different dialogue data to gain
more results, and to prove that the method is suitable for other domains as well.



Bibliography

[Aberdeen et al. 2001] Aberdeen, J., C. Doran, L. Damianos, S. Bayer, and L. Hirschman.
2001. Finding errors automatically in semantically tagged dialogues. In Proc. of the
First International Conference on Human Language Technology Research.

[Aha 1998] Aha, D. 1998. Feature weighting for lazy learning algorithms. In H. Liu and
H. Motoda (Eds.), Feature Extraction, Construction and Selection. Kluwer.

[Aha et al. 1991] Aha, D., D. Kibler, and M. Albert. 1991. Instance-based learning algo-
rithms. Machine Learning 6:37-66.

[Allen 1995] Allen, J. 1995. Natural Language Understanding. Benjamin/Cummings.

[Allen et al. 1996] Allen, J., B. Miller, E. Ringger, and T. Sikorski. 1996. Robust under-
standing in a dialogue system. In Proc. of ACL.

[Allen and Core 1997] Allen, J., and M. Core. 1997. Draft of DAMSL: Dialog act markup
in several layers. Unpublished manuscript.

[Aust et al. 1995] Aust, H., M. Oerder, F. Seide, and V. Steinbiss. 1995. The Philips
automatic train timetable information system. Speech Communication 17:249-262.

[Balentine et al. 1999] Balentine, B., D. Morgan, and S. Meisel. 1999. How to build a
speech Tecognition application. Enterprise Integration Group.

[Banko and Brill 2001] Banko, M., and E. Brill. 2001. Scaling to very very large corpora
for natural language disambiguation. In Proc. of ACL.

[Barkhuysen et al. 2005] Barkhuysen, P., E. Krahmer, and M. Swerts. 2005. Problem
detection in human-machine interactions based on facial expressions of users. Special
Issue of Speech Communication on Error Handling. To appear.

[Batliner et al. 2003] Batliner, A., C. Hacker, S. Steidl, J. Haas, and E. Noth. 2003. User
states, user strategies, and system performance: how to match the one with the other.
In Proc. of ISCA workshop on Error handling in spoken dialogue systems, 5-10.

[Batliner et al. 1999] Batliner, A., E. N6th, J. Buckow, R. Huber, V. Warnke, and H. Nie-
mann. 1999. Prosodic feature evaluation: Brute force or well designed? In Proccedings
of the 14th Int. Congress of Phonetic Sciences, Vol. 3, 2315-2318.

137



BIBLIOGRAPHY 138

[Bear et al. 1992] Bear, J., J. Dowding, and E. Shriberg. 1992. Integrating multiple knowl-
edge sources for detection and correction of repairs in human-computer dialog. In Meet-
ing of the Association for Computational Linguistics, 56-63.

[Beun 1989] Beun, R. 1989. The recognition of declarative questions in information dia-
logues. PhD thesis, Katholieke Universiteit Brabant, Netherlands.

[Bonnema et al. 1997] Bonnema, R., R. Bod, and R. Scha. 1997. A DOP model for se-
mantic interpretation. In Proc. of ACL/EACL, 159-167.

[Boros et al. 1996] Boros, M., W. Eckert, F. Gallwitz, G. Gérz, G. Hanrieder, and H. Nie-
mann. 1996. Towards understanding spontaneous speech: Word accuracy vs. concept
accuracy. In Proc. of ICSLP.

[Bos et al. 1996] Bos, J., B. Gambick, C. Lieske, Y. Mori, M. Pinkal, and K. Worm. 1996.
Compositional semantics in Verbmobil. In Proc. of COLING, 131-136.

[Boves et al. 1995] Boves, L., J. Landsbergen, R. Scha, and G. van Noord. 1995. Language
and speech technology. Research plan 1995-1997. Technical report, Nijmegen University.
Available from: http://grid.let.rug.nl:4321/.

[Boves et al. 1996] Boves, L., J. Landsbergen, R. Scha, and G. van Noord. 1996. Lan-
guage and speech technology. Progress report 1995-1996. Technical report, Nijmegen
University. Available from: http://grid.let.rug.nl:4321/progrep/.

[Buchholz 2002] Buchholz, S. 2002. Memory-based grammatical relation finding. PhD
thesis, Tilburg University, Netherlands.

[Bunt 1989] Bunt, H. 1989. Information dialogues as communicative action in relation to
partner modeling and information processing. In M. Taylor, F. Néel, and D. Bouwhuis
(Eds.), The Structure of Multimodal Dialogue. Amsterdam: North-Holland Elsevier.

[Bunt 2000] Bunt, H. 2000. Dynamic interpretation and dialogue theory. In M. Taylor,
F. Néel, and D. Bouwhuis (Eds.), The Structure of Multimodal Dialogue, Volume 2.
Amsterdam: John Benjamins.

[Bunt 2001] Bunt, H. 2001. Dialogue pragmatics and context specification. In H. Bunt and
W. Black (Eds.), Abduction, Belief and Context in dialogue. Studies in Computational
Pragmatics. John Benjamins.

[Bunt and Black 2000] Bunt, H., and W. Black. 2000. The ABC of computational prag-
matics. In H. Bunt and W. Black (Eds.), Computational Pragmatics, Abduction, Belief
and Contexzt, Studies in Computational Pragmatics, 1-46. Amsterdam: John Benjamins.

[Busser 1998] Busser, B. 1998. TreeTalk-D: A machine learning approach to Dutch word
pronunciation. In Proc. of TSD Conference, 3-8.

[Canisius 2004] Canisius, S. 2004. Memory-based shallow parsing of spoken Dutch. Mas-
ter’s thesis, Maastricht University, Netherlands.



139 BIBLIOGRAPHY

[Cattoni et al. 2001] Cattoni, R., M. Federico, and A. Lavie. 2001. Robust analysis of
spoken input combining statistical and knowledge-based information sources. In Proc.
of Automatic Speech Recognition and Understanding Conference.

[Cettolo et al. 1996] Cettolo, M., A. Corazza, and R. D. Mori. 1996. A mixed approach
to speech understanding. In Proceedings of ICSLP.

[Charniak and Johnson 2001] Charniak, E., and M. Johnson. 2001. Edit detection and
parsing for transcribed speech. In Proceedings of NAACL, 118-126.

[Choi et al. 1999] Choi, W., J. Cho, and J. Sea. 1999. Analysis system of speech acts and
discourse structures using maximum entropy model. In Proc. of ACL.

[Clark and Niblett 1989] Clark, P., and T. Niblett. 1989. The CN2 rule induction algo-
rithm. Machine Learning 3:261-284.

[Cohen 1995] Cohen, W. 1995. Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning.

[Cost and Salzberg 1993] Cost, S., and S. Salzberg. 1993. A weighted nearest neighbour
algorithm for learning with symbolic features. Machine Learning 10:57-78.

[Cover and Hart 1967] Cover, T., and P. Hart. 1967. Nearest neighbor pattern classifi-
cation. Institute of Electrical and Electronics Engineers Transactions on Information
Theory 13:21-27.

[Curran and Osborne 2002] Curran, J., and M. Osborne. 2002. A very very large corpus
doesn’t always yield reliable estimates. In Proc. of CONNL.

[Daelemans 1995] Daelemans, W. 1995. Memory-based lexical acquisition and processing.
In P. Steffens (Ed.), Machine Translation and the Lexicon, Springer Lecture Notes in
Artificial Intelligence, 85-98. Springer.

[Daelemans and Hoste 2002] Daelemans, W., and V. Hoste. 2002. Evaluation of machine
learning methods for natural language processing tasks. In Third International Confer-
ence on Language Resources and Evaluation (LREC 2002), 755-760.

[Daelemans et al. 1997] Daelemans, W., A. van den Bosch, and T. Weijters. 1997. Empir-
ical learning of natural language processing tasks. In M. van Someren and G. Widmer
(Eds.), Machine Learning: ECML-97, Lecture Notes in Artificial Intelligence 1224, 337
344. Springer.

[Daelemans et al. 1999] Daelemans, W., A. van den Bosch, and J. Zavrel. 1999. Forgetting
exceptions is harmful in language learning. Machine Learning, Special issue on Natural
Language Learning 34:11-41.

[Daelemans et al. 2003] Daelemans, W., J. Zavrel, K. van der Sloot, and A. van den Bosch.
2003. TiMBL: Tilburg Memory Based Learner, version 5.0, Reference guide. ILK
Technical Report 03-13, Tilburg University. Available from http://ilk.uvt.nl.



BIBLIOGRAPHY 140

[DiEugenio and Glass 2004] DiEugenio, B., and M. Glass. 2004. The Kappa statistic: A
second look. Computational Linguistics 30(1):95-101.

[Duchateau et al. 2003] Duchateau, J., T. Laureys, K. Demuynck, and P. Wambacq. 2003.
Handling disfluencies in spontaneous language models. In Computational Linguistics
in the Netherlands 2002. Selected Papers from the Thirteenth CLIN Meeting, 39-50.
Rodopi.

[Dybkjaer and Bernsen 2000] Dybkjaer, L., and O. Bernsen. 2000. The MATE markup
framework. In L. Dybkjaer, K. Hasida, and D. Traum (Eds.), Proceedings of the 1st
SIGdial Workshop on Discourse and Dialogue, 19-28. San Francisco: Morgan Kaufmann
Publishers 2000.

[Eisele and Ziegler-Eisele 2002] Eisele, A., and D. Ziegler-Eisele. 2002. Towards a road
map on human language technology: Natural language processing. In Report on the
Second ELSNET Roadmap Workshop. Version 2.

[Eisner 1996] Eisner, J. 1996. An empirical comparison of probability models for depen-
dency grammar. Technical report, Institute for Research in Cognitive Science, University
of Pennsylvania.

[Eklund 2004] Eklund, R. 2004. Disfluency in Swedish human-human and human-
machine travel booking dialogues. PhD thesis, Department of Computer and Information
Science, Linkoping University, Sweden.

[Eklund and Shriberg 1998] Eklund, R., and E. Shriberg. 1998. Crosslinguistic disfluency
modeling: A comparative analysis of Swedish and American English human-human and
human-machine dialogs. In Proc. Int. Conf. on Spoken language processing.

[Feinman 1997] Feinman, A. 1997. Message types in goal-oriented discourse. Sem-
inar in Artificial Intelligence. Available from: http://www.cs.brandeis.edu/ afein-
man/papers/message.html.

[Finke et al. 1998] Finke, M., M. Lapata, A. Lavie, L. Levin, L. M. Tomokiyo, T. Polzin,
K. Ries, A. Waibel, and K. Zechner. 1998. CLARITY: Inferring discourse structure
from speech. In AAAI’98 Spring Symposium Series.

[Fix and Hodges 1951] Fix, E., and J. Hodges. 1951. Discriminatory analysis, non-
parametric discrimination: consistency properties. Technical report, USAF School of
Aviation and Medicine, Randolph Air Field, TX.

[Flycht-Eriksson 1999] Flycht-Eriksson, A. 1999. A survey of knowledge sources in dia-
logue systems. Electronic Transactions on Artificial Intelligence (ETAI). Special Issue
on Intelligent Dialogue Systems.

[Fiirnkrantz 1997] Fiirnkrantz, J. 1997. Pruning algorithms for rule learning. Machine
Learning 27(2):139-171.

[Fiirnkrantz and Widmer 1994] Fiirnkrantz, J., and G. Widmer. 1994. Incremental re-
duced error pruning. In Proceedings of ICML, 244-251.



141 BIBLIOGRAPHY

[Gazdar et al. 1985] Gazdar, G., E. Klein, G. Pullum, and 1. Sag. 1985. Generalized phrase
structure grammar. Harvard University Press.

[Gibbon et al. 1997] Gibbon, D., R. Moore, and R. Winski. 1997. Handbook of Standards
and Resources for Spoken Language Systems. De Gruyter.

[Goldberg et al. 2003] Goldberg, J., M. Ostendorf, and K.Kirchhoff. 2003. The impact of
response wording in error correcting subdialogues. In Proc. of ISCA workshop on Error
handling in spoken dialogue systems, 101-106.

[Griinwald et al. 1998] Griinwald, P., P. Kontkanen, P. Myllyméki, T. Silander, and
H. Tirri. 1998. Minimum encoding approaches for predictive modeling. In Proc. 14th
Int. Conf. on Uncertainty in AI (UAI), 183-192.

[Hacioglu et al. 2004] Hacioglu, K., S. Pradhan, W. Ward, J. Martin, and D. Jurafsky.
2004. Semantic role labeling by tagging syntactic chunks. In Proc. of CONLL.

[He and Young 2004] He, Y., and S. Young. 2004. Robustness issues in a data-driven
spoken language understanding system. In Proc. of NAACL04.

[Heeman 1998] Heeman, P. 1998. POS tagging versus classes in language modeling. In
Proc. of Sixth Workshop on Very Large Corpora, 179-187.

[Heeman 1999] Heeman, P. 1999. Modeling speech repairs and intonational phrasing to
improve speech recognition. In IEEE Workshop on Automatic Speech Recognition and
Understanding.

[Heeman and Allen 1994] Heeman, P., and J. Allen. 1994. Detecting and correcting speech
repairs. In Proc.of ACL, 295-302.

[Hermes 1988] Hermes, D. 1988. Measurement of pitch by subharmonic summation.
Journal of the Acoustical Society of America 83:257-264.

[Hindle 1983] Hindle, D. 1983. Deterministic parsing of syntactic nonfluencies. In Proc.
of ACL, 123-128.

[Hirose 1995] Hirose, K. 1995. Disambiguating recognition results by prosodic features.
In Y. Sagisaka, N. Campbell, and N. Higuchi (Eds.), Computing Prosody, 327-342.
Springer.

[Hirschberg et al. 1999] Hirschberg, J.. D. Litman, and M. Swerts. 1999. Prosodic cues
to recognition errors. In Proceedings of the 1999 International Workshop on Automatic
Speech Recognition and Understanding, 349-352, Keystone, CO.

[Hirschberg et al. 2000] Hirschberg, J., D. Litman, and M. Swerts. 2000. Generalizing
prosodic prediction of speech recognition errors. In Proceedings of the 6th International
Conference of Spoken Language Processing (ICSLP-2000), Beijing, China.

[Hirschberg et al. 2001] Hirschberg, J., D. Litman, and M. Swerts. 2001. Identifying user
corrections automatically in spoken dialogue systems. In Proc. of NAACL.



BIBLIOGRAPHY 142

[Hirschberg et al. 2004] Hirschberg, J., D. Litman, and M. Swerts. 2004. Prosodic and
other cues to speech recognition failures. Speech Communication 43:155-175.

[Hockey et al. 1997] Hockey, B., D. Rossen-Knill, B. Spejewski, M. Stone, and S. Isard.
1997. Can you predict responses to yes/no questions? yes, no, and stuff. In Proc. of
Eurospeech.

[Jackson and Moulinier 2002] Jackson, P., and I. Moulinier. 2002. Natural Language Pro-
cessing for Online Applications: Text Retrieval, Extraction & Categorization. John
Benjamins Publishing.

[Jurafsky and Martin 2000] Jurafsky, D., and J. Martin. 2000. Speech and Language Pro-
cessing: An Introduction to natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice-Hall.

[Jurafsky et al. 1997] Jurafsky, D., E. Shriberg, and D. Biasca. 1997. Switchboard SWBD-
DAMSL shallow-discourse-function annotation coders manual, draft 13. Technical re-
port, University of Colorado, Institute of Cognitive Science.

[Jurafsky et al. 1996] Jurafsky, D., E. Shriberg, B. Fox, and T. Curl. 1996. Lexical,
prosodic, and syntactic cues for dialog acts. In Proc. of ACL/COLING-98 Workshop
on Discourse Relations and Discourse Markers.

[Kamm et al. 1998] Kamm, C., D. Litman, and M. Walker. 1998. From novice to expert:
The effect of tutorials on user expertise with spoken dialogue systems. In Proc. of
ICSLP.

[Keizer 2003] Keizer, S. 2003. Reasoning under uncertainty in natural language dialogue
using Bayesian networks. PhD thesis, University of Twente, Nehterlands.

[Kiefer et al. 2000] Kiefer, B., H. Krieger, and M. Nederhof. 2000. Efficient and robust
parsing of word hypotheses graphs. In W. Wahlster (Ed.), Verbmobil: Foundations of
Speech-to-Speech Translation, 428-437. Springer.

[Koeling 2002] Koeling, R. 2002. Dialogue-based disambiguation: Using Dialogue Status
to Improve Speech Understanding. PhD thesis, Groningen University, Netherlands.

[Kohavi and John 1997] Kohavi, R., and G. John. 1997. Wrappers for feature subset
selection. Artificial Intelligence 97(1-2):273-324.

[Krahmer et al. 1999] Krahmer, E., M. Swerts, M. Theune, and M. Weegels. 1999. Error
spotting in human-machine interactions. In Proc. of Eurospeech, 1423-1426.

[Krahmer et al. 2001a] Krahmer, E., M. Swerts, M. Theune, and M. Weegels. 2001a. The
dual of denial: Two uses of disconfirmations in dialogue and their prosodic correlates.
Speech Communication 36(1):133-145.

[Krahmer et al. 2001b] Krahmer, E., M. Swerts, M. Theune, and M. Weegels. 2001b.
Error detection in spoken human-machine interaction. International Journal of Speech
Technology 4:19-30.



143 BIBLIOGRAPHY

[Lendvai 2003] Lendvai, P. 2003. Learning to identify fragmented words in spoken dis-
course. In Proc. of EACL Student Research Workshop., 25-32.

[Lendvai and Maruster 2003] Lendvai, P., and L. Maruster. 2003. Process discovery for
evaluating dialogue strategies. In Proc. of ISCA Workshop on Error Handling in Spoken
Dialogue Systems, 119-122.

[Lendvai et al. 2003] Lendvai, P., A. van den Bosch, and E. Krahmer. 2003. Memory-
based disfluency chunking. In Proc. of Disfluency in Spontaneous Speech Workshop
(DISS’03), 63-66.

[Lendvai et al. 2002a] Lendvai, P., A. Van den Bosch, E. Krahmer, and M. Swerts. 2002a.
Improving machine-learned detection of miscommunications in human-machine dia-
logues through informed data splitting. In Proc. ESSLLI Workshop on Machine Learn-
ing Approaches in Computational Linguistics.

[Lendvai et al. 2002b] Lendvai, P., A. Van den Bosch, E. Krahmer, and M. Swerts. 2002b.
Multi-feature error detection in spoken dialogue systems. In Proc. Computational Lin-
guistics in the Netherlands (CLIN °01). Rodopi Amsterdam.

[Levelt 1989] Levelt, W. J. M. 1989. Speaking: From intention to articulation. Cambridge,
MA: The MIT Press.

[Levin et al. 2000] Levin, E., R. Pieraccini, and W. Eckert. 2000. A stochastic model
of human-machine interaction for learning dialogue strategies. IEEE Transactions on
Speech and Audio Processing 8(1):11-23.

[Levow 1998] Levow, G. 1998. Characterizing and recognizing spoken corrections in
human-computer dialogue. In Proc. of COLING-ACL.

[Litman et al. 2000] Litman, D., J. Hirschberg, and M. Swerts. 2000. Predicting automatic
speech recognition performance using prosodic cues. In Proc. of NAACL.

[Litman et al. 2001] Litman, D., J. Hirschberg, and M. Swerts. 2001. Predicting user
reactions to system errors. In Proc. of EACL, 362-369.

[Litman and Pan 1999] Litman, D., and S. Pan. 1999. Predicting and adapting to poor
speech recognition in a spoken dialogue system. In Proceedings of the 7th International
Conference of User Modelling.

[Litman et al. 1999] Litman, D., M. Walker, and M. Kearns. 1999. Automatic detection
of poor speech recognition at the dialogue level. In Proc. of ACL, 309-316.

[Manning and Schutze 1999] Manning, C., and H. Schutze. 1999. Foundations of Statis-
tical Natural Language Processing. MIT Press.

[Marquez 2000] Marquez, L. 2000. Machine learning and natural language processing.
Technical report, Polytechnic University of Catalonia, Barcelona, Spain.



BIBLIOGRAPHY 144

[Maynard et al. 2002] Maynard, D., V. Tablan, H. Cunningham, C. Ursu, H. Saggion,
K. Bontcheva, and Y. Wilks. 2002. Architectural elements of language engineering
robustness. Journal of Natural Language Engineering — Special Issue on Robust Methods
in Analysis of Natural Language Data.

[McKelvie 1998] McKelvie, D. 1998. The syntax of disfluency in spontaneous spoken
language. Technical report, Human Communication Research Centre, University of
Edinburgh, U.K.

[Michalski et al. 1986] Michalski, R. S., J. G. Carbonell, and T. M. Mitchell (Eds.). 1986.
Machine learning: An artificial intelligence approach. Vol. II. San Mateo, CA: Morgan
Kaufmann.

[Mitchell 1997] Mitchell, T. 1997. Machine learning. McGraw Hill.

[Mitkov 2003] Mitkov, R. (Ed.). 2003. The Oxford Handbook of Computational Linguistics.
Oxford University Press.

[Montague 1974] Montague, R. 1974. Formal Philosophy. Selected Papers of Richard Mon-
tague. Yale University Press.

[Nakano et al. 1999] Nakano, M., N. Miyazaki, J. Hirasawa, K. Dohsaka, and T. Kawa-
bata. 1999. Understanding unsegmented user utterances in real-time spoken dialogue
systems. In Proc. of ACL.

[Nakatani and Hirschberg 1994] Nakatani, C., and J. Hirschberg. 1994. A corpus-based
study of repair cues in spontaneous speech. Journal of the Acoustical Society of America
95(3):1603-1616.

[Oostdijk 2002] Oostdijk, N. 2002. The Design of the Spoken Dutch Corpus. In: New
Frontiers of Corpus Research. P. Peters, P. Collins and A. Smith (eds.), pages 105-112.
Amsterdam: Rodopi.

[Oviatt 1995] Oviatt, S. 1995. Predicting spoken disfluencies during human-computer
interaction. Computer Speech Language 9:19-36.

[Oviatt et al. 1996] Oviatt, S., G. Levow, M. MacEachern, and K. Kuhn. 1996. Modelling
hyperarticulate speech during human-computer error resolution. In Proc. of ICSLP.

[Oviatt et al. 1998] Oviatt, S., M. McEachern, and G. Levow. 1998. Predicting hyperar-
ticulate speech during human-computer error resolution. Speech Communication 24:87
110.

[Palmer and Ostendorf 2001] Palmer, D., and M. Ostendorf. 2001. Improving informa-
tion extraction by modeling errors in speech recogniser output. In Proc. of the First
International Conference on Human Language Technology Research.

[Plauche and Shriberg 1999] Plauche, M., and E. Shriberg. 1999. Data-driven subclas-
sification of disfluent repetitions based on prosodic features. In Proc. International
Congress of Phonetic Sciences, Vol. 2, 1513-1516.



145 BIBLIOGRAPHY

[Pollard and Sag 1987] Pollard, C., and 1. Sag. 1987. Information-Based Syntax and Se-
mantics, Volume 1: Fundamentals. Vol. 13 of CSLI Lecture Notes. Center for the Study
of Language and Information.

[Pollard and Sag 1994] Pollard, C., and 1. Sag. 1994. Head-driven phrase structure gram-
mar. University of Chicago Press.

[Popescu-Belis et al. 2003] Popescu-Belis, A., A. Clark, M. Georgescul, M. Starlander,
and S. Zufferey. 2003. A thematic bibliography on dialogue processing. Technical
report, ISSCO/TIM/ETI, Université de Genéve, Switzerland.

[Privat 2003] Privat, R. 2003. Age effect on ASR performances: which dialogue recom-
mendations for adaptive strategies. In Proc. of ISCA workshop on Error handling in
spoken dialogue systems, 59-64.

[Provost et al. 1999] Provost, F., D. Jensen, and T. Oates. 1999. Efficient progressive
sampling. In Knowledge Discovery and Data Mining, 23-32.

[Qu et al. 1997] Qu, Y., B. DiEugenio, A. Lavie, L. Levin, and C. Rose. 1997. Minimiz-
ing cumulative error in discourse context. In Dialogue Processing in Spoken Language
Systems: Revised Papers from ECAI-96 Workshop. Springer.

[Quinlan 1986] Quinlan, J. 1986. Induction of Decision Trees. Machine Learning 1:81-206.

[Quinlan 1993] Quinlan, J. 1993. ¢4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann.

[Rayner and Hockey 2003] Rayner, M., and B. Hockey. 2003. Transparent combination of
rule-based and data-driven approaches in a speech understanding architecture. In Proc.
of EACL.

[Reithinger and Engel 2000] Reithinger, N., and R. Engel. 2000. Robust content extrac-
tion for translation and dialog processing. In W. Wahlster (Ed.), Verbmobil: Founda-
tions of Speech-to-Speech Translation, 428-437. Springer.

[Reithinger et al. 1996] Reithinger, N., R. Engel, M. Kipp, and M. Klesen. 1996. Predict-
ing dialogue acts for a speech-to-speech translation system. In Proc. of ICSLP.

[Reithinger and Maier 1995] Reithinger, N., and E. Maier. 1995. Utilizing statistical dia-
logue act processing in verbmobil. In Proc. of ACL.

[Ringger and Allen 1997] Ringger, E., and J. Allen. 1997. Robust error correction of
continuous speech recognition. In Proc. of ESCA-NATO Workshop on Robust Speech
Recognition for Unknown Communication Channels.

[Rissanen 1978] Rissanen, J. 1978. Modeling by shortest data description. Automatica
14:465-471.

[Rotaru and Litman 2003] Rotaru, M., and D. Litman. 2003. Exceptionality and natural
language learning. In Proc. of CONNL.



BIBLIOGRAPHY 146

[Samuel et al. 1998a] Samuel, K., S. Carberry, and K. Vijay-Shanker. 1998a. Computing
dialogue acts from features with transformation-based learning. In Proceedings of the
AAAI Spring Symposium on Applying Machine Learning to Discourse Processing, 90—
97.

[Samuel et al. 1998b] Samuel, K., S. Carberry, and K. Vijay-Shanker. 1998b. Dialogue act
tagging with transformation-based learning. In Proceedings of COLING/ACL, 1150~
1156.

[Shannon and Weaver 1949] Shannon, C., and W. Weaver. 1949. The Mathematical The-
ory of Communication. University of Illinois Press, Urbana.

[Shimojima et al. 1998] Shimojima, A., H. Koiso, M. Swerts, and Y. Katagiri. 1998. An
informational analysis of echoic responses in dialogue. In Proc. 20th Annual Conference
of the Cognitive Science Society, 951-956, Madison, WI, USA.

[Shriberg 1994] Shriberg, E. 1994. Preliminaries to a theory of speech disfluencies. PhD
thesis, University of California at Berkeley, U.S.A.

[Shriberg et al. 1998] Shriberg, E., R. Bates, A. Stolcke, P. Taylor, D. Jurafsky, K. Ries,
N. Coccaro, R. Martin, M. Meteer, and C. V. Ess-Dykema. 1998. Can prosody aid
the automatic classification of dialog acts in conversational speech? Language and
Speech. Special double issue on prosody and conversation. 41(3-4):439-487.

[Shriberg et al. 2001] Shriberg, E., A. Stolcke, and D. Baron. 2001. Can prosody aid the
automatic processing of multi-party meetings? Evidence from predicting punctuation,
disfluencies, and overlapping speech. In Proc. of ISCA Tutorial and Research Workshop
on Prosody in Speech Recognition and Understanding, 139-146.

[Shriberg et al. 1992] Shriberg, E., E. Wade, and P. Price. 1992. Human-machine prob-
lem solving using spoken language systems: Factors affecting performance and user
satisfaction. In Proceedings of the DARPA Speech and Natutal Language Workshop,
49-54.

[Spilker et al. 2001] Spilker, J., A. Batliner, and E. Néth. 2001. How to Repair Speech Re-
pairs in an End-to-End System. In Proc. ISCA Workshop on Disfluency in Spontaneous
Speech, 73-T6.

[Spilker et al. 2000] Spilker, J., M. Klarner, and G. Gérz. 2000. Processing self-corrections
in a speech-to-speech system. In W. Wahlster (Ed.), Verbmobil: Foundations of Speech-
to-Speech Translation, 428-437. Springer.

[Stolcke et al. 2000] Stolcke, A., K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky,
P. Taylor, R. Martin, C. V. Ess-Dykema, and M. Meteer. 2000. Dialogue act mod-
eling for automatic tagging and recognition of conversational speech. Computational
Linguistics 26:339-373.

[Stolcke et al. 1998a] Stolcke, A., E. Shriberg, R. Bates, N. Coccaro, P. Taylor, D. Juraf-
sky, R. Martin, M. Meteer, K. Ries, and C. V. Ess-Dykema. 1998a. Dialog act modeling
for conversational speech. In Papers from the 1998 AAAI Spring Symposium, 98-105.



147 BIBLIOGRAPHY

[Stolcke et al. 1998b] Stolcke, A., E. Shriberg, R. Bates, M. Ostendorf, D. Hakkani,
M. Plauche, G. Tur, and Y. Lu. 1998b. Automatic detection of sentence boundaries
and disfluencies based on recognized words. In Proc. Int. Conf. on Spoken Language
Processing, Vol. 5, 2247-2250.

[Streit 2003] Streit, M. 2003. Context-dependent error handling by a three-layered pro-
cessing model. In Proc. of ISCA workshop on Error handling in spoken dialogue systems,
147-152.

[Strik et al. 1997] Strik, H., A. Russel, H. van den Heuvel, C. Cucchiarini, and L. Boves.
1997. A spoken dialog system for the Dutch public transport information service. Int.
Journal of Speech Technology 2(2):121-131.

[Swerts et al. 1998] Swerts, M., H. Koiso, A. Shimojima, and Y. Katagiri. 1998. On dif-
ferent functions of repetitive utterances. In Proc. of ICSLP, 1287-1290.

[Swerts et al. 2000] Swerts, M., D. Litman, and J. Hirschberg. 2000. Corrections in spoken
dialogue systems. In Proceedings of ICSLP, 615-618.

[Taylor et al. 1998] Taylor, P.. S. King, S. Isard, and H. Wright. 1998. Intonation and
dialogue context as constraints for speech recognition. Language and Speech. Special
double issue on prosody and conversation. 41(3-4):493-512.

[Theune 2003] Theune, M. 2003. From monologue to dialogue: Natural language gen-
eration in OVIS. In Proc. of AAAI 2003 Spring Symposium on Natural Language
Generation in Written and Spoken Dialogue.

[Traum 1994] Traum, D. 1994. A computational theory of grounding in natural lan-
guage conversation. Technical report, Department of Computer Science, University of
Rochester, U.S.A.

[Traum 2003] Traum, D. 2003. Semantics and pragmatics of questions and answers for
dialogue agents. In Proc. of International Workshop on Computational Semantics, 380—
394.

[Traum and Heeman 1997] Traum, D., and P. Heeman. 1997. Utterance units in spoken
dialogue. In E. Maier, M. Mast, and S. LuperFoy (Eds.), Dialogue Processing in Spoken
Language Systems, 125-140. Springer.

[Traum and Larsson 2003] Traum, D., and S. Larsson. 2003. The information state ap-
proach to dialogue management. In J. van Kuppevelt and R. Smith (Eds.), Current and
New Directions in Discourse and Dialogue. Kluwer.

[Uszkoreit 2002] Uszkoreit, H. 2002. New chances for deep linguistic processing. In Proc.
of COLING.

[Van den Berg et al. 1994] Van den Berg, M., R. Bod, and R. Scha. 1994. A corpus-based
approach to semantic interpretation. In Proc. of the Ninth Amsterdam Colloguium.



BIBLIOGRAPHY 148

[Van den Bosch 2004] Van den Bosch. A. 2004. Wrapped progressive sampling search
for optimizing learning algorithm parameters. In Proc. of 16th Belgium-Netherlands
Conference on Artificial Intelligence, 219-228.

[Van den Bosch and Buchholz 2002] Van den Bosch, A., and S. Buchholz. 2002. Shallow
parsing on the basis of words only: A case study. In Proc. of ACL, 433-440.

[Van den Bosch et al. 2001] Van den Bosch, A., E. Krahmer, and M. Swerts. 2001. Detect-
ing problematic turns in human-machine interactions: Rule-induction versus memory-
based learning approaches. In Proc. of ACL, 499-506.

[Van der Wouden et al. 2002] Van der Wouden, T., H. Hoekstra, M. Moortgat, B. Ren-
mans, and I. Schuurman. 2002. Syntactic analysis in the spoken dutch corpus. In Proc.
of LREC, 768-7T73.

[Van Noord et al. 1996] Van Noord, G., G. Bouma, R. Koeling, and M. Nederhof. 1996.
Conventional natural language processing in the NWO priority programme on Language
and speech technology. Technical report, Nr. 28, NWO Priority Programme Language
and Speech Technology, October 1996 Deliverables.

[Van Noord et al. 1999] Van Noord, G., G. Bouma, R. Koeling, and M. Nederhof. 1999.
Robust grammatical analysis for spoken dialogue systems. Journal of Natural Language
Engineering 5(1):45-93.

[Van Rijsbergen 1979] Van Rijsbergen, C. 1979. Information Retrieval. London: Butter-
sworth.

[Veldhuijzen van Zanten 1996] Veldhuijzen van Zanten, G. 1996. Semantics of update
expressions. Technical report, IPO, Eindhoven University.

[Veldhuijzen van Zanten 1998] Veldhuijzen van Zanten, G. 1998. Adaptive mixed-
initiative dialogue management. In Proc. of IVTTA, 65-70.

[Veldhuijzen van Zanten et al. 1999] Veldhuijzen van Zanten, G., G. Bouma, K. Sima’an,
G. van Noord, and R. Bonnema. 1999. Evaluation of the NLP components of the
OVIS2 spoken dialogue system. In Computational Linguistics in the Netherlands 1998,
213-229. Rodopi Amsterdam.

[Vogten and Gigi 1998] Vogten, L., and E. Gigi. 1998. GIPOS (Graphical Interactive
Processing of Speech). Technical report, Institute for Perception Research, Eindhoven
University, Netherlands.

[Wahlster 2000] Wahlster, W. (Ed.). 2000. Verbmobil: Foundations of Speech-to-Speech
Translation. Springer.

[Walker et al. 2000a] Walker, M., I. Langkilde, J. Wright, A. Gorin, and D. Litman. 2000a.
Learning to predict problematic situations in a spoken dialogue system: Experiment
with how may i help you? In Proc. of ACL.



149 BIBLIOGRAPHY

[Walker et al. 2000b] Walker, M., J. Wright, and 1. Langkilde. 2000b. Using natural lan-
guage processing and discourse features to identify understanding errors in a spoken
dialogue system. In Proceedings of the International Conference on Machine Learning.

[Weber and Wermter 1996] Weber, V., and S. Wermter. 1996. Towards learning seman-
tics of spontaneous dialog utterances in a hybrid framework. In Connectionist, Statis-
tical and Symbolic Approaches to Learning for Natural Language Processing, 87-101.
Springer.

[Weegels 2000] Weegels, M. 2000. Users’ conceptions of voice-operated information ser-
vices. International Journal of Speech Technology 3:75-82.

[Weintraub et al. 1996] Weintraub, M., K. Taussig, K. Hunicke-Smith, and A. Snodgrass.
1996. Effect of speaking style on LVCSR performance. In Proc. of ICSLP, 16-19.

[Weiss and Kulikowski 1991] Weiss, S., and C. Kulikowski. 1991. Computer Systems that
learn: Classification and prediction methods from statistics, neural nets, machine learn-
ing, and expert systems. Morgan Kaufmann.

[Wermter et al. 1996] Wermter, S., E. Riloff, and G. Scheler (Eds.). 1996. Connection-
ist, Statistical and Symbolic Approaches to Learning for Natural Language Processing.
Springer.

[Zavrel et al. 2000] Zavrel, J., S. Degroeve, A. Kool, W. Daelemans, and K. Jokinen. 2000.
Diverse classifiers for NLP disambiguation tasks. Comparison, optimization, combina-
tion, and evolution. In TWLT 18. Learning to Behave. CEvoLE 2., 201-221.

[Zechner and Waibel 1998] Zechner, K., and A. Waibel. 1998. Using chunk based partial
parsing of spontaneous speech in unrestricted domains for reducing word error rate in
speech recognition. In Proc. of ACL.



161

xXipuaddy



Appendiz

152
Turn Utterance

Sl van welk station naar welk station wilt u reizen

B van amsterdam

S2 wanneer wilt u vanuit almelo naar amsterdam centraal station reizen

U2 fout

S3 het spijt me ik heb u niet begrepen wilt u nog eens zeggen wanneer u
vanuit almelo naar amsterdam centraal station wilt reizen

U3  terug klopt niet

S4 het spijt me maar ik heb u weer niet begrepen wilt u nog eens zeggen
wanneer u vanuit almelo naar amsterdam centraal station wilt reizen

U4 ik wil van amsterdam naar emmen

Figure 1: Original transcription of example turns from dialogue nr. 002/005 from the

OVIS corpus.

FREQUENCY-BASED TOP 100
freq  item I freq item | freq  item | freq item
4886  naar 680  half 399 leeuwarden | 245 jawel
4113 nee 637 amsterdam | 393  zeven 244 vijf
3897  van 634 twee 387  voor 239  s-morgens
3284 wil 618  dertig 376  dertien 238 zaterdag
3267 ik 606  groningen 369  februari 235 nul
3254  uur 597  acht 368 uhm 235 maandag
2670 om 593 nee.dank_u | 358 verbinding | 233 en
2206 ja 588  maar 354  delft 231  wilde
1627 uh 557 s 339  vrijdag 219  woerden
1605 dat 542  het 333 in 219 arnhem
1485 dank 521  utrecht 324 zwolle 218 assen
1444  op 496  elf 313 dinsdag 216  ongeveer
1322  niet 487  klopt 309  voorburg 216  nijmegen
1305 reizen 485 haag 303 vier 215  achttien
1293 tien 482  twaalf 303 rond 213  alphen
1241 negen 478  station 295 donderdag | 211 heerlen
1210 den 478  drie 290  januari 210  deventer
1201 de 473  een 285 maastricht | 205  vijftien
1100 neen 437  centraal 278  twintig 198  trein
1062 u 428  leiden 274  aankomen 189  heb
989  graag 427 vandaag 271 ook 186  woensdag
948 vertrekken | 427 hoorn 269  breda 186  juni
914 vanuit 423  rotterdam 266  zes 178  negentien
875 morgen 422  vanaf 262 zondag 173 veertien
754 XXX 404  haarlem 254  tussen 173 te

Table 1: The 100 most frequent words of the recognised input in the OVIS corpus.



Appendizx

153

Turn Utterance Ver. type

S1 goedemorgen dit is het automatische informatiesysteem van
openbaar vervoer reisinformatie dit systeem geeft uitsluitend
informatie over treinreizen van ns-station naar ns-station van
welk station naar welk station wilt u reizen

U1 ik wil van voorschoten naar den haag centraal station

S2 wanneer wilt u vanuit voorschoten naar utrecht centraal station IMPL
reizen

U2 ik wil naar den haag centraal station

S3 wanneer wilt u vanuit voorschoten naar den haag centraal sta- IMPL
tion reizen

U3 overmorgen

S4 hoe laat wilt u overmorgen reizen IMPL

U4 ergens in de avond

S5 u wilt dus tussen achttien en vierentwintig uur vertrekken EXPL

U5 ja

S6 het spijt me ik heb u niet begrepen wilt u nog eens zeggen of u EXPL
tussen achttien en vierentwintig uur wilt vertrekken

U6 ja

S7 er zijn vijf verbindingen dit is de vroegste (...) wilt u dat ik de
verbinding nog eens herhaal

U7 ja doe maar

S8 het spijt me ik heb u niet begrepen kunt u nog eens zeggen of
ik de verbinding moet herhalen

U8 ja

S9 ik herhaal de verbinding (...) zal ik de verbinding nog eens
herhalen

U9 nee

S10 het spijt me ik heb u niet begrepen kunt u nog eens zeggen of
ik de verbinding moet herhalen

U10  nee niet herhalen

S11 het spijt me maar ik heb u weer niet begrepen kunt u nog eens
zeggen of ik de verbinding moet herhalen

Ul1 nee

S12 wilt u ook de eerstvolgende verbinding weten

U12 nee

S13 wilt u nog een andere verbinding weten

U3 nee

S14 het spijt me ik heb u niet begrepen kunt u nog eens zeggen of
u een andere verbinding wilt weten

Ul4  nee ik wil geen andere verbinding weten

Figure 2: Original transcription of dialogue nr. 001/007 sampled from the OVIS corpus.
System prompts are marked for verification type.



154

Appendiz

Turn  Utterance Annotation
S1 goedenavond dit is het automatische informatiesys- Q_VA
teem van openbaar vervoer reisinformatie dit systeem
geeft uitsluitend informatie over treinreizen van ns-
station naar ns-station van welk station naar welk
station wilt u reizen
)i ik moet volgende week dinsdag van schiphol naar nij- S_VAD_PROB_OK
megen
52 van waar naar waar wilt u op dinsdag twaalf december Q-VA;I_D
reizen
U2  van schiphol naar nijmegen S_VA_OK_PROB
S3 hoe laat wilt u vanuit schiphol naar nijmegen reizen Q-H;I_VA
U3 rond kwart over elf savonds S_TH_PROB_OK
S4 u wilt dus om elf uur achtendertig s ochtends E_TH
vertrekken
U4  nee s avonds N:S_T_PROB_PROB
S5 wilt u mij alstublieft corrigeren M
U5 nee ik wil om elf uur vijftien s avonds vertrekken N;S_TH_PROB_PROB
S6 u wilt dus om drieentwintig uur achtendertig E_H
vertrekken
U6  zo ongeveer ja A;Y_PROB_PROB
S7 het spijt me ik heb u niet begrepen wilt u nog eens RE_H
zeggen of u om drieentwintig uur achtendertig wilt
vertrekken
U7  om drieentwintig uur vijftien S_H_OK_PROB
S8 u wilt dus om drieentwintig uur vijftien vertrekken E_H
U8 ja Y_VOID_OK_OK

Figure 3: The original Dutch transcription of dialogue nr. 004/005 sampled from the OVIS
corpus. User turns are annotated by our label set on the four components of SI, system
prompts are analysed in terms of TRAs and slots.



Appendiz 155

Turn Utterance

S1 ik moet nog uhm naar Hilde toe die nog steeds natuurlijk met 'r uh met
'r bovenlijf in 't gips zit.

S2 mm-hu.

S1 en ik moet nog tae-boén.

S2 ja dat weten ze niet hoe ze dat moeten schrijven. wedden?

S1 en ik moet nog... ggg nee.
ggg. nee serieus.

S1 ja? tae-bo dat is T A E streepje B O maar die naam mag dus niet meer
gebruikt worden.

S2 oh?

Si omdat... heb je dat niet gehoord?

S2 nee.

S1 omdat uh Billy Blanks die vent die dus uh tae-bo heeft uitgevonden die
uhm...

S2 je hoeft niet t— e— je hoeft uit te leggen. het gaat niet om inhoud.

S1 nee maar dat wil ik even zeggen tegen jou. xxx.

S2 xxx. ja oké ja maar ik weet wie je bedoelt ja.

S1 nou ja tae-bo... Billy Blanks die heeft dus dat uh heeft nu een rechtszaak.

S2 ja?

S1 en daarbij gaat 't d’rom dat dat dus die naam tae-bo die heeft hij dus zeg

maar verzonnen en daar heeft ie vijftien jaar over gedaan om dat allemaal
te ontwikkelen enzovoort.

52 ja.

S1 en hij vindt dus dat hij dat alleen mag gebruiken. dus dat hij ook alleen
maar die videobanden mag verkopen en dat sportscholen dus niet die
naam tae-bo mogen gebruiken.

S2 zonder dat ze xxx ja.

S1 zonder dat ze aan hem heel veel geld ge—... hij wil dus gewoon heel veel
geld verdienen d’raan. en hij verdient natuurlijk oh echt bakken met geld
aan dat tae-bo.

S2 ja ja.

Figure 4: The first turns of a spontaneous dialogue sampled from the CGN corpus (sample
nr. fn000451).



156 Appendiz

Turn  Utterance

S1 de Vlaamse regering wil vanaf midden volgend jaar starten met een
zorgverzekering. zwaar hulpbehoevenden krijgen een financiéle toelage
voor hun niet-medische kosten. het bedrag schommelt tussen drieduizend
vijthonderd en zesduizend vijfhonderd frank per maand. het systeem
wordt gefinancierd door de Vlaamse overheid maar ook door de burger.
die betaalt dertig frank per maand via het ziekenfonds of een privé-
verzekeringsfonds. Johny Vansevenant.

S2 de vorige Vlaamse regering besliste al dat er een zorgverzekering moest
komen. maar de concrete uitwerking ervan liet op zich wachten. nu
zou het systeem worden georganiseerd via de ziekenfondsen of privé-
verzekeringskassen. die zouden aan hun leden een bijdrage vragen van
dertig frank per maand.

Figure 5: The first turns of a broadcasting discourse sampled from the CGN corpus (sample
nr. fv600473).



Summary

The goal of this study is to develop and test a general method that can be implemented in
an interpretation module of a spoken dialogue system (SDS). The interpretation process
is called shallow since the material utilised is obtained directly from the speech recogniser
and the dialogue manager of the SDS without performing deep linguistic processing.

Our approach integrates the components of the proposed shallow interpretation (SI)
module in a machine learning framework where four pragmatic-semantic aspects of the
user input are conceptualised as learning tasks: the detection of task-related acts (basic
pragmatic acts exhibited by the user turn), information units (query slots for which infor-
mation is provided by the user), forward-pointing problems (whether the user input is a
source of communication problems in the interaction with the SDS) and backward-pointing
problems (whether the user is aware that communication problems have occurred).

We train two supervised machine learning algorithms — MBL, a memory-based classi-
fier, and RI, a rule induction classifier, considered as two extremes of working principle —
on labelled data coming from a corpus of Dutch dialogues with a SDS in the travel domain.
Dialogues are represented by a large amount of automatically extracted simple contextual
features such as the wording and the history of system prompts, the full output of the
speech recogniser, and acoustic-prosodic measurements of the speech signal, on the basis
of which the user input is classified in terms of the four pragmatic-semantic components.
An automatic algorithm parameter optimisation method [Van den Bosch 2004] is plugged
into the module.

Our findings show that the ambitious task of simultaneously learning the four-level
interpretation of spoken user turns (Chapter 4) yields significantly better results than
an informed baseline strategy that draws on the most recently posed system prompt.
Classification of task-related acts, slots, and backward-pointing problems is done better
by MBL in these experiments than by RI.

In Chapter 5 we develop a method for improving the module’s performance by means
of class partitioning (i.e., the SI components are learnt in isolation and in different com-
binations with each other) and feature partitioning (i.e., classification draws on isolated
information sources). We find that class partitioning has a substantial, positive influence
on the scores produced by both classifiers for all SI components. The module’s highest
performance is attained on learning the task-related acts (MBL: 91.7 F-score, RI: 90.5),
followed by the detection of backward-pointing problems (MBL: 90.8 F-score, RI: 88.5).
The results for the remaining components — filled slot types (MBL: 87.7. RI: 85.5) and
forward-pointing problems (MBL: 59.4, RI: 62.6) — are lower. The improvements gained

157



]

158 Summary

by optimising the class label of the learning tasks account for substantial error reduc-
tions, especially for RI, eliminating up to 50% of classification errors in terms of F-score.
It is remarkable that in class partitioning MBL and RI produce statistically identical top
performances concerning all four ST components. We observe that the various groups of
information source contribute to a different extent to the classification tasks; primarily the
speech recogniser output provides most information to classification. Using information
coming from all available sources turns out to be best for extracting pragmatic-semantic
information from spoken user input.

In Chapter 6 our aim is to block those pieces of information from the optimised learn-
ing algorithms that the literature supposes to negatively effect language processing. We
design three, primarily machine learning-based methods to automatically filter the speech
recogniser’s output from disfluent words, from syntactically less dominant words, and from
words that do not frequently occur in the recognition hypotheses. The experimental out-
comes suggest that filtering cannot substantially improve learning performance on the SI
task; we conclude that in our optimised experimental set-up the classifiers are enabled to
internally cope with noise.

Besides answering our three research questions, the general aim of this work is to cre-
ate an SI module that is robust in several respects. We conceptualise SI as a supervised
classification task, and find that the proposed shallow approach leads to similar scale and
performance tendencies of differently biased classifiers, suggesting that the method can
with a similar success be implemented by other supervised learning techniques. In order
to account for multi-layeredness in the input content, we extract information related to
pragmatic and semantic levels of the user utterance. We conclude that an optimal compo-
nent combination of such complex information is not trivial to determine, but is possible to
find out via class partitioning, and that it would be useful to merge the backward-pointing
problem component into the task-related act component of the SI module.

The module treats noisiness on several levels. The learning algorithms draw on approx-
imative measurements, since the features extracted from the spoken user input include a
large number of hypothetical values. Moreover, we find that when filtering techniques
that incorporate higher-level linguistic information are applied to the noisy speech recog-
niser output, the cleaned data do not yield significantly better performance on the SI
tasks than the noisy data. At the same time, we are also able to learn which factors of
human-—machine interaction can be identified as problem sources for the SI module itself
(e.g., users accepting errors that the system has made), as well as for the examined SDS
(the speech recogniser’s difficulty in processing negative answers, aspects of the dialogue
manager’s prompting strategy).

The main finding of this study is that drawing on unsophisticated, potentially noisy
features that characterise the dialogue situation, and by performing automatic optimisa-
tion of the formulated machine learning task at least in terms of class labels and algo-
rithm parameter settings, it is possible to extract sophisticated information of practical
pragmatic-semantic value from spoken user input with robust performance.



Samenvatting

De doelstelling van dit proefschrift is het ontwikkelen van een algemene methode die een
zogenaamde ‘oppervlakkige interpretatie’ (shallow interpretation, SI) uitvoert van gebrui-
kersuitingen in gesproken dialoogsystemen (spoken dialogue systems, SDSs). SDSs commu-
niceren met een gebruiker in gesproken natuurlijke taal om een specifieke taak uit te voeren,
bijvoorbeeld (zoals in ons onderzoek) het geven van informatie over treinreizen in Neder-
land. Interpretatie vindt in onze analysemodule plaats op vier pragmatisch-semantische
niveau’s die de volgende aspecten van een gesproken gebruikersuiting (oftewel spoken user
turn) beschrijven: basale acties die naar de onderliggende taak verwijzen (task-related
acts), welke type informatie de gebruiker in zijn uiting geeft (slots, bijv. het invullen van
vertrektijd of aankomststation), of de uiting communicatieproblemen oplevert tussen sys-
teem en gebruiker (forward-pointing problems), en of uit de uiting blijkt dat de gebruiker
zich bewust is van het ontstaan van communicatieproblemen (backward-pointing problems).

Het interpretatieproces wordt uitgevoerd door middel van gesuperviseerde lerende sys-
temen die — op basis van geannoteerde voorbeelden uit het OVIS corpus — getraind
worden om nieuwe uitingen te classificeren. In dit proefschrift gebruiken we twee algo-
ritmen, memory-based learning (MBL) en rule induction (R1), die vaak gezien worden als
twee extremen van het continuum van lerende systemen. De aanpak is ‘oppervlakkig’ om-
dat de informatie die door de lerende algoritmen gebruikt wordt bestaat uit eenvoudige
contextuele kenmerken (features) van de gesproken uiting, zoals akoestisch-prosodische
metingen, de dialooggeschiedenis, en de woordhypotheses van de spraakherkenner (auto-
matic speech recogniser, ASR) van het SDS. De parameters van MBL en RI worden bij elk
experiment automatisch geoptimaliseerd met behulp van de methode van [Van den Bosch
2004].

De experimenten in Hoofdstuk 4 geven aan dat de complexe taak van het tegelijkertijd
classificeren van alle vier SI niveau’s significant beter geleerd wordt door beide algoritmen
dan door een geinformeerde basisstrategie gebaseerd op de meest recente systeemvraag.
Het classificeren van task-related acts, slots, en backward-pointing problems wordt signi-
ficant beter gedaan door MBL dan door RI.

In Hoofdstuk 5 bekijken we of het mogelijk is de prestatie van de algoritmen te ver-
beteren door middel van information partitioning, d.w.z. het systematische verdelen en op
een andere manier samenstellen van informatie in de klasse-componenten (class partition-
ing) en van de features voor een taak (feature partitioning). Wij zien dat class partitioning
een positieve invloed heeft op beide algoritmen, zodat de beste resultaten (in termen van
F-score) voor beide algoritmen op alle SI taken nagenoeg identiek zijn. De component die

159



160 Samenvatting

in de module het meest succesvol voorspeld wordt is de task-related act (MBL: 91.7 F-
score, RI: 90.5), gevolgd door backward-pointing problems (MBL: 90.8 F-score, RI: 88.5).
De resultaten van de beide andere componenten — type slots (MBL: 87.7, RI: 85.5), en
forward-pointing problems (MBL: 59.4, RI: 62.6) — liggen wat lager. Deze verbetering
ten opzichte van het complexe experiment uit Hoofdstuk 4 levert een significante reductie
van classificatiefouten op, vooral voor RI (tot 50% reductie op F-score). De experimenten
met feature partitioning tonen aan dat onze informatiebronnen systematisch verschillen in
hun bijdrage voor de SI taken, waarbij de ASR features het meest informatief blijken te
zijn. In het algemeen worden de beste resultaten echter bereikt wanneer alle beschikbare
informatie gebruikt wordt.

Hoofdstuk 6 beschrijft drie pogingen om de in de literatuur beschreven ‘ruis’ (noise) uit
de ASR features te filteren: disfluencies (zoals zelfcorrecties, afgebroken woorden, enz.),
chunk non-heads (d.w.z. syntactisch minder belangrijke woorden), en woorden met een
lagere frequentie. In de drie experimenten wordt elk van deze bronnen van ruis automatisch
uit de ASR features gefilterd, waarna de SI taken opnieuw geleerd worden. De resultaten
lijken geen significante invloed aan te tonen van filtering op SI, waaruit afgeleid kan worden
dat de geoptimaliseerde lerende algoritmen zelf al in staat zijn om met de ruis om te gaan.

Een belangrijke doelstelling van dit proefschrift is dat het model voor SI op verschei-
dene manieren robuust is. Allereerst leidt de formulering van de SI taak als een geopti-
maliseerde leertaak er toe dat de twee algoritmen nagenoeg identieke prestaties kunnen
behalen, waarbij we verwachten dat de hier beschreven aanpak en resultaten ook gener-
aliseerbaar zijn naar andere gesuperviseerde leertechnieken. Daarnaast is de SI module in
staat om alle vier componenten te interpreteren, waarbij de optimale samenstelling van
de componenten automatisch gevonden kan worden. Tenslotte worden storingsfactoren in
de interactie op meerdere manieren behandeld. De algoritmen gebruiken een groot aantal,
mogelijk incorrecte, eenvoudige features voor het extraheren van complexe begrippen uit
de gebruikersuiting. De resultaten van Hoofdstuk 6 laten zien dat er in principe geen ver-
betering optreedt in de module wanneer features gefilterd worden. Tegelijkertijd heeft het
onderzoek praktische kennis opgeleverd over probleemfactoren, zowel voor de SI module
(zoals acceptatie van systeemfouten door gebruikers) als voor de interactie met de SDS
in het algemeen (zoals de problematische verwerking van negatieve uitingen, en diverse
aspecten van de dialoogmanager).

De belangrijkste conclusie van ons werk is dat gebaseerd op eenvoudige, soms ruizige,
contextuele kenmerken het mogelijk is om op robuuste wijze complexe informatie van
pragmatisch-semantische aard te extraheren uit gesproken gebruikersuitingen met behulp
van lerende algoritmen die geoptimaliseerd zijn op hun parameters en op samenstelling
van de taakcomponenten.



Kivonat

Disszertaciénk célja egy olyan dltalanos eljdras kifejlesztése és tesztelése, amely beszélgeto-
rendszerbe (spoken dialogue system, SDS) édgyazva felhaszndlok hangz6beszédének rész-
leges értelmezését (shallow interpretation, SI) hajtja végre explicit grammatikai informacio
felhasznaldsa nélkiil. Az SDS-ek &ltaldnos funkcidja, hogy valamely szolgaltatdst gépi
verbalis kommunikécio segitségével elérhetové tegyenek, illetve arrél — az dltalunk vizsgalt
esetben példaul vasiti menetrendrol — felvilagositdst adjanak. Az ember—gép inter-
akei6 soran tehat a felhasznalé beszédébol, mely tobbnyire az SDS altal feltett kérdésre
adott vélasz, a gépnek ki kell nyernie a sikeres kommunikaciohoz és a végeredményt ado
adatbézis-lekérdezéshez sziikséges informaciét. Az altalunk fejlesztett modulban ez a
mesterséges intelligencia médszereinek egyikével, feliigyelt gépi tanul6 algoritmusok (su-
pervised machine learning algorithms) felhasznélasaval torténik, melyet mind memoriaalapi
tanuldssal (memory-based learning, MBL), mind szabdlytanuldssal (rule induction, RI)
elvégziink.

Az MBL és az RI algoritmusokat — melyek a tanulds intenzitdsdnak és a megszerzett
tudés reprezentéldsanak szempontjabol a feliigyelt tanuldsi médszerek két végletének tekint-
hetok — holland nyelvii, ember-gép parbeszédeket tartalmazé annotalt gyakorlokorpuszon
tanitjuk a felhasznalé hangzébeszédben bevitt szovegének (spoken user input) négy prag-
matikai-szemantikai szinten vald részleges értelmezésére. A szintek a kovetkezok: a fel-
hasznalé vélaszanak alapveté kommunikativ aktusa (task-related act, TRA), a felhasznalo
4ltal megadott tartalmi informdacié tipusa az SDS lekérdezési struktirdjaban (filled query
slot, SLOT), annak felismerése, hogy a bevitt mondat fog-e problémat okozni az adott
péarbeszédben (forward-pointing problem, FWD PR), valamint annak azonositdsa, hogy
amennyiben a diskurzus sordn probléma meriilt fel, a felhaszndlé tudatéban van-e en-
nek (backward-pointing problem, BWD PR). A tanulds alapjdul a parbeszédek egyszeri, az
SDS-ben automatikusan hozzaférheto jellemzoi szolgdlnak, melyeket harom csoportra oszt-
hatunk: a beszédjel akusztikai-prozédiai attribitumai, az SDS dialégusmenedzsere altal
tarolt parbeszédelozmények (dialogue history), valamint az SDS automatikus beszédfelis-
merdje (automatic speech recogniser, ASR) teljes, szograf-hipotézis forméji kimenete,
melyet rendezetlen széhalmazként ( “bag-of-words”) dbrazolunk. A tanulds soran mindkét
algoritmus paramétereit automatikusan optimalizaljuk [Van den Bosch 2004] médszerével.

A disszertacié 1. fejezete a megvalaszolni kivant kutatdsi kérdéseket fogalmazza meg.
A 2. fejezet mas kutatéesoportok Sl-re vonatkozé eredményeit és modszereit targyalja,
kiilonos tekintettel a korpuszannotaldsra, valamint a pragmatikai-szemantikai informéci6
kinyeréséhez felhasznélt interakcié-jellemzokre. A 3. fejezet bemutatja a gépi tanulas

161



-

162 Kivonat

teriiletét, ahol foként a memoériaalap és a szabalytanuld algoritmusok belsé6 mechanizmu-
sara forditunk figyelmet, valamint meghatdrozzuk tanuldsi kisérleteink metodik4jat.

A 4. fejezetben leirt kisérletek alapjdn megdllapithatd, hogy az SI modul a bonyolult,
négyszintli értelmezést eredményesebben képes elvégezni, mint az az alapeljaras (base-
line strategy), amely az elemzéshez az SDS legutébb feltett kérdését veszi figyelembe. A
TRA, SLOT, és BWD PR részfeladatokat az MBL algoritmus az osszetett feladat soran jobb
eredménnyel oldja meg, mint az RI algoritmus.

Munkénk 5. fejezetében az SI modult az informaciémegosztas (information partition-
ing) médszerével fejlesztjiik tovabb: az algoritmusok mind a négy SI alfeladatot az dsszes
lehetséges kombindcioban megtanuljdk (class partitioning), majd a kapott optimalis kom-
bindciét a harom elkiilénitett attributumcsoport alapjén (feature partitioning). Megéllapit-
juk, hogy a class partitioning médszerrel a modul teljesitménye hatékonyan novekszik
(némely esetben a komplex feladathoz képest esetenként 50%-os hibacsokkenést is elérve)
mind MBL, mind RI esetében. A legjobb eredményt a TRA komponensen (vagyis az alapveto
beszédaktus-tipus kinyerésén) érjiik el (MBL: 91.7 F-score, RI: 90.5), melyet a BWD PR
komponens kévet (MBL: 90.8 F-score, RI: 88.5). A sSLOT komponens klasszifikdcitja
valamivel alacsonyabb eredménnyel végezheto el (MBL: 87.7, RI: 85.5). A legnehezebb
feladatnak a FWD PR komponens meghatérozédsa bizonyul (MBL: 59.4, RI: 62.6). Meglepo
vizsgalati eredmény, hogy ezzel a médszerrel a két algoritmus az értelmezés egy-egy szintjét
statisztikailag azonos teljesitménnyel képes megtanulni. Megéllapitjuk, hogy a hdrom in-
formacioforras koziil az ASR attribiitumcsoport bizonyul a leghasznosabbnak; altaldban
azonban legoptimalisabb az Gsszes lehetséges attribiitum figyelembe vétele a tanulds soran.

A 6. fejezetben az eképpen optimalizdlt értelmezomodul robusztussédganak (robustness)
tovabbi vizsgalatat hajtjuk végre. Harom kisérleti mddszer keriil alkalmazéasra abbédl a
célbol, hogy az ASR “zajos” (noisy) kimeneti hipotézisébol kisziirjiink haromféle — a
szakirodalom éltal zavarénak feltételezett — elemet: a diszfluens elemeket (disfluencies,
Ugymint Onjavitds, sz6ismétlés, hiimmogés, stb.), a grammatikailag aldrendelt szavakat
(chunk non-heads), és azokat a szavakat, amelyeket az ASR hipotézise alacsonyabb gyako-
risdggal tartalmazza. Az elso két mddszert ismét automatikusan, gépi tanulési technikdk
segitségével végezziik, esetenként grammatikai informacié felhasznaldsaval. A megszirt
ASR kimeneten (a tébbi attribitummal egyetemben) elvégzett SI kisérletek azonban azt
sugalljak, hogy az értelmezési feladat nem igényli az attribitumok zajossdganak csokken-
tését, mivel a kapott eredmények nem mutatnak jelentos valtozast az 5. fejezetben tér-
gyaltakhoz képest. Ebbol arra kovetkeztetiink, hogy az SI modul az optimalizalds soran
belso robusztussdgot ért el ezekkel az elemekkel szemben.

A leirt technikai megolddssal nemcsak beszélt nyelvi szoveg részleges elemzését tudtuk
elvégezni, de hasznos tuddst nyertiink a gép és az ember kozott folyé parbeszéd szamos
gyakorlati jellemzojérol. Noha a modell az utazds témakorében keriilt bemutatésra, a
kisérletek altalanos metodikdja, valamint a kapott teszteredmények az eljaras altaldnos
alkalmazhatésagdara utalnak. Kutatdsunk soran megallapitottuk, hogy a kifejlesztett modul
képes arra, hogy zajos, egyszerii attribitumok alapjan gépi tanuldsi médszerekkel fel-
hasznélék hangzébeszédébol magasszintii, pragmatikai-szemantikai jellegti informéaciot nyer-
jen ki stabil teljesitménnyel.



/
Bibliotheek K. U. Brabant

17 O00 01543220 7

ISBN
90901
88746




	Contents
	Chapter 1
	Introduction
	1.1 The complexity of interpreting user input  in  spoken dialogue systems
	1.2 Machine learning for extracting information from spoken user input
	1.2 Machine learning for extracting information from spoken user input
	1.3 Research objectives
	1.3.1      A robust approach
	1.3.2 Detecting task-related  acts
	1.3.3 Detecting information units
	1.3.4 Detecting forward-pointing problems
	1.3.5 Detecting backward-pointing problems
	1.4 Overview
	Chapter 2
	Computational Interpretation of Spoken User Input
	2.1 Natural language understanding in spoken dialogue systerns
	2.2 Analysis levels in interpreting spoken user input
	2.2.1  Task-related acts
	2.2.2 Information units
	2.2.3 Forward-pointing problems
	2.2.4 Backward-pointing problems
	2.3 Potential information sources for interpretation
	2.3.1   Cues in analysing task-related acts
	2.3.2  Cues in analysing information units
	2.3.3  Cues in analysing forward-pointing problems
	2.3.4   Cues in analysing backward-pointing problems
	2.4 Summary
	Chapter 3
	Machine Learning as a Research Environment
	3.1 Algorithm choice
	3.1.1 Memory-based learning
	3.1.2 Rule induction
	3.2 Experimental methodology
	3.2.1 Algorithm parameter optimisation
	3.3 Summary
	Chapter 4
	Shallow Interpretation Module: Data, Experiments, and Results
	4.1 OVIS
	4.1.1  The OVIS system
	4.1.2      The OVIS corpus
	4.2 Class label design
	4.2.1      Task-related act labels
	4.2.2  Information unit labels
	4.2.3 Forward-pointing problem labels
	4.2.4 Backward-pointing problem labels
	4.2.5 Global class label
	4.3 Feature design
	4.3.1 Source: Dialogue manager
	4.3.1.1   Co-occurrence of turn pairs
	4.3.2 Source: Speech recogniser
	4.3.3 Source: Speech prosody
	4.3.3.1 Descriptive statistics
	4.4 Results
	4.4.1    Baseline
	4.4.2   Performance on the complex SI task
	4.4.3  Parameter and feature use in MBL
	4.4.4  Parameter and feature use in RI
	4.4.5 Detailed analysis of task-related acts and information units
	4.4.6 Discussion
	4.5 Summary
	Chapter 5
	Partitioning Information
	5.1 Method
	5.1.1 Class partitioning
	5.1.2 Feature partitioning
	5.2 Task-related acts
	5.2.1 Class partitioning
	5.2.2 Feature partitioning
	5.2.3 Detailed analysis
	5.3 Information units
	5.3.1 Class partitioning
	5.3.2 Feature partitioning
	5.3.3 Detailed analysis
	5.4 Forward-pointing problems
	5.4.1 Class partitioning
	5.4.2 Feature partitioning
	5.5 Backward-pointing problems
	5.5.1 Class partitioning
	5.5.2 Feature partitioning
	5.5.3 Detailed analysis
	5.6 Discussion
	5.6.1 Class label design
	5.6.2 Feature design
	5.6.3  MBL and RI compared
	5.6.4 Evaluation
	5.7 Summary
	Chapter 6
	Filtering Information
	6.1 Filtering disfluencies
	6.1.1 Filtering disfluencies from transcribed words
	6.1.1.1  Introduction to the CGN corpus
	6.1.1.2 Features
	6.1.1.3 Experimental set-up
	6.1.1.4 Baseline
	6.1.1.5   Results of testing on CGN data
	6.1.2 Filtering disfiuencies from recognised words
	6.1.2.1  Preprocessing the OVIS data
	6.1.2.2    Results of testing on OVIS data
	6.1.2.3  Incorporating the disfiuency filtered BOW in SI
	6.1.2.4   Effects of disfluency filtering on SI
	6.2 Filtering non-heads of syntactic chunks
	6.2.1  Training on CGN data
	6.2.2   Testing on OVIS data
	6.2.3   Incorporating the chunk non-head filtered BOW in SI
	6.2.4   Effects of chunk non-head filtering on SI
	6.3   Filtering on the basis of word frequency
	6.3.1   Incorporating the frequency filtered BOW in SI
	6.3.2   Effects of frequency-based filtering on SI
	6.4 Discussion
	6.5 Evaluation
	6.5.1      Analysis of transcribed utterances  in  OVIS
	6.5.2 Data preprocessing
	6.5.3 Evaluating filtering on the basis of topline experiments
	6.5.4   Evaluating SI on the basis of the topline experiments
	6.6 Summary
	Chapter 7
	Conclusions
	Bibliography
	Appendix
	Summary
	Samenvatting
	Kivonat



