
  

 

 

Tilburg University

Extracting Information from Spoken User Input

Lendvai, P.K.

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Lendvai, P. K. (2004). Extracting Information from Spoken User Input: A Machine Learning Approach. [n.n.].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. Nov. 2022

https://research.tilburguniversity.edu/en/publications/e6cdf799-a109-4cb7-aeac-5ee9e456d74e


-                                 I

'll      .+1'LA#J-Ke.   I    . . .    i.-    '         .            -  ./gS EXTRACTING *  -2 Eit»»s,  1;3.--.-#Tgt
RA,£*f   -•4.4 .·,-

t:,i:14·-i·. vi·: , ..:·1<% r.'i-t 'Arritb-·, ·'4'Aff:fil,R th 6&1996£<   1
FA                                         '3*p.'.1 ':2-".3.. ;  t .2 .1,&,,3. 1  ,111<" 1:4,i,·1:,; ,fuw« cr:i'-  1* 31 I  INFORMATION  i ,»'4.,J :·Iri: ».p. ..p«..4•4              :*«-A··,Y. 29,- 4 -' -1'.-·pt: 4'.f„-i'2'1 .l.$,46*%,44   2. 2
91*  FROM    SPOKEN   *63%14# A *5  2  :i.<ft.429#Ez . . .-  &, .6224,»* 1.'.     4.           ..    .--  -9,    . -ri'.#.,4 . ' ,-'.....t. ..C ,- r,1
IfS                    Br -prsq ld,4 4 #,4,9,.--»":·42'  '* f
856  USER   _        INPUT   .'225%.·.».*e:.J33 9. 2,*# 4»512
di-f qurh<=lit*&,/ 4 -. .=- :., -· '-,·teiT,·fir.' 'it4.-'t» j,j<vjj 
  A MACHINE LEARNING APPROACH  t e 4-3'11:»1%246#6. . ,<*4 f,P.r1&#w,Y =Illg Ef*Jb<JitE),-*  *   %#5£* 3.1  i9 .---: 11
<*41 EN-s,w# 79 :44(4=4*116*4- - < . r>1......st . -,t f. Ft:1'* 11[....,2  ik  4 42435&  -.b.qf4  &141
*1- 1, ,2.'iRwz*:Sh, 1, 4        .---= . 'fiKY *tt 11 
4,#p   v  4- 444  61 JZ  MA'A  $*b#& Li*.,IRA<, f, .*f#:
0*ifill#Ziqi#dlle vi.*747.Q., r!.3-> ,4.. -·. 0 w- ... ,# .. ... .1-'r

,-·   r.419*-6.-=69  r=«'*i-4 1,#.4< *iwi ,2 974/av * 
-,1.-I -.  4........ .=r.. .- :9.-.-:....,---,-4., -*-= .W*04*fiX  4443*41,.

..3.:'...
. . .     "01235'.

/2                                                                   -   I    .    .    .......
I       ,

.

*,i '4*    ti
-

.   FSK
«

A

-

h#
L

t »
M:
  -AV *--

1                                                        
                                                         

                                                         
                                    -

D '0
i                                                                                                                            9, 4,1  f <1           ./ >,-           1,4 1

0.  I.
*

4.



./.               1UNIVERSITEIT * j  0 VAN TILBURG    

.T.
BIBLIOTHEEK

TILBURG

PIROSKA KORNELIA LENDVAl

EXTRACTING INFORMATION FROM SPOKEN USER INPUT

A MACHINE LEARNING APPROACH



The l,roject of this tliesis was flinded In' soBI- (Samenwerkingsorgaaii Brabantse Universiteiten:
Organisation for cooperation beta.'een. 'tin'itie.rs·it'tes m the Bmbant region.)

© 2004  Piroska Korii6lia Leiidvai

ISBN 90-9018874-6

Priiited iii Enschede

Typeset iii 147kx

Cover: Yubileyny.  St.  Petersburg 2004



.*.
UNIVERSITEIT

*   VAN TILBURG.
BIBLIOTHEEK

TILBURG

Extracting Information from Spoken User Input
A Machine Learning Approach

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Tilburg,

op gezag van de rector magnificus,
prof. dr. F.A. van der Duyn Schouten.

in het openbaar te verdedigen ten overstaan van
een door het college voor promoties aarigewezen coiIimissie

in de aula van de Universiteit
op maandag 20 december 2004 om 10.15 uur

door

Piroska Korndlia Lendvai

geboren op 24 december 1972
te Bonyhtid. Hongarije



Proniotores: Prof. cir. W.P.Al. Daeleinatis
Prof. cir. H.C. Bitiit

Copromotores:   Dr. A.P.J. van clen Boscli
Dr. E..1. Krahiner



Presellti:r: You liave a new theon· about the brotit osaurus.
Anne Elk: Cati   I  just  say here Chris  for  One  motilent  that  I  have  a  new  theory  about  the

brontosatiriis?
Presenter: Uh. exactly. Wliat is it?
Anne Elk: Where?
PTCSe."hz No  -   no,  what  is  yotir  theory?
Anv Elk: What  is  im'  theory'.
Presentei·: Yes!
Anne Elk: What. is iii, theory that it is? Yes -  well. you may wel I ask what is nly theor.v.
Present£7·: 1 am asking.
Anne Elk: And well y(,ii may. Yes. 11iy word, you may well ask what it. is, this theory of

Illille. Well. this theory, ilial I have, that is to say, Whkh is minc is illitie.
Pres(71.1€1·: I know it's yours! What is it?
Anne Elk: Where? Oh, what. is niy theory? Ali! liv theory, that I have. foll(,ws tlie lines

that I arti about to relate.
Prese.TJ,et: Oh. God.
Anne Elk: The theory, by Anne Elk..
PreS€Tlter': Right...
Anne Elk:  clears throatl This tilec,r>·. which belongs to me. is as follows - [clears throat]

This is how it goes  nic,re throat clearing] The next titing that I am about t(1
say is niy theory - [clears throat] Reacly? The theory. hy Anne Elk, brackets.
miss, brackets. My thi,(,ry is alotig t.hi' following liiies.

Prese7 .ler: God!
Anne Elk: 411 brontosauruses arc, thiii at otip erid. much. much thicker ill the micidle. and

then thin again at tlie far end. That is the theory that I have. and wliich is
mine. and what it is. t(,(·1.

Presenter: That's it.  is it?
An.ne Elk: Right. Chris.
Presenter: Well. Anne. this theory c,f yours seetii.. tc, have hit the nail right w the head.
.4nne Elk And it's mme.

(Front: Monty Pytholl) Brontosaurus The.ory Sket,(·It)
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Chapter 1

Introduction

1.1 The complexity of interpreting user input  in  spo-
ken dialogue systems

Spoken dialogue systenis (SDSs) are developed to assist people at controlling devices and
at accessing various computer-based services. When human users interact with a SDS, a
specific type of communication takes place tliat is referred to as task-oriented dialogue.
Iii task-oriented dialogues the dialogue partners want to reach some common goal, one
that represents the purpose of the utilised device or service. Our study focuses on SDSs
that are information-providing systems.  In such SDSs the common goal is to transfer
information from the system to the user. SDSs of this kind can also be seen as speech
interfaces to databases, enabled by a successful interaction to perform a database search:
the database is consulted and information is retrieved by the system when enough query
constraints are obtained from the input supplied by the user. The query constraints are
pieces of information that are inferred from what the user says during the dialogue.  In
other words, interaction  with  the SDS proceeds  via a series of dialogue  exchanges,  i.e.,
pairs of system and user turns, which lead to a computational state where the database
query can be performed.  When the query restilt is delivered to the user, the goal of the
interaction is fulfilled.

A crucial subprocess of the interaction is thus that the dialogue system infers the con-
tent of user turns. This takes considerable effort; at least three major factors contribute
to the complexity of such automatic interpretation. One factor is that the spoken ma-
terial may contain noise. Apart from environmental and channel-related auditory noise.
linguistic noise may also be present in spoken input: ungrammatical linguistic construe-
tions are frequently uttered by people. and the presence of so-called disfluent elements
such as stuttering. repetitions. and filled pauses, which do not belong to the intended
informational content of the utterance, is not uncommon. In addition. the results of
automatic speech recognition   (ASR)   implemented   in   a   SDS are often incorrect,   espe-
cially when the ASR engine has to operate on large dornairis. Errors in SDS-internal
nieasurenients can also occur, and may lead to noise iii the material from which in-

1



Chapter  1:   Introduction                                                                                                                                                             2

formation needs to be extracted by the SDS. Additionally, noise has been found to be
dimcult to automatically distinguish from linguistic subregularities and exceptions (cf.
[Daelemans et al. 1999, Rotaru and Litman 2003})

The second factor accounting for complexity in interpreting user input is that in a
task-oriented dialogue a user turn is typically some concise utterance that amalgamates
manifold communicative aspects. [Traum 2003}identifies three inherent levels of questions
and answers in human-machine communication:  (i) the performance level of dialogue acts,
(ii) the semantic level of basic values. and (iii) the interactional level of the conversation.
For example, a typical user reply to an information-demanding system prompt (i.e, the
machines utterance. e.g. 'How may I help you?') can be considered to simultaneoiisly
perform the acts of information providing. supplying the particular pieces of information
that were requested. and giving feedback on how the interaction is progressing (e.g., 'I
would like to know aborit recreational activities in Tilburg.'). [Krahmer et al. 200lb]
find  that a positive feedback   ( i.e.. signalling  that the cominunication proceeds without
problems) is often represented by a zero element in the utterance. that is, the user will
usually not say explicitly that the interaction progresses well.

The third factor explaining why it is not trivial to infer the content of a user turn is
that language technology employed to automatically extract this content is error-prone:
substantial research has been carried out on the complex task of user understanding, but
present applications still seem to require innovative enhancements to allow for successful
human-machine communication on a more general scale. This calls for devising robust
techniques that work with extensive coverage of spoken language phenomena and sufficient
precision at the same tinie (cf. [Maynard et al. 2002, He and Young 20048.

1.2 Machine learning for extracting information from
spoken user input

In recent years there has been an increased interest in using statistical and machine learn-
ing approaches for the processing of user utterances in spoken dialogue systerns. Dialogue
act classification is an example for which this approach has been relatively successful. The
goal of this task is to determine what  the underlying intention of an utterance is  (e.g.,  sug-
gest. request, reject. etc.). Various techniques  have  been  used  for this purpose, including
data-driven language models  Reithinger and Maier 1995], maximum entropy estimations
IChoi  et  al. 19991, mixed stochastic techniques [Stolcke  et  al. 2000}, transformation-based
learning   ISaniuel  et al. 1998b]. and others. For processing and understanding the units
of information that represent the content of spoken user utterances. statistical techniques
have also proven their 11Sefulness, either in combination with rule-based grammars (e.g.
[Cettolo et al. 1996, Van Noord et al. 1999, Wahlster 2000, Cattoni et al. 2001}) or with-
out  them  (for example  [Allen et  al. 1996, Nakano et  al.  1999}).

Another task for which machine learning approaches have been applied is automatic
problem detection. Given the frequent occurrences of communication problems between
users and systems due to niisrecognitions, erroneous linguistic processing. incorrect as-
sumptions. and the like, it is important to detect problems in the interaction as soon as
possible, or even try to anticipate theni (cf. [Hirschberg et al. 2000, Litnian et al. 2000.
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Walker et al. 2000a. Hirschberg et al. 20041). Various researchers  have  also shown tliat
users signal coniniunication problems when they become aware of them. and that it is
possible to pitipoint utterances that reveal that the user acquired knowledge (perhaps
11ot even fully consciously) about a communication  problem  (cf.    [Hirschberg  et  al.  2001.
Van den Bosch  et  al. 2001]). Siich  turiis  are soinetimes referred  to as awareness  sites.  a
terni which we will also use in our study.

Interpreting the acts performed and the information units supplied by the user. pre-
dicting, as well as identifying communication problems are all highly relevant tasks iii
processing user input in SDSs. Still. none of the studies in the literature addresses these
issues in combination. Such a combined approach would establish a complex interpretation
module for SDSs. extracting information about semantic aspects (such as the content of
the user's utteralice) and pragniatic aspects (the performed act, source of communication
problems. feedback about the status of the dialogue) of the user input.

1.3 Research objectives
In this study we propose an architecture for a module that performs shallow analysis of
user input in a SDS and provides a complex interpretation of user turns. We refer to the
interpretation process as 'shallow since no deep linguistic analysis is performed on the

user input in order to infer the interpretation, and the material utilised by the module
is obtained by simple meatis from the speecli recogtiiser aid tlie dialogue niaiiager of the
SDS. The output produced by the module is a four-level representation of the user turn,
consisting of the following components:

• the performed basic task-related act(s),

• the information unit type(s) for which information was provided. in our study cor-
responding to the slots of the query to be completed,

• whether the turn is the source of communication problems,

• whetlier the tiirti exhibits user awareness of communication problems.

Figure 1.1 shows the interpretation module  in  a  schematic  SDS architecture. After
the user input is supplied, it is processed by the ASR. The output of the ASR is fed into
the language interpretation module, of which shallow interpretation forms a submodule.
The shallow interpretation module receives input from the dialogue manager module as
well. The dialogue manager (DAI) module is typically the central coordinating unit of a
SDS, responsible for maintaining the interaction by incorporating the content of the user
input, and designing an adequate response strategy to that user input (for details see for
example [Flycht-Eriksson 1999. Traum and Larsson 2003. Popescu-Belis et al. 2003]).

The next  step  in the process described in Figure  1.1  is that the shallow interpretation
module extracts the above pieces of information based on the material received froni the
ASR and the DM. whereby a four-level interpretation of the user turn is obtained.  If
performed accurately, arguably, such a complex interpretation is able to improve langtiage
processing in a dialogue system in many ways. Apart from facilitating full understanding
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Figure 1.1: The shallow interpretation module (indicated by the dark box. situated in a full
language interpretation module) in a possible SDS architecture. The dashed arrows sym-
bolise potential connections between tlie shallow interpretation niodule and other modules
of the SDS.

of the input,  the resulting  interpretation  can  be  fed  back to the speech recognition  and
the dialogue manager of the SDS that can utilise this information in a number of ways.
For example. knowledge about the information unit types supplied in the user turn may
enable the speech recogniser to be more confident about some hypothetical analysis of the
utterance (cf.  [Ringger and Allen 1997, Stolcke et al. 19981), Zechner and Waibel 19981)
Likewise, from the obtained interpretation the DM may receive an indication that the
user is signalling a problem. or that the user input is likely to be erroneously processed.
This would enable the DAI to adapt to the given situation. for example by changing the
recognition engine. or by switching to a different error recovery or confirmation strategy
(cf.   e.g.   [Hirschberg et  al.  2004],  and  the  references  therein).

Arguably, by broadening the module we could additionally aim at extracting the actual
values  the user provides  in  the  turn  in case slot-filling activity is detected. However,   it  is
not among the goals of our study to cover this issue.

The present work aims to be an interdisciplinary study: we integrate the components
of the proposed shallow interpretation module iii a machine learning franiework.  The
learning task in this framework involves simultaneous task-related act and information
unit type classification, as well as bidirectional problem detection. Corresponding to the
four-level interpretation. the learning tasks iii the module are the following:
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• identify basic task-related act(s).

•  identify  the  information  unit  type(s), i.e.. query  slot (s).  for  which  information  is
provided  (if any),

•  identify forward-pointing problenis. i.e.- whether the turn is a source of miscommii-
nicatioii,

• identify backward-pointing problenis, i.e., whether  the turn exhibits user awareness
of misconimunication.

Arguably, generating such a combined pragmatic-semantic interpretation is a difficult
task since there are many ways in which an iziptit may contain these different components.
Natural language phenomena are often claimed to be ambiguous, siiice they yield various
ways iii which the spoken hipiit may be iriterpreted. In addition. some of the coniporients
will be difficult to identify. e.g., whether a user turn indicates that the user is accepting a
system error rather thaii  that  the  user  is providing positive feedback, or whether the user
turn is likely to be erroneously processed or liot.

In particular, our goal is to investigate the following research issues in our study:

( i)    to what extert certain machine learning techniques   can   be   used   for   shallow   inter-
pretation of user turns in spoken dialogue systems,

(ii) whether the complex learning task of four-level interpretation can be optimised by
decomposing it to subtasks, and

(iii) whether filtering noise from spoken input on the basis of higher-level linguistic infor-
mation leads to improved learning performance on the shallow interpretation task.

Corresponding  to  (i), we train two supervised   Inachine learizing algorithms to extract
information iii terms of the four-level interpretation from user turns. This can be seen as
a disambiguation task applied to spoken language material: the learning algorithins need
to assign one complex interpretation to each user turn. [Daelemans et al. 1997] claim
that complex tasks in natural language processing may be decomposed as sequential or
parallel subtasks. Therefore, corresponding to  (ii).  we also test whether decomposing  the
complex four-level interpretation task into subtasks is more optimal for the extraction
of pragmatic-semantic information   from user input. Finally, corresponding  to   (iii),   we
devise techniques that attempt to block noise (such as syntactically or lexically incorrect
or superfluous words that may have a negative effect on the interpretation task) from
the algorithms.   e use the niethod of alitomatic filteriiig to reinove frorii our data (a)
disfluent words. (b) syntactically less dominant words, and (c) words that inay carry less
informational value iii the given human-machine interaction. We observe whether filtering
the user input by these means yields improvement over using unfiltered data in the shallow
interpretation task.

The goal of performing all learning experiments by two machine learning algorithins
is to introduce a broader technical scope to our investigatio11: the two algorithms are
representatives of different branches of supervised learning techniques. namely of memory-
based learning and of rule induction. We train the algorithms on a large set of labelled
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examples derived from the OVIS corpus of spoken human-machine dialogues with a Dutch
train travel information system [Boves et  al. 19951 Information  used  by  the  algorithms
comes from different sources. and is obtained by means that are affordable in most dialogue
systems. We train the iriemory-based learner and the rule induction learner under identical
conditions, and report on the experimental results of testing their performance on the
shallow interpretation task.

1.3.1      A robust approach
The proposed shallow interpretation module aims to be robust in three respects. namely:

•  to cope with noise in spoken input and in the shallow representation of such input,

• to account for multi-laveredness iii the input content. and

• to deploy adequate machine learning techniques that form the core of the module.

To desigii a robust technical approach. we deal with noisiness on several levels. We
attempt to design learning experiments in a way that tolerates approximative, erroneous,
and hypothetical measurements in the data representing the spoken input, since the data
comes from possibly imperfect measurements and hypotheses  of  the SDS itself  (e.g..  the
ASR  module).   [He  and  Young 2004] claim  that a spoken language understanding  system
should be able "to correctly interpret the meaning of an utterance even when faced with
recognition errors':    Additionally. the filtering techniques indicated above are another
attempt to devise mechanisms that compensate for noise  both  in the spoken input  (i.e.,
the words uttered) and its representation in the SDS (e.g., the ASR hypotheses).

At the same time. we also try to automatically learn whether certain types of user
input can be identified as problem sources that themselves introduce noise into the in-
teraction with a SDS. Moreover. problem detection is attempted without carrying out a
fine-grained typology of the occurring problems. Rather, two main groups of phenomena
are  defined  and  learnt:   forward-poiriting  problems  (i.e.-  problem  source). and backward-
pointing problems (i.e., feedback  on  the communicative situation).

In  order  to  account  for  multi-layeredness  iii  the  input  content, we extract information
related to the praginatic and semantic levels of the user input: on the pragmatic level
task-related acts, problem source, and problem awareness are detected, on the semantic
level the supplied information unit types are identified (if ally). We hypothesise that
identifying a few simple categories on the pragmatic and syntactic level yields robustness:
for example, we identify that a user is supplying information in the given turn, as well as
the query slot(s) to which this information corresponds, but it is not determined how the
input globally influences the interaction, neither the functions the user intends to perform
by such input (i.e.. to correct something, to assert, or to agree. etc.). nor the way the
content  of the current input relates  to the content  of the  previous  input (i.e.. whether  the
input contains repeated information.  etc.).   and  so  on.    Rather,   the  user  utterances  are
projected into basic supercategories of actions in the task domain (sometimes referred to
as domain actions,  cf.   [Cattoni et al. 2001]). by which we  aim to ensure applicability  and
transferability of the approach.
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Shallow interpretation is conceptualised as a elassificatic,11 task. aricl our third goal in
devising a robust approach is to desigii adecliiate Illachille learning teclinicities for optiinal
performance oti this task. The techniques aim at attaitiing high classifier perforinance at
a relatively low cost: the machine learners litilise informatioll that is easily 01)taitiable
froni the SDS. and that is represented iii tlie experittients iii a shallow wav. No higher-
level linguistic information. which is often coinputationally expensive to obtaili. is lived
iii the learning experiments. Even the filtering approaches. which attempt to implicitly
incorporate higlier-level linguistic information in the SI task. primarily clraw on shallow.
generally applicable machine-learning-based approaches.

The desigii of the shallow interpretation module is hypothesised to result in robust
I)erfornlance, whereby our goal is to clevelop a general inc,thod for shallow interpretation
of user itiput by establishing a straightforward approach. implying that its successful
transportation to a new domain of task-oriented human  machine int:eractioii wotild involve
the acljitstment of the set of interpretatiozi classes, and re-training 011 clialogize data from
that domain.

Below we explain the significance of the foiir Conipolielits of tlie shallow interpretation
module in niore detail.

1.3.2 Detecting task-related  acts
The  linguistic term  'dialogue  act'  refers to both  getieral and specific types  of ititentions
of the speaker that are manifested in and conveyed by the utteraiice of tlie speaker. The
speaker's intention in an utterance is largely formed by and is depeii(lent on the situation
in which it takes place. Since dialogue acts reflect the relationship between utterances and
context-dependent communicative functions, dialogue acts are pragniatic iii itattire.

The discipline of computational pragmatics is concerned. among others. with the auto-
matic detection  and  processing of dialogue  acts  (see  for  example  [Btiiit aiid Black 2000}),
either iii order to discover the underlying mechaiziSIlls of iiatural language dialogue in
general. or to utilise these in natural language processing applicatioits (see for example
 Bunt 1989]).   It  is not trivial to infer what  kind  of dialogue act  is  being performed  iii
a given utterance. even in a dialogue that takes place in a iiiore restricted. for exaniple
task-oriented way. As described earlier. this is partly relatecl to the fact tliat the speaker's
intentioils within a turn are typically manifold: and more tlian one cornmunicative in-
tezition may be expressed by one speaker turn. For example. in interacting with a SDS
that provides information about recreational activities. the iziiaginary but plausible user
turn 'I did not say biking. 1 said hiking' can be seeri to sitnziltalieously convey rejection.
correction. information providing, repetition. and so forth. IBzint 20011 suggests tliat it is
beneficial  for the utilisation of dialogue  acts in pract ical applicatioris  to  -consider  aii  ut-
teratice as multifunctional rather than as (functionally) ainbiguous-, which we also pursue
iii the present  work.

A wide-branchiiig taxonomy of dialogtie acts exists in the literature (cf. for example
[Bunt  2001.  Popescu-Belia  et al. 2003]). opening  up nlany choices  011  how  fine-grained  di-
alogiie acts may be defined in ark actual iziteractioii inodel. If tlie goal is to exaiilitie subtle
coinniunicative processes. it is probably useful to defitie Inally fine-grained categories of
dialogiie acts. However. we hypothesise that for a shallow ititerpretation module it suffices
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to define a liinitecl set of siiziple actioiis that a user may execute in interacting with aii
information-providing SDS. to which we refer as task-related acts. and to perform robust
pragmatic mialysis of ziser input 011 the basis of such task-related acts.

Note that certaiii ixieizil,ers of task-related acts niay pertain to classical dialogize acts.
whereas others mm· be of a clifferent type. We eniphasise that our study deliberately does
not  concerii the full level of dialogue acts (i.e.. the established notions of all-purpose,  as
well as specific categories  lescribing iiser intentions). but solely the pragiziatic level  of
task-related acts whicli are carried ozit 1)y iisers interacting with a SDS. Nonetheless. as
we show later iii iiiore detail. our set of task-related acts aims to represent general notions.
scalable to other types of dialogiie as well.

Even if we restrict the atitoinatic (letection of 11ser acts to those of task-related acts.
the difficulty of atitoinatic iclentification of these acts remains. One factor adding to this
difficulty is that a tiMer may digress fr0111 schematic anticipations in his or her reply to a
systeni  prompt:    for  exaiiiple,   the expectation that an information-demanding  prompt
will be followed by ati itiforiiiation-providing answer does not apply to all situations.
especially wheii speech- anci  latiguage processing of the previous input  has not been perfect.
People may iii sucli cases react with a range of Titterance types. Consider for exaniple
tlie interactioii with a train travel inforniation system given in Figure 1.2. The SDS iii
this interaction proinpts the user for values of slots it needs to fill iii order to retrieve a
particular traiii connection from a database. (The dialogue is sampled from the OVIS
corptis. which we introduce later. Utterances are translated from Dutch: the original
transcriptions are shown iii Figzire 1 of the Appendix.)

In tlie first exchange of thiv interacti011 the systeiii prompts for departure and arrival
station names, but the 11,Ker fills 01ily the cleparture slot, which is an action not zwcommon
in htiman-machine interaction. The system incorrectly thinks the user answered both
slots,  and  proceecls  l,y  proiiiptitig  the  user for  the next  slot  it  requires (i.e., travel tillie)
The user beconies aware of the systelli error from the prompt in the second systenl tiirn

(S2).  because  information  zinderstood  from  the first input   (Ul) is implicitly verified  by
the SDS there. The liser immediately signals that there is a communication problem: this
is clone by notifying the system that it has niade an error. and not providing informatioii
for the required slot of departtire time.  This input again leads to misrecognition (see
S3) since the system expected date and time information, but instead it heard the word
'error (and perliaps this word iS not in its vocabulary). In turn U# the user changes his
strategy aiid supplies the information that has been incorrectly confirmed. Unfortunately
the user hangs tip the telephone after this turn. perhaps because he had no more patience
to continue the iriteraction.

1.3.3 Detecting information units
While task-related acts are pragmatic in nature. the information units that are related
to the content of a tm·n coticern the seiiiantic level of the user input. Traditionally. iii
task-oriented dialogzie sTich information units are the factual values entered by the user.
which exist independently of the general context of the dialogue. Alternatively. and in our
study. the supercategories to which certain groups of these factual values refer to can be
considered as inforination imit types. Such supercategories are in other words the query
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Tiirn Utterance

S 1 From which station to which station do you want to travel?
Ul From Anisterdam.

S2      When do you want to travel from Almelo to Amsterdam Central Statioii?
U2 Error.

83     I'm sorry I did not understand you. Could you repeat when you want to
travel froin Almelo to Anisterdani Central Station?

U3 Go back, it's incorrect.

Sl     I'ni sorry, again I did not UIiderstandyou. Could you say when you want
to travel frorn Alinelo to Anisterdani Central Station?

U4 I want to go from Amsterdam to Emmen.

Figure   1.2: User reactioiis to system error   in a train timetable   SDS (OVIS, dialogue

nr. 002/005).

slots that are filled iii when a user provides factual values. Identifying which slots are
being filled can in inself be of practical value in task-oriented dialogue, for example to
ascertain  that a value  that  may be supplied  for  more  than one slots   (e.g.,   for  both  the

departure  and the arrival station  name)   is  assigned  to  the  right  slot.
Again, the difficulty in extracting such information from the user turn is manifold. In

the first place. speech recognition is a main source of probleins. since incorrect recognitioii
can put the process of inferring treated slots or slot values on the wroiig track. Addition-
ally, the values entered by the user are often difficult to recognise due to liinitations in
typical ASR vocabularies, especially since these values can form an infinite set in sonie
domains.  For example, in a train travel SDS a large number of station names and time
indications need to be recognised, whereas in the recreational activities domain the user
may name some lesser known sports type or geographical area that iS liot in the vocabulary
of the ASR. In these cases it is difficult to extract the actual valties provided for the slots.

kioreover. as mentioned above, in case of communication problems users tend to be-
come confused and either not fill the demanded slots (see the turns U2 and U3 in Figure
1.2), or fill other slots than the system prompted  for  (see turn  U4 in  Figure 1.2) Another
frequent phenomenon is that the ziser is providing more, or less information than was
sollicited  by the corresponding system prompt  (see  turn  Ul in Figure  1.2).

1.3.4 Detecting forward-pointing problems
In studies dealing with human-machine interaction, assessment of SDS perforniance is
often based on two measures: on word accuracy. i.e.. the percentage of words correctly
recognised  by  the  SDS. and concept accuracy.   i.e., the percentage of semantic concepts
correctly  recognised  (cf.     Boros  et  al.  19961).   In  Our  Study  it  is  the  lack  of  full  concept
accuracy iii processiIig the user's turn that is regarded as a communication problem (also
called miscommunication). Below we motivate why and  how we atteinpt robust detection
of miscomniullicatioll between the hunian user and the SDS.



Chapter   1:    Introduction                                                                                                                                                                                    10

Problems that 'point forward' are ones that originate in the current turn of the dialogue,
and will have consequences in the following turn. Typically, these are cases when an
utterance is erroneously processed   (due  to e.g., speech recognition flaws and incorrect
language understanding. an issue that we are going to cover later),  or the prompt generated
in reaction to it is improper: typically. it requires practical insight into a given SDS to
decide whether the former or the latter is the problem source in a given case. The user
turns  Ul,  U2,   and  U3  in  Figure  1.2 are examples  of a forward-pointing communication
problem. because they lead to extracting incorrect values from the user input (in the case
of Ul), or to extracting nothing from the user input (in the case of U2 and U3).

Identifying whether the current user utterance will cause problems is supposedly diffi-
cult. since it is not straightforward to understand what makes an input improper in the
forward-pointing dimension. This component not only has to cover technical issues that
pose problems to the given dialogue system itself (such as its inability to cope with hyper-
articulated speech, dialects, out-of-vocabulary words. or noisy input),  but also problems
that are due to cognitive misunderstandings between the two parties, such as assump-
tions and presuppositions, as well as unforeseen circumstances. for example that a user
gets distracted by something, and so on. Yet another difficulty of automatically detecting
forward-pointing problems is that the machine learning algorithm has less information
available for learning this task, since it cannot yet rely on the user's feedback.

In sum, the task of identifying forward-pointing problems consists of spotting problems
that originate iii the current turn, resulting in conceptual inaccuracy in the system. De-
tecting forward-pointing problems is useful since it enables the dialogue manager to expect
what types of user input are going to be well or badly processed. Obtaining such knowledge
is important in order to correctly reject the recognition hypothesis of potentially badly
received turns, and to be more confident about having understood other turns correctly
[Hirschberg et al. 2004}.   At  the  same tinie, identifying user input that could potentially
put the interaction at risk would enable the dialogue manager to adapt its strategy to a
more  optimal one [Litman  and  Pan 1999, Walker  et al. 2000a. Walker  et al. 200Ob].    For
example, if a certain type of user's turns are poorly recognised, the system could switch to
a very explicit prompting strategy, or could re-prompt for the input and try to recognise
it  using a differently trained ASR  Hirschberg et  al.  20041

1.3.5 Detecting backward-pointing problems
Giving feedback is an essential mechanism of dialogue. To comply with the require-
ments of communication, the information exchanged by the dialogue partners needs to
be  grounded, i.e.. established by acknowledgement  from  time  to  time  (cf.    [Tbaum  1994.
Traum and Heeman 1997}). Grounding can be seen as the management of communication
iii order to reach mutual understanding. Providing feedback is one of the ways by which
grounding operates, requiring that the partners provide feedback on how successful the
information exchange was.  Grounding can be seen as an action, the function of which is
the management of the interaction.

Feedback is given by each conversational partner in a dialogue: in human-machine
communication the machine too should return information to the user on how well the
input is received. In SDS this is mostly realised via implicit verification prompts or
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explicit verification prompts. Implicit verification prompts present to the user what was
understood from the previous turii. atid at the saine tinie prompt for new information
concerning  unfilled  slots.    Turns  S2.  S).  and  Sl  iii  Figure  1.2  are  implicit  verifications
of the (incorrect) departzire station and the destination station values.  When the user
notices from these prompts tliat the systein misunderstood him. making correctiozis is
often difficult, since the SDS is asking for new informatioii already. Users are gerierally
puzzled iii siich cases, not knowing how to correct and supply information at the same time
 Weegels  2000}.  Note that  [Krahmer et  al.  2001b]  find that signals concerning information
grounding can either be positive ('go on') or negative ('go back'), where "Iiegative cues
are comparatively marked, as if the speaker wants to devote additional effort to make the
other aware  of the apparent communication problem ( [Swerts  et al. 19981)".

Just like humans may signal with a zero element that communication progresses as
intended, SDSs may also simply proceed when they assume having understood everything
correctly. The System turns S2, 33, and Sl in Figure 1.2 illustrate that, with respect to
awareness in communication problems, SDSs can be in two states when processing user
input: they either assume having obtained the correct processing  of the user input   (which
assumption might or might  not be correct:  e.g..  in  S2  this is incorrect). and continue  the
dialogue in due order, or they assume that the user turn could not be correctly processed

(which again might or might  not  be  the  case).    In the latter  case the system typically
produces a clarification prompt, requesting  the  user  to  re-enter  his   input.    For  examples
on  how and why these system states can emerge, see [Streit  20031

Typically, certain prompt types reveal that the system realises it has interpretation
problems. Meta-prompts ('Try saying a short sentence'), apology ('I'm sorry  I  did  not
understand you'), repeated prompts, and prompts asking the  user to repeat information
all mark that the system is not confident enough in the processing results of the previous
input. Obviously, the important part of problem detection is to point out cases when the
system was incorrectly confident in some interpretation, which implies that it will also be
detected when the system was correctly confident in some interpretation.

It is important to note that giving feedback is traditionally regarded as a dialogue
act. However, we do not treat the full diversity of feedback phenomena in this study (for
details  see for example  [Bunt 20011) Rather, we focus  on  the -  from the point  of view of
human-machine communication - important phenomenon of awareness in communication
problems. We refer to the detection of this phenomenon as the detection of backward-
pointing problems.  In sum. the task of identifying backward-pointing problems consists
of spotting turns in which the user became aware of the system's incorrect processing of
the input. If aware sites are detected, they can provide an important cue for the system
about the user noticing communication problems (of which the system might not yet be
aware).  so  that  the  SDS can launch some error recovery strategy  on  time.

We hypothesise that it is important to distinguish problems with respect to the time
line of their effect   (i.e., forward- vs backward-pointing problems). because   iii   this  way
a two-fold approach is designed to problem detection in SDS. As certain utterances are
unproblematic in the current turn (i.e.- iii the forward-pointing dimension)but at the same
time reflect  awareness of problems that occurred in the previous turn  (i.e.,  in the backward-
pointing dimension), different problem categories  can be assigned  to the properties   (i.e.,
the words. the intonation. the situational context. etc.) of a turn. By differentiating these
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two tasks based on the direction of their effect we can reuse research material in a unified
but dual-perspective way for error detection. enabling classification of subtle processes
taking place within a user turn.

1.4 Overview

The structure of our study is the following. Chapter 2 discusses our four components iii
shallow interpretation by surveying previous work in the field of automatic processing of
spoken input.  We touch upon the issues of data annotation, as well as the information
sources employed iii ma.chine-learizing-based researcli. Iii Chapter 3 we introduce the
discipline of machine learning and describe the two learniiig algorithms we work with.
Our experimental methodology, as well as the general experimental set-zip are explained.

Chapter 4 starts with introducing our research material, the OVIS corpus. We describe
the corpus annotatioii and the inforination we employ iii our machine learning experiments.
Subsequently. the results of the learning experinients 011 the complex shallow interpretation
task are presented. We provide an analysis of the obtained results at the end of the chapter.

In Chapter 5 we attempt to optimise learning performance on the shallow interpreta-
tion task.  This is carried out by the method of information partitioning. A systematic
search is conducted for the optimal class and feature group composition for each compo-
nent  of  the  shallow  interpretation  task   (i.e..  of the task-related acts, information  units.
forward-pointing problems.  and  backward-pointing problems). We provide qualitative and
quantitative analysis of the experinients per coniporient.

In Chapter 6 we conduct information filtering. We test machine learning-based. general
filtering techniques on our data, aiming at elintinating material from the user input that
may interfere with the shallow interpretation task. Three filtering techniques are applied
to the task design optimised in Chapter 5. We compare the performance of the machine
learning algorithms on the filtered atid  the unfiltered  input. We present the conclusions
of our research on shallow interpretation in Chapter 7.



Chapter 2

Computational Interpretation
of Spoken User Input

The current chapter outlines some important aspects of computational processing of spo-
ken user input. We disctiss previous work related to shallow intel·pretatioii  (SI).  pointing
out similarities and differences between work done in this area by other researchers. and
our approach. The survey elaborates on the issue of annotating spoken dialogize corpora
for learning tasks in SI. We examine what components, present in our four-level SI ap-
proach, are treated in other studies, and what attributes niachine learners use in those
works.

2.1 Natural language understanding in spoken dialogue
systerns

In order to infer the content of user input, often a language processing module is imple-
mented in SDSs. Computational processing of nattiral laiiguage aims to model laiiguage
so that computer programs can analyse language material 011 various levels. From the
scientific point of view the emphasis iii iiatural language processing (NLP) lies iii creating
a computational theory of language comprehension and generation. However. in practical
applications this mainly comes down to providing solutions for the automatic processing
of certain lingtiistic aspects of natural laiiguage utterances, by "niethods that can work
on  raw  text  as it exists  in  the real world" [Manning and Schutze  1999].

NLP may draw on many different disciplines in discovering and modelling regularities
of language, whetlier of a structural or a cognitive nature. [.Jackson and AIoulinier 2002]
differentiate empirical NLP from symbolic in the sense that, in order to construct a model
of language. empirical NLP ''looks for patterns and associations, some of which may not
correspond to purely syntactic or semantic relationships" Indeed. our approach to SI
caii be seen as a direct mapping of a bulk of natural language niaterial to linguistically
cross-categorical concepts that incorporate four dimensions that are pragrnatic-semantic

13
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Figure 2.1: Word graph of the user input in turn U4 of Figure 1.2 'ik wil van Amsterdam
naar Emmen' (I want to go from Amsterdam to Emmen). Hash marks stand for patises.

the confidence score of each word hypothesis is given after the slash.

in nature. As stated in the previous chapter, our goal is to assign to user turns in a SDS
a  represeiitatioii  that incorporates task-related act(s), information unit (s), forward-  and
backward-pointing problems. Our approach is in line with [Eisele and Ziegler-Eisele 2002}
who claim that   some  language] technologies cannot be assigned to one specific [linguistic}
level. because they serve a more generic  purpose'. and pinpoint the treatment of noise iii
the input as being such a purpose.

Natural language understanding (NLU) focuses on the comprehension part of NLP.
Understanding human speech technically consists of two parts, speech processing and
language processing. both making use of some kind of language modelling, traditionally iii
the form of a lexicon and a grammar. Statistical methods are widely used in NLU as these
have proved to be simple and successful, drawing on n-gram distributions of linguistic
units (plionenies, words,  etc.)   in  the  user  input.

SPEECH PROCESSING In the first part of the NLU process, methods of speech technology
are applied to analyse various acoustic-phonetic parameters of the speech signal in the form
of ainplitude. frequency, energy and possibly other measures. Based mi these measures
and a language model employed in the ASR. the speech recogniser produces a list of
hypothetical sequences of words corresponding to the speech signal.  The ASR's hypotheses
of a user utterance iii this way consist of an n-best list of word strings. This output is
often combined in a lattice, which is a directed acyclic graph in which the nodes are time
points and the arcs are word liypotheses. Figure 2.1 shows this word graph for the input
of user turn U3 in Figure 1.2. It can be observed that the first part of this turn ('I want
to go from Amsterdam to') is processed by the ASR without any branching in the graph
(i.e.,  only  one word string is hypothesised), whereas concerning the arrival station  name
six different hypothesised tokens are provided. A lot of branching in this part of the graph
indicates that the ASR had difficulties with recognising the arrival station name.

Each hypothesised word in the word graph is assigned a score (corresponding to the
number after the slash in the figure) that represents a certain confidence of the ASR
in recognising that word at that position of the input. These Corifidence scores are de-
rived from the speech signal and the language model.  The best path of words is often
selected from the word grapli based 011 the recognition confidences.  At the end of the
recognition process the ASR yields a hypothetical transcription of the user input. typ-
ically consisting  of one string of words   (i.e., a 1-best   word list). Confidence scores  are
furthermore often used in error detection (cf. ILitman et al. 1999, Walker et al. 200Ob.
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Litniari et  al. 2001]), although they turned  out to  not be fully utilisable since often there
is no reliable correlation between a high confidence score and a correct recognition result
[Hirschberg et  al.  2004}:   [Litman et  al. 2000. Hirschberg et  al. 2004] found  that  prosodic
properties of the user input more reliably indicated speech recognition problems than con-
fidence scores alone. For a detailed explariation on speech recogikitioii for user interfaces
see for example  [Balentine et  al.  19991

LANGUAGE PROCESSING Methods for processing the linguistic structure of the ASR output
can range froni statistical to knowledge-based. Closely depending on the application s goal,
the key task of language understanding in SDSs is to relate the processed input to the
slots that need to be filled. In state-of-the-art NLU systems ofteii heiiristic t.echniques are
implemented when it comes to interpreting user input, such as word- or concept-spotting
(cf. for example  [Aust  et  al. 1995. Allen  et al. 19961).   The  goal of concept spotting  is  to
process the input for values that satisfy the slots in the system query, for example by
searching for station names in the input. This technique fails in many cases when non-
standard answers are provided by the users, for example when certain slot values are being
corrected or rejected.

An effective solution for robust understanding may be the combination of statisti-
cal and knowledge-based techniques. For instance, [Cettolo et al. 19961 claim that the
domain knowledge needed for understanding should be obtained in two ways: from the
data itself, and from the expertise of the designer of an understanding module.  Like-
wise, [Rayner and Hockey 2003} devise an interpretation architecture that combines data-
driven and rule-based approaches and find that the hand-crafted rules serve as a back-
off mechanism to which interpretation can retreat in case the data-driven method be-
comes unreliable (mainly   due  to data sparseness). Hybrid methods show their useful-
ness for understanding spoken input in speech-to-speech translation applications as well
ICattoni et  al. 2001, Wahlster  20001. The number of actual  computational  approaches  to
implementing NLU tools is vast, for an overview we refer to IManning and Schutze 1999,
Jurafsky and Martin 2000, Mitkov  2003]. No matter the actual approach taken. linguistic
analysis of user input is supposed to yield a content-related representation of the input.

Empirical approaches to analysis rely on training data. and weight alternative analyses
of strings based  on some method that draws,  e.g., on frequency counts, generated  prob-
abilities, rules, etc. The method used in our study is classification of natural language
data, a bottom-up method for creating a model by identifying patterns in the data. One
advantage of a bottom-up approach is that it can be dornain or language independent to
some extent, so that the method used for one language is transportable to other languages
via re-training on the new language.

Traditionally, there are several processing subtasks in analysing spoken input, which
are organised in a cascaded fashion, so that output of one module serves as input to
subsequent modules. The layers of the cascade depend on the desired goal and the fille-
grainedness of the computational analysis required by the actual SDS. Besides sequential
modularisation it is possible to have more complex solutions used for the speech and
the language processing parts, enabling these to directly influence each others perfor-
mance: the more information is received from components of the processing cycle. the
more confident a certain interpretation of an utterance can be (see e.g.  [Allen et al. 1996,
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Zechiier and Waibel 1998. Nakano  et  al.   1999.  He  and  Young  2004]). Alternatively. paral-
lel interpretation of different processing levels can make applications more robust. for ex-
ample by making processiiig less proize to errors IHeeman 1998. Uszkoreit 2002] Recently.
researcliers also began to devise applications whose goal is not to produce a transcribed
word string. but to transform the speech signal into a representation of the main intentions
of the speaker.  This caii be seen as a direct mapping from speech to dialogue act. Aspects
of the work of [Nakano et al. 19993 could be considered as being such an attempt.

The current study shares its main line with these non-sequential approaches to the
processing  of  tiser  input.   since  we use properties  of  the ASR output   and the dialogue

manager to interpret user turns oil several levels simultaneously. Nonetheless, we model a
stand-alone NLU system. since our module has no access to the internal processes within
the ASR and DAI modules of a dialogue system. This situation often occurs when NLP
modules are being developed for SDSs. si11ce typically the various modules of a SDS are
designed and deployed by different project teams.

2.2 Analysis levels in interpreting spoken user input
In the previous section we situated SI (shallow interpretation) of user input in the field
of NLP. In the current section we give a survey on how data are collected and annotated
to enable research on components of SI. An essential prerequisite of empirical research is
the availabilitv of (large collections of) material. in our case of spoken dialogue. Spoken
dialogue corpora are built according to a number of design criteria that may depend on
specific research aims: they may contain samples representative of conversational topic.
diverse levels of situation spontaneity. speech register. dialectal language use, speaker
gender,  and the like. In other cases a corpus contains quite specific material, e.g.. consisting
solely of interactions with a given application. An important aspect of speech corpora is
that besides the transcribed dialogue they contain audio material as well.

Typically, to enable research on the collected material, corpora are enriched with extra
information  on  certain  phenomena  (again,  depending  on the research  aims): the speech

(transcriptions) are analysed and annotated. either manually or semi-automatically. Alark-
up  inay  be  assigned  to various levels of segmentation (word-, phrase-, sentence-, utterance

level,  etc.). This allows for examining patterns of the  annotated categories.  for developing
rules that describe aspects of language use. and other types of empirical research.

Experts have created a nuniber   of  international   niark-up   standards  for   corpus-based
research: these are guidelines for orthographically transcribing spoken language. and to
use  annotation  schemes for labelling (cf.  Gibbon  et  al.  19971). The standards allow  for
more consistency in empirical research across different groups of scientists, providing guid-
ance in many aspects of linguistic mark-up. as well as a starting point for creating one's
own  labelling  scheme  (as  in our case).    One  of the broadest annotation standards  to  be
mentioned  is  the  AIATE framework [Dybkjaer and Bernsen  20001.    ALATE  was  designed
after reviewing more than 60 existing annotation schemes, encoding levels of prosody,
(morpho-)syntax.  co-reference,  dialogue  acts.  communication  problems, and cross-level  is-
sues. with the aim of developing a standard framework for annotating spoken dialogue

corpora at multiple levels. For a thorough survey of dialogue data and annotation we refer
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to  [Popescii-Belis et  al.  20031
It is iniportant to see that regardless of the standardised use of annotation. inconsis-

tencies often occur iii data labelling. This is on the oiie hand due to different perceptions
of cross-categorial concepts   (situated   in   different   context).     Inter-annotator   agreeineiit
scores serve to reflect the level of coiisisteiicy in tlie labelling of a corpus. cf.  for ex-
ample IDiEugenio and Glass 2004].    On the other hand, annotation  inconsistencies  also
occur due to errors during the labelling process, since senii-automatic annotation is often
used for large corpora. When evaluating corpus-based research results it has to be noted
that inconsistency in mark-up may introduce a certain level of noise into the niaterial.
Another issue iii data-oriented research is the amount of material available for explo-
ration. It has been the goal of wally empirical studies to find out in what way the scaling
of training material contributes to optimal results; concerning NLP tasks see for exalli-
ple [Banko and Brill 2001, Curran and Osborne 2002, Van den Bosch and Buchholz 2002]
and their references.

In the remainder of this section we look at how components of SI (the task-related
acts as well as traditional dialogue acts, the slots and other information units, the source
of communication problems, and awareness of communication problems) are annotated irl
speech corpora.

2.2.1  Task-related acts
The definition of task-related acts can be regarded as a nontraditional issue.  Since it draws
on the traditional notion of dialogue acts. in the current subsection we survey research
pertaining to dialogue acts. The dialogue act (DA) of an utterance reflects the main inten-
tion(s) conveyed by the speaker in that litterance. Since DAs are typically defined and in-
vestigated on various levels of grain size, it has been found that segmentation of a user turn
into smaller units is crucial for correctly identifying DAs (cf. [Traum and Heeman 1997,
Finke et  al. 1998, Nakano  et  al. 1999, Reithinger and Engel 2000, Cattoni et  al.  2001} ) :  a
process which is however not trivially executable by automatical approaches (cf.  e.g.
[Stolcke  et al. 1998b}). Annotation schemes for labellirig  DAs are typically very complex
as they aim at capturing all types of actions that occur in dialogue, sometimes DA anno-
tation even incorporates semantic concepts  (cf.   [He  and Young 2004]).

A commonly used annotation scheme for communicative actions is DAMSL (Dialog Act
Mark-up in Several Layers, [Allen and Core 1997]). The label set of DAMSL is designed to
capture the multiple functions within speaker turns by marking turns along four orthogonal
dimensions that reflect their purpose and role in the dialogue: communicative status
(marking whether  the  turn is intelligible). information level (characterising the content
of the  turn  on a meta-level). forward-looking communicative function (characterising  the
effect  of  a  turn  on  the  subsequent   turn). and backward-looking communicative function
(indicating  how  the turn relates  to the previous turn) DAMSL  is a deliberately simple
but robust tag set. It is emphasised by the designers of the scheme that some turns can
be multi-dimensional in a complex way. for which guidelines are offered that restrict the
co-occurrence of certain labels.

Below we present the label supersets that belong to each dialogue dimension in DA ISL.
Note that each superset includes more refined subcategories, those being the actual DAMSL
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annotation labels. This indicates that the annotation scheme contains many fine-grained
(nonetheless intended as all-purpose) categories of user intentions. For example, the cat-
egory ,AGREEAEENT includes the labels ACCEPT, ACCEPT-PART. REJECT, REJECT-PART.
HOLD. aiid MAYBE.

•Communicative status: UNINTERPRETABLE, ABANDONED. SELF-TALK

• Information level: TASK ('doiiig the task'). TASK-MANAGEMENT ('talking about the
task'), COMMUNICATION-MANAGEMENT ('maintaining the communication'), OTHER-
LEVEL

• Forward-looking communicative function: STATEMENT, ASSERT, REASSERT. OTHER-
STATEMENT. INFLUENCING-ADDRESSEE-FUTURE-ACTION, OPEN-OPTION, ACTION-
DIRECTIVE. INFO-REQUEST, COAIMITTING-SPEAKER-FUTURE-ACTION, OFFER, COM-
MIT, CONVENTIONAL. OPENING. CLOSING, EXPLICIT-PERFORMATIVE, EXCLAMATION.
OTHER-FORWARD-FUNCTION

• Backward-looking commullicative function:  AGREENIENT, UNDERSTANDING. ANSWER.
INFORMATION-RELATIONS

In the current work we similarly assign interpretations to whole user turns. Our aim in
using DAs is to point out the mairi. task-related. pragmatic act exhibited by the user
tizin,  which  we call the task-related  act (TRA) Since  the  goal  is to carry  out an abstract
characterisatiozi of the ziser turn by the TRAs. some of the categories in the set of TRAs
are defined on the basis of DAs. whereas others stand for nontraditional types of user
actions. It is important to see that TRAs concern only the information level of the user
input   (see  the  second  superset iii DAMSL).  Our  TRA  labels  can be regarded to pertain
to the following information level supercategories in DAMSL:

• TASK (i.e., slot-filling in the SDS)

•  TASK-MANAGEMENT (i.e.. answering to meta-questions of the SDS)

• OTHER-LEVEL (i.e., providing coiifusing or irrelevant information to the SDS).

We are going to elaborate on our annotation scheme for TRAs in Section 4.2.

2.2.2 Information units
In the NLU module of a dialogue system usually a seniantic parser is deployed that trans-
forms the user's utterance into a formal semantic representation or a semantic frame.
 Cettolo et al. 19961 explain that a semantic frame inchides a frame type, which represents
the main goal of the query (e.g., retrieving a train connection), and the slots. representing
the constraints the query has to satisfy (e.g.. origin. destination. etc.). For example, the
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sentence I want to travel from Amsterdam to Tilburg on the fourth of February  inight
be  tratislated into the following frame  (cf.   [Veldliuijzen van  Zanten et  al.  19991):

destination tilburg
origin amsterdam

(2.1)month february
day                  4

The standard formalism for building such semantic structures is the grammar for-
maliSm of head-driven phrase structure graininar (HPSG) that employs typed feature
structures  Pollard  and  Sag 1987, Pollard  and  Sag  1994}. Other. classical fortiialisins coin-
biiiing syntactic and semantic information are Montague grammar [Montague 1974] and
generalised phrase structure  grammar (GPSG) [Gazdar  et  al.   1985].

The semantic representation of an utterance may also be set out in the form of a propo-
sitional expression, since the seinalitic content of an utterance is traditionally computed
according to a schematic notion of meaning, called the logical form, onto which the entered
values are mapped (cf. [Allen 1995]). An example for this notation can be

has_departure_time:  [date, time= [day: 4] ] ]

for the utterance segment  '[travell  on  the  fourth'   (cf.    [Reithinger  and  Engel  2000]).    Se-
mantic parsers are traditionally built using hand-crafted semantic gramniar rules (cf. e.g.
[He and Young 2004}). which  may be combined with grammatical parsers  (see for exam-
ple  [Van  den  Berg  et  al. 1994. Allen  et  al. 19961) Furhter examples include  the  Verbmo-
bil corpus in which the propositional content of utterances is converted into a modified
form of HPSG-like semantics. using a domain description language that unifies several
discourse representation structures  [Bos et al.  1996],  and  a grammar formalism described
in [Bonnema et al. 1997] where each word or phrase is associated with a feattire structure,
in which both syntactic and semantic information is represented in a combined way. Typi-
cally, these formalisms have to generate a semantic expression used to update the dialogue
state in a SDS.

We observe that, similar to the anizotation of DAs that are pragmatic in nature, Mi-
notation of information units in utterances takes place on various levels of detail in the
literature.  On the one hand, such content-related labels are of various levels of struc-
tural fine-grainedness themselves (cf. e.g. the embedded structure in the above 110ta-

tion).  and  on the other. we observe  that the scope of utterance segmentation  in  labelling
is  also at variance, i.e. labels are assigned  on the level  of turn. phrase.   word.  and  so
011. For example, semantic roles may be assigned to syzitactic constituents of a turii (cf
[Allen  1995}),   and/or the contents  of the  turn  can  be  annotated  for  the  meaning  they
carry. [Weber and Wermter 1996} label each word in a corpus of interactions at a railway
counter accordiiig to basic, task-related semantic categories  such as LOCATION.  DESTINA-
TION, TIME. and the like. [Reithinger and Engel 2000] extract the contents of a turn from
bigger sub-turri segments.   Rayner and Hockey 2003} define a set of semantic atoms that
represent priniitive domain concepts. as well as values of these concepts, specifying the set
of legitimate combinations among these.
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Iii our study information unit types are labelled 011 the turn level. The labels concern
exclusively the task-related slots for which information is supplied by the user (more details
on our annotation of slots  will be provided in Section 4.2).   Our aim is to identify  the query
concepts for which  information is entered  by  the  user (e.g items similar  to  the  ones  iii
tlie left column  in  the  expression  shown  in  2.1). without identifying the particular  values
associated with these concepts  (e.g.. the items in the right colunin  in  expression  2.1)

Studies dealing with semantic representation often either aim at detecting the full.
deep semantic  structure  of  some  input.   or keep their research  at the level  of  DAs.    Iii

the latter cases, it is often observable that DA categories unify both pragmatic and se-
mantic information  from a domain  (e.g..  [He and Young 2004]). which may  lead  to main'
low-frequency labels. Our shallow approach attempts to eliminate such a skewed label
distribution by defining labels that account for general pragmatic-semantic information
types.

2.2.3 Forward-pointing problems
General mark-up of communication problems can be found in few works: research often
focuses on some subgroup of communication problems since it is difficult to address a
general class of problems. For example, in the AIATE annotation scheme the labelling
of communication problems proceeds iii a detailed way whereby problems are ' tagged as
types of violation  of the  guidelines for cooperative spoken dialogue".   Such  an  encoding
is however a non-trivial task to accomplish. and the designers explicitly state that it is
difficult to analyse utterances correctly in order to "determine which guidelines they violate
and  how';  for example,  a user  supplying the  time  of the travel by saying   at 9 o'clock'
may count as violation of the cooperativity guideline that prescribes to avoid ambiguity.
since tiot all parameters of the travel tillie, namely morning or evening, are fully stated
by the user in this input.

 Aberdeen et al. 2001] describe a method for detecting errors in task-based human-
computer dialogues by automatically deriving them from fine-grained semantic tags. This
suggests that the components of our shallow understanding module such as the semantics-
related information types and the pragmatics-related communication problems may be
closely related to each other. Investigating whether such relations can be automatically
discovered forms one of our research issues, since such information may play an important
role in the class label design of the SI task.

Annotation of forward-pointing problems in the literature is diverse: we observe again
that the annotation of what counts as a problem source defines a range of phenomena.
Aloreover. the level of segmentation at which these problems are annotated is of several
grain sizes.  Litman et al. 1999} perform automatic detection of poor speech recognition
at the dialogue level. tagging complete dialogues as featuring good or bad ASR perfor-

mance.  [Walker et al. 2000a] likewise tag whole dialogues as exhibiting task success or
task failure. the latter consisting of either the user hanging up on the system. or a hu-
man operator interrupting the conversation, or an incorrect query retrieval by the system.

[Litman and Pan 1999] identify sequences of dialogue turns as featuring good or bad ASR
performance. whereas  Litinan et al. 2000]annotate single dialogue turns as featuring good
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or bad ASR performance.
In the study of [Walker et al. 2000b} dialogue turns are identified either as causing NLU

errors or as being correctly understood. Two error classes are distinguished in this work:
mismatch  and  partial match betweeii  the  user  input  and  what  the system understood froill
it. The partial match  category denotes cases  when the user  input's  pragniatic-semantic
aspect (defiiied as the act of referring to a task iii the domain) is correctly recognised. but
the deep seinalitic aspect (i.e.. the actual slot value entered by tlie iiser) is inisrecognised.
IHirschberg et al. 19991 annotate correctly and incorrectly recognised titterances scored by
hand for semantic accuracy, while [Hirschberg et al. 2000. Hirschberg et al. 20041 identify
ASR Inisrecognitions in ternis of coiicept accuracy and word error rate. IKamrn et  al.  1998}
characterise user utterances iii terms of recognitioii scores aiid ASR rejectioiis.

The forward-pointing problem concept of IVan dell Bosch et al. 2001] overlaps fiilly
with that of the current study. since it served as a pilot study of certain issues of the
present research. III the work of [Vaii den Boscli et al. 2001] user zitterances are assigned
PROBLEM or NO PROBLEM labels on the turn level, depending on whether these originate
a communication problem on the conceptual level or not. Recall that our primary concern
iii probleni detection is to discover whether the system attains perfect concept accinacy
or not; iii the latter case we talk about a conimunicatwn problen.

2.2.4 Backward-pointing problems
Examining previous literature on backward-pointing problems in dialogue, we see tliat
[Krahmer et al. 1999] investigate iiser turns iii terms of their providing go back' vs go
on' signals to the system, whereas  Levow 1998] and [Litnian et al. 2001] both annotate
problems in terms of system niisrecognitions (specified as "erroneous system groundiiig'
in  [Litman  et  al.  2001}),  or  system  rejections,  aiming  at  distinguishing user reac.tions  to
them automatically. Problem annotation  iii  [Van den Bosch et  al.  2001}. as noted above,
lies fully iri line with that of our study: backward-pointing problems are defined as the
system's conceptual misinterpretation of the user input provided in the previous tzirn.
which the user notices in the current turn.

In surveying the literature on annotating awareness of comnizinication problems we ob-
serve that this phenomenon is often riarked by labels representing dialogue acts. Namely.
sonic of the back-channeling DA types defined iii DA taxonomies correspond to what
is researched as awareness sites.  Such labels niay indicate (indirectly) that one of the
parties is having a difficulty in the conversation, and are typically called REJECT ('Well,
no.'), NO-ANSWER ('No.'), SIGNAL-NON-UNDERSTANDING ('Excuse me?'), APOLOGY ('I'iii
sorry.') e.g. in the nierged Switchboard-DAMSL encoding. cf. [Jurafsky et al. 1997]. Of
course, not all of the utterances receiving the above tags signal problems, thus the decisiozi
about problem signalling requires close investigation of the whole dialogue. Our approach
to detecting backward-pointing problenis is to collapse the relevant subset of such utter-
ances into a general backward-pointing problem category. instead of many fine-grairied
backward-pointing problem categories.
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2.3 Potential information sources for interpretation
III the previous section we described the ways spoken corpus material is annotated 011
components of SI. Iii this section we pay attention to how other studies treat information
sources available from speech corpora for learning these components. We examine what
particular pieces of information are utilised for detecting DAs. information units. problem
source, and problem awareness in user turns of task-oriented human-machine interaction.

The largest unit examined in this study is the speaker turn, which may consist of
one or more utterances. or, characteristicallv of illfomlation-seeking dialogues. only of an
elliptical (i.e.. iiiconiplete 011 sonie linguistic level) plirase. We aim at exploiting a wide
range of contextual properties for the identification of the interpretation.  Observing the
overwhe1111iiig and successful utilisation of (word) n-gram sequences in NLU tasks. it is
straightforward to assume  that  the  main  cue  in  discovering  patterns  in  language is context.
Context is aptly defined in [Bunt 2001} as  'the totality of conditions that may influerice
the  understanding and generation of conimunicative  behaviour', and [Allen et al.  19961
indeed suggest that the extensive use of context enhances robustness in NLU.

We henceforth refer  to  a  user  turn  that  needs  to  be  interpreted  as  the    focus  turn'.   A
focus turn's context consists of a large number of attributes, such as the words contained
by the focus turn and the preceding turns, the intonation with which these are uttered. the
time span during which they are uttered, the prompt upon which the input follows. and
so on. It is an empirical question which attributes are useful for automatically learning to
ititerpret a user turn. The choice of utilising one or another property necessarily depends
on what sources and types of inforination are regarded to be relevant for the underlying
task either intuitively, or based on previous work. In empirical research the attributes
used in assigning some representation to a user turn are often simply selected on grounds
of their supposed predictive power towards  the  component (s)  the representation contains.

In studies that treat compoiients of SI. contextual attribittes. also called cues, are em-
ployed with a wide range of grain size that railge from primitive to sophisticated. Primitive
cues are typically simple representations of whether a condition is true or false for an at-
tribute. e.g.. whether a certain word is present or absent in the focus turn. Sophisticated
cues can be high-level linguistic concepts (e.g.. syntactic information, semantic informa-
tion) or meta-level concepts such as the identity of slots that have been treated in the
interaction up to the current point. or the kind of grammar the ASR used in processing
a given input. Naturally. the cues differ also in the effort that has to be made to obtain
them: some are easily extractable in real time from various modules of the SDS (for exam-
ple  utterance duratioii), others are often  computationally more expensive to obtain   (for
example syntactic information).

Attributes of the actual spoken and textual material in the turns constitute the per-
ceivable and measurable context of dialogue turns. Besides. cognitive types of context are
also present in a dialogue situation. such as world knowledge, beliefs. social obligations.
and  the  like (cf. [Bunt  20001). Such cognitive phenomena are  difficult  to  optimally  define
and infer in a NLU system. often 111aking it expensive to build a SDS when such context
is impleniented in it extensively. Aloreover. cognitive context is mostly of use for the DAI
modules of the systeni that traditionally need to perform reasoning.

[Hunt 2001} argues that context can be optimally utilised only in case it is defined such
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that it is -both sufficiently powerful to form an adequate basis and sufficiently restricted
to be manageable". Our research is an attempt to use context iii a restricted but powerful
way, unifying usefulness and low cost of contextual attributes when these are zised iii
machine learning of SI. Before explaining our motivation and actual selection of cues
(described in Section 4.3), the reniainder of the current chapter surveys what attributes
other studies  utilise  for analysing SI-related aspects  of user  input.

2.3.1   Cues in analysing task-related acts
The work of [Samuel et  al. 19988} provides a good overview of machine learning approaches
to the computation of DAs. It notes that the attributes used in all surveyed studies include
the dialogue act labels of the preceding utterances. since dialogue structure informatioii,
provided by DA sequences, is supposed to be predictive of the identity of the next DA.
An important difference between such approaches and our work is that we do not use
the coniputed TRAs of user iliput in the detection of the focus turn's TRA, as this could
accumulate error  iii the learning  task  (cf.    Qu  et  al.   1997})

It is also observed by [Samuel et al. 1998a} that "some systeins utilized basic features of
the current utterance: specific words found in the zitterance. the utterance's length (num-
ber of words), and the speaker direction (who is talking to whom)". Moreover, te.rical ClteS
are also often extracted from utterances in order to identify DAs  Saniuel et al. 1998b.
Choi  et  al. 1999. Keizer 2003}, since for example the presence  of the token  'yes'  can  iridi-
cate an AFFIRMATIVE DA, or the presence of 'from' may be predictive of INFO-PROVIDING.
etc.  Prosodic properties are utilised e.  g. in [Jurafsky et al. 1996, Stolcke et al. 1998a.
Taylor et al. 1998, Shriberg et al. 1998, Shriberg et al. 20011. Prosody may play a sup-
portive or disanibiguative role in classifying one or another DA label. Evidence for this
provided by [Stolcke et al. 1998a] is that a YES/NO QUESTION that is in statement form
(i.e., includes no wh-inversion) is typically marked by a sentence-final rise of the voice
pitch.  At the same time, [Bezin 19891 finds that in 20% of the cases when a question
is posed in the form of a statement, no sentence-final pitch raise can be observed.  Tlie
two contradictory findings indicate that some contextual cues that are found useful on
some data set may not always generalise to other data sets. especially when research is
conducted with non-robust methods involving a small data set.

Other widely used attributes in learning DAs include the micro-syntax of an utterance:
verb tense, the presence of wh-inversion, aiixiliary verbs, subject type. and the like. as
well as punctuation marks, etc. may point to certain types of DAs [Jitrafsky et al. 1996,
Choi  et  al. 1999, Keizer  20031.    For instance, wh-inversion  in  some turn might indicate
that the turn is an INFO-REQUEST, whereas in the opposite case the turn might be a
STATEMENT. and so on. For further comparisons we refer to [Popescu-Belis et al. 20031
who provide useful pointers to a large number of studies on automatic dialogue act tagging.

2.3.2  Cues in analysing information units
 Traum 2003] emphasises that for understanding answers to questions properties of the
local dialogue structure are needed.  It is a common technique to first detect the DA
of an utterance, and subsequently iii a separate step identify information units. i.e.. se-
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mantic inforination. since the latter is ofteli regarded as the argument of the DA (cf.
 Reithitiger and Engel 2000.  Cattoni et  al.  20011).  [He and Young 20041 however first  use
a seinantic parser to process the oiitput of the ASR. re-scoring the word graph 11-best
mitptit. and stibseqlimitly icleritify tlie DA of the most conf'ident string.

Typically. statistical. as well le.rival  p,·operties   of  the   ASR   output arid those of
syntactic anal#sis are wiclely iltilisecl for performing semantic analysis (cf.  for exainple
 Vaii deit Berg et al. 1994. Botitiema et al. 1997. Rayner and Hockey 20031).

For aii overview of knowledge sozirces usecl iii computational interpretation of informa-
tioll linits in the user itipitt  sec,  [Flycht-Eriksson  1999}.  This study concludes that knowl-
eclge  sozirces  ittilised   l,z·  SDSs  are  ofteii   not   clearly  separable  from   the  actual   dialogue
111odel iinpleineiited iii a systezii: the eitiployed cites are often inherent to the i inplementeci
dialogue model. which yields linlited reusability of such approaches.

2.3.3  Cues in analysing forward-pointing problems
Researchers have utilised a variety of c·oiitextual properties for identifying forward-pointing
problenis for SDS. Alany of these are simple. such as the lexical outp·ut of the ASR mod-
tile of the SDS  [Walker et al. 20001).  Vaii den Bosch  et al. 2001].  as well as prompt history
 Walker  et  al.  20001).  Van den Bosch et  al.  2001}.    Others use additional system-internal
information that represents prompting strategy. or the NLP grammar implemented in the
system  [Hirscliberg et  al. 1999. Walker et al. 20008, Walker et al. 2000b},  as well  as  atito-
matically extractable acoustic·  cues  [Litiiian et  al. 1999. Walker et al. 2000a}. and cotifi-
dence scores outptit by either tlie ASR module [Litinan et al. 1999] or the dialogue Illall-

ager  [Walker et al. 20001)1
 Hirose 1995. Hirschberg et al. 1999. Hirschberg et al. 2000. Litman et al. 2000} fincl

evidence that prosodic properties of user input are predictive of forward-pointing prob-
leins  iii  SDSs.     It  was  found  that utterances produced with marked prosodic settings
are typically proiie to error IOviatt et al. 1996, Swerts et al. 20001 - presumably because
general-piirpose   recogiiisers   are   not    trained   to   deal   with a speaking style which differs
critically froiri tlie 'average' speaking style on whicli these recognisers are trained. Detect-
illg hyperarticulation (louder and higher voice. and slower speech rate) might therefore be
a good way to spot forward-poitititig prol)lems. However. for some SDSs hyperarticula-
tion is shown to catise no recognition problems [Batliner et al. 2003. Goldberg et al. 2003}.
On top of this. soine users are siniply less well recognised than others. and research
has found a nuinber of prosodic properties distinguishing these people froni others (cf.
 Hirschberg et  al.  1999.  Hirscliberg et  al.  20001)

Sopliisticated attributes that need to be lilaillially annotated are also employed in some
stlidies: these maiiily colicerii seiiiantic coiitent relating to the interaction. Such dialogue
attributes represent inconsistency between syste111 prompt and user reply. topic shifts,
salience-coverage. and the like  Hirschberg et al. 1999. Walker et al. 2000bj. The effect of
the user being an e.rperonce(1 user or a novice oiie is probably one considerable factor iii
this respect. Inakitig  user-niodelling  an  iniportant  part  of SDS design. Low recognitioii
scores aiid ASR reject ioils are reported to occiir more often in  the case of novice users thati
iii the case of expert tiMers (cf.  [Kamiii et al. 19981). The age and the gender of a user iliay
likewise cotitril,tite to recogitition sticcess or failure (see [Walker et al. 2000a. Privat  20031),
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since some voice types associated with these factors are better recognised  than other voice
types.

Speaking styte is another doniinant factor that can determine ASR success (cf. e.g
 Weintraub  et  al.   19961). Speaking style can cause diversity with respect to prosodic.  lexi-
cal and syntactic patterns in speech. Depending on the purpose of a given SDS. the doinain
of interaction in actual systems is mostly a quite liniited one, which restricts speakiiig style
to a to-the-point task-oriented conversatioii. However, there are also applications that al-
low for more spontaneous dialogue. necessitating large-vocabulary recogiiisers.

2.3.4   Cues in analysing backward-pointing problems
Arguably. comiziunication problems aiid user reactioiis to them very niuch depend oil
the dialogue situation in which they occur. For instance,  Litmaii and Paii 1999] and
ISwerts et al. 2000] liave shown that sonie dialogue strategies, like user-initiated interac-
tions. lead to more errors than others. and that, accordingly. some system prompt types are
more likely to trigger misrecognitions than others. Research by [Krahmer et al. 1999] has
brought to tight that users may react markedly differently to errors occurring in explicit
versus implicit verification Of information.  Furthermore, it turned out that the speaking
stvle of users' first corrections of system errors is different from that of corrections that
occur  in a chain  of corrections [Swerts  et  al.  2000].

The reason to investigate prosody for the purpose of error detection is motivated
by the fact that it functions well as a cue to problems iii huinan-huinan interactions
(see e.g. [Shimojinia  et  al.  1998]).     Consequently,   if it would be possible to autornati-
cally locate places in the dialogue where speakers switch to a special prosodic style, they
can become indicative of errors. An important cue in spotting backward-pointing er-
rors may be that in response to the system's processing errors people inay sometiInes
react with a hyperarticulate speaking style. This tendency occurs widely when people
are confronted with communication problems in interacting with other people. aIid these
findings appear to generalise to human-machine interactions as well [Shriberg et al. 1992.
Oviatt et  al. 1998} Additionally, the wording.  syntax.   duration. etc. properties,  of such
reactions can be markedly different froin answers to non-problem-revealing prompts. see
for  example  [Krahmer et  al.  2001b]. Therefore, researchers  have also started to explore
whether prosody may be useful as a resource for error detection (see e.g.  Levow 1998.
Litman et al. 20011).

The aware turn of the user supplies important cues for detecting problems that orig-
inate in the previous turn. Studies that ainl at spottitig aware user turns in SDSs niake
extensive use of both primitive and complex ciies.  Primitive cues include con,fidence scores
in  the  ASR  module  of the systein  ILitnian et  al. 20011 le:rical  output   of  the ASR module
of the  SDS  [Van den Bosch et al.  20011.  the  amount  of slots jilled [Krahmer et al. 19991,
dialogue history [Litinan et  al.  2001],  as well  as the preseiice of certaiii Zeirical attributeS ill
the user input  [Krahmer et  al.  1999.  Litman  et  al.  2001}.  and the presence of repeated lex-
ical itenis [Hirschberg et  al. 2001]. High-level features involve aspects of syntaI in the user
answer (utterance length, word order) [Krahnier  et al. 2001b].   Attributes  of  the  preced-
ing turns [Litman et al. 2001}, and experimental param6ters and aspects of the underlying
ASR graTnmar [Litiizaii et al. 2001] are also ofteii eziiployed iii automatic cletection of user
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awareness of communication problems.

2.4 Summary
In this chapter we have surveyed previous work on processing components of SI (task-
related acts that pertain to dialogue acts, as well as semantic information units, backward-
a.iid forward-pointing communication problems) in two respects: how these are annotated
in corpora, aiid what information is utilised in their automatic detection. We emphasised
the differences between the approach of previous research and that of the current study:
contrary to most of the surveyed work. we deliberately define general categories of task-
related acts, information unit types. and conimuiiication problems. Additionally. our study
utilises unsophisticated, low-level cues in the classification of the SI components, keeping
the approach shallow, thus. supposedly. robust.

We conclude that our approach is more complex in its goals than most of the sur-
veyed work, since we attempt the detection of a four-level representation of pragmatic and
seniantie aspects of user input to a SDSs.  We hypothesise that this is a difficult task, how-
ever. we believe that predicting such a complex representation for new utterances improves
natural language understanding in human-machine communication.



Chapter 3

Machine Learning as a
Research Environment

The current study uses machine learning as a research environment for developing and test-
ing modules that perform shallow interpretation of user turns in spoken dialogue systems.
Iii this chapter we introduce the general empirical set-up in which shallow interpretation
takes place.     In the first section   of the chapter we describe the algorithms  employed:    a
memory-based 'lazy' learner, and aii 'eager' learner, a rule induction algorithm. In the
second section we pay attention to two methodological issues of machine learning that
play an important role in our research, namely the evaluation of algorithm performance,
and algorithm parameter selection.

Alachine  learning  (ML), a research area within the discipline artificial intelligence  (AI),
provides an algorithmic approach to model a phenomenon by estimating its parameters
on the basis of examples and to improve the perforniance of predicting new instances of
that phenomenon. In case the learning algorithm is trained on examples that are labelled
in terms of classes that collectively describe the phenonienon. we speak of supervised
learning. In the current study supervised learning techniques are used, in this way we can
make good use of our labelled corpus data.

In order to learn the model, a supervised ML algorithm processes the examples which
typically consist of fixed-leiigth feature vectors containing attributes.  i.e..  features,  of the
phenomenon in the form of conjuncted variable values, as well as the class that represents
a distinctive category of the phenomenon.  If the learning task is to classify the examples.
the algorithm, called classifier. learns a function that maps the examples' features to the
set of classes.  ML is a cornerstone of AI since learning algorithms (also called learners)
are able to extract knowledge from the examples they are supplied with, and to improve
with experience. which are primary characteristics of intelligence.

The training of ati algorithm is the process during which knowledge is gained from
the examples so that the algorithm becomes able to map the features to the set of prede-
fined classes. Assessment of the adequacy of the learnt model takes place by testing the

27
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algorithm on how well it elassifies unseen examples (called test instances). Test instances
consist of a feature vector but 11Ot the class, which needs to be assigned by the algorithm.
The working principle of inducti ·e AIL is that a model that converges to the target ftinc-
tion on the learning examples will do so on similar. previously unseeii test izistances. For
an introduction to the theory of AIL, primary AIL algorithms. and examples of practical
applications to real-world problems.  cf.   [Alitchell  1997}.

 Iany studies have investigated the extent to which AIL-based empirical methods can be
utilised in natural language processing. and it is generally claimed that linguistic issues can
be (re)formulated as learning tasks:  see for example the collection of [Wermter et  al.  19961.
as  well as [Daelemans  et  al.   1997]. atid their references. [Daelemans  1995}  discusses  that
all coniputational NLP problems can be formulated either as a disambiguation task or
a segineritation task: wheii perforining classification of natural language data, the class
syinbols represent linguistic categories, respectively boundaries between linguistic units.

3.1 Algorithm choice
It is still an opeii issue which AIL techniques are the most suitable for which NLP tasks.  An
iinportant point to make is that the working principles.  i.e..  the bias of ML algorithms differ
largely iii terms of "what can be represented as an induced hypothesis. and how the searcli
for  a  liypothesis  is  heziristically  guided     [Daelemans and Hoste  2002]. For example.  the
knowleclge acquired through learning can be largely different among classifiers in terms of
comprehensibility, re-zisability. ancl storage. As a result. the algorithin choice may depend
on the research purposes: for exaniple. one algorithm is more suitable for gaining a compact
riiodel  of  some  phenoizienon.  another  is  for  Illodellilig  low-frequeiicy  or  irregular  examples
in a domain, a third is for utilising feature independence. and so on. On investigating a
number of existing supervised classificati011 AIL methods on benchmark NLP tasks see fur
example  [AIArquez 2000. Zavrel et  al.  2000}.

At the same time, the recent work of [Daelemans and Hoste 2002] has provided einpir-
ical evidence that "iiiteraction between algorithizi paranieter settings and feature selection
within a single algorithm often accounts for a higher variation in results than differences
between different algorithms or iiiforination sources (the latter referring to the employed
features).   The  fact that. irrespective of  the  learning  task  and aii algorithm's  bias.  per-
formalice differences between different algorithms might be of a much smaller scale than
those by the sallie learner under differing conditions. suggests that for certain NLP tasks it
might not niatter significantly which algorithm is employed, given identical experimental
conditions, and sufficient data.  Contrary to this, [Rotaru and Litman 2003} have found
that learning algorithins with a different  bias caii produc.e significantly different perfor-
mance depending 011 several factors such as the task. the number of features, and the type
of features.

In our study two AiL algorithms with a different bias are trained and tested on all
tasks.     Our  primary  goal  is  not   to  plot   a competition between AIL algorithms,   but,   as
set  out in Chapter  1. to ensure tlie validity  of our  investigation  as  well  as  its  generalis-
ability to other ALL algorithnis. bv applying two different biases to the sanie classification
tasks.   The two algorithnis  used  by  us.  namely a memory-based learning algorithm.  IBl.
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and a nile iiiduction algorithi11. RIPPER. are representatives of different classes of macliine
leariiers: [Daeletiraiis et al. 19971 regard memory-based learnizig atid rule induction as ex-
treines iii terins of the aiziozmt of effort  invested in learning 2211(1 the teclinique of knowledge
represeiitatioii. Below we disctiss tlie  technical  details  pertaillilig to  181  arid RIPPER.

3.1.1 Memory-based learning
The  IB 1  algorithin  is  a  nieniory-based  learning  algorithm,  a  desceiidant  of the  k-iiearest
neighbozir (A·-NN) classifier [Fix and Hodges 1951. Cover and Hart 1967. Aha et al. 1991.
Cost and Salzberg  1993}.     Alemory-basect  leariiiiig  is  a  type  of   lazy'   learning.   because
the classifier siniply stores a representation of all training examples iii nieinory. without
abstracting away from individual instaiices diiring tlie learniiig process. This stands in
contrast with our other learner which is typically referred to as an 'eager' learner. see
Section 3.1.2.

Meniory-based learning algorithms classify new instances by looking for the most sim-
ilar   (i.e., 'nearest') examples in memory and extrapolating froni their class  the  new  iii-
stalice's class. Taking the classical k-NN approach to classification entails that when k
is  set  to  1.  IB l's  strategy  is  to  return the class  of the immediate  nearest  neighbour.   The
nearest neighbour is searched for among the trainiiig examples that are stored iii meniory:
it is tlie memory example that has the least difference. according to a similarity metric,
with the test instance. Alemory-based learning algorithins thus do not search for a target
function that covers all examples, biit for a local fullctioll tliat is based 011 the exaniples
closest to the focus (i.e.. test) instatice. Research found that due to its bias a memory-
based classifier may yield more precise results thaii classifiers that discard low-frequency
items froin the indticed knowledge model, iii case these low-frequeiicy items constitlite
exceptions that re-occur  iii  test data [Daelemans et  al.  1999}.

The Ti IBL soft.ware package IDaelenians et al. 2003] incorporates a variety of memory-
based pattern classificatioii algorithnis, ainong others the IBl algorithm (the default iii
TiNIBL). We employ IBl iii the TiAIBL package version 5.0.0. and heiiceforth refer to it as
the meniory-based learner, MBL.  The classification procedure by MBL has two subprocesses:
learning. during which examples are stored iii inemory. and classification. cluring whicli
k-NN examples are fouiid and subsequently the class is extrapolated from k-NNs to the
new instance.

For classification of a test instance Y. the set of k ineiiiory examples closest to Y is
determined. The amount of nearest neighbours defines the ainolint of memory exaniples
that are used to extrapolate the class of the test instance.  In MBL classification takes
place  by  searching  for the nearest distances (instead  of  nearest   neighhotirs).    Search  for
the nearest distances implies that when the same distance is measured for niore than one
neighbour. these are regarded as being equally similar to the test instance. Iii this way, if
for example k  is set  to  1.  the number of examples from  which the class is extrapolated may
be  111ore than 1. sitice several 11earest neighbours nia> occur at  the same nearest  distance.
We   will however refer to nearest dist aiices  throlighout   this  study   with   the   term     ziearest
tieighbours'.

NIBL conipiltes tile distaiice between a lileiIiory example X and the test instance Y for
each featiire accordiiig to some inetric £1(X. Y). so that the distance of X atid Y is defined
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as the sum of the differences between the features:
n

L'>(X, Y) = LwiJ(x" Yi),
';,=1

(3.1 )

where n is the number of features, b is the distance per feature - since Xi. is the (value
of the) rth feature in X and Y'i is the rth feature in Y -: and Wi is a weight marking the
rth feature's importance in the task.

The kernel of this distance function in our study can be one of the following four
metrics:

• Overlap metric

• Numeric metric

• Modified Value Difference Metric (MVDM)

• Jeffrey divergence metric,

OVERLAP The overlap metric computes the distance function according to the following
formula:

J(Xi' vil = { ~
ifxi=Y.i
if Xi -:f y.;"

(3.2)

NUl'vfER.JC In case the feature values are numeric, and the feature is declared as numeric,
the distance is computed by I\,fBL as

( I( Xi-Vi I6 Xi,Yi)= . ),
maXi - mtni

where max1: and misu me the maximum value and the minimum value of the ith feature.
The calculation of the numeric distance ensures that numerical feature values will be
treated appropriately when computing their distance, i.e., will not be treated as symbols
but as Teal numbers.

MVDM The Overlap distance metric regards values either as identical, or as different,
However, in many symbolic tasks there is a graded dissimilarity of feature values: for
example) the filling of the departure station slot may be more similar to the filling of the
arrival station slot than to answering a yes/no question,

The MVOM distance metric assigns to each pair of values of a particular feature
an index representing the distance between the values: the similarity of the values of
a feature is determined by looking at the co-occurrence of values with t.arget classes
[Cost and Salzberg 1993]. For the distance between two values VI and V2 of a feature
the difference is computed as the conditional distribution of the classes Ci for these val-
ues:

30

(3.3)
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n

0(V1,V,) = L IP(C,lv,) - P(Cilv,)I·
i=l

(3.4)

where n is the number of classes, and VI and V2 are values of 3.: [i.e., the distance is
calculated [or all value pairs of all examples in the training data). [Daelemans et al. 20031
warn that data sparseness may result in unwanted effects when the tI.'rVDM metric is used:
if there are feature values occurring Dulya few times or once in the whole data set, and
always with the Same class} l'vIVDM will regard those as identical, whereas if they occur
with two different classes, their distance will be maximal. In such cases it is preferable
to use the Overlap metric instead of MVDM. TiMBL offers such a back-off from MVDtvl to
Overlap through a frequency threshold which is activated when Qne or both of a pair of
matched values occur fewer times in the training data than this threshold.

JEFFR.EY DIVERGENCE Finally, the Jeffrey divergence metric computes the distance be-
tween class distributions of two values of a feature. Jeffrey divergence works similarly to
MVDM, but instead of computing a geometrical distance between two class distribution
vectors it uses a logarithm term:

~ P(uIU1) P(CIV2)
0(V1,V,) = L.,(P(Cilv1)log , + P(C.lv2)log , ),

171 n~
i=l

(3.5)

where m, is computed as

P(C.lud + P(Cilv2)
m= 2 . (3.6)

Compared to MVDM, Jeffrey divergence assigns larger distances to value pairs of which the
class distributions are more orthogonal so that zero probabilities become more marked,
making Jeffrey divergence more robust on sparse data [Daelemans et al. 2003J. As with
MVDM, it is possible to set a frequency threshold to back-off from Jeffrey divergence to
the Overlap metric.

As yet another option of the distance function, it is possible to rank the features according
to their estimated importance in the classification. This is done by assigning weights
(represented by Wi in Equation 3.1) to the features, which is computed by a feature-
weighting metric. Weighting features in k-NN by their classification prediction strength
implies that examples are regarded as more similar to each other when they share more
of the higher-weighted features. The weighting function used in the distance function can
be one of the following:

• No weighting, all features have the same importance

• Information Gain weighting

• Gain Ratio weighting

• Chi-squared (X2) weighting
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• Shared variaiice weighting.

INFOR.41.ATION  GAIN   (IG)  IG  is  an  information-theoretic  metric.  ineasured  by  computiiig
the difference iii e,itropy between the situations with and without knowledge of the value
of the featiire coticerned.  Entropy is a nunierical measure of informativity. measuring
uniformity in the representation of information  [Shannon and Weaver  1949}.  The  entropr
H is computed by estiniating probabilities of class labels fro111 relative frequencies iii the
training data:

H(C) = -X P(r) log2 P(r). (3.7)

CEC

where C is the set of class labels. The IG of feature i is thus ineastired as

IG, = H(C) - E P(r) x H(C'Ir), (3.8)

1,€V,

where  K  is the set  of values for feature i.   This entails that the more uniforin the probability
distribution of classes, tlie greater the eiitropy. i.e. uncertainty. in the task. IG tends to
assign high weights to features with a lot of values: which may have an unfavourable effect
on classification.

GAIN RATIO (GR ) GR feature weighting ainis at balaticing this effect out via normalising
the IG feature weight by the entropy of the feature value. It is an inforniation-theoretic
heuristic established  by   Quinlan  1993}.   To coinpute  the  GR of a feature.  its  IG  is caloi-
lated and normalised for features with differetit numbers of values. GR is thus IG divided
by si,.  standing for  split info which eqiials  to the  entropy of the feature value:

IGiGR,-- (3.9)
Sli

where

st, - -S P(c) log2 P(t') (3.10)
2,€ V,

 2   WEIGHTING    The  GR measure  may  still  show ali unwanted bias towards features  with
more values. since the GR statistic is liot corrected for the number of degrees of freedoni
iii the contingency table of classes and values: the 22 weigliting metric niay correct tliis
 Daelemans  et  al.  2003].  The \,2 statistic is computed by  the  following formula:

'2 -XE CE.,il
0.,)2 (3.11)

tl

where 0,3  is the observed miniber of cases with value  r, iIi class cj. and E,j is the expected
mimber of cases which should be iii cell  ( ri.  CJ)  iii the contingency table.  if tlie hypothesis
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that 110 predictive association exists between feature aiid class is true.

SHARED VARIANCE WEIGHTING Aiiotlier method to correct for the degrees of freedoin is
to use the sliared varialice measure:

2

Svi   =                                  X i                                                                                                    (3.12)N x (,nin(ICI. 1149)-1)
where   ICI   and   Ill I are respectively the number of classes  and   the  number  of  valzies  of
feature i. and N is the number of instances. For more details on feature weighting in the
181  algorithm we refer  to  [Alia 1998. Daelenians et  al.  2003}.

CLASS VOTING Finally, in the process of extrapolating the class from k-NNs to the new
instance. it is possible to define the proniinence of each NN in voting for the new class.
The weiglit of a NN is computed as a function of the NN's distance fro111 the test instance,
allowing closer NNs to have a more prominent vote in the classification. Class voting illay
take place on the basis of class ma.jority (in this case all neighbours are assigned the same
weight),  as  well  as  on the basis of linear, inversed, and exponentially-decayed distance
weighting.

To siminiarise, MBL has the following important working parameters:

•   number of nearest neighbours  used for extrapolation (default:   1)

• distance metric (default: overlap)

• feature weighting metric (default: GR)
• class voting of the nearest neighbours (default: majority class voting).

MBL provides no direct explanation  of its classification output, which  is a disadvantage
for understanding the results obtaiiied. In order to point out problematic cases for the
learner, classifier-internal logs can be examined that record the parameter use and its
effect on the test data: by observing the NNs it is possible to determine on which basis
MBL extrapolated the class. providing an indirect explanation for the decision.

3.1.2 Rule induction
In contrast to the 'lazy' learner MBL, our other classifier is an 'eager' learning algorithm.
RIPPER [Cohen  1995].   used in version 2.5. RIPPER  is  a  rule  induction   algorithm   that
is designed to be fast and efficient even on noisy datasets. The original rule induction
algorithm on which it draws is described in [Fiirnkrantz and Widmer 19941.   The  bias  of
rule induction is to discover regularities in the data and represent those by the simplest
possible rule set. The induced rule set is then used to classify new instances.

The most dominant type of rule induction algorithm is the sequential covering algo-
rithm. of which RIPPER is one variant. The kernel of the classical sequential coveriiig
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algorithm is to incrementally build up a set of rules that collectively cover all positive
examples  (cf.    IClark and Niblett 1989. AIichalski  et  al.  19861).   The  algorithm  learns  one
rule at a tilne. after which the exainples covered by this rule are removed frolii the training
set. and a 11ew rule is learnt. Each rule states that satisfying a condition (which, depending
on the employed gramiiiar. niav be a conjunction of conditions. or a conjunction of dis-
junctions. etc.) implies membership in a particular class: if <feature test> then < class>.
In each iteration rules are built up greedily. The algorithm starts with the most general
rule that covers all instances.  Then a set of extensions is generated in which conditions
on attribute-value pairs are added to the initial rule. These extensions are evaluated by
some measure. such as accuracy of prediction (i.e.- the number of correct classifications)
over the instances covered by the conditions. or entropy. The goal is to find a rule that
has high accuracy,  but  not  necessarily high coverage [Mitchell  1997].

This routine is repeated until some stopping criterion is reached. for example that
all training exaniples are covered. or the performance of the rules does not improve any
more on some test part of the training data. The set of rules is then ordered according
to some criterion (e.g.. froin low coverage to high coverage). Note that this may influence
effectivity.  i.e..  learning  time.  as  when  a  new instance needs  to be classified,  the  rule  set
is traversed from top to bottom to search for the first rule that fires.

The approach of rule induction to classification is also related to that of decision tree
learning  (see  [Quinlan  1986, Quinlan 1993])  as both  aim at discovering patterns in  data by
some heuristics, for example based on accuracy or coverage metrics. However, in contrast
with decision tree learning that generates an embedded tree structure in a parallel fashion.
rule induction algorithms generate ordered lists of rules sequentially.

Since the sequential covering algorithm does not backtrack (a property that is also
inherent   iii decision trees).   it  is not guaranteed   to  flnd the smallest  or  best  set of rules
 Mitchell 1997} Tlierefore,  and  also to prevent overfitting of the rules (meaning  that  they
would  fit the training  data  well  but  the  test  data less well). pruning is often  used  as  post-
processing the leariit rule set (again. similarly to decision tree learning)   Ffirnkrantz  1997]

The  drawback  of  rule  induction algorithms, described in  Cohen  1995].  is  that  they
cannot work optimally if the sample size is small. However, they are very powerful and
fast general learning tools. and can reach very good results. especially when the number
of classes in the data is small. An advantage of rule induction algorithms is that by
reading the induced rules it is possible to interpret the generated output, which provides an
explanation about the model's estimated parameters. RIPPER is often used in studies that
deal with problem detection in human-machine comniunication (cf. [Litman et al. 2000,
Walker  et al. 200Ob. Litman  et  al. 2001, Hirscliberg  et al. 20041)

Below we describe the kernel of our rule induction algorithm. RIPPER, to which we
henceforth refer as the rule induction learner. RI. RI starts learning by separating the
training set in two.  On the basis of one part it induces rules, niaximising coverage and
accuracy for each rule: where the employed heuristic is to minimize entropy in the data
set by each rule induced. According to RIs default rule grammar, the condition part of
each rule may consist of one or more conjoined feature value tests. The heuristic used
by RI for growing the rules is to add a test on a feature value if using that condition
results in more accurate segmentation of the data. which is estimated by the IG function.
When the induced rules classify instances in the test part below a certain threshold. they
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are not stored. Rules are induced per class: by defaiilt their orderilig proceeds from low-
frequency classes to high-frequency ones. leaving the most frequent class as the default
rule (which is generally beneficial for the size of the rule set). The stopping criterion Ill
uses draws on the idea of the minimum description length  [Rissaiien  19781.  The minimuill
descriptioii length principle states that the length with which regularities in the data are
described correspotids to the success of discovering those regularities, so that regiilarity in
the data cari be used to compress it. i.e. to describe it using fewer synibols than needed
to describe the data literally  Griinwald et  al.  1998].  RI uses this as a heuristic to decide if
the induced rizle set needs to be pruned. It post-prunes the generated rules by the reduced
error prunilig technique ICohen  1995]

When classifying a new instance. the rtile set developed by RI is traversed from top to
bottom. As soon as a rule fires (i.e., its featiire-value test conditions match with those of
the test instance). the class  of the riile is returned  and the traversal through  the  list  is
stopped.

Ill sum. RI amalgamates entropy minimisation in the form of sequential covering aild
generation of rules in accordance with the minimal description length, as well as Sonle
heuristics, such as pruning. Below we list the parameters most significant for our study
in  RI:

• amount of learning examples to be minimally covered by each rule (default: 2)

• hypothesis simplification (simplify more/less, default: simplify less, i.e.. multiply
coding cost of theory by 0.5)

• negative tests on feature values allowed or disallowed (default: disallowed)

• number of optimisation rounds on the induced rule set (default: 2)
• class ordering (default: order by increasing frequency)
• loss ratio of false positives/false negatives (default: 1)

• expect data noisy/non-noisy (default: expect noisy).

Hypothesis simplification in RI is possible by setting the coding cost of the theory generated
by a grammar based on the niinimum description length principle. Negative tests on
feature values enable to assign a class on the basis of an instance not having a certain
feature value. Optiniisation rounds are carried out per rule set per class, for example by
merging similar rules into a more general, pruned rule. Setting the loss ratio manipulates a
cost function  in  Ri that  determines the trade-off between the false positives (i.e., instances
falsely selected for a particular class. see below) and the false negatives (i.e.. instances
falsely linselected for a particular class. see below) of the rules, thereby determining the
importance of the type of misclassification for a class.

Additionally. RI also allows for declaring features as numeric. This option enables
segmenting the data by rules with 'snialler_than'/ 4larger_thaii conditions (i.e.. discreti-
sation) at numeric value boundaries. which might be beneficial for the classification task
as opposed to 'has_value' treatment of numeric features (which is for example the default
in MBL)
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tn

fp            tp           fn

7 f
selected target

Figure  3.1:   A diagram facilitating the illustration of our evaluative measitres.  reproduced
from [Jurafsky  and  Martin  2000}.   'tn'  denotes true  negatives, 'tp denotes true positives.
'fii' denotes false negatives. 'fp' denotes false positives.

3.2 Experimental methodology
In our general experimental set-up. training and testing is done by 10-fold cross-validation.
The data are randomly split into teii partitions. eacli roughly the same size. This is carried
out by means of dialogue-based partitioning. thereby ensuring that no material from the
same dialogue could be part of the training and the test set. Learning experiments are
conducted so that each partition acts as a test set once. while nine-tenth of the data serves
as training material.  n-fold cross-validation (CV) is a generally accepted method in the AIL
community for conducting and presenting performance measurements on some task, see
for example [Weiss and Kulikowski 1991]. 10-fold CV allows for estimating  classification
performance on previously unseen material. measuring the prediction strength of a learner.

In our study the performance of learners will be evaluated according to four mea-
sures. To illustrate how these are computed, consider Figure 3.1 that we reproduced froni
 Jurafsky and Martin 2000]. The target set contains the instances that need to be assigned
a particular class. the selected set contains the instances to which the learner assigned a
particular class. Based on the diagram, a contingency table can be made. which we present
in Table 3.1. Based on the diagram and the contingency table, the evaluative measure
accuracy can be seeIi to represent the percentage of correctly classified test instances:

Acc = (3.13)
tp + tn

tn + f P + tp + f n

The other three measures, precision, recall. and F-score. are common measures of perfor-
mance in information retrieval, and are soniewhat newer in NLP. Precision is the ratio
of correctly classified instazices iii a class to the total number of instances identified as
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Target Noii-target
Selected         tp          fp
Not selected   fii       tii

Table 3.1: Contingency table of evaluatiiig  a  classifier's precliction  in  terins of target  and
non-target classes. 'tn' deiiotes tlie amount of true negatives. 'tp denotes tlie ainouiit of
true positives. 'fii' denotes the amount of false negatives, ' fp' denotes the ainount of false
positives.

members of the class:

Pre = (3.14)
tP

tp + fp

Recall is the ratio of correctly identified instances in a class to the total number of instances
in the class:

Rec = (3.15)
tP

tp + fn

The F-score metric   represents   the harmoriic mean of precision   and   recall. of which   we
employ the unweighted variant, defined as

2PreRec
F =                                                 (3.16)Pre + Rec

In evaluating a classifier's performance the F-score value Cori a particular class. or propor-
tionally compiited based on all classes) is often inore informative thaii predictive accurac,y
accuracy  can be opaquely biased  to  tlie  majority class(es), whereas the F-score charac-
terises the rate of precision and recall for the prediction of the target, penalising for
disharmonic divergence between precision and recall [Van Rijsbergen  1979].

For evaluative purposes often a baseline learning approach is conducted on the data.
The baseline strategy typically employs soine straightforward heuristic.  for  example  to
assigii the majority class label of tlie training instances to all test instances.  Baseline
learners in this study will be defined per learning task.

3.2.1 Algorithm parameter optimisation
Both MBL and RI have parameters that bias their performance. It is unknown beforehand
wliich (combination of) parameter settings yield  the  best  generalisation  performance  on
sonie task. Research. ainong others by [Daelemaiis and Hoste 2002}. shows that  it is often
not   optimal   to   use the default parameter   settings  of  a learning algorithm. whereas   it   is
beneficial to tune the settings to suit the type of data and task better. Ideally one would
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want to tune algorithm parameters autoniatically: such a procedure however contains a
search problem for finding optimal parameter settings given a particular data set and a
particular task. where the search space to be explored can be large since it consists of all
possible combinations of parameters.

The  niethod of wrapped progressive sampling  (WPS.  [Van den Bosch 20041) offers  a
solution to this. involing a heuristic search algorithm. The procedure implemented in WPS
includes finding a set of optimised algorithmic parameters for a range of machine learn-
ing  algorithnis ('classifier wrapping'. 1Kohavi and John  19971).  combined with progressive
sampling  of  training  data   [Provost   et  al.   1999}. by testing decreasing amounts of setting
combinations on increasing amounts of training data. The approach is claimed to search
the space of paraHieter settiiig possibilities considerably more thoroughly than economic
search heuristics  such  as Alonte Carlo sampling  (e.g.,  [Samuel  et  al.  1998a}).

WPS  makes  an  estiniation  of optimal  parameter  settings by performing experiments
on the training material itself (since it is not allowed to use test material to make that
estimation): parameter setting  conibinations are tested  on a random  20%  of the training
data. The best performing settings. evaluated by performance accuracy. are retained and
re-run iii another round of testing. already on a larger amount of data. This routine is
iterated over a growing amount of data. producing a list of accuracies from which badly-
performing setting combinations are discarded. The process is iterated until   only   one
parameter setting  is  left,  or.  in case several settings remain, either the default setting  is
returned if it is among the settings, or a random selection is made from the settings.

The method is reported in [Van den Bosch 20041 to show little improvement on bench-
mark tasks for algorithms that offer few paranieter variations. but may yield marked
improvements for algorithms offering many possible parameter combinations. We tested
the  effect  of WPS  iii  [Lendvai et  al. 2003]. where the performance of MBL on classifying
disfluent language phenoinena was found to increase from 95.7% to 97.0% accuracy and
from 72.3 to 80.0 F-score when optimised algorithm parameters (combined with an atten-
uation technique, see Section 6.1.1.3) were used instead of the defaults. For more details
on WPS we refer  to  [Van den Bosch 2004].

We  employ WPS  version 1.0 tliroughout tlie experiments  iii the current study. unless
stated otherwise. This entails  that  for both classifiers a learning process will consist  of
two parts per data partition: paraineter search. and the experiment itself. in which the
parameter setting estimated as optimal by WPS is applied to the full 90% training set,
and is tested on the yet unseen 10% test set.

For MBL tlie following metrics are optimised in WPS, testing with the indicat.ed vahies (iii
total 925 setting combinations):

• number of NNs used for extrapolation:  1.3.5.7.9. 11, 13. 15. 19. 25. 35

• distance metric: Overlap. MVDM. Jeffrey divergence. the latter two with frequency
thresholds 1 and 2

•   feature weighting: no weighting.  IG.  GR.  \:  shared  variance  weighting

• NN weighting for class voting: majority class voting, linearly-inversed distance
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weighting. inverse distance weighting. exporiential-decay distance weighting with a
set  to  1.  2.  or  4.

For the RI algorithm the metrics and valzies tested iii WPS are the following (in total 648
setting  combinations)

0 aniount of leariiing instances to be minimally covered by each rule: 1. 2,5. 10, 20,
50

• multiply codiiig cost of a hypothesis with 0.5,1.0. 2.0

• tiegative tests on the feature attributes: allowed, disallowed

•   number  of optimisation  rounds  on  induced  rule  set:   0,1,2

• class ordering: increasing frequency, decreasing frequency

• loss ratio of false-positives/false 11egatives: 0.5,1.0,2.0

• expect noisy data, expect non-noisy data.

It is important to emphasise two points concerning the use of WPS in our study. First,
we expect that the resultiiig optimised paranieter settings are often going to differ per
experiment   (i.e..   per  data  partition).   such a tendency simply indicates  that  the  data
are heterogenous across the data sets, which is Common knowledge. and entails that the
parameter settings niay not be reused on new data, since they do not fully generalise. It
is exactly this eventual diversity in the resulting optimal parameters that enables us to
estimate the generalisation performance of the method of optimising algorithm paratiieters,
preventing to report on results produced by an overfitted set of parameters. At the same
time.   even if there is variation   in the selected parameters for different  cross-validations,
it is possible to decide on a final setting to be used for new test data, for example by
conducting parameter search  on  the  complete  dataset,  or  by  reusing  the settings tliat  are
found optimal for the majority of the cross-validations.

Second, it is not the primary aim of the current study to measure the gain WPS acids
to the shallow interpretation method. rather. we ilse WPS as a tool that is incorporated
as a plug-in in both classifiers. Therefore, we report 011 the resulting optimised algorithm
parameter settings only in case these provide non-trivial insight into the nature of the SI
task.

3.3 Summary
In this chapter the methodology employed in our study was described. In Section 3.1  the is-
sue of algorithm choice was explained. after we gave a description of the two classifiers used
throughout the study. We emphasised that memory-based learning and rule induction are
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regarded as extremes in terms of their learning effort and classification effort, and it is un-
clear. given the contradictory findings of [Daelemans et al.  1999. Daelemans and Hoste 2002]
and [Rotaru and  Litman  2003] whether it can be expected that the performance of memory-
based learning and rule induction is going to be different on our task.

In Section 3.2 we provided the details of the general experimental set-up used in this
work: we perform 10-fold CV combined with wrapped progressive sampling iii the experi-
ments. so that AIBL and RI are trained and tested under identical conditions. Classification
performance is measured and evaluated on the basis of four measurements: accuracy, pre-
cision. recall, and F-score. We pay niost attention to the figures characterising the F-score
obtained on the task. since this figure represents an informative aggregate of classification
precision and classification recall.



Chapter 4

Shallow Interpretation Module:
Data, Experiments, and Results

In this chapter we present the architecture of the SI module. as well as the results of
applying ML algorithms to the complex task of interpreting spoken liser turns. After
introducing our research material, the OVIS corpus, we explain the process of annotating
user  turns  in the  corpus  according  to  the  four  components  in  SI  (Section  4.2).   We  then
describe the design of the ML experiments.  We explain the class label design for our
task in Section 4.2. Subsequently we describe the features and give an account of how
they are obtained in Section 4.3. The chapter is completed by reporting on the results
of AIL experiinents, performed both with AIBL and RI (Section 4.4.2). We summarise the
experimental outconies iii Sectiori 4.5.

4.1 OVIS

4.1.1  The OVIS system
In this section we introduce our research material, collected from interactions with the
OVIS dialogue system. 'OVIS' is an acronym for *Openbaar Vervoer Informatie Systeeni'
CPublic Transport Information  System).   The  blueprint  for  the OVIS experimental spoken
dialogue system for Dutch was based on the German Philips automatic train timetable
information system [Aust et al.  1995].  OVIS was developed in the Dutch Iiational research
project 'Language and Speech Technology' which ran from 1995 to 2000. fuiided by the
Dutch Organisation for Scientific Research  (NWO).  The  modules  of  the  OVIS  systeni
were developed by different groups at different sites. The project's goal was to develop
a telephone-interfaced speaker-independent SDS that travellers could call by telephone
for enquiries on train corinections iii the Netherlands. The SDS had three development
versions. OVISl was implemented in 1995. For speech processing a word-transition-
based. statistical language model was implemented in the ASR. For language processing
two alternative NLP modules were developed: a data-oriented (i.e.- probabilistic). and a
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grammar-oriented (i.e.. rule-based) parsing module.    The  goal of OVISl   was to build  a
demonstrator via which realistic human-iziachine dialogues could be acquired. to facilitate
further  development  of  the OVIS system [Boves  et  al.  1995].

In later phases of the project two more versions were developed of the SDS. Iii OVIS2
the ASR was niade adaptive to enable interaction between the ASR, NLP. and DAI mod-
ules. The major difference between OVIS2 and the subsequent installment. OVIS3. was
in the capability and quality of the system components  [Boves et al. 1995}. For details on
the components of the OVIS architecture see the following literature: [Strik et al.  1997] on
speech recognition. [Van Noord et al. 1999} and [Bonnema et al. 1997} on the NLP com-
ponents.  Theune 2003} on language generation. and IVeldhuijzen van Zanten 1998] on the
dialogue manager of the system. Furthermore. [Veldhuijzeri van Zanten et al. 19991 pro-
vide an evaluation of the NLP components of OVIS2.

The OVISl system prompted the user for four slot values in order to retrieve infor-
mation from an on-line database of train timetables.  In particular. the user needed to
provide the departure and arrival station names.  as  well  as  the  date  and  time  (i.e..  hour
atid niimite. and. if needed. tillie of the day) of either the departure or the arrival. The
strategy employed was priniarily systein-initiative, however. it allowed the user to provide
unsollicited information in reply to any of the prompts. The OVISl system always gave
feedback to the user on what it had understood from the user input, by means of either
implicit or explicit verification prompts. This entailed that users could (in principle) al-
ways become aware of communication problems from the following system question. The
system  was   able to retrieve  more  than one connection, from which it presented the first
suitable one. asking the user afterwards if she wanted to hear the remaining connections
as well. Dialogues could in principle continue (i.e. a new query could be started) after
sonie connection was retrieved from the database.

4.1.2      The OVIS corpus
During  the  development  of  the  OVIS 1  demonstrator a corpus of dialogue transcriptions
with syntactic and semantic annotations was compiled. This material consisted of tran-
scribed dialogues that were sampled from a range of telephone calls of test users of OVIS.
The test users knew that they were subjects in an experiment and were requested to call
the system regularly. Figured.1 is an illustration of the type of dialogues contained in
this corpus. We indicate the implicit or explicit verification prompts in the figure. We
provide here the English translation of the system aiid the user turns: the original Dutch
transcription is given in Figure 2 in the Appendix.

The niaterial used iii the present study consists of 441 transcribed dialogues coming
from the corpus of user interactions with OVISl. We henceforth refer to this material
as the OVIS corpus. Audio files containing the recorded user input. the transcribed,
seniantically annotated user utterances. as well as the ASR output containing word graphs
were available to us for research. The dialogues amount to 3,738 pairs of system and user
turns. We had no access to user identification numbers, therefore it cannot be stated
to what extent these dialogues involve different speakers. By listening to the acoustic
material however. we can infer that the vast majority of the dialogues are conducted with
different users. The number of turn pairs in the dialogues range from 2 to 29. the average
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Turn Utterance Ver. type

S 1 Good morning.     This   is   the autoinatic information system   of
public transportation.  This Systelll provides inforniation exclu-
sively about. traiii travels from a National Railways station to a
National Railways statioii. Fr(El wliich statioii to which statioii
do you want to travel?

Ul I want to go from Voorschoteii to The Hagzie Central station.

S2       When do you want to travel from Voorschoten to Utrecht Cen- IMPL

tral station?
U2 I want to go to The Hague Ceritral station,

SJ     When do you wailt to travel from Voorschoteii to The Hague I AIPL

Central station?
U3 The day after tomorrow.

Sd               At  what   time  do  you  want to travel  the day aft.er tomorrow?                  IA! pL

U4 Somewhere in the evening.

35       So you want to travel between eighteen and twenty-four hours?       EXPL
U5         Yes.
S6        I am sorry I did not understand you. Could you repeat whether EXPL

you want to depart between eighteen and twenty-four hours?
UG Yes.

S7       There are five connections.  This is the earliest:  (. . .).  Do you
want me to repeat the connection?

U7 Yes, repeat it.

S8     I am sorry I did not understand you. Could you say again if
you want me to repeat the connection?

U8 Yes.

S9               I   repeat the connection.     ( . . . )D o   you   want   me to repeat   the
connection?

U9 No.

Slo I am sorry I did not understand you. Could you say again if

you want me to repeat the connection?
Ulo No, don't repeat.

Sll I am sorry but again I did not understand you. Could you say

again if you want me to repeat the connection?
Ull No.

S 12 Do you want to have information about the next connection?

U 12 No.
S 13 Do you want to have information about another connection?

U13 No.

S14 I am sorry I did llot understand you. Could you say again if

you want to have information about another connection?
U14 No, I don't want to know another connection.

Figure 4.1: English translation of dialogue nr. 001/007 sampled from the OVIS corpus.
The original Dutch transcription is provided iii Figure 2 iii the Appendix. System prompts
are marked for verification type. where IAIPL stands for implicit verification and EXPL for
explicit verification.
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number of turn pairs is 8. The nuniber of words uttered in a user turn ranges from 1 to
15. tlie average number of words being 3. 43.2% of the turns are inaccurately recognised
by the system. which seems to be somewhat higher than the niisrecognition rate reported
for other systems (e.g.  iii  [Barkhityseii et  al.  2005. Hirschberg et  al.  2004})  who claim that
30-32'4  of misrecognised iiser utterances is generally representative of speaker-independent
SDSs iii real life settings. For details on the linguistic aspects of user turns in the OVIS
corpus see [Vaii Noord et al. 19961

The following sections focus on how the corpus material was made processible for
machine learning experiments.  This includes the labelling of the four components of
SI in the user tiirns. as well as the extraction of features that the learners draw on in
classification. The class label. i.e.. the output side of the SI module is explained first.

4.2 Class label design
The four SI coniponents in each user tiirn are labelled iii terms of four sets of siinple and
straightforward labels. The labelling process is carried ozit automatically, since it was pos-
sible to draw on two earlier annotations of the OVIS corpus:  [Veldhuijzen van Zanten  1996]
and  [Van den Bosch et al.  2001].  Manual annotation iii terms of the label sets would have
also been possible siniply bv observing the traiiscribed dialogues. Below we describe iii
detail the inventory of our labels.

4.2.1      Task-related act labels
The first label set consists of labels that represent the TRA iii a user turn. As indicated
earlier, these labels stand for basic acts on the information level of the dialogue that a
user may perform in information-seeking dialogues, conducted with a SDS of a dominantly
system-initiative proiripting strategy. Our approach to defining the TRAs is to consider
task-oriented communication as consisting primarily of transitions between a small number
of distinguishable states [Feinman 1997] that on the user's part correspond to basic answer
types (modelled  e.g. iii [Levin et al. 2000]).    We  find  that five labels are sufficient  to
represent the basic task-related acts iii the OVIS corpus. These user TRAs are as follows:

•  s ('slot-filling'). provide information with respect to the query (e.g. from Anisterdani
to  Tilburg'l

•  Y, give an answer that expresses affirniative input in the given dialogue context (e.g.
,ves, 'that',s right: indeed'. 'please cio'. etc.)

• N. give a 11egative answer (e.g. 'no thanks: 'it's not necessary', 'go back, 'this is
incorrect. etc.)

• A. accept incorrectly verified itifornlation (e.g.. by not signalling a system error)

• NSTD. give a non-standard reply (e.g.. to remain silent. to provide a fully irrelevant
input)
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These task-related acts incorporate a lot of the traditionally established dialogue acts:
for exaniple. s caii often be seen as pertaining to one of the categories STATEMENT. ASSERT.
RE.ASSERT. etc. (ill the Forward-lookilig coilillizinicative fuliction of the dialogue) clehiled
iii DAAISL (cf. Section 2.2.1), and also to the categories AGREEMENT. UNDERSTANDING,
or .ANSWER (in tlie Backward-looking coninizinicative ftinction iii DAAISL). However, we
simply deziote by s that 011 tlie Iiiformation level of the dialogue the rider is doing the
task'  (quoting the definition of DAAISL),  i.e.,  is  filling  the required slots.

Likewise, y and N denote input in which the user is 'talking about the task' (in terms
of affirmation and negation) with the system. since he or she answers yes/no questions or
nieta-questions with an aftirniative or a negative act. 'Praditionally, most of the y and N
utterances could be regarded as ASSERT (note that this category incorporates the DAs AC-
CEPT. ACCEPT-PART. REJECT. REJECT-PART. HOLD. and MAYBE. cf. Section 2.2.1). or RE-
ASSERT in the Forward-looking communicative function of the dialogue defined in DAMSL,
and as UNDERSTANDING. ANSWER. or INFORMATION-RELATIONS in the Backward-lookillg
coinmunicative futiction. and so oil.

Note that the N act does not always indicate that the user rejects a system verification;
N can also be a simple tiegative answer (e.g., a reflital) to a yes,/no cliiestion siich as 'Do
you want to know another connection?' Likewise, a y act does not always indicate that
the user coiifirms the systeiIi proinpt as being correct: observe iii Table 4.1 that part of the
turns labelled as acceptance (i.e.. A) co-occur with the affirmative (i.e., Y) TRA. Since the
1iser's conducting a Y or an N TRA might be an important indication that the interaction
is unproblematic, respectively problematic, we regard it useful to explicitly learn whether
the  user  itiput exhibits these  acts  (combizied  with  other  TRAs, if applicable).

Even  more so (and partly concerning these labels),  as by observing the interactions  iii
o,ir corplis we conclilde that the ASR of this system is often unable to confidently recognise
input containing 'yes' and 'no', even if these are contained in the word graph. Furthermore.
[Hockey et al. 1997. Kralinier et al. 200181 show that answering a yes/no question without
includiiig yes' or 'no' overtly inay still communicate a clear  yes' or 'no' meaning - we
will find out whether our approach can capture this phenomenon. At tlie same tilzle, 'yes'
and 'no' are lexical items that are often used as cues in automatic DA classification (for
example  iii  [Keizer  2003],  cf.    Section  2.3.1).  and  it  is  important  to  investigate  to  what
extent the presence of these iteiiis can be automatically detected.

It may happen in human-machine interactions that users accept incorrect system ver-
ifications. Acceptance way take place by explicitly uttering 'yes: but also by simply 11Ot
saying explicitly to the SDS that there  is a problem  (e.g.,  by objecting to the verified infor-
niation). Since the words uttered  in an acceptance turn.  and sometimes  in  a non-standard
input. are often identical to those in a regular (i. e.. S) input. it will be important to see
whether it is possible to find other. not necessarily verbal cues (to be explained in Section
4.3) to detect acceptance.

In many cases more thaii one TRA label can be assigned to a user turn. Next to
acceptance. another example  is  the  user  input  'No,  I  want to depart  at  11  iii  the evening.:
in our annotatioii N:S: the user employs both negation and slot-filling within the same
turn.  Coinbinations of the basic TRA labels yield four niore labels (A:Y .A:S Y:S N:S).
totalling to nine TRA labels for our data.
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TRA Label Occurrence
S                         2.033
N                   693

Y                   516

N:S 177

A.S 153

NSTD                                  81
A:y                 66
y:s                                       19

Table 4.1: Occurrence of task-related act labels  in  the  OVIS corpus. sorted by frequency.

Table 4.1 shows the frequency of TRA labels in the OVIS corpus. The most frequent
TRA label is s: 2,033 turns are labelled to exhibit only slot-filling activity. There are 693
turns that are labelled as negative TRAs. arid 516 turns that are labelled as affirniative
TRAs. The mmaining labels occur as indicated in the table. Note that acceptance of
Systenl errors occurs   153  times  in  combination  with   s  and  66  times   with   y,   but   never  in
isolation.

The fact that we define the pragmatic acts of the user only on the Information level of
the dialogue is related to our practical goals: by incorporating TRAs in the SI module we
hope to interpret basic. task-orieiited notions in the input of a user wlio interacts with a
limited-domain SDS. rather than to set up a framework of dialogue act definitions, which
is already extensively attempted  (cf. the survey in Section  2.2.1),  or to reason about  the
intentions of the user and its effects on the interaction, which is typically taken care of by
the DM module of the SDS. Our hypothesis is that defining TRAs in an unsophisticated
way is more robust with respect to the end result of the SI module than a fine-grained
approach, and also more optimal for the portability of the approach.

Therefore. the TRAs in our work represent a limited set of answer types in task-
oriented dialogue  with a system-initiative   SDS   (i.e.-   the  user only supplies answers  to
the  system  prompts), without being concerned about intentions behind utterances.  or
effects of utterances. We assume that these categories are able to reflect core information
level actions taken iii interacting with an information-providing SDS in such a way that
detecting these is sufficient to contribute to interpreting the user input in human-machine
interactions.

4.2.2  Information unit labels
Our second label set consists of shallow semantic labels that concern the task-related
information units  (i.e.. the slots) for which information is supplied  by  the user. These are
the following:

• v ('vertrek', departure station)

• A ('aankomst', destination station)
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• D (cla> -of'_trazel)

• T (tillie_of_day_of_travel. i.e..1110rllilig. aftertiooli. evening)

• 11 (110111_aiicl_niimite_of_travel)

Note tliat tliese are the slots iii tlie travel qtiery tlie system needs to fill iii orcler to
perforni tlie datal,ase search, tlierefore tliese labels will always co-occur with a slot-fillitig
activity (defitied by an s label, Sectioii 4.2.1).

Two ftirtlier labels are added to this set for trelinical reasons. Iii case 110 slots are
treated iii the turn. the label

•  \'OID

is inserted iiito tlie annotation. This applies to all cases when the user does riot perform
slot-filling. for example when he or she answers a yes/no question. The itidex

.4
marks that the D, T. or H value enterecl refers to the arrival part of the travel, and not
to tlie departlire, which is the default for the above slots. If, for example. to the prompt
When do you want to travel from Amsterdam to Tilburg?' a user said 'I want to arrive
iii Tilburg at eight in the evening.', the slot labelliiig is ATH<0, whereas if the user turn is
'At eight in the evening.', the slot labelling is TH. 'U' occurs 88 times in user turiis in the
corpus, distributed among various colribillatiolis of the D, T, and H labels (which are ziot
aniong  the 1110St frequent labels shown in Table  4.2).

Our seven slot labels may also conibine with each other, as often more than one slot
is being filled iii a turn, for example because the systeni may also ask for multiple slots
siniziltaneously.     This happens typically   iii   reply   to   the opening prompt ('F,·0111 wliicli
station  to wliich station  do you want to travel?')   that  prompts for v and  A  simultaneously.
The nuniber of unique slot labels totals to 30. Table 4.2 shows the ten most frequent slot
labels  in  the OVIS corpus.   The most frequently  ocezirring slot label  is  VOID (1,356 times).
whereas 14 labels are assigned to less than 10 turns in the data.

It is itilportant to note that user turils sucli as 'I want to travel iii the evmmg.   aiid
'I  want  to  know  the  last  connection:    are both labelled  as T. Similarly.   if the user   says
' I waiit to travel now.', this is regarded as slot filling of H. Likewise, if the user says 'I
want to know the return trip.'. the turn is labelled as slot filling of v aiid A. Iii this way
(and similarly to the TRA labels) our classifiers will be forced to learn cases where several
types of wording (including relative time references and elliptic constructions) refer to tlie
same concept. Another characteristic of oiir labelling scheme is that slots that arc being
corrected ltv the ziser are marked ozilv in case itiforination is (re-)entered for tliose. For
exaniple. the turn 'I did not say Amsterdatii.' is lal,elled VOID. whereas  Not to Anisterdain
but to Amersfoort.' is labelled as A (i.e.. arrival station slot).

4.2.3 Forward-pointing problem labels
For annotating communication problems two labels siiffice: 'problein' and 'no problem'.
These two labels mark communication problems in the forward-pointing dimension. We
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Slot Label Occurrence
t'OID 1.356
\'A 917

D                 453
H                  262

V                  225

A                  109

TH                90
DT                57
DTH             53
DH               53

Table 4.2: Occurrence of the ten most frequent slot labels in the OVIS corpus.

label each user   turn   as  probleinatic   (PROB)   if  it   gave  rise   to incorrect system reactions.
or OK if it did not. The majority of user turns are unproblematic in the forward-pointing
diinension: 2,125 ttirns are annotated as OK. whereas 1.613 turns are annot.ated as PROB.

4.2.4 Backward-pointing problem labels
Our fourth label set annotates the backward-pointing dimension of communication prob-
lenis. The PROB label here is associated with user utterances that follow a question-answer
pair iii which the user's answer caused some cominunication problem. for instance (and
inost often) because it was inisiecogikised. Therefore, the PROB label of the fourth SI colll-
ponent identifies the point at which the user becanie aware of the communication problem.
since he or she has just lieard a system prompt not in accordance with information pro-
vided in the previous (or earlier) exchanges in the dialogiie. As above, the label OK is
used to annotate cases when no communication problems occur in the backward-pointing
dimension.

The majority of the iiser turns are unprobleniatic iii the backward-pointing dimensiori:
2,125 turns are annotated as OK. whereas 1,613 turns are annotated as PROB. The identical
distribution of labels in the forward- and backward-pointing dimensions is due to the fact
that all user turns that are labelled as problem source yield an incorrect system response.
which. due to the verification strategy of this system. can in principle be noticed by the
user from the following prompt. Note that such a principled difference between the two
problem dimensions may not have the same trivial' label distribution in other SDSs: if
the verification strategy of a SDS is not always immediately verifying information. then
users may not become aware of communication problems from the immediately following
system pronipt.

4.2.5 Global class label
The global class label design in our 1Ilachine learning experiments is the following. Each
user turn is assigned one label consisting of the four components in SI: user turns are
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Global Label Occurretice
N_VOID_OK_OK 399

Y.I OID_OK_OK 372

S_\'A_PROB_OK 296

S_VA_PROB_PROB 222

S_\'A_OK_OK 197

S_D_OK_OK 163

N_VOID_OK_PROB 133

S_VA_OK_PROB 129

N_VOID_PROB_OK 101

S_V_PROB_PROB                       99

Table 4.3: Occurrence of the ten most frequent global class labels in the OVIS corpus.

represented as a combination of task-related acts, slots, forward-. and backward-pointing
problems. This means that one symbol incorporates all four components of the SI. The
labels of the four components are concatenated so that the general format of the class
assigned to a user turn is

TASK-RELATED ACT_SLOT_FORWARD-POINTING PROB_BACKWARD-POINTING PROB.

The  number of different labels  composed  of  the  four  components  is  148  in  the  OVIS
material. This means that our classifiers will learn to classify 148 different classes in the
data. Table 4.3 shows the ten most frequent global class labels in the OVIS corpus. The
most frequently occurring slot label is N_VOID_OK_OK (399 times).   This  means  that  the
most common user reply in the OVIS corpus is a negative answer (possibly to a yes/no
system question), which is going  to be processed correctly  by the system, and which  does
not show awareness of conimunication problems.  The second most frequent class label is
an affrmative answer which is going to be processed correctly by the system, and which
does   not show awareness of comniunication problems (Y _VOID_OK _OK). The third   most
frequent class label marks filling the slots for departure and arrival. showing no awareness
of  communication  problems   (e.g.,   this  might  be  the  first  user  turn),   that is going  to  be
erroneously processed.

Figure 4.2 shows the annotation of an example dialogue from the OVIS corpus. The
user turns in this figure are annotated according to the four coniponents of the SI task.
System prompts are analysed in terms of TRAs and slots in a similar fashion. to be
described in Section 4.3.1.

4.3 Feature design
We utilise a number of cues in our machine learning experiments for learning the Collibined.
four-layered SI class.  Iii this section the input side of the SI module is described:  how
feature values are extracted from the corpus data and how they are preprocessed. The
primary hypothesis underlying our study is that shallow interpretation correlates with
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Turn Utterance Annotation
Sl Good eveniiig.  This is the automatic information sys- Q_VA

tem of public transportation. This system provides
inforination exclusively about train travels from a Na-
tional Railways station to a National Railways sta-
tioll. From which station to which station do you
want to travel?

Ul I need t.0 go frozli Schiphol to Nijinegen on Tuesday S_\'AD_PROB_OK

next week.
S2 From where to where would yoii like to travel on Tiies- Q_VA:1_D

day twelve December?
U2 From Schiphol to Nijmegen. S_VA_OK_PROB

S3     At what time do you want to travel from Schiphol to Q_H: I _VA

Nijniegen?
U3 Around quarter past eleven in the evening. S_TH_PROB_OK
S4     So you want to leave around eleven thirty-eight in the E_TH

morning?
U4 No. in the evening. N:S_T_PROB_PROB

SS Please correct me.                                                         M
U5 No. I would like to leave at eleven fifteen in the N:S_TH_PROB_PROB

evening.
S6    So you want to leave at twenty-three thirty-eight? E_H

U6 Yes, approximately. A:Y_PROB_PROB

ST l'iii sorry I didn't understand you. Could you repeat RE_H

if you want to leave at twenty-three thirty-eight.
U7 At twenty-three fifteen. S_H_OK_PROB
S8    So you want to leave at twenty-three fifteen? E_H

U8 Yes. [hangs up] Y_VOID_OK_OK

Figure 4.2: Dialogue nr. 004/005 sampled from the OVIS corpus. The original Dutch tran-
scription is provided iii Figure 3 of the Appendix. User turns are annotated by our label
set  on the four  components  of  SI:  TRA, slot, forward-, and backward-pointing problem.
respectively. System prompts are analysed in ternis of TRAs and slots (to be explained
in Section 4.3.1).
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Figure 4.3: The architecture of the SI module.

shallow properties of the user input and its context that can be automatically obtained
from the SDS. We turn such properties into a vector of features. The features are deliber-
ately shallow: no explicit linguistic processing is needed for obtaining them. These simple
features are obtained frO111 the dialogue system and the audio material recorded by it. The
rallies associated to these shallow features for each turn are employed iii the experinieIits
either in their raw form, or are computed via straightforward procedures.

Figure 4.3 shows the architecture of the SI module: feature values are obtained from
the dialogue niatiager and speech recogniser modules of the system. They are then either
directly used (illustrated by arrows leading directly to the back-end of the module where
shallow interpretation takes place),  or  they are processed by simple procedures (indicated
by  the oval nodes), which are explained below.   Note  that for graphical reasons the various
FO and RMS features are represented by two single arrows. without enumerating all inea-
sures  (see the bottom section of Table 4.4).   In the remainder of this section we explain  the
employed features, their processing. and how they are represented in the feature vector.

Table 4.4 lists the employed features according to their origin: whether they conie
directly from the dialogue manager (DAI) or the speech recogniser (ASR) of the system,
or whether they come from prosodic processing of the audio recording of the user input
made  by  the ASR (Prosody). Since  some of these features are represented  by  more  than
one bit in the feature vector, the resulting feature vector of each user turn consists of
2.482 items.  Note that sonie of our features may encode certain pieces of information
in a (partly) redundant way, for example the bag-of words representation of the system
prompts. and the prompt history feature.

4.3.1 Source: Dialogue manager
In this sectioii we enumerate the features obtained from the DAI of the svstem.  The
dialogue manager component of the SDS prompts the user to enter slot-filling informa-
tion. The logged history of system prompts in the DAI component contains the order of
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prompts as they were produced by the system. From the DAI we used the words that are
present  in the current  and  the previous system prompt. These are turned into two 467-bit
unstructzired bag-of-words (BOW) vectors. Each bit in the BOW stands for a word that
occurred at least  once  iii  the  prompts (in total 467 words), indicating whether  a  word  is
preseiit ('1') iii tlie current/previous system prompt or not ('0'). In case the turn is the
first turn of a dialogue. the BOW vector of the previous system prompt is empty. and
therefore consists of zeroes.

Flirtherinore, we encode systeni prompts in terms of a set of structured labels.  We
represent the prompts in the featiire vector in a si111ilar fashion as user turns are labelled:
iii terms of TRAs and slots. Basic TRAs iii prompts include the following iii this particular
SDS (their mark-up between brackets):

• asking a question (Q)

• performing explicit verification (E)

• performing iinplicit verification (the simultaneous occurrence of a question and a
verification: Q:I)

• repeating a prompt (R)

• asking a meta-question (M)

• offering travel advice ( final  result.   FR).

Note that these labels overlap extensively with traditional dialogue acts (cf. e.g. the
DAAISL encoding described in [Allen and Core 1997} and treated in Section 2.2.1, as well
as the Switchboard-DAMSL encoding [Jurafsky  et  al.   1997]),  differing in this respect from
the TRAs that are used to represent classes of user input in pragmatic terms.  It is
iinportant to see that the labels of system prompts are 01ily eniployed as feature values in
the classification task. and never form part of a class label.

The prompted slots partly overlap with those defined for  user turns (see Section 4.2.2).
These  are the following: the departure and arrival stations  (v  and  A.  respectively),  the
corresponding  day,   time  of  day   (i.e.,   niorning,   noon or night)   and hour (standing   also
for hour and minute) of the departure (D, T. and H, respectively).  The time slots may be
prompted for simultaneously  by  the system ('wanneer':  when,  Q_DTH),or in isolation  (e.g..
'hoe  laat':   at  what  time. Q.H) Additional prompted slots mark cases when the system
asks whether the user wants to have the travel advice repeated (repeat connection,  Q_RC).
or  whether  the user wants to have information about another collnection  (Q_oc).  the  next
connection (Q_NXC), and sO 011. Iii acse the user enters information about tlie arrival time,
time of day. or day (instead of the default departure time, time of day, or day), the system
is able to verify slots with respect to the arrival data. which we again mark with the '4'
sign. The dialogue ill Figure 4.2 shows prompt analyses along these lines.

To   represent   dialogue   history. we extract   t he ament   and   the   nine previous system
prompt types.  This can be seen as a (partial) representation of the dialogue history:
a sequence of ten prompts form a set that is usually large enough to contain all the
prompts the System posed to the user up to the focus turn. Furthermore. as the given
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Aspect Feature

DAI: prompt , sequenc·e of last 10 pronipt types (proTTEpt historv)
DAI. lexical B bag-of-words of current prompt (sysBOW)

> bag-of-words of previous prompt (prev suBBOW)
ASR: Confideiice t> highest summed confiden(·e sc·ore in current word graph (topconf)

B highest suni Iiied confidezice score tiormalised by iluniber of liodes
in path (topconfpernode)
[> score difference between niost confident. and second-nlost. cotifident
i,ath in mirrent word graph (topconfdiff)

ASR: branching [> branching factor in the word graph of current utteraiice (BF)
[> branchilig factor in the word graph of previous utteratic·e (pre·uBF)

ASR: lexical [> bag-of-words of current tiser turll (BOW)
[> bag-of-words of previoiis user tiirn (preuBOW)
[> word string in most confident path in current word graph (topconf-
striTig)
E length of most confident string (wordn#

Prosody: pitch :> maxiniuin FO (FOmax)
v mirilimim FO (fOmin)
> position of maxinium FO (FOinattpos)
i> position of Ininimum FO (FO·minpos)
t> mean FO (FOmean)
> standard deviation of mean FO (FOstde·u)

Prosody: loudness 1> maximum energy (RMSmal:)
i> position of maximum RAIS (RMSmaspos)
[» mean RMS (RMSmean)
1> standard deviation of meari RMS (RMSstdew)

Prosody: duration 1> duration of turn (dur)
c> duration of initial pause (ipalise)

Prosody: speech rate , ternpo (tempo)

Table 4.4: Overview of the employed features.

SDS employs an immediate verification strategy. it is very unlikely that a proinpt history
of more than ten steps could contain relevant information with respect to the focus turn
(cf.   [Koeling  2002}  on  the  contribution  of limited dialogue history  to NLP tasks).   In  case
the dialogue up to the focus turn contains less than nine previous prompts, the reniainiiig.
11011-existing proitipts are Hiarked by a special null Symbol iIi the feature vector.

Note that the prompt history encodes various pieces of information in an implicit
(therefore shallow) way: for example. the slots for wliich the system thinks it has acquirecl
the correct value. the number of times a proinpt is repeated iii the course of the interaction.
recurrent prompt sequence patterns that possibly indicate dialogiie substructures. and so
on.
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Prompt structure Occurrence

Q _\'A 555

Q_DTH:I_VA 359

FR:Q_RC 354

RQ_VA 270

Q_OC 244

Q_H:I_D 224

RQ_DTH: Rl_r.A 130

Q _V: 1 _A 118

RQ-\':Rl_A 107

E_D                       96

E_H                       85

Table 4.5: Occurrence of the ten most frequent system prompt structures in the OVIS
corpus.

4.3.1.1   Co-occurrence of turn pairs
After representing the system turns according to this scheme, we performed a simple aiialy-
sis on our data counting co-occurrences of labelled system prompts and the corresponding
user answers. Note that the figures in this analysis pertain to the specific OVIS application:
however, the scale of occurrences may be indicative for other SDS as well. The primary
aim of this subsection is to describe the OVIS corpus in more detail, not to present general
findings about human-machine task-oriented dialogues.

The nuniber of different system prompts in the OVIS corpus is iii total 94. The ten
most frequent structures are sliowii in Table 4.5. The most frequent structure of system
prompts is Q_VA ('From which station to which station do you want to travel?'. 555 cases).
We see that asking for the time of the travel and simultaneously verifying the departure
and arrival stations  is the second most frequently asked prompt  in  this SDS (Q_DTH:I _VA.
359 cases). whereas the third most frequently occiirring prompt  is  the one providing  the
user with travel advice and asking whether the user would like to have this repeated
(FR:Q_RC). The fourth most common prompt is to repeatedly ask for the departure and
arrival stations. Further down the list are prompts such as asking the user whether to
start  a new query  (Do  you  want  to know another connection?'.Q_oc),  asking  for  the  time
of travel, while simultaneously verifying the day of travel (Q.H;I_D), and so forth.

Given this information. it is interesting to examine the patterns forined by adjacent
pairs of system prompts and user responses.  We find that there are 708 different pair
combinations between system and user turns in the corpus: this illustrates well that there
is no obvious mapping from a system prompt to a particular user reaction. indicating that
111odelling prompt and answer correspondence in a classification task is probably quite
ambitioiis.

In order to illustrate how these pairs combine. we compiled Table 4.6 that shows the ten
most  frequent  pairs  of system  prompt  and user replies. It turns  out  that  the  most  common
system turn - user turn pair is Q_VA - S_VA_PROB_OK: the system asks for the slots of
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Prompt structure   User turn class label Occurrence

Q_VA S.VA.PROB_OK 290

FR:Q_RC N_VOID_OK_OK 230

Q_VA S_VA_OK_OK 193

RQ_VA S_VA_PROB_PROB 156

Q_OC N_VOID_OK_OK 134

Q_DTH:I_VA S_D_OK_OK 115

RQ_VA S_VA_OK_PROB                         83

Q_OC Y_VOID_OK_OK                      65

FR:Q_RC N_VOID_PROB_OK                    55

Q_DTH:I_VA S_D_PROB_OK                           52

Table 4.6: Occurrence of the ten most frequent pairs of system prompt and user reply in
the OVIS corpus.

departure and arrival station and the user fills these slots which are erroneously processed
by the SySteIll, whereas the user turn exhibits 110 awareness of previous coniniunication
problems - - probably because the input occurs at the first turn of a dialogue.  This prollipt
and reply combination is present 290 times in the corpus. It is a noteworthy finding that
most frequently a user answer to the opening prompt in this SDS is erroneously processed.

The second niost common turn combination is FR:Q_RC - N_VOID_OK_OK with 230
occurrences: presenting the travel advice to the user, and askizig whether to repeat the
connection, to which the user answers with negation that is going to be correctly processed
by the system, and that exhibits no awareness of a previous communication problem. The
third most frequent pair is Q_VA - S_VA_OK_OK iIi the corpus (193 times), which represents
yet   another user reactiori   type   to the opening prompt:    the user provides the departure
and arrival station names, showing no awareness of previous communication problems.
and this slot-filling is correctly recognised.

It  is  noteworthy  that in reply  to the system question about travel  time  ('when').  corn-
bined with iinplicitly verifying the departure and arrival stations most Users provide only
the travel day (in unproblematic context, i.e. Q_DTH,I_VA - S_D_OK_OK, 115 times, line 5
of the table). Expecting such  a user answer is usually not trivial in  SDSs  that are designed
on the basis of hand-made rules. This suggests that data-driven approaches to SDSs may
be useful, among others to account for potential deficiencies of hand-crafted rules in such
applications (cf. IRayner and Hockey 2003]).

Likewise. it is noteworthy that to the system pronipt 'From which station to which
station do you want to travel?' 22 different answer types can be found in the OVIS corpus.
In 290 cases these are S_VA_PROB_OK, in 193 cases S_VA_OK_OK, 13 times S_VA_PROB_PROB.
etc. Note that in five cases the users answered to this prompt by filling in the date of the
travel  (S_D_OK _OK).   The ten niost frequent 1iser reactioii types  to  t lie openiiig pronipt  are
shown in Table 4.7. This illustrates our earlier note on the fact that the opening systeizi
turn elicits user input that is a problem source in the majority of the cases in the colptis.
What seems to aggravate this situation is that if the user reply to the opeiling prompt is
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Prompt structure   User turn class label Occurrence

Q_VA S_VA_PROB_OK 290

S_VA_OK_OK 193

S_VA_PROB_PROB                     13
S_VAD_PROB_OK         11
S_VA_OK_PROB                        8

S_V/A_PROB_OK               7
S_D_OK_OK                                 5
S_\'_PROB_OK                             4

S_D_PROB_OK            4

S_V_OK_PROB            3

Table 4.7: Occurrence  of the ten 1110St frequent user reaction types  to the opening prompt
in the OVIS corpus.

Pro111pt structure   User turn class label Occurrence

RQ_VA S_VA_PROB_PROB 156

S_VA_OK_PROB                       83
S_V_PROB_PROB                       11

S_V_OK_PROB                             7

S_V/A_OK_PROB                2
S_A_PROB_PROB          2
N_VOID_PROB_PROB               2

Table 4.8: Occurrence of the seven niost frequent user reaction types to the repeated
opening prompt in the OVIS corpus.
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not  confidently  recognised  and  the SDS repeats  this  proinpt.  14  different  allswer  types  are
received from users. and the majority of those are agam iiicorrectly recognised.  Tlie seven
most frequellt user reaction types to a repeated opening pronipt are shown iii Table 4.8.
the reniainitig seven answer types occur only once iii the corpus. Some user reactions are
labelled S_V/A_OK_PROB. In these cases tlie 1iser provides only oiie station name to the
system, and it is inipossible to deterinine even in context whether it is the departure or
the arrival statioii naine. Such ziser input occurs 16 times in the corpus.

It  is also intriguing  to  look  at  the  various  ways  how users react to explicit  verification
prompts. For example. to the system:s explicitly verifying the day of travel (E_D) 16
differeiit user replies are annotated   iii   the  corpus.     52   times Y_VOID_OK_OK replies   are
received. 17 tiines Y_VOID_PROB_OK replies: Further answer types to this pronipt include
N:S_D_OK_PROB (5 times). A:Y_VOID_OK_PROB (4 times). etc. Tlie ten iziost frequeiit user
reaction types to the explicit verification prompt of the day of travel are shown in Table
4.9.

Iii [Lendvai and Maruster 20031 we conducted further research on the OVIS material
(note   that   our corpus contained 442 dialogues   in this study instead   of  441).     We   ap-
plied process mining techniques to the data in order to discover  relations  betweeii  system
prompts and user answers. The method analysed global interaction processes taking place
with this particular SDS. inducing  aii  interaction  model zinderlying these dialogues  in  the
form of a dependency/frequency graph.  Iii this graph it was possible to specify those
system pronipts during tlie various stages of the dialogue that received more problematic
than non-probleinatic user input.

We reproduce the interactimi model discovered by tliis method iii Figure 4.4. The
frequency counts of user input types are given in the node labels.  Note that only the
TRA,   slot, and backward-pointing problein   ('pr')   components are marked   in   the   user
labels. Forward-pointing problems are represented by the arcs that lead to problematic
input. These are printed iii bold to differentiate them from unproblematic forward-pointing
relations. Frequency counts are given for the arcs as well. A dialogite progresses froni the
top of the graph, starting with the operiing systein pronipt (label Q_VA) to the bottom.
Two end state labels are present  in the graph,  OK _END for successfully  ending  dialogiies.
and PR_END for unsuccessftilly ending dialogues where iio query result was provided to the
user. Since this graph represents a simplified interaction model based on a subset of the
dialogues, the frequency counts differ from the ones reported in the current study. The
graph ilhistrates  well  that  even  for  a relatively simple dialogue strategy (i.e.. prompting
for a limited number of slots) the user action space can be relatively large, and mostly not

trivially predictable.

4.3.2 Source: Speech recogniser
The ASR component of OVIS produced a number of features that can potentially be
ilseftil for SI. In particular. the material available to us contains the word graph associated
to each user turn in the corpus. The word graph is often easily accessible from interiial
recognitioii logs in most SDSs.  It has several properties that could be of potential use
for extracting pragmatic-semantic information  (cf.   Sections  2.1  and 2.3) Apart from the
words that it contains. the sequencing of these can also be extracted from the lattice (if
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Pronipt structure   User turn class label Occurrence
E_D Y_VOID_OK_OK           52

Y_VOID_PROB_OK         17

N:S_D_OK_PROB                        5
N_VOID_PROB_PROB               4
A:Y_VOID_OK_PROB               4
S_D_PROB_PROB          2

N_VOID_OK_PROB                     2
N:S_I)_PROB_PROB                    2
Y_VOID_PROB_PROB               1
Y_VOID_OK_PROB                     1

Table 4.9: Occurrence of the ten most frequent user reaction types to the explicit verifi-
cation prompt of the day of travel in the OVIS corpus.

the grapli is turned into n-best paths). The confidence scores for each recognised word
can likewise be obtained from the word graph. Structural properties of the word graph
can also be computed. for example the thickness of the graph, represented by the number
of simultaneous arcs in it, or the degree to which the arcs branch off, and so on.

For our study from each word graph we extract the recognised words (including the
potentially incorrect ones) and encode these as two 759-bit, unstructured BOW vectors.
The   759 bits represent all words that occurred at least   once  in   the word graphs   (i.e.,
forming  the  set of words recognised  in the corpus).    In  each BOW vector we indicate
whether  a  word is present  iii the corresponding word graph   ('1')  or  not   ('0').    Note  that
the BOW representation of the speech recognition results yields a larger set of material
to   exploit,   than   only the highest-ranked recognition result.     At   the   same   time,   the   way

in   which   this  complex   information   is  represented  in our study is utterly shallow   (i.e.,
unsophisticated), since no information pertaining to (syntactic) structure.  word  form,  or
frequency is represented in the BOW.

We represent the recognition results of the previous user turn as well. since these may
contain potential cues for the prediction of one or another SI component. For example.
overlapping word hypotheses iii the current and the previous user turn may signal that
the user re-entered some slot value because it was incorrectly recognised, and so on.  If the
focus turn is the first turn of the dialogue, the previous word graph is empty.

From the word graph we furthermore extract the degree of branching both in the
current and the previous word graphs. measured by the amount of branch-offs from the
nodes. No branching means there is only one path in the graph. This branching factor
characterises the degree of confusion iii the word graph by indicating the average branching
per node in the graph. much branching Ina>· be an indication of system uncertainty or
noisy user input. Note that if the focus turii is the first turn of the dialogue, the previous
branching factor is undefined. marked by a special character in the feature vector.

As illustrated in Figure 4.3. the confidence measurenients of the ASR are also converted
into features: we sum the confidence scores over the word transitions iIi the lattice. and
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the path in the lattice that has tlie highest summed confidence score is used to create
three separate features: we lise the highest sunmied confidence score in the word graph
itself. the concatenated string of words iii the most confident path. as well as the number
of words in the most confident path.  Aforeover. we compute the Confidence score difference
between the most confident and second-most confident path. Confidence scores are often
used in classification of user turns. especially for error correction (cf.  Sections 2.3.3 and
2.3.4) although these system-internal ineasurements do not always provide reliable cues
(cf. Sectioii 2.1).

4.3.3 Source: Speech prosody
Our  third  information  source for the SI  task is formed by prosodic attributes of the spoken
user iiiptit. We incorporate prosodic features in the feature vector siiice those have been
reported to ftinction well for problem detectioii purposes (cf. Sections 2.3.3 and 2.3.4).
From the digital audio recordiiigs of the OVIS ,System we automatically extracted a number
of measurements using the GIPOS software package. GIPOS generates md inanipulates
waveforms. spectrograins.  and other fornis of speech data [Vogteii  and  Gigi  19981.    The
processing yielded the following measurements.

The  pitch of tlie users voice is measured  iii  terms of FO.  i.e., fundaniental frequency.
The method used to determine FO is Hermes' method of sub-harmonic summation (cf.
IHeriries  19881).   conibined  with  clynamic  prograniming  to  siziooth  the   FO  contour   and
reInove any possible pitch measuring errors. Six features are computed that characterise
pitch: the value of the maxinium and the minimum FO in the turn, the mean FO and its
standard deviation. as well as the position of the maximuni and minimum FO in the time
line of the signal.

Loudness is measured iii terms of RAIS. i.e. the root niean square amplitude of the
acoustic wave signal. Four featin·es are extracted concerning RMS: the value of the maxi-
muni RMS in the turn (the minimum RAIS is always zero). the time position of the
maximum RAIS. as well as the mean RMS and its standard deviation. The duration of
the litterance is defizied iii secoiids. and is autoniatically meastired from initial silence to
final silence iii the recording of the user input.

From the word graph we furtlieniiore extract the duration of the initial pause, again on
the basis of the most confidentl.y recogiiised string.  The initial pause is measured in franies
as the leiigth of the silence that precedes the beginning of the speech signal. This feature
niay cue the degree of hesitation of the  user in responding.  cf.   [Krahmer et  al.  200lal.

From the word graph yet another prosodic feature. speech tempo, is computed. The
speech tenipo of the turn corresponds to the 1111111ber of uttered syllables per second.
The memory-based syllabifier tool of [Busser 1998} is used to automatically compute the
nonber of syllables iii the most confidently recognised string (recall that this may often
only partially overlap with the actual utterance). The ratio of the number of syllables and
the duration of the turn (in seconds) yields the tempo feature. Naturally. other simple
(automatic) methods can also be used for approximating the number of syllables in a
string of words. for example counting the nuniber of vowel strings in it (combined with
rules specifying vowel conibinations in the given langiiage)

Note that 1110St  of our features repi·eseiit  the  data  in  a  Tioisy  way.  sirice  they are derived
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on basis of potentially corrupted measurements. For example. in calculating tempo both
the  basis  of the computatioti  (i.e..   the  110hy  1110St confidently recognised word string).
and  the  tool  that  computed  the  amount  of syllables  (i.e..  the  imperfect  syllabifier)  add
to the discrepancy between the original speech rate aiid our teiiipo feature. We hope
however that the comptited features represent tlie nialii teiidencies iii the foclis f 11111 s

context, supplying sufficient itiforniation for robust extraction of SI components. Our
choice iii the current study is not to perform active selectioii of featzires but siniply gatlier
a large, assumed-to-be-conipreliensive feature set.  This is motivated by findings of e.g.
 Batliiier et al. 1999] who employ a large nuniber of features in a prosoilic processiiig task
and find that the effort lieeded for deterniining ari optillial feature set does not pay off iii
classificatioit pei·forinalice.

Note that the OVIS audio material is incomplete for a number of dialogue turns caused
by technical conditions during the collection process: 108 turns are missing from the
recordings.   meaning  that   for  these  turns  we   have 110 prosodic feature values. Since   the

employed learning algorithms are able to handle missing values. we mark the prosodic
feature values of these turns by a question mark in the feature vector.

The current study aims to gain insight into the relative importance of prosody in SI-
related analysis of user turns in SDSs. Therefore, below we provide more insight into our
data through descriptive statistics of the gained prosodic attribiites.

4.3.3.1 Descriptive statistics

Our goal iii this section is to find out whether prosodic tendencies observed iii other.
primarily American English systems (cf. Sections 2.3.3 and 2.3.4), also hold for our data.
Therefore, we computed a series of basic statistics over the prosodic features measured over
all user utterances. distinguishing between the problematic and non-problematic instances
according to the backward-pointing-problem labelling. We performed an independent
samples test on these pairs of means to check whether the differences between them are
of statistical significance. Note that since we do not have information about user identity
iii the corpus. this analysis is carried out by collapsing all prosodic meastirements into
a pool. entailing that the findings reflect general prosodic tendencies across speakers.
which might not hold for individual speakers. This distinction seenis to be importaitt.
since [Hirschberg et al. 2004} conie to the coiiclusion that Telative differences ill speakers
prosodic values. not deviation from some 'acceptable range. distinguishes recognition
failures from successful recogiiitions"

Our tests reveal tliat. iii line witli observations reported iii the literature. problematic
turns differ significantly iii important aspects from unproblematic tzirns. Table 4.10 high-
lights a selection of the most significant outconies. Averaged over the complete data set
the figures indicate that turns that feature awareness of coiniziunication problems tend
to be significantly longer, have higher pitch maxima and pitch means than zinproblem-
atic user turns. Aware utterances ftirtherniore exhibit significantly more energy (i.e.. are
louder) and a faster speech tempo than litterances signalling unprobleinatic groun(ling.

It is worth 11oting that in a certain sense this bird s-eve-view on the data is niisleading
A closer look reveals that the scale of differerice between the prosodic means is highly
depeiideiit on the kind of system prompt to which the given user respoiids. To examine
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Feattire Difference in nieans   Signif
FO  Iax (Hz) 10.9 *
FO Aleaii (Hz) 6.7 **

RAIS Alax 95.8
RAIS Aleati 16.4 *
Ipause (frames) (}.3

Duratioii (s) (}.4
**

Tempo (syll») 0.2 **

Table 4.10: Statistical comparison of prosodic nieans iii the backward-pointing task (i.e..
inean of tizrns showing backward-pointing problelils lilinils mean of turns showing n()
1)ackward-pointilig problems). (lenotes outconies of aTi independent sainples test with.*.

p < .05 significance: denotes p < .01 significance,..**.

tlie prosodic behaviour of users iii reply to certaill system prompts. we create pronipt            
super-categories. The Explicit verification  group (E) covers all prompts  with a label  'E_.,
irrespective of what slot types are beitig corifirnied by the systeni. Likewise, Implicit
verification  (I)  groups  all  prompts iii which the second  part  of the label contains  ':I_'.
irrespective of what slot types are being asked for or being confirmed by the system. The
prompt type Opeii question (O) stands for system questions asking for slot information.
without verifyiiig other slots ('Q_'). Yes/no questioii (Y) stands for all pronipts that require
a confirmation from the user: such pronipts are typically given by the systein at the end
of the interaction (e.g., 'Do you want to know another connection?', Q_OC). We group the
prosodic characteristics of user till'Ila according to the prompt super-categories. We refer
to this groupilig of (properties of) tiMer tzirns as informed data splitting: The informatioii
used to split the data is the prompt stiper-categories. to which we refer as prompt types.

Table 4.11 highlights the coinpariswi of prosoclic properties on the data split according
to the four most freqzient prompt types. Tlie table compares the differences in the mealis
for probleniatic ininus unproblematic turns according to the most recently asked systeni
prompt iii the backward-pointing dimension. Figures for the remaining prompt types
(meta-proiiipt. repeated proinpts) are not included iii the table; they occur less frequently
and produce more unreliable outcoines. Typically. other FO and RAIS measuremetits
correlate with certain prompt types as well. for exami)le a higli F() Riaximuin often is
accompanied  by  a  high  FO  meaii  niessurement.

If we compare the value differences of the means for problematic tiirns accorditig to
the   niost receiitly given system   prompt.   we  find   that  some values deviate strongly   frotii
the overall average (displayed in Table  4.10).   The differerices  in Illeans vary across prompt
types: the itidependent samples test reveals tliat the scales of the differences between
irieans of probleniatic and unprobleniatic turns depend on the systerii prompt given iii
the most receiit system turn. Aii 01)vious example is duration (see the corresponding row
of Table 4.11). The difference iii the utterance duration of aware of 1,roblems/unaware
of probleiliS turtis is generall,· sirialler after an iniplicit verification prompt than after
ati explicit verification prompt. or after a yes/110 question. This nieans tliat aware and
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Feature Difference in inealis

Data split according to last systein pronipt type
E (474) I (966) 0 (591) Y (665)

FO Alax (Hz) 26.7 ** 6.4 36.2 ** 52.0 *
FO Alean (Hz) 9.1

* 4.4 13.7 * 33.9 *
RMS Max 1202.9 * -213.6 -700.9 179.3
RMS Mean 113.3 ** 7.8 -57.6 * 48.8

Ipause (frames) -1.3 -0.9 5.4 ** 1.7

Duration (s) 0.9 ** 0.5 ** -0.2 0.8 **

Tenipo (still/s) 0.5
** 2.3 -0.5 ** 0.6   *

Table 4.11: Statistical comparison of differences in prosodic means   in the backward-
pointing dimension per prompt types. Statistics for split data according to last system
prompt type are shown for four system prompt types, the number of cases covered given
between brackets. denotes outcomes of an independent samples test with p < .056*.

significance;  ' **'  denotes p  <  .01  significance.

unaware turns are of a more similar duration after I than after e.g. E or Y. Observing the
RMS values we find similar subtleties. For instance, a user's answer following an implicit
verification of misunderstood information does not tend to be spoken significantly louder
(since the subtraction produces a negative value),  as one would expect in consequence
of hyperarticulation (found  in  [Hirschberg  et  al. 2000, Oviatt  et al. 1998]). Judged  by the
outcomes of the independent samples test, characteristics of some of the prosodic attributes
are in accordance with firidirigs coIicerning hyperarticulate speech, but others are clearly
not, when distinguishing according to the actual prompt type.

What follows from these findings is that the type of system prompt may be relevant for
detecting (backward-pointing) problems, and perhaps for the other components of SI as
well. The fact that statistically significant differences exist between means does not entail
that such differences are useful for the automatic detection of (components of) the SI label
of user turns. Moreover, the statistical findings on turn type co-occurrences presented in
Section 4.3.1 showed  that,  when  the SI label is composed  of four components,  the  most
recent prompt can be followed by many types of (low frequency) user turns, and it is
doubtful whether the correlations are strong enough to be utilised in ML. In Chapter 5
we will investigate iii more detail to what extent these prosodic features contribute to
components of SI when employed in a machine-learned classification task. Additionally. in
 Lendvai et al. 2002a] we present statistics with respect to the forward-pointing problem
dimension as well. and describe the potential use of informed data splitting for ML-based
problem detection purposes. We now present the experimental outconies on the SI task
using all extracted features.
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4.4 Results
4.4.1    Baseline
One possible baseline strategy for predicting the four-layered class label is to always predict
the majority class tag. The most frequent label among the 3.738 user utterances iii the
corpus is N_\'OID_OK_OK (the user gives a negative answer but it does not signal a problem.
and it is correctly processed. e.g..  No. thank you.'). This label occurs 399 times iii the
corpus. and the strategj· of always predicting this label yields 10.7% accuracy.  This simple
majority-class baseline is very low. and since it lias no recall on the majority of other class
labels. it is not informative for evaluation.

Given that c.ertain types of user input are niuch more likely to follow certain types of
system prompts (cf. Section 4.3.1), a better baseline. directly computable from the data.
is to predict 1iser input classes 011 the basis of the most recently asked systeni proript
Always guessing the class occtirring niost frequently iii response to the last system prompt
type (averaged over the 90% training sets. in the same 10-fold partitions as used by
the   learners)   produces a baseline  of  41.9%   accuracy.    This simple strategy provides  us
with a sharp baseline. which we consider more relevant in assessing the performance of
our learners than the majority-class baseline. We call this informed baseline as 'prompt
baseline'

The detailed scores. mcluding precision. recall, and F-score on the four components of
the task. are given in the top section of Table 4.12. The prompt baseline reaches a 78.7
F-score on predicting the task-related act performed in the user turn. an F-score of 77.8 on
predicting the types of filled slots. an F-score of 55.3 on the detectioii of forward-pointing
communication problems. and an F-score of 81.3 on the detection of backward-pointing
comniunication problems. The diversity among the classification results per partition is
characterised by the standard deviation figures.

4.4.2   Performance on the complex SI task
Iii two series of experiments we train MBL aiid RI on all features to classify user turns in
terms of the four components of SI. Below we describe the results obtained by the two
learners.  and compare those  to the prompt baseline results.  and  to each other. Table  4.12
displays the performance of the two learners on the shallow interpretation task.  Note
that the overall accuracy score iS 11Ot regarded as the most informative evaluative metric
about the performance of the learners on the SI task: it is a complex measurement that is
computed by proportionally weighting correct vs incorrect classifications of the individual
SI components. Furthermore. as explained in Section 3.2, accuracy can sometimes in itself
be uninforinative about the actual performance on the task. Since the overall accuracy
measurement is nonetheless often indicated in research. for practical reasons we also report
on this score, besides the more informative precision. recall. and F-score.

Looking at overall accuracy. AIBL attains 49.3%. and RI 45.5%. The difference between
the accuracy of the prompt baseline and that of AIBL is statistically significant in a paired
t-test (t = 7.3. p < 0.01). likewise. the difference between the accuracy of the prompt
baseline and that of RI is statistically significant (t = 5.0. p < 0.01). The optimised MBL
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algorithm outperforms the optimised RI algorithin in classification accuracy. and their
difference is statistically significant in a paired t-test (t= 3.8. p< 0.01).

If we look at the detailed sub-meastires (accuracy, precision. recall. and F-score) in-
dicated per component for each classifier, we see that iii geiieral MBL pei·forills better
than the baseline learner. whereas RI performs worse, or the saine. as the baselitie. MBL
improves over the baseline aiid over RI by a broad inargin iii all but one aspect: on the
forward-pointiilg  problem  component:   55  points of F-score  is  the  maxiin11111  that  cati  be
attained on this subtask for all three learners. no matter the classification strategy.

The component for which both MBL and RI achieve the highest F-score is the task-
related act label  (89  and 80.9. respectively). Backward-pointing  problems  and  filled  slot
types are classified with a coinparable score (87.7 and 83.4 F-score. respectively). RI
clearly performs poorer than MBL. and its performance is less stable. which is reflected
by the standard deviation figures of the 10-fold CV. This suggests that the rule inductioii
strategy tends to produce rule sets that cover unseeii data less effectively than the strategy
of extrapolating the class from examples that are nearest neighbours.

4.4.3  Parameter and feature use in MBL
Parameter optimisation led to a variety of settings for MBL: the optimised k is at least
five or higher. Jeffrey divergence is the sirnilarity metric picked most often (in seven
partitions). The optimal feature weighting metric turns out to be shared variance  (on the
same seven partitions as Jeffrey divergence).

We took a general look at the weights MBL associated with the features in order to see
which features were regarded informative by the learner. Grouping the higher-weighted
features according to their source, we find that features that receive high weights include
the following (lexical items are translated to English):

• DM prompt history: curreiit prompt type. previous prompt type

•   DM lexical, current prompt:     'from',   'to': various words present   in   the   opening

prompt

• DM lexical. previous prompt: 'fromi 'to', 'you'. 'want'

• ASR confidence: topconf. topconfpernode, topconfdiff

•   ASR  lexical. BOW (recognised user words in current  turn):   'from'.  'to'.  'no'.  'yes'.
'o'clock'

• ASR lexical. prevBOW: 'from. 'to . #pause#

• ASR lexical: topconfstring.

Shared variance weighting (used together with Jeffrey divergence similarity metric)
regards the lexical features most informative. IG-weighting (with MVDM Similarity 1IletriC.
employed once) associates the highest weights to the ASR confidence measures aiid to the
DAI prompt history features. Chi-square-based weighting (with overlap similarity nietric.
employed twice) regards the confidence measures most informative.



Chapter 4: Shallow Interpretation Module: Data. Experiments. and Results           66

Algorithm Component Afetric
acc pre rec      F

proilipt baseline ALL 41.9

1.6

TRA 74.8 81.7 76.0 78.7

2.5 3.2 2.7 2.9

SLOT 73.8 87.8 69.9 77.8

2.6 2.0 3.2 2.2

FWD PR 64.8 61.3 50.6 55.3

2.4 3.8 3.3 2.7

BWD PR 86.2 96.2 70.7 81.3

2.3 1.9 5.7 3.9

AIBL ALL 49.3

2.8

TRA 84.1 92.4 85.9 89.0

2.4 2.2 2.1 2.0

SLOT 79.1 88.4 79.0 83.4

2.8 2.5 4.0 3.1

FWD PR 66.7 65.4 48.3 55.4

2.5 3.9 4.5 3.8

BWD PR 90.2 94.0 82.3 87.8

2.5     3.5 4.4 3.8

RI ALL 45.5

2.4

TRA 74.7 82.2 79.8 80.9

4.9 4.7 6.3 5.4

SLOT 73.3 82.7 70.7 75.7

3.0 7.9 6.4 3.6

FWD PR 66.2 64.1 50.6 55.6

2.5 4.0 11.8 7.0

BWD PR 83.6 89.6 70.8 78.6

2.6 4.7 8.1 3.9

Table 4.12: Scores with standard deviatioii produced  by  MBL  and  IiI on complex shallow
interpretation, averaged over 10-fold CV experiments: overall accuracy. as well as accu-
racy (acc). precisioii (pre). recall  (rec). and F-score  (F) on task-related acts. filled slots.
forward-pointing and backward-pointing communication problems. The prompt baseline
performance is provided for comparison.
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III order to point out probleniatic cases for the leariier. we exalliined the classified ma-
terial. and found that most classification errors were niacle on the forwai·(1-poiiitiiig com-
ponerit. In particular. the label S_\'A_PROB_OK is freqtiently niisclassified as S_\'A_OK_OK
(aii liicorrect prediction of the forwarcl-poiiitiiig 1)1·01)lelll). wliereas lal,el s_I'A_OK_OK is
freqiiently 111isclassified as S _r.A_PROB_oK (aii incorrect predicticm of tli(' fc,i·warcl-poilitilig
lion-probletii).   Similar  misclassifications  on  the  forwarcl-poiittiiig  COrilpOilelit  iiiclucle  the
labels N_\'OID_<...>. S_D_<...>. Likewise. A:Y_VOID-type of labels are ofteii classified as
y_\'OID labels. as well as A:S_D_<...>-type labels are often classified as S_D_<...> labels.
suggesting that acceptance in  the  user input  is difficrilt  to  point  oilt.

4.4.4  Parameter and feature use in RI
For RI, paranieter estiniation yielded very varied algoritlini settings. frotii whicli few clear
tendencies are observable. In general. covering a ininitiial 11111111}er of 1-5 itistances pei
riile is found to be beneficial for RI. This inight indicate tha.t it is optitiial for RI to
niake specific rules that cover only a few examples. The rule sets itiduced ditriiig training
are large. consisting of 54-340 rules (223 rules on average). The low performai,ce of the
algorithm indicates however that part of the induced rules are locally Optinial but too
,specific to generalise to unseen (i.e.. test) data.

For illustrative purposes we trained RI oil the total data, where paraineter search
resulted in the following algorithm settings:

•   amolint of learning instances to be minimally covered 1)y eacli rule:  2  (default)

• hypothesis simplification: 1. i.e.. leave liypothesis as it is (defaiilt: simplify less)

• negative tests on the nominal feature attributes allowed (default: disallowed)

•  number of optiniisation rounds  on the induced  rtile set: 2 (defaiilt)

•  class orderitig:  by decreasing frequency  (default:  order  by  increasing  frequency)

• loss ratio of false-positives/false negatives: irrelevaiit. siiice loss ratio is oiily stil)-
ported for two-class problems.

RI induced 207 rules from the total data. Iii geIieral. we see that tlie algorithiri Inade
tise of all kinds of features provided to it. Afost lise is niacle of the ASR and DAI lexical
features (i.e.. the BOWs of both the ziser input and the systeili proilipt). as well as of the
inost recent prompt type. the topconf. and tlie topcozifpertiode featitres.  Alain· of the ritles
have nitiltiple conditions. on average tliere are 2-3 conclitions iii a rule. Rtiles are itichiced
for 73 classes. the number of rilles induced pei class is 1-13: on average three rules are
induced per class. Rules are first indliced for the Inost freclilerlt class (NJOID_OK_OK}.

Below we present seven rules from tliis riile set iii orcler to show the type of rilles 011
1,asis of which RI obtains the reported results. Note that the riiles are ineaiit to illiistrate
tile  wav RI operates.  not the interpretation of iiser inpiit.    We  select  rules that cover  a
relatively large miniber of examples. The striicture of a riile is

If <feature test> and <feature test> (etc.) then class. (,i/ m)
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R liere <featu,·e test> is a test 011 the presence of a nominal feature vallie. the presence of
aii elenieiit of a set featilre. or a range of a nizineric feature.  n indicates the number of
ilistailces a rille covers. m the nuniber of false predictioits.  Lexical iteitis are translated
froin Diitch into English. Feattire nanies are the followitig: plumpt t: citrrent pronipt
t.\' )e: proinlit t-1: I)1'('vioils pi'oilipt trpe: prompt  t -2 previotis-previous protiipt type (and
,so 011): otlic·i fratm'e iiatite.s are as introdticed iii Table' 4.4.

1  If c·c,ititectic,ii' E sysBOW A sorry' q sysBOW A -no' e BOW then (380/1081

N _I'() Il-)_()K_C) K.
2    If ·so' E h.\·SBOW A 'at ' E sysBOW A '110' ¢ BOW A topcoilf f 701.06 then (125/32)

i'_\'()11)_()KJ)K.
3 If 'wliether E sysBOW A topconf 5 690.24 A FOminpc,s 2 1 then (34/5

i'_\'()11)_C) K_Pit()13.
4    If 'wllic·11' E sysBOW A teinpo 2 1.95312 then ,_\A_(.)i<_c)K. (65/10)
5     If I)roitipt t= Q_1)TH:1_\'A A trpernode 2 137.13 A PRTBF 5 1  A ,·rnsrriaxpos (22/2)

5 0.42 then A_i)_(,K_OK.
6    If YB< e sysBOW A a7 = {eir pty} A BF < 2 then \:s_D_c)K_PR()13. (8/6)

7   If 'tillie' E sysBOW A 'six' 6 sysBOW A FOniax < 210 A BF 5 21 then (4/0)

S_TIi_PROM_OK.

Tlie first nile assigils N_\'OID_OK_OK to turns where the ziset BOIT' contaitis no. and the
systelli s;IiCI 'colillectioll' 1,ilt did not say 'sorry'  Tlic s<'colicl rille assigils Y_\-OID_OK_OK
to tzii'iis iii wliich tlie systeiti sa>·s 'so' aiid 'at' (Irhich is pi·(,1,al)1>· aii explicit verification
of the tiitie slot ).  aiid  the user answer is recogiiised with a smaller top confidence score
tliati 701.()6. whereas '110' is not recognised in the liiput. The thircl rule classifies input
as aii affirinative   atiswer   that   reflects   awareness  of  probleills   (Y_VOID_OK _PROB)   in   case
tile System asks a qiiestion including  whether  (probably as part of the phrase could you
repeat whether ...') atid the liser input is recogiiised witli a lowei· top confidence score
tlia11 690.24 whereas the pitch minimum is reached after at least 1 second.

Rule 4 fires in case tlie system prompt included the word which' and the tempo
of the liver  input  is  faster than 1.95312 syllables  per  second:  siich  input  is  classified  as
improbleniatic slot-filling of departure and arrival station.  This rule represents earlier
finditigs claimilig that problematic ttirns have a slower ,speech rate than unproblematic
01ies. Rule 5 shows tliat if tlie 111Ost recently asked Systeril pronipt is Q_DTH:1_VA (asking
for travel time. and illiplicitly verifying departure and arrival statioii) and the liormalised
top coiificleiice score iii the ASR output is higher thaii 137.13, the 1011(lest part of the input
occurs earlier than 42 seconds of the input. and the branchiiig factor iii tlie word graph of
tlie previoiis tiMer inpiit is smaller than 1 (i.e.. there is iic, braiicliing iii the graph). then
the  itier  is  fillilig  the  day  slot.  no  coninizinicatioii  probleitis  have  occiirreci.  and  the  user
input is going to be well processed. Rule 6 itidicates that iii (·ase the input took place not
later thaii at the sixth exchange of the interactio11 (since the seventh item in the prompt
history is einpty). 811(1 to the systeni prompt whicli contaiits the word  day' the user s reply
is recogitised with a snialler branching factor tlia112. tlien iii that ttirn the user accepts a
system  error.  as  well  as  provides the  value  for  the  day slot.
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The seventh rule classifies slot-filling of time of day and hour of travel in aii unprob-
lematic dialogue situation. and this inpiit is going to be erroneously processed: the systeni
prompt contains the word 'time and six (the latter obviously a verified slot value).
whereas the user's answer exhibits a pitch maximum not higher than 210 Hz and branch-
itig factor snialler thaii or equal to 21. This nile illustrates tliat there are many factors
determining the class of user input: acoustic and prosodic features, probably contributing
most to tlie problem components of SI (for exainple. the branching factor and pitch may
be  good  cues  to  erroneous  processiiig  and dialogue feedba.ck). whereas lexical properties
may deterniine the task-relatecl act(s) and the slot(s) iii the input.

4.4.5 Detailed analysis of task-related acts and information units
Tables  4.13  and  4.14  show  the  classification  results  deconiposed  by  TRA  labels  and  slot
labels, respectively. We see that the TRA label that is overall classified best is slot-
filling   (s).     The  classification  results of other TRA labels   are  roughly in line   with   the
relative frequency of the given label: Y. the third most common TRA label in the corpus.
is   classified   with  a good score  by both algorithms (90 F-score   by   MBL   and  85   by  RI).
Both algorithms outperform the baseline by a broad margin on this label. The label N
is  classified  with a similar score  by  MBL (86.1 F-score), but with  a much lower result  by
RI (73.4 F-score). that is not better than the baseline strategy. As was to be expected,
acceptance is difficult to classify, not only due to its low frequency but also because this
act closely resembles truly slot-filling or truly affirmative TRAs.

Looking at  the results deconiposed by slot labels (Table 4.14), we can observe a siniilar
tendency: labels that occur with high frequency in the data (e.g. VOID, V, A. cf. Table
4.2) are better learnt than low frequency classes. Learner performance on the non-slot
label VOID is calculated in the sub-component evaluations shown in the table: however,
performance on classifying vOID is ignored in the calculation of the global precision, recall.
and F-score of the slot component of SI (displayed in Table 4.12), since VOID is not some
slot to be filled, but rather signals the absence of the slot-filling activity.

Note that there are extremely large standard deviation figures for a number of TRA
or slot types, such as NSTD. T. or acceptance. This is due to the way in which scores are
summarised over the ten data folds: whenever no numerical score is obtained in a fold (for
example  because  some  slot  type  is  not  preseiit  in  some fold, resulting in illegal arithmetic
operations), we assume the score  to be zero,  so that means can be still calculated. Observe
that the NSTD TRA type can likewise not be calculated by the baseline strategy. Iii fact,
tliis suggests that giving a non-standard input is not a TRA that depends on the type of
the  most  recent  systeni  prompt.

4.4.6 Discussion
According to Table 4.12. the component for which AIBL achieves the highest F-score is
the task-related act label (89.0 F-score). and the reszilt obtained on backward-pointing
problems (87.7 F-score) is quite similar to this.  The classification results of filled slot
types  are of somewhat lower scale (83.4 F-score). The coinponent   that   is   learnt   most
successfully  by  RI  is.  likewise. the task-related act label (80.9 F-score). aiid similarly  to
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Algorithm TRA label Metric
pre rec      F

prompt baseline s 95.7 87.3 91.3
0.7 2.5 1.4

y 68.7 64.6 66.3

5.6 8.1 5.5

3 64.0 74.6 68.8

6.6 4.7 4.8

A 40.3 18.1 24.5

19.7 7.7 10.5

NSTD        -    -    -

MBL                         s 96.7 93.9 95.3
0.9 1.8 0.9

y 86.6 93.1 89.7
6.2 5.4 5.0

N 92.4 80.8 86.1

3.8 4.9 3.3

A 64.6 15.5 22.4

32.9 7.1 9.3

NSTD 55.1 46.1 46.7

22.1 22.6 16.8

IiI                             s 96.7 82.1 88.2
1.4 12.4 6.9

y 83.2 89.4 85.1
17.2 3.6 10.8

N 67.1 85.1 73.4

16.1 6.0 8.1

A 37.1 17.8 23.6
21.3 11.8 14.5

NSTD 77.5 43.6 52.3

23.8 22.9 22.4

Table  4.13:    MBL  and   Rl  performance  decomposed  by TRA labels  on complex shallow
interpretation. averaged over 10-fold CV experiments in terms of precision, recall, and
F-score. The top section shows scores with Stalidard deviation according to the prompt
baseline. the middle section shows restilts of MBL. the bottom section shows results of Rl.
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Algorithril Slot label Metric
pre rec      F

proinpt baseline v 94.9 87.8 91.1
2.2 5.1 2.7

A 92.9 77.0 84.1

3.8 5.6 3.8

D 74.1 77.7 75.7

4.8 6.4 4.1

T 15.0 0.7 1.3

32.0 1.4 2.6

H 79.8 .19.5 60.7

5.4 8.4 6.7

2 20.0 1.7 3.2

40.0 3.5 6.4

VOID 80.8 93.0 86.4

3.0 1.6 1.9

MBL                            v 94.2 92.5 93.3
2.7 4.2 2.8

A 93.3 88.2 90.6
3.6 4.8 3.8

D 77.7 78.0 77.5

4.6 8.7 4.9

T 60.4 13.3 20.0
28.7 8.8 11.6

H 83.1 67.3 74.0

5.4 7.3 4.3

2 84.8 40.5 49.2
16.0 12.4 19.4

VOID 89.8 94.3 92.0

2.7 1.9 1.6

RI                             v 94.3 84.7 89.1
2.2 4.8 2.6

A 91.2 81.5 86.0
2.2 5.3 3.4

D 76.2 57.7 63.6

11.2 14.9 7.8

T 60.3 33.3 39.7

21.6 14.7 12.1

H 68.0 54.7 58.1

8.4 18.7 11.0

9 47.0 41.0 38.2
20.9 15.8 12.7

VOlD 77.9 94.7 84.7

13.2 2.8 7.1

Table  4.14:     MBL   and Rl performance decomposed   by slot labels on complex  shallow
interpretation.
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the results of MBL. the backward-pointing probleni (78.6 F-score) is classified second-best.
Filled slot types are classified with somewhat  less success (75.7 F-score). Both algorithms
attain the lowest score on the forward-pointing problem component. which is equal to the
prompt baseline strategy (55.3 F-score).

Prediction of TRAs. slots. and backward-pointing problenis is done better by AlBL than
by the baseline strategy and by the rule-iiiduction learner. This suggests that AIBL is able
to learn the complex SI class more optimally from the data than RI. This finding seems
to be iii line with the coiiclusioiis of IRotarit and Litliiall 20033 who claini that, depending
on a number of factors,  NIBL and  RI can outperform each other (cf. Section 3.1). However.
note that in our experimental matrix MBL is sviteinatically better than Rl. Due to their
classification method. rule induction algorithms generally perform worse when the instance
space is complex, and when there are no honiogeneous class or feature subsets on which
the data can be efficiently partitioned. Iii our material there are 148 classes in the data,
and 110 class has real majority. Iii addition, these classes are represented by a large number
of features. and possible patterns of the feature values may not be optimally captured by
rule conditions.

The results of parameter estimation support this observation: while MBL is able to
cover the data by a more homogenous set of parameters, RI applies nluch data-specific
settings to each data subset that probably do not generalise to unseen data: the fact that
the classification accuracy of the rules induced witli these settings is quite low may indeed
indicate that these are over-fitted on the training material. As opposed to it, the fact that
a larger nearest neighbourhood size turns out to be more optimal for MBL reflects that
the memory-based learner is able to effectively flatten the instance space by comparing a
large number of nearest neighbours that vote for the class according to their distance.

The prompt baseline strategy yields relatively high scores because there appear to be
strong correlations between system prompts and typical user answers that follow it. This
is not surprising: the hard part of the task is to predict those cases where the user gives a
different response than what is most likely. MBL is able to find similarity between memory
examples and new instances with a 49% overall accuracy, meaning that this algorithm can
classify almost half of the user turns perfectly in terms of task-related acts, slots. problem
awareness, and problem origin. This at the same time provides further evidence that
despite the observed statistical co-occurrences between system prompts and user answers,
it is not obvious to predict the type of answer most probably triggered by a prompt, for
example that yes/no type system prompts trigger Y and N task-related acts.

It is an important finding that both classifiers use lexical information, presented as
an unspohisticated bag-of-words. both from the system and the user turns to a large
extent.    This may indicate  that  not  only  contintious (i.e. numerical).  but also symbolic

(i.e.. lexical) items  are  able to separate  the  data  well in terms of class labels.    This  is
obviously related to the nature of the SI task as defined by us. since some aspects of
some SI labels, in particular the task-related act labels y and N. may be strongly lexical-
oriented. It is however a non-trivial knowledge. gained from our experiments, that the
shallow bag-of-words representation encodes information that can be well utilised by the
learners. as opposed to information encoded by features that are more structured. such as
the prompt history features. Namely, we found that the system pronipt representations
are utilised to a smaller extent in classifying the complex class than their corresponding
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BOW representations, despite the fact that they quite systeinatically encode traditional,
hierarchical notions of dialogue acts. This suggests that a fiiie-grained representation of
pragmatic-seniantic information is not necessarily more informative for hiterpreting user
input iii task-oriented dialogues with a SDS tlian other. less structured pragmatic-semantic
priinitives.

4.5 Summary
In this chapter we have described our research material. the OVIS corpus. and presented
results on niachine learning of the complex SI class of user turiis iii this corpiis. We dis-
cussed the task design of these experiments by explaining the class labelling scheme applied
to the corpus, and by giving an account on the features employed iii the learning experi-
ments. We explained in detail that the class labelling incorporates all four componeiits of
the information we want to extract from the user turns: the conducted task-related act
(TRA). the slots  that are being filled (SLOT), whether  the  turn is going to cause comn111-

nication problems between  the  user  and the dialogue System  (FWD  Pit). and whether  the
user shows awareness of communication  problems   (BWD   PR).

We emphasised that the employed features serve the purpose of providing context for
the focus turn iii the learning experiments at a low level and iii a straightforward way.
We presented some statistical findings with respect to the system's prompts and prosodic
properties of the users' replies to these prompts. We also investigated whether there are
co-occurrence tendencies between a particular prompt aiid a particular user reply (both
described in terms of our aniiotation  scheme).

Finally, we preserited the outcomes of a series of learning experiments conducted with
the memory-based and the rule induction classifiers that were optimised with respect
to their parameters. We found that MBL attained higher performance in general, when
compared to either RI or an informed baseline that assigns the majority class given the most
recent prompt. MBL produced 49.3% overall learning accuracy on the complex SI task.
whereas RI gained a significantly lower overall classification accuracy, 45.5%. Learniiig
performance differed substantially for the four included components. The task-related act
of a user turn was learnt best: MBL readled ali 89-poillt F-score on this Compollellt (RI:
80.9). Backward-pointing problems  were  identified  with  a similar score by both classifiers.
Slots were predicted with a somewhat lower precision and recall (MBL: 83.4 F-score. RI:
75.7). Neither MBL nor RI could significantly outperform the baseline for forward-pointing

communication problems (55.3).
An important finding is that the statistical tendencies of prosodic. as well as pronipt co-

occiirrence phenomena are 11ot reilected in the actual classification results. The analysis
of the learning process ftirthermore indicates that structured information (i.e.. prompt
history represented iii terms of dialogue acts and slots) is not necessary more informative
for the SI task than unstructtired information (i.e.- prompt history represented in terms
of a bag-of-words).

Analysis of the classification resiilts led 11,s to the conclusion that the complex SI task
is difficult. since some (aspects of) components make it hard for the learners to correctly
assign the class of a user input.  For example. the acceptatice TRA cannot be reliably
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detected by the algorithms. possibly because it closely resembles the slot-filling TRA.
Alost importantly. it is very hard to predict whether some input is going to be correctly or
erroneously processed by the given SDS. The fact that the prompt baseline best identifies
forward-pointing problems might indicate that this fairly unpredictable component is at
least partly dependent on the system's prompting.

Given these difflcult aspects of shallow interpretation, our next goal is to find more
effective ways for inferring the SI of user turns from our data. In the next chapter we
investigate whether it is possible to improve these scores if the data are presented in a
different way to the classifiers.



Chapter 5

Partitioning Information

The goal of this chapter is to investigate two issues raised by the findings of the previous
chapter: the influence of class label design and that of feature design on learner perfor-
mance in the SI module. The approach we take is to partition information in the data
provided to the learners. The outline of the chapter is the following. For each component
we conduct two consecutive series of experiments with both MBL and RI.  In the first series
we perform class partitioning. in the second feature partitioning. We present and analyse
the obtained results per SI component.

The class and the feature partitioning experiments provide a possibility to conipare
memory-based learning and rule induction to a considerable extent: all experiments are
conducted by both MBL and RI under identical conditions, while the tasks, as well as the
features, are systematically varied. By these experiments we attempt to further investigate
whether, as observed in [Rotaru and Litnian  2003], it is dependent on the task. the number
of features, and the type of features whether memory-based learning or rule induction
performs better.

In the discussion we recapitulate the results of the information partitioning experiments
conducted in this chapter by pointing out the major findings with respect to task and
feature design iIi the SI task.

5.1 Method

The results of Chapter 4 indicate that some SI components are more difficult to classify
than others, which might have caused low overall scores. In fact, in the complex task de-
sign described in the previous chapter we took a naive approach to SI using all features to
classify all components simultaneously: the question arises whether our data can be used
in a more optimal way. To this end we first design experiments in which the classifiers are
trained to learn each SI component in all possible combinations of components. The class
label is partitioned so that components are learnt either in isolation or in combination
with one or two other SI components. We refer to the phenomenon of learning compo-
nents together as co-learning.  Our aim is to see whether a different class label design

75
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yields improvement  for  leariiitig  a  partic·zilar  component  over  the  results  presented  iii  the
previous chapter. Note that tlie experinient conclucted in that chapter investigatecl the
inost  coniplex  co-learnitig  task.  since  all  fotir  components were  siniziltaneously  co-learnt.
we  refer to tliat experillient  as  tile Complex experiment.

5.1.1 Class partitioning
In the first  expel·iziietital series we test  all cotiipoiient combinations for each SI component.
rumiing seveii leariling exp('riizierits per cotzipotieiit:  on the Component  in isolation. as well
as in conibinatic,11 wit 11 011(' 01' two otlier coinponelits. The experiments are carried otit
with the saiiie set-zip as tli(' coinI,lex experiiikent: we train and test the classifiers iii 10-fold
ci'oss-validation collillitwil with alg(,ritlilli paraineter optililisatiozi. The obtaineci l'eslilts
are characterised iii ternis of accitracy. precision. recall. and F-score. computed in relatioii
to  tlie given componeiit. For c0111parative  piirposes  both  the  pronipt baseline scores ail(l
the results of the coiziplex task are provided iii the tables that display the restilts of the
class partitioiiing experiziietits. All statistical significance tests are reported on the basis
of paired t-tests.

Note that (,ach colilpolielit c<,1111)itiation has a different class label distribution: in the
experimeiits where a co1111)(nient is learilt iii isolation. the number of classes is the lowest
iIi that component's series, wliereas iii all other experiments in that series the 11uiriber of
classes is higher. Tlie lillinber of class labels iii aii experiment defines the entropy in the
classificatic,11 task.

If tlie class lai,eis Fire ililif'011111; clistribiited. the enti'opy (see Equation 3.7) of a task
ir maxhiml.  Tliis sitiiatioii aliiiost occtirs iii s01112 of oui tasks (naniely. iii the forward-
pointing ancl iii the backward-pc,intiiig isolated tasks, as well as in the coinbination of
these  two  coilipozieiits).  however.  ill  1110St  tasks  tlie  distribiltion  of tlie labels  in  a  task  is
skewed to sonic degree (cf. tlie sitziple statistics giveii iii Section 4.2).

At the saine time. it illight 1,(· iii fc,rniative to calculate the ratio of the actiial eiitropy·.
giveii  the  iluiiiber  of act 11: 1  classes.  to  the  ziiaxininni  entropy. This ratio. which  we  call
actual entrop,%· ratio, AER. (lefitied  iii  Equation  5.1.  characterises how much  uncertainty
a class clistribution contains cortiparecl to the maximally uncertain. uniforni-distribiitioll
etitropT

H ((ic'tC')AER = (5.1)
H(uniC)

where H ( a('tC) is the actiially iii('asiired eittropy. based on the actual freqiimicies of classes
actC. and H( uniC)  is basecl (,11 the Haille iminber of classes but  with liniform frequeticies.
The AER figzire characterises the rechictioii iii iincertainty with respect to the maximmn
uticertaitity iii the classificatioti task. given the actual number of Class labels in the task.
Table 5.1 displays the figures of the actiial class label ntiniber and the AER per conipoitetit
Coin bi natic)11.

We may also assitirie iii(lependelice between the labels. hrpothesising tliat eacli dass
label of each coiziporietit co-occms with ('ach class label of each other coinpoiietit. ail<1
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C ,Illpoilent (s) Actual nr of (·lasses AER IER

TRA 8 .66 .66

sLoT          30 .57 .57
FWD PR 2 .99 .99

BWD PR 2 .99 .99

TRA_SLOT         63 .63 .47
TRA_FWD PR                             16 .72 .72

TRA_BWD PR                              15 .72 .69

SLOT_FWD PR                             48 .66 .62

SLOT_BWD PR                             47 .66 .62

FWD PR-BWD PR 4 .98 .98

TRA_SLOT_FWD PR 104 .69   .52

TRA_SLOT_BWD PR                       90 .67 .51

TRA_FWD PR_BWD PR                      29 .76 .68

SLOT_FWD PR_BWD PR                     81 .48 .44

TRA_SLOT_FWD PR_BWD PR 148 .74 .54

Table 5.1: Class label ntimber  mid entropy ratios per class label  combination. for details
see equations 5.1 and 5.2.

also that these combinations are uniformly distributed. Such uniforni distribution aiid
such independence of components' class labels is in our study obviously not the case. since
e.g. a slot-filling TRA never co-occurs with a VOID slot label. However, to arialyse the
reduction iii entropy with respect to this 'independent entropy'. we defiiie the independent
entropy ratio measure  (IER). IER characterises tlie ratio  of the actiial eiitropy and such
a component-independent maxinium entropy:

IER = (5.2)
If(actC)

H(indepC)

where H(actC) is the measured entropy in the task given the actual frequency of classes
actC,   and   H(indepC)   is   the   ultimate maximum entropy   iii   the task. giveii uniformly
distributed classes of all possible class label combinations. i.ndepC The rightmost column
of Table 5.1 displays the IER pei· coiziponent combination.  Geiierally. the IER values
characterise not only the ratio of reduction of uncertainty in tlie task. but the predictability
of dependency between the components in a given combination as well.

From the table we can establish that most class partitioning tasks are nilich less entropic
than would be expected under independence and uniform distribution assumptions. since
most of the AER and IER figures are smaller than 1. It is an intriguing issue whether
these figures are predictive about how the classifiers perform on some task. Notably.
one conjecture might be that low AER or IER wozild predict a high degree of success iii
leariiing
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5.1.2 Feature partitioning
The findings of the previous chapter indicated that the classifiers made use of all kinds
of features provided to them.  At the same time. as noted earlier. there is redundant
representation of the same information by some of the features we employ. In order to see
the  extent to which the different  information  sources  contribute  to  the  SI  task. we design
separate experinients in which the classifiers draw on information from only one feature
group at a time: on features that are obtained from the dialogue manager (henceforth:
DM   feature  group), on features   that are obtained   from   the word graph output   of  the
speech recogniser  (henceforth: ASR feature group).  or on the prosodic features  measured
in the recorded user input (henceforth: PROS feature group).

After finding out the optimal class label design for a SI component in the class par-
titioning experiments, in a second series of experiments we analyse the contribution of
each feature group  to the classification   of that component.    The   task  here  is to measure
performance on the three isolated feature groups in classifying the optimal component
combination obtained from class partitioning. Here we are primarily interested in the
relative importance of the isolated feature groups. hence we do not test all combinations
of feature groups.

It is interesting to note that the three feature groups differ in the way they encode
information. The DM group contains exclusively symbolic features: prompt types and
prompt words, the PROS group contains exclusively numeric features. whereas the ASR
group contains  a  mix  of both (cf. Table  4.4). The number of features contained  by  each
group is different, too. There are 944 features in the DAI group. 13 features in the PROS
group. and 1,525 features in the ASR group.

The set-up of the feature partitioning experiments is to reuse in 10-fold CV the optimal
parameter settings obtained in the class partitioning experiments. This can be regarded
as the semi-optimisation of algorithm parameter settings.

5.2 Task-related acts

5.2.1 Class partitioning
The first component we investigate concerns the task-related acts in the user input. The
experimental results of co-learning the different class combinations for the TRA, as well
as of the isolated experimeiit. are shown iii Table 5.2.

BEST SCORES  We see that the scores of MBL are overall somewhat higher than those of RI,
however, most of these differences are statistically insignificant. MBL attains the highest
score when the TRA component is learnt in isolation (91.7 F-score). whereas RI obtains its
highest F-score of 90.5 points in co-learning the TRA and the backward-pointing problem.
the difference between  the two learners is statistically insignificant.   It is remarkable  that
RI produces a near-10-point improvement over its complex experiment's F-score (t =4.9.
p <0.01: the italicised bottom line of the table). indicating that class partitioning is
beneficial  for this classifier  for this component.   The best F-score of  MBL also improves
significantly over the F-score of the complex experiment (t =5.0, p <0.01). In terms of
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Algorithril Class label Aletric
ace pre rec       F

baseline 74.8 81.7 76.0 78.7

2.5 3.2 2.7 2.9

MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7

TRA_SLOT 86.4 93.5 89.3 91.3

1.2 1.2 0.8 0.6

TRA_FWD PR 86.3 94.4 88.3 91.2

0.8 1.3 1.0 0.9

TRA_BWD PR 86.8 94.1 89.3 91.6

1.0 1.3 1.2 0.9

TRA_SLOT_FWD PR 82.3 93.7 86.9 90.1

0.5 1.3 1.0 0.7

TRA_SLOT_BWD PR 85.6 92.8 88.7 90.7

1.4 1.7 1.3 1.2

TRA_FWD PR_BWD PR 85.9 94.2 87.8 90.9

1.2 1.6 1.5 1.3

TRA_SLOT_FWD PR_BWD PR 84.1 92.4 85.9 89.0

2.4 2.2 2.1 2.0

RI TRA 84.8 91.9 87.8 89.8

1.4 2.5 1.2      1.5

TRA_SLOT 84.7 91.5 88.8 90.1

1.9 2.1 1.7 1.6

TRA_FWD PR 83.9 91.3 86.9 89.0

2.2 3.4 2.0 2.2

TRA_BWD PR 86.0 92.0 89.1 90.5

1.7 2.0 1.5 1.5

TRA_SLOT_FWD PR 78.5 86.5 83.1 84.7

3.5 3.5 3.6 3.1

TRA_SLOT_BWD PR 82.1 89.1 86.7 87.9

2.9 3.2 1.3 1.9

TRA_FWD PR_BWD PR 84.8 91.2 87.9 89.8

1.9 2.4 1.4 1.7

TRA_SLOT_FWD PR_BWD PR 74.7 82.2 79.8 80.9

4.9 4.7 6.3      5.4

Table 5.2: Scores with standard deviation produced by MBL and RI on shallow interpreta-
tion of the TASK-RELATED ACT component, averaged over 10-fold CV experiments:
accuracy, and proportionally weighted precision. recall and F-score measured on the clas-
sification of task-related act type. The highest score is set in boldface. The italicised
bottom lines show the results of the complex experiment. Scores of the prompt baseline
are provided in the top row.
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F-score. RI achieves a large. 507 error reduction on the TRA task compared with the
complex experiment. whereas MBL produces a 24% error reduction. (In ternis of accuracy.
m produces a 409; error reduction. and MBL a 10% error reduction.)

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS The outcoines of sta-
tistical significance tests show that the F-scores aniong the class partitioning experinients
do not differ significantly from each other when the task is learnt iii isolation or when not
more than two components are combined (corresponding to the scores in the first four lines
of each section in the table). even if one of the components is the difficult forward-pointing
problem. The entropy ratios (ERs) of these tasks (cf. Table 5.1) show no correspondence
with tlie attained scores. likewise. the actual nuniber of class labels in an experiment does
not seem to have an impact on the learning performance either. Consider for example
that the class combination TRA_FWD PR_BWD PIt has fewer classes (29) than the class
combination TRA_SLOT  (63).  but  the  former is still learnt  with a significantly lower score
than the latter.

However. we observe that when more than two classes are co-learnt, no niatter whetlier
the forward-pointing problem is included. scores get signilicantly worse  for both classifiers
(again  in  no  apparent  correlation  with  the  number of classes  or  ERs).   It is furthermore
noteworthy that both classifiers improve significantly with respect to their complex exper-
imental results in all but one class combination: in the co-learning of TRAs, slots. and
forward-pointing probleins. where both AIBI. and RI attain a statistically insignificantly
liigher score than in the complex experiment. Again no apparent deviations can be read

out from the entropy figures that would indicate such a performance.

CONCLUSION On the basis of the outcoines of the class partitioning experinients concern-
ing the TRA component we can establish that class partitioning has a substantial. positive
influence on the scores produced by our classifiers, and it results in practically equal per-
formances of AIBL and RI.  We assume that it is the optimisation of class label combination
together with the optimisation of algorithm parameters that leads to this result, providing
further evidence for the conclusions made by [Daelemaiis and Hoste 2002] (cf.  Section
3.1).

Another remarkable outcome of the experimental matrix is that co-learning the task-
related act component with the backward-pointing probleni component has a positive
effect on both learners: RI obtains its best score on this combination. and the difference
between the score attained on this combination and the best score by MBL is insignificant
This siiggests that coinbmations between these two components show patterning in our
data  that the learners  are  able to utilise  to  the same  extent.   As we pointed  out in Section
4.2, signalling awareness of coniumnication problems can be regarded as a backchannelling
act: it might be the consistent occurrence of certain labels of the awareness component
with certain labels of the TRA component that lead to this result.

5.2.2 Feature partitioning
Below we report on the experiments in which the classifiers are trained on partitioned
feature groups. In tliese experiments AIBL is trained to classify the task-related act label in
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Algorithm Optimal class label Feature group NIetric
acc pre rec       F

MBL TRA ALL 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7

DM 77.5 84.5 79.1 81.7
2.6 3.5 2.4 2.8

ASR 82.8 90.8 85.4 88.0

1.4 1.8      1.5      1.3

PROS 64.5 73.8 68.0 70.8

3.0 3.7 2.0 2.7

RI TRA_BWD PR ALL 86.0 92.0 89.1 90.5

1.7 2.0 1.5      1.5

DM 76.8 84.4 77.6 80.9

2.4 3.0 2.5 2.7

ASR 82.3 89.6 86.0 87.7

1.9 2.4 2.1 1.7

PROS 60.5 69.5 64.9 67.1

3.2 4.1 3.3 3.2

Table 5.3: Performance of the three feature groups in experiments by MBL and Rl on the
TASK-RELATED ACT component with optimised class labelliiig. The highest score is
set in boldface. The italicised top rows iii the sections show the scores of learning 011 all
features.

isolation, whereas IiI is trained to classify the task-related act combined with the backward-
pointing problem conipoiient. The employed algorithnl settings are the ones optimised on
all features. Table 5.3 presents the outcomes of feature partitioning. For better displaying
the scores obtained using all features are also reproduced in this table, corresponding to
the top row of each section.

We see that the trends are similar for both learners across these scores. An important
outcome is that none of the isolated information sources is able to produce the sanie
or better classification results than when all features are used: this implies a number of
findings. It suggests that our approach requires no explicit feature selection (which is
usually computationally expensive). working equally  well  when all available information
is presented to the learners. We also find evidence that none of the information sources is
eligible in itself to produce the best results on classifying TRAs. The ASR group attains
the highest scores. suggesting that information encoded by the speech recogniser's outptit
is  most   important for learning the task-related   act   of  the user input.     The  ASR  groups
F-score is 3.7 points lower for AiBL and 2.8 points lower for RI than that on all features.
These differences are significant (MBL: t -9.4, p <0.01, RI: t -3.3. p <0.01)

In  Section  2.3.1 we noted that lexical  and  (micro-)syntactic  cues are widely ilsed  for
the automatic detection of dialogue acts iii speech. We hypothesised that the ASR's
recognition lattice is capable of encoding and providing part of this information in a



Chapter 5: Partitioning Information                                                                   82

shallow way that does not require possibly expensive computation of those cues. Since
the ASR group is used with almost the same success for interpreting simple task-related
acts as all the features togetlier, we might assume that our results support this hypothesis
(recall that most of our task-related acts correspond to aspects of traditional dialogue
acts, cf. Sections 2.2.1 and 4.2.1).

Prosodic information contributes least to detecting the task-related act of the input.
whereas the impact of the information coming from the dialogue manager is between
those of the ASR and the PROS groups. Note that the features in the DM group do not
encode the Tiser's ut terance   at   all:    it is surprising that these features   are more predic-
tive of the task-related acts in the user input than prosodic attributes of the user zitter-
ance. Even if prosody contributes least to the identification of TRAs, the scores attained
by this feature group are in line with those of previous studies of [Jurafsky et al. 1996,
Reithinger et al. 1996. Samtiel et al. 1998b. Stolcke et al. 1998a, Sliriberg et al. 2001] are
able to utilise prosodic information for detecting (more fine-grained) dialogue acts to a
roughly similar extent.

5.2.3 Detailed analysis
In order to gain more insight into the extent to which the different TRA types are classified,
in Table 5.4 we display the scores calculated for each TRA type. The figures iii the table
are obtained in the highest-scoring class partitioniiig experiment for both MBL (TRA) and
RI  (TRA_BWD  PR).  Compared to those of the complex experiment (Table 4.13). we observe
that in general the scores improve.  Note that for identifying a slot-filling act both learners.
biit especially RI, benefit substantially from optimising the class label: MBL improves from
a 95.3 F-score (given in the first line of the middle section in Table 4.13) to 97.3 (t =7.5,
p  <0.01),  and  RI  from  a 88.2 F-score (given  in  the first  line of the bottom section in Table
4.13) to 96.4 (t =3.5, p <0.01). This means that our SI module - optimised with respect
to algorithm settings and class labels  - can detect rather extensively whether the user is
supplying slot-filling information in the input.

We observe that both learners classify aflirmative answers (y) to a significantly better
extent than negative answers (N) (MBL: t -5.1. p <0.01, RI: t -2.4, p <0.05), which was
also  the  case  in the complex experiment.  signalling  that  iii  our  data  it is easier to detect
affirmative input than negative input.  Note that the lower F-score of N is the result of
a Inuch lower recall on this class than on y, indicating that the algorithms often fail to
guess N. The high precision scores show at the same time that retrieving N is done rather
accurately. This tendency requires further investigation since it is likely to have serious
consequences for the detection and correction of errors that emerge during interacting with
the given SDS.

The only TRA type for by AIBL for which class partitioning yields a lower result than
iii the complex experiment is acceptance. Acceptance turns out to be the hardest TRA
phenomenon to learn anyway. in line with the findings of the previous chapter.  This is
likely to be due to the arbitrariness of whether a user is inclined to ignore system error:
furthermore. the sparseness of A in the data causes highly divergent scores per fold (cf.
the large standard deviations)

For classifying non-standard user input (NSTD) the opposite holds: LIBL benefits to a
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Algorithm TRA label Aletric

pre rec          F

MBL               S 97.3 97.4 97.3
0.7 1.4 0.6

y 95.1 92.9 93.9
3.6 4.3 3.5

3 97.7 85.3 88.3

4.2 2.5 2.4

4 40.7 14.7 20.4

23.0 9.3 11.7

NSTD 76.9 70.6 70.7

17.3 25.3 19.6

RI          S 95.6 97.2 96.4

1.6 0.9 0.9

y 89.4 91.5 90.4

5.0 2.4 3.0

N 90.1 86.5 88.2
3.4 4.1 2.8

A 43.2 21.3 27.3
19.5 11.3 12.8

NSTD 77.7 44.9 54.8

30.8 23.1 23.2

Table 5.4: MBL and RI performance on interpreting TASK-RELATED ACT TYPES,
averaged over 10-fold CV experiment iii terms of precision, recall, and F-score. The scores
are obtained with the most optimal class label composition: MBL: TRA. RI: TRA_BWD PR.

large extent from class partitioning, since the F-score of learning this TRA type improves
from 46.7 to 70.7. It is an intriguing issue what exactly effectuates the decrease of A and
the increase of NSTD in class partitioning. Below we list and discuss the most interesting
rules induced by RI on these two classes. Note that the class label includes two components
since the optimal class co-learnt by RI is TRA_BWD PR. Naturally, the miles indiiced on
our data probably do not generalise. and, as emphasised earlier, the rule set is presented
to supply information about the internal mechanisms, especially the use of feature types,
in RI. thus not for the purpose of describing general human-machine interaction types.

1    If 'so' E sysBOW A 'and' e sysBOW A topconf 5 559.76 then A:Y_PROB. (20/15)
2    If'yes' E BOW A RMSstdev 2 1040 A 'and' E sysBOW then .A:Y_PROB. (7/2)

3     If'so' E sysBOW A 'between' E sysBOW A FOmax 5 223 A 'correct' E BOW (6/1)

then .A:Y_PROB.
4   If 'to_PP' f prev sysBOW A 'to_PP' E sysBOW A '0'clock' E sysBOW A (24/10)

topconfpernode 2 119.247 then A:S_PROB.
5    If'from' 6 prev sysBOW A 'to_PP' E prev sysBOW A '0'clock' E sysBOW A (12/1)

RAISmean 2 266 A FOmin 2 75 then A.s_PROM.
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The  first  rule  set  displays  rules  induced for classes containing acceptance.   We  see  that
the rules cover a relatively sniall lizimber of examples with quite a few counter-examples.
Conditions are made on particular values of lexical and prosodic context. making the rules
highly situation-specific. In case wheii acceptance co-occurs with affirmative input (rules

1-3). lexical conditions are made  on itenls present  in the current  user  BOW  such  as  'yes
and *correct . which are (iiot necessarily) present iii the recognition hypothesis. on itenis
present in the current system BOW (so': dus. always cuing an explicit verification pronipt).
and,  interestingly, on prosodic features (loudizess. pitch). The latter may indicate  that  it
is possible to pinpoint particular prosodic values in an utteraiice containing acceptance.

In cases wheii acceptance  co-occiirs with slot-filling (rules  4-5).  conditions are iiiade
on itenis present in both the current and the previous system BOW (e.g.. indicated by
'to_PP'.  i.e..  the  preposition  'to.   naar), indicating repeated system  pronipts.  as  well  as
on prosodic and confidence-related featiires of the input (loudness, riornialised highest
confidence score).

The second rule set displays selected rules iiiduced oii the NSTD task-related act type.
We see that tisers give 11011-standard input both when they react to a previous problem
(class label. NSTD_PROB, rules  3-4). aiid when communication  is unprobleniatic (class
label: NSTD_OK. rules 1-2). Examples corresponding to the latter case can  be characterised
by no pauses in the input (cf. rule 1   the input is probably empty, since all non-empty
word graphs contain   pauses).   as   well   as   by interaction-specific conditions   such   as   the
particular station slot value 'groningen' in rule 2 (probably because supplying a station
name at tliat point  of the dialogue  was not appropriate).

1    If '#pause#' ¢ BOW then NSTD_OK. (8/1)

2     If RAISmaxpos C 0.13 A 'groningen' 0 prev BOW then NSTD_OK. (7/5)

3     If dur 5 1.28 then NSTD_PROB. (27/16)

4   Ifdur 5 1.28 A FOmin 5 74 A prompt t 0 Q_DTH:I_VA A prompt t 96 E.H then (17/5)

NSTD_PROB.

RI learns from the data that non-standard answers in reaction to system error Irlay
consist of a very short (or, possibly, empty) input, lasting for 1.28 seconds or less (rule 3), or
of a short answer iii combination with a particular pitch height and dialogue situation, e.g..
where the most recent prompt is neither asking for travel tilne while implicitly verifying
departure and arrival stations,   nor an explicit verification  of  hour   (rule  4).    The  rules
again cover a relatively low number of examples in the data, and have relatively many
couiiter-examples.

5.3 Information units
5.3.1 Class partitioning

BEST SCORES  The experimental results of class partitioning for the slot component are
shown in Table 5.5.  The most important outcome of this matrix of experiments is that
the best scores attained by the two classifiers do not significantly differ froni each other.
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Algorit hni Class label Aletric

acc pre ree            F

baseline 73.8 87.8 69.9 77.8
2.6 2.0 3.2 2.2

MBL SLOT 82.3 89.7 83.9 86.7

2.5 2.2 3.1 2.0

TRA_SLOT 83.5 90.7 84.9 87.7

2.2 1.8 2.6 2.0

SLOT_FWD PR 81.5 90.5 81.2 85.5

2.0 0.9 3.8      2.3

SLOT_BWD PR 82.1 90.1 83.2 86.5

1.8 1.2 2.8 1.8

TRA-SLOT_FWD PR. 80.9 90.0 80.6 85.0

1.6 1.1 3.0 1.8

TRA_SLOT_BWD PR 82.1 89.9 83.5 86.6
2.4 1.8 3.6 2.3

SLOT_FWD PR_BWD PR 79.2 88.5 79.0 83.4
2.1 1.8 4.0 2.8

TRA_SLOT_FWD PR_BWD PR 79.1 88.4 79.0 83.4
2.8 2.5 4.0 3.1

RI SLOT 82.6 88.4 82.9 85.5
2.4 4.4 3.8 2.8

TRA_SLOT 80.7 80.9 83.2 82.0
2.6 4.0 2.7 3.2

SLOT_FWD PR 77.9 85.8 77.1 80.9

1.7 7.0 3.4 2.6

SLOT_BWD PR 80.9 88.1 80.7 84.2

1.5 3.1 2.4 1.8

TRA_SLOT_FWD PR 76.8 81.5 77.8 79.3

2.3 7.7 4.0 3.0

TRA_SLOT_BWD PR 78.7 82.5 80.0 81.1

2.7 5.1 3.2 3.3

SLOT_FWD PR_BWD PR 74.9 80.3 76.6 77.7

2.3 7.6 7.3 2.3

TRA_SLOT_FWD PR_BWD PR 73.3 82.7 70.7 75.7

3.0 7.9     6.4     3.6

Table 5.5: Scores with standard deviation produced by AIBL and IiI on shallow interpre-
tation  of  the  SLOT coniponent. averaged over 10-fold CV experiments: accuracy.   and
proportionally weighted precision. recall and F-score ineastired 011 the classification of slot
type. The highest score is set iii boldface. The italicised bott 0111 lines show the results of
the  complex experiment. Scores  of the pronipt baseline are provided  in  the  top  row.
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MBL learns the slot component best when combined with the TRA component. yielding
a 87.7 F-score. The iniprovement of AIBL Over the F-score of the complex experiinent
is statistically significant (t =5.2, p <0.01). It seems intuitive that co-learning the task-
related act type helps in classifying the filled slots (but not necessarily the other way round,
see the outcomes  iii  the  previous section), since these two components license each other.
However, RI classifies  the  slot  coinponerit  best  iii  isolation (85.5 F-score). again  improving
considerably over its complex experimental score.  RI's best score is also significantly better
than its second-best score (co-learning of slots and backward-pointing problems). In terms
of F-score. MBL produces a 26% error reduction. whereas RI achieves a 409 error reduction

on the SLOT task compared to the complex experiment.

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS  It Call be observed that
MBL produces rio statistically different scores between co-learning three or four components
in case one of the components is the forward-pointing problem (cf. the experiments on
TRA-SLOT_FWD PR. SLOT_FWD PR_BWD PR, and the Complex learning), while ER figures
are at a variance in these experiments. Only the one not including the FWD PR is capable
of outperforming the complex experiment.  Note that this cannot be inferred from the
AER or IER of this task, since the ERs are not particularly lower than those of the three-
component experiments. In experiments with RI the scores produced by co-learning three
(or four) components in which one of the components is the forward-pointing problem
produce some significant differences between each other, but none of these outperform the
prompt baseline.

The fact that MBL leariis the slot component best iii combination is interesting since
in the combined experiment there are more than twice as inany class labels (63) as iii
the experiment where slots are classified in isolation  (30),   and also because  the  ERs  of
the better experiment are higher. The diKerence in F-score between the scores of these
two experiments is significant (t =2.9. p <0.05). Another remarkable result is that RI's
best   score   (on the isolated component)   does not differ significantly  from the result   on
co-learning the  slot  and  the backward-pointing problem component (84.2 F-score). which
again shows higher entropy ratios. This may indicate that the presence or absence of the
act of signalling awareiiess of communication problems might contribute to detecting the
kind of slots the user is filling: an explanation for this can be that when users become
aware of problems. they oft.en do not fill the demanded slots (i.e., the classifier has to
predict  vOID), and collstellations of VOID and  BWD  PR may appear iii distinctive patterns
in the data.

For the slot coniponent it is not the case that leal'Iiing more than two coniponents
aggravates the scores, considering e.g.  that the result of SLOT_BWD PR of MBL is praetiCally
the same as that of TRA_SLOT_BWD PR, or that the result of TRA_SLOT of RI is practically
the same as that of TRA_SLOT_BWD PR, alld so on. In general, the experiments do not show
a clear trend about how class partitioning determines which class combination yields the
best scores.  The number of co-leariit coniponents. the number of class labels or entropy
in the task. and the presence of the forward-pointing problem component seem to affect
perforniance iii an intertwined way.
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Algorithm Optimal class label Feature group Aletric
acc pre rec       F

MBL TRA_SLOT ALL 83.5 90.7 84.9 87.7

2.2 1.8 2.6 2.0

DM 71.0 78.6 74.0 76.1

3.6 4.5 3.1 2.7

ASR 78.4 86.2 79.6 82.7

2.1 1.9 2.2 1.6

PROS 51.1 48.1 49.7 48.9

3.3 3.4 3.9      3.5

RI SLOT ALL 82.6 88.4 82.9 85.5

2.4      4.4 3.8 2.8

D M 71.0 87.8 65.4 74.6
4.8 2.9 8.4 5.6

ASR 76.8 85.9 77.2 81.2

2.4 4.4 3.9 3.2

PROS 51.4 59.9 38.9 45.0

5.0 9.1 11.9 8.2

Table 5.6: Performance of the three feature groups in experinlents by MBL and RI Oil the
SLOT component with optimised class labelling. The highest score is set in boldface. The
italicised top rows in the sections show the scores of learning on all features.

CONCLUSION The outcomes of the class partitioning experiments on learning the slot com-
ponent support our preliminary findings that class partitioning has a substantial, positive
influence on the scores attained by our classifiers, resulting in eliminating performance
differences between MBL and RI, since the best scores obtained by the two classifiers show
practically identical performance. Again, the scores attained by RI in this experinieiital
matrix are overall somewhat lower than those of MBL.

Another remarkable outcome of the experiments, also in line with the findings on
classifying TRAs, is that a task's entropy does not seem to determine performance. the
lowest ERs in the matrix are associated with experiments that are not the ones attaining
the best score by any of the classifiers.  At the same time, the ERs assigned to two-
component experiments are roughly the same, but there are significant differences in the
results of these experiments.

5.3.2 Feature partitioning
Table 5.6 presents the outcomes of the feature partitioning experiments conducted for
classifying slots. Remarkably, the sanie treiids can be observed here as iii the feature
partitioning experiments for task-related acts. In particular. both learners attain lower
scores when some of the feature groups are removed from the experiment. Again the ASR
group produces the highest scores. coming closest to the result of the experiment utilising
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all features  (marked in italics).  but the difference between the F-score of these experiments
remains statistically significant (NIBL: t -5.5, p <0.01. RI: t -4.2, p <0.01). This means
that inforniation encoded bz the speech recogniser's output is most useful for learning the
slot type treated in the user input. The ASR group is the one containing most features.
which might imply that it contains the most or best information as well. However. we
believe that its informativity is much more related to its content than to its quantity: the
large number of features in this group is due to a lot of redundancy, as well as to the
binarisation of the features (cf.  Section 4.3.2). whereas e.g. [Rotaru and Lit.man 2003}
find that performance improves iii case the number of relevant features is increased.

Information encoded by the DAI group contributes less to detecting what slot(s) the
user is filling in a turn, which is soniewhat surprising given the correlations described in
Section 4.3.1. As in the case of task-related acts, iii these experiments prosody contributes
least to the detection of slots in the user input. We believe that the interaction between
features in different feature groups is very iniportant for learning the slot component. for
which we also fouiid evidence in the rule sets presented above. where conditions are made
oil features froiii all three sources.

5.3.3 Detailed analysis
To provide details about the extent to which different slot types are classified by MBL and
RI. we display these scores in Table 5.7.

Compared  to the complex experiment (Table  4.14),  a general observation  is  that  all
scores improve through class partitioning. Botli classifiers produce the largest improve-
izient  on  the day,  time  of day.  hour. and arrival value slot types  (D,  T.  H, @. respectively).
For example, classification of the D slot improves from 77.5 to 81.3 F-score for MBL. and
from 63.6 to 77.7 F-score for RI: that of H from 74.0 (MBL), respectively 58.1 (RI) to 85.2.
respectively 80.0.

Below we present rules with the largest coverages and relatively small number of
counter-examples induced by RI oil these labels.

1    If 'when' E sysBOW A testringlength S#A tempo 2 0.977199 A 'o'clock' 0 (171/23)
BOW then D.

2    If'when' C sysBOW A topconfpernode 2 136.334 A 'to_PP' ¢ BOW then D. (137/5)

3    If'when' E sysBOW A topconf 5 886.4 then D. (186/29)

4    If 'time' 6 sysBOW A 'o'clock' E BOW then H. (139/16)

5    If'arrive' € BOW A 'to_PP' i BOW A dur 2 2.81 then H<CK. (38/6)

6    If prompt t = Q_DTH:1_VA A 'afternoon' e BOW then DT. (6/0)

7    If 'when' E sysBOW A  o clock' E BOW A 'tomorrow morning' E BOW then (12/3)

DTH.

User turns are classified as filling the D slot if the system prompt contains 'wheii' and
the most confident lattice path of the user reply consists of four or less words, none of
them being o'clock' (which is an indicator of H rather than D). uttered with a speech
rate  of 0.97 syllables per second  or  more  (rule  1). the latter indicates  that  slot-filling  is
often performed by a short (probably elliptical) sentence. Likewise, the system prompt
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Algorithm Slot label Metric

pre rec      F

MBL              V 95.3 94.2 94.7

1.6 2.9 1.7

A 93.0 92.5 92.7

2.6 3.2 2.6

D 86.2 77.3 81.3

4.6 5.7 4.0

T 68.1 31.6 42.1

12.0 10.1 10.8

H 86.0 84.5 85.2

3.9 4.6 4.0

09 92.4 66.1 75.9

8.4 13.7 9.7

VOID 92.8 94.9 93.8

1.1 1.5 0.7

RI         v 94.1 89.6 91.7

3.1 5.2 2.5

A 93.4 88.8 91.0

2.8 3.5 2.6

D 83.5 8.1 77.7

8.1 5.0     4.5

T 72.7 60.6 64.2

11.7 18.1 14.2

H 80.6 80.0 80.0

5.6 7.8 5.0

9 77.3 74.6 73.3

16.5 18.7 11.4

VOID 87.7 94.8 91.0

5.5 2.9 2.7

Table 5.7: MBL and RI performance on interpreting SLOT TYPES. averaged over 10-fold
CV experinient in terms of precision. recall. and F-score. The scores are obtained with
the most optimal class label composition: NIBL: TRA_SLOT. RI: SLOT.
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containing #hen'. whereas  the user reply not containing the preposition   'to',   and   the
normalised top confidence being greater or equal to 136.33 refers  to  the  D  slot   (rule  2),
indicating that after a when' prompt users often (repeatedly) provide the destination
station name, since this is the stage where they can first infer from the implicit verification
(which is always present in a when' prompt) that the system niisrecognised their previous
input.  Rule 3 illustrates classification of the D slot in case the system prompt contains
when  and the highest confidence of the recognised user reply is maximally 886.4.

Rule 4 aims at classifying user tllrIls as filling the H slot with the simplest approach:
iIi case the system prompt contains the word 'time' and the user answer contains the
word 'o'clock'. Rule 5 is an example of classifying the arrival hour conditioning on the
prosodic duration feature as well as on the presence of the word 'arrive' and the absence
of the preposition 'to' in the answer's recognition lattice. the latter excluding potential
examples that would refer to arrival station. In six cases with no counter-examples rule
6 covers user input as filling day and time of day if the system asks for travel time while
implicitly verifying departure and arrival stations. and the word graph of the user turn
contains  'afternoon',  i.e., a particular slot value, while no conditioning is made on potential
references to the day slot.  The last rule illustrates classifying the conibiiied label DTH in
case the system asked a 'when' prompt and the user answer contained both the words
'tomorrow morning' (i.e.. morgenochtend) and o'clock'.

It  is also interesting  to  see  some  of the rules that cover non-slot input,  i.e., the slots
marked with the VOID label. Below we show some of the general rules concerning this slot
type.

1     If diir 5 1.79 A tempo 5 0.653595 then VOID. (705/14)
2    If'connection' E sysBOW A topconf 5 779.72 then VOID. (251/3)

3   If 'to_PP' I sysBOW A 'which' 0 sysBOW A 'that' E BOW A topconf S (66/0)

692.91 then VOID.

Again we see that conditions are made on features from all three feature groups: rule 1
conditions on prosodic features. whereas rule 2 and 3 on features from the DM and the ASR
group. It is remarkable that the absence of slot-filling activity is characterised sufficiently
by the absence of words that would refer to slot-prompting (rule 3). indicating a yes/no
question (e.g.. about the connection. as in rule 2).  The user answer of VOID input type is
best  characterised by its tempo (probably due to answers to yes/no questions being short),
recognition confidences, and the pronoun 'that' (i.e., dat). frequently employed in user's
phrases  such  as  'No.  that  is not necessary.'. respectively 'Yes. that's right.' in answers  to
yes/no questions.

5.4 Forward-pointing problems
5.4.1 Class partitioning
The figures in Table 5.8 show the results obtained iii classifying forward-pointing problems
with class partitioning.
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BEST SCORES A remarkable outcome of these experiments is that both AIBL and RI produce
the highest F-score by the saine task design:  co-learning of forward-pointing problems and
task-related acts. RI is able to outperform MBL in this experiment. although liot signifi-
cantly. Remarkably, the best score attained by AIBL is not enough to perform significantly
better than the prompt baseline, whereas that of RI shows a significant itnprovement over
it (t =4.0. p <0.01).  The scores are overall low. Despite the high standard deviations.
there is a significant improvement with respect to the complex experiment both by MBL
(t =4.3. p <0.01) and RI (t -3.0, p <0.05), an error reduction of 9% by MBL and 16% by
RI.

Even though the baseline F-score aiid the complex experiment's F-score are practically
identical, there is improvement by AIBL only on one of them.  This is due to the nature of the
paired t -test that penalises for inconsistent differences between partitions of experiments.
The sanie applies for the case when RI has a statistically siiialler improvement of over its
complex experiment than MBL, despite RI producing a 7-point improvement as opposed
to the 4-point improvement of MBL.

EFFECT OF COMPONENT TYPES AND NUMBER OF CLASS LABELS It is surprising that the
scores the classifiers produce on the isolated task are lower than those in the co-learning
experiments, even though the ERs are the highest for the isolated task. In particular,
rule induction is generally supposed to perform better when it has to classify fewer classes

but our empirical results do not comply with this expectation. Due to the high standard
deviations (which at the same time indicate that classification is very much dependent on
the  data  sets  for  the  FWD PR component), the differences  between the isolated  and  tlie
best experiment are statistically insignificant.

Again no direct correlation can be observed between the entropy figures and learner
performance. In particular, the experiments with the smallest ERs do not produce better
results than those with higher ERs. We see no trend that would suggest that the number
of components to learn influences good or bad performance. III general, other than for
the best scores, there are no significant differences between the scores iii this experimental
matrix.

CONCLUSION The outcome of class partitioning on the forward-pointing problem compo-
nent is in line with those of the previous two components, producing nearly identical top
scores for MBL and RI. Both classifiers significantly improve with respect to the complex
experiment, but only RI with respect to the baseline.

A remarkable finding of this matrix of experiments is that it is beneficial to learn
forward-pointing problems together with task-related acts. Since this has also been found
earlier (in Section 5.2.1). we assume that TRAs show a consistent patterning with the
presence of forward-pointing problems. In Section 5.5 we investigate this issue in more
detail.

5.4.2 Feature partitioning
Table 5.9 displays the results obtained on learning the forward-pointing problem based
on isolated feature groups. The feature partitioning experiments on the forward-pointing
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Algorithm Class label Afetric
acc pre rec      F

baseline 64.8 61.3 50.6 55.3

2.4 3.8 3.3 2.7

AIBL F\\'D PR 68.1 67.7 49.6 57.0
2.6 4.9 7.0 5.5

TRA_FWD PR 68.6 67.1 53.5 59.4
2.6 4.4 5.4 4.1

SLOT_FWD PR 67.3 65.4 51.7 57.5
3.4 4.5 7.1 5.5

FWD PR_Bki'D PR 67.6 65.6 52.4 58.0

2.0 4.9 5.3 4.3

TRA_SLOT_FWD PR 67.5 66.2 50.4 57.1

2.8 4.2 4.9 4.3

TRA_Fri'D PR_BWD PR 68.5 67.0 53.0 59.1
2.6 4.1 4.7 4.0

SLOT_FWD PR_BWD PR 65.7 63.4 48.1 54.6
2.3 2.8 5.1      3.9

TRA_SLOT_FWD PR_BWD PR 66.7 65.4 48.3 55.4
2.5 .9.9 4.5 3.8

RI        FWD PR 64.8 63.9 54.9 54.8

3.2 8.0 23.4 11.5

TRA_FWD PR 65.6 59.8 68.5 62.6
3.0 5.5 13.4 5.2

SLOT_FWD PR 66.4 65.0 50.2 56.2
2.9 5.3 7.0 3.7

FWD PR_BWD PR 67.8 67.3 50.5 57.2

2.1 5.3 7.6 4.8

TRA_SLOT_FWD PR 66.4 64.3 50.3 55.7

3.0 4.5 11.5 0.8

TRA_FWD PR_BWD PR 66.3 63.2 55.2 57.8

1.9 4.8 12.4 6.1

SLOT_FWD PR_BWD PR 66.1 64.1 50.8 55.5

1.4 4.4 9.9 6.1

TRA_SLOT-FWD PR_BWD PR 66.2 64.1 50.6 55.6

2.5 4.0 11.8 7.0

Table 5.8: Scores with standard deviation produced by MBL and RI on shallow interpre-
tation of the FORWARD-POINTING PROBLEM component, averaged over 10-fold
CV experiments: accuracy. alid proportionally weighted precision, recall and F-score inea-
sured on the classification of slot type. The highest score is set iii boldface. The italicised
bottom lines show the results of the complex experiment. Scores of the prompt baseline
are provided in the top row.
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Algorithill Optillial class label Featiire gr(,zip AIetric

acc pre rec       F

AIBI. TRA_FWD PR ALL 68.6 67.1 53.5 59.4
2.6 4.4     5.4     4.1

DAI 66.8 62.5 57.4 59.8
10 -1.3 4.7 4.1

ASR 64.5 61.1 48.2 53.6

1.8 2.8         7.:1         5.2

PROS 58.2 51.5 53.8 52.5

2.3 1.5 4.3 2.2

RI          TRA_FWD PR ALL 65.6 59.8 68.5 62.6

3.0 5.5 13.4 5.2

DM 62.8 56.6 68.2 59.8
3.5 6.4 18.8 9.7

ASR 65.0 57.9 72.1 63.5

2.() 3.9 12.2 4.7

PROS 50.9 46.2 81.9 57.7

4.7 3.7 22.0 8.4

Table 5.9. Perforniance of the three feature groups iii experiinents by AIBL and RI on the
FORWARD-POINTING PROBLEM Coltipone"t witli optimised class labelling. The
highest score is set in boldface. The italicised top rows in the sections show the scores of
learning on all features.

problem compotient diverge at some  points  froni  the trend observed  so  far (i.e.. that the
ASR grotip contributes most  to classification)

It turns out that AIBL outperforms the experiment utilising all features when it lises the
isolated DM group. although statistically this difference is not significant. Remarkably.
although RI also attains the exact same score on the isolated DAI group. this is not. RI's
best  score  on  the  forward-pointing  problem  coniponetit:   Rl  litilises  the  ASR group  to  the
highest extent: in the featzire partitioning experinients. since this group outperforins the
experiment on all featiires (although 11Ot significantly).

This means that the two classifiers make tise of tlie ASR grozip to a different extent
ill predicting FWD PR: AIBL benefits less from the ASR grolip than RI does. attaining a
lower score in that experiment than 011 all the features. Coinparing the highest scores
obtained by the two classifiers (i.e.. the F-score on the isolated DAI featzire group foi·MBL
aiid the F-score on the isolated  DAI  feature groiip  for  Rl).  we  again find tliat these scores
are statistically iiidistinguishable.

It can be established that the iinproveinents are the result of an increased recall with
respect to the experiments witli the total feature vector. Namely. the recall of MBL arises
from 53.53  to 57.49. and that of Ill from 68.5K  to 72.1W.  At  the same time. the precision
,scores drop. Looking at the classification logs we indeed find that iii the experiments that
lise the isolated feature groups there is less miSClassification of the PROB cases of the
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FWD PR component, and more ruisclassification of the OK cases, leading to the modified
precision and recall figures.

5.4.3 Detailed analysis
When looking at the induced rule sets using the DM group, we see that on all but one
data set the class left as default in the rule set is S_PROB, indicating that it is best for
RI'S accuracy to leave this frequent class as majority class. On the remaining class labels
that contain the PROB label (e.g., A;S...PROB, N;S...PROB, N...PROB) both the coverage and
the precision of the rules are low. In order to examine the conditions more thoroughly, we
run an experiment on the full data set with RJ. Below we reproduce the induced rule set.

I If 'from' E sysBOvV 1\ prompt t ~ 3 = EMPTYthen S_PROB.
2 If 'to.Pf" E sysBOW A prompt t = Q_VA then S....PROB.
3 If 'to...PP' E prev sysBOW A 'again' E sysBOvV then S_OK.
4 If'toYP' E prey sysBOW 1\ 'when' E sysBO\i\f /\ 'the' E sysBOW then S_OK.
5 If 'connection' E sysBOW then N_OK.
6 If 'so' E sysBOvV /\ 'and: rt sysBO\V then N_OI<.
7 If 'whether' E sysBOW then Y_OK.
S Else A;Y-PR.0B.

(493/300)
(53/45)
(95/44)
(52/42)

(489/308)
(193/146)

(44/40)
(3/1391)

There are 8 rules in the obtained rule set. The default class is S_PROB. \Ve see that
only rule 1 and 2 contain PROS cases. It is clear that both rules 1 and 2 refer to the same
dialogue context. Rule 1 predicts communication problems in case the system asks about
the departure station, which typically happens in the very first system turn or in case
the prompt is repeated. Note that the second condition, made 011 the dialogue history:
also indicates this: the third prompt is empty, meaning that only two prompts have been
given up to that point of the interaction. Rule 2 predicts communication problems in
case the system asks about the destination station (first condition) and the departure
station simultaneously (second condition). Although the precision of these two rules is
not high, they reveal that the opening prompt is a major problem source in our dialogues.
The finding that MBL utilises the isolated OM group optimally in classifying forward-
pointing problems relates to the frequency-based observations in Section 4.3.1 that already
suggested that some system prompts correlate strongly with forward-pointing problems.
In accordance with the findings in [Lendvai and Maruster 20031, these results suggest that
the prompt design of the aVIS system might be the cause of certain communication errors.

In order to see what information in the ASR features contributes to the relatively high
classification scores, we examine the rule sets induced by RI 011 the isolated ASR group.
The rules show most conditioning all the length of the most confident string: e.g., if this
is relatively long [i.e., consists of Dille or more words): or, if the top confidence score is
above a certain value, then the input is predicted to cause a problem. Interestingly, a lot
of conditions are made on the presence of the words 'no' and 'not" indicating that turns
in which users signal a problem are often misrecognised again in the next turn.

Since so far we have looked at rules in which FWD PR is co-learnt with TRA, it is also
interesting to see what rules are induced when the forward-pointing problem component
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is learnt in isolation. In the isolated experiment the induced rule sets are very small,
consisting of 4-7 rules. The optimal parameter setting automatically found by parameter
search in most data sets (8 partitions) is to induce rules for the majority class (i.e., 01<,
cf. Section 4.2.3); leaving the minority class PROB as the default class on which no rules
are induced. In the remaining two partitions the following rules are induced for the PROS

class:

Partition 2:

1 If 'to-.PP' E sysBOW 1\ BF 2:: 3 /\ '1' E 80\\, 1\ 'again' rt. prey sysBOW then (173/35)
PROB.

2 If 'connection' f/. sysBOW /\ BF ~ 2 /\ 'one' ~ prev sysBOW /\ 'to2P' E (114/25)
BOvV 1\ RMSmean ~ 285 then PROI3.

3 If tcstringlength 2:: 4 /\ 'from' E prey sysBOW /\ 'again' ¢ sysBOW II tempo (64/16)
~ 2.05761 then PROB.

4 If 'connection' ¢ sysBOW A (from' E sysBOW A 'yet.' f/. prey sysBOW 1\ (55/8)
'#pause#' E prey BOW 1\ topconf S 760.83 then PROB.

S If topconf 2: 775.47/\ BF 2: 1/\ 'again' ¢ sysBOW A 'want,' E BOvV /\ 'from' (51/11)
E prey sysBOvV /\ RMSstdev ::; 695 then PROS.

6 Else OIC (1805/989)

Partition 5:

1 If topconf 2: 781.91 /\ I3F 2:. 2 1\ prompt t - 3 = '#ernpty#' /\ RMSmax ~ (65/6)
5248 /\ FOmax ::; 177 /\ 'good morning' ¢ prey sysBOW then PROS.

2 If 'to2P' E sysBOW /\ BF ::>3 /\ 'but' ¢ sysBOW /\ FOmax ::> 236 /\ (88/10)
HMSmean :s; 285 then PROB.

3 If tcstriuglength 2: 4 /\ 'yet.' f/. prey sysBOW /\ topconfpernode :s; 1.20.439 1\ (44/5)
'from' E prey sysBO\¥ /\ RMSstdev 2: 564 /\ FOmax ~ 245 then PROS.

4 If topcouf g 785.33 /\ BF::> 2 II 'me' ¢ prey sysBOW II 'to2P' E BOW then (235/110)
PROS.

5 If'toJ>P' E sysBOW /\ topccnfperuode x 137.984/\ 'but.' ¢ sysBOW /\ 'where' (108/43)
E sysBOW then PROS.

6 If 'connection' f/. sysBOW /\ tcpernodediff 2: 0.008469 /\ 'sorry' ¢ prey sys- (61/15)
BOW 1\ tcpernodediff 2: 0.132225 1\ topconfpemode 2: 115.57 then PROB.

7 If 'connection' ¢ sysBOW /\ 'yes' E BOW /\ (but' ¢ sysBOW /\ 'o'clock' E (155/145)
BOW then PROB.

8 Else OK. (1485/584)

vVe see that the rules refer to highly specific.and complex dialogue situations, informing
about a number of subtilities. For example, the first rule induced on Partition 2 describes
the situation when the system asks the user to repeat the input concerning the destination
station. The system asks this prompt for the first time (i.e., 'could you say again' is not
in the previous system BOW). The branching factor of the user input is high, probably
also contributing to incorrect processing of the user's reply.
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It can be established from the rule sets that RI makes extensive use of features that are
numeric  (i.e..  confidence-based  features  as well as prosodic features). probably becatise it
can efficiently separate classes on the basis of ntimeric splits. Lexical elements are also
widely  used  in the conditions.  both  from  the  system  and  the  user  BOW.

5.5 Backward-pointing problems
In the first chapter of our study we noted that in case the dialogue system assumes it is
iinable to correctly process the user input. it typically repeats its prompt. A repeated
prompt thus always nieans tliat there is a coitiinzinication problem between system and
user  and  the  system is aware  of t his. Naturally.  our  goal  is  to  discover all other (011111111-

nication  problems  (as  well).  not  only  the  ones  that are signalled  by the system  anyway.
We coinputed what the perfornialice of a 'system-knows' strategy is in problem aware-
ness. This baseline strategy is to always assuTIie a backward-pointing problem (i.e.. the
user beconies aware of a commutiication problem) when the system repeats its previolis
proinpt (972 times in the corpus) Howevei·. the scores of this baseline are lower thaii those
of the pronipt baseline: although the precision of this strategy is 100%. its recall is only
60.2%. yielding a 75.1 F-score and 82.8% accuracy. Although the system-knows baseline
is interesting from the point of view of error rediiction with respect to the given SDS.
from the point of view of the improveinent of classification perforniance of our learners it
is niore informative to compare those to tlie (higher) prompt baseline.

5.5.1 Class partitioning
The class partitioning experimental matrix on backward-pointing problems is displayed in
Table 5.10.

BEST SCORES  In the perfornialice of AIBL there is no significant difference between the
best score produced iii co-learning TRA_SLOT_BWD PR and the score of TRA_BWD PR. IIi
the perforinance of IiI there are two identical best scores produced in co-learning TRA_BwD
PR and BWD PR iii isolation. This is a tinique result since in no other class partitioning
experiment were two identically highest scores produced. Both learners improve over
the complex experiment iii theii· best scores significantly (AIBL: t =2.7. p <0.01. RI:
t =7.3. p <0.01).  as  well  as  over  the baseline. With  the best scores both learners obtain
a substantial error reduction oil the F-score of the complex experiment: the reduction is
24% for MBL. and 46% for Ill.

The most noteworthy outcome of the class partitioning experiments on the backward-
pointing  problem  component  is  that  both classifiers produce scores  that are liighest.  or
iiisigiiificantly  different  from the highest. by co-learning  the  BWD PR with  the  TRA  coin-
ponent. This is remarkable. since the situation was the same in the class partitioning
experiinents of the task-related  act  coitiponetit (cf. Table  5.2)

EFFECT OF COAIPONENT TYPES AND NUAIBER OF CLASS LABELS The results of combina-
tions of tliree coiiiponents are soinewhat lower for IiI tlian the results of conibinations of
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Algorithm Class label  Ietric
acc pre rec       F

baseline 86.2 96.2 70.7   81.3

2.3 1.9 5.7 3.9

NIBL BK'D PR 89.9 95.0 80.7 87.2

1.4 1.3 3.3 2.3

TRA_BWD PR 91.5 94.3 85.4 89.7

0.8 1.7 2.2 1.4

SLOT_BWD PR 91.5 92.5 87.4 89.9

1.2 2.3 2.2      1.5

FWD PR_BWD PR 90.0 94.0 82.1 87.6
1.1 2.5 3.9 1.8

TRA_SLOT_BWD PR 92.3 93.7 88.1 90.8
0.9 2.5 2.1 1.2

TRA_FWD PR_BWD PR 90.4 95.2 81.8 87.9

1.1 2.4 3.9 2.1

SLOT_FWD PR_BWD PR 89.6 93.5 81.5 87.0
1.6 2.9 4.5 2.7

TRA_SLOT-FWD PR_BWD PR 90.2 94.0 82.3 87.8

2.5     3.5     4.4     3.8

RI          BWD PR 90.5 92.4 85.1 88.5
1.4 3.5 3.9      1.5

TRA_BWD PR 90.5 92.1 85.1 88.5
1.1 1.5 2.6 1.6

SLOT_BWD PR 88.9 91.0 82.6 86.4

2.5 3.9 5.0 3.2

FWD PR_BWD PR 89.2 94.8 79.4 86.3

0.9 2.6 3.4 1.6

TRA_SLOT_BWD PR 87.0 89.9 78.8 83.9

2.0 3.9 3.4     2.5

TRA_FWD PR_BWD PR 88.4 93.5 78.7 85.4

1.2 1.5 2.7 1.7

SLOT_FWD PR_BWD PR 85.6 88.2 77.8 82.2

1.9 5.1 7.5 2.9

TRA_SLOT_FWD PR_BWD PR 83.6 89.6 70.8 78.6

2.6 4.7 8.1 9. fl

Table 5.10: Scores with standard deviation  prodiiced  by  MBL  and  RI on shallow interpre-
tation of the BACKWARD-POINTING PROBLEM component, averaged over 10-fold
CV experiments: accuracy. and proportionally weighted precision. recall and F-score niea-
sured on the classification of slot type. The highest score is set in boldface. The italicised
bottom lines show the results of the complex experiment. Scores of the prompt baseline
are provided in the top row.
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less components: however, this is not the case for AIBL. The presence of the FWD PR com-
ponent does not seem to influence the performance of RI (note that for example the F-score
of the FWD PR_BWD PR experiment is only 0.1 point lower than that of the SLOT_BWD PR
experiment, while the latter does not  include the difficult  FWD PR component). but seems
to influence that of MBL (compare e.g. the same combinations)

The isolated experiment. in which ERs are alniost Inaximal, leads to a relatively lower
result for MBL (the F-score of this experiment is even lower than that of the complex
one).   however.   RI  produces   (one  of) its highest score  on  it:   this outcome again signals
the difference of working principle between our two classifiers. and illustrates well that an
algorithm's bias can lead to skewed results on an 11110ptinialised task.

CONCLUSION  As in the case of the three other SI Corilpollents, based on the class partition-
ing experiments on the backward-pointing problem component we can establish that class
partitioning has a substantial, positive influence on our classifiers, resulting in practically
identical performances of MBL and Rl.

Again. co-learning the task-related act component with the backward-pointing problem
component has a positive effect on both learners: Rl obtains (one of) its best score on
this combination, and the difference between the score attained on this combination and
the best score by MBL is insignificant These results point to the same trend that was
observed in Section 5.2.1. suggesting that awareness of problems is useful to be regarded
as  a  backchannelling act, since  we have found some evidence  that   BWD   PR is closer  in
its patterning to the task-related acts than to the isolated conceptual category 'problem
awareness'.

5.5.2 Feature partitioning
The outcomes of the feature partitioning experiments are displayed iIi Table 5.11. Note
that for RI we run experiments on both of the winning class combinations.

The results of the feature partitioning experinients indicate that, similarly to the per-
formance of MBL  on  the  FWD PR componeiit, most information comes  from  the DM features
when classifying BWD PR. It is noteworthy that scores of the learners on the DM group
iniprove above the system-knows baseline by a large margin, indicating that the classifiers
reduce a large part of the errors the system is not aware of by drawing on information
from the dialogue manager itself. Both MBL and RI (in the isolated experiment) produce a
34% error reduction with respect to the system-knows baseline (note that their accuracy
is the same. 88.7%, on the DM-group experiment).

Obviously, the information encoded by the DM features provides most clues to the
identification of a communication problem for the BWD PR component: however, our em-
pirical investigation shows that other features contribute to this identification as well. since
in the experiment drawing on all features a significantly higher score is attained by both
classifiers (MBL: t =11.9. p <0.01. RI: t -5.4. p <0.01)

We observe that the contribution of prosodic features is less than we expected ori
basis of their correlation  with  the  BWD PR class (cf. Section 4.3.3.1). This indicates  that
in our study prosody provides less information to detecting awareness of comniunication
problems than in other works (cf. Section 2.3.4).
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Algorithrii Optimal class label Feature group Aletric

aec I)re rec            F

MBL TRA_SLOT_BWD PR ALL 92.3 93.7 88.1 90.8

0.9 2.5 2.1 1.2

DM 88.7 90.5 82.6 86.3

1.1 3.1 2.8 1.7

ASR 76.8 77.3 66.0 71.0

1.7 4.6 2.7 1.8

PROS 54.4 47.0 42.8 44.6

2.9 4.8 5.4 4.3

RI                         B WD PR ALL 90.5 92.4 85.1 88.5

1.4 3.5 19 1.5

DM 88.7 94.1 78.8 85.7
1.3 3.4 4.0 1.8

ASR 74.8 76.7 63.3 67.7

2.9 8.0 13.0 6.3

PROS 56.4 50.5 37.6 38.8

2.3 4.2 20.3 16.9

TRA_BWD PR ALL 90.5 92.1 85.1 88.5

1.1 1.5 2.6 1.6

DM 88.4 95.7 76.6 85.0

1.5 1.4 3.9 2.5

ASR 75.2 78.5 59.6 66.9

2.8 4.4 10.4 6.1

PROS 57.4 54.2 6.5 10.8

2.9 23.7 5.8 8.8

Table 5.11: Performance of the three feature  groups  in experiments  by  MBL  and  RI  on  the
BACKWARD-POINTING PROBLEM coniponent with optimised class labelling. The
highest score is set in boldface. The italicised top rows in the sections show the scores of
learning on all features.
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Since the outcomes of the feature partitioning experiments show the same trend across
learners and within learners. we conclude that the outcomes of feature partitioning are
dependent on the component to be classified, but possibly not on the class partitioning
type.  i.e.. the compositi011 of the class label  (see the coinparisoli of BWD  PR and TRA _BWD
PR).    To  substantiate  this  hypothesis would however require more comparisons, which  is
beyond the scope of the current studv.

5.5.3 Detailed analysis
When looking at the induced rule sets from the DAI group features. we see that only
on two data sets is the default class S_PROB: this shows that in general it is easier for
RI to induce rules for the isolated PROB class (note that this was not the case for the
FWD PR component). Iii order to examine  classification  by  RI more thoroughly.  we run  an
experiment on the full data set.  The settings we use are the majority values of the settings
optimised by WPS in the experiment utilising all features: cover at least 20 examples. find
rules for least frequent classes first, i.e.. order rules by increasing frequency. expect noisy
data, allow negation in conditions, don't simplify liypothesis  (i.e.,  multiply coding cost  by
1),  set loss ratio  to 1. optimise  1 titne. Below we reproduce the induced  rule  set.

1    If 'not' f sysBOW A 'I' E sysBOW then PROB. (849/3)

2    If 'where' E sysBOW then PROB. (312/19)

3    If -and' E svsBOW then PROB. (109/54)

4    If 'to_PP' e prev sysBOW A 'which' e sysBOW then PROB. (44/26)

5   Else OK. (2023/299)

There are five rules induced from the data.  It illustrates the bias of RI well that the
first two rules capture our system-knows baseline. The first rule covers situations when
the systeni apologises for not understanding the user input, the second rule refers to a
repeated prompt about the departure and/or destination place (since the first tillie the
system poses a prompt   wit h   the word 'where'   is the opening prompt.   iIi an answer   to
which the user can never signal awareness of problems). The third rule conditions  on  the
word 'and' that is in system prompt that verifies travel time (e.g., 'Do you want to travel
between  four and twelve  in the morning?').   The  fourth  rule  seems to indicate a repeated
system question about the destination place.

The rule set reveals that most often users become aware of System problems froin
apologising and repeated prompts. Interestingly, no rules are made that would characterise
cases where the system's erroneous implicit verification reveals incorrect input processing:
this suggests that tliese cases are hard to capture 011 the basis of prompt words only.
Note that none of the conditions includes prompt types (e.g.  Q_VA).  We hypothesise that
prompt types are better captured  by other. user-input-related features   (e.g.. the lexical
items  in the user's word graph). which explains  why the isolated DAI feature group  is
unable to outperform the experiment that uses all features.

To ascertain this. we run an experiment on the full data set with all the features
available. The settings we use are identical to those used for the DAI full experiment
above. The induced rule set is displayed below.



101 5.6 Discussion

1    If 'Ilot' E sy,BOW A 'I' E sysBOW then PROB. (849/3)
2    If'where' e sysBOW then PROB. (312/19)
3    If 'o'clock' E prev sysBOW A topconf 2 777.2 then PROB. (97/24)

4    If 'to_PP' E Prev sysBOW A prev BF 2 2 A 'to_PP' E sysBOW A 'uh' 1 prev (33/7)

BOW then PROB.
5    If 'o'clock' e prev sysBOW A 'at' 0 sysBOW then PROB. (71/33)

6    If 'to_PP' f prev sysBOW A 'when' 0 sysBOW A 'time' 1 sysBOW A 'yes' % (26/4)

BOW A 'which' € prev sysBOW then PROB.
7   Else OK. (2035/225)

The first two rules. as above. learn the system-knows baseline.  The fourth rule seems to
be an extended variant of rule 4 from the DAl rule set: a repeated system question about
the destination place.  It includes conditions on the branching factor and the absence of a
filled pause (7ih') iIi the previous input's recognition: these values seem to indicate either
that in the previous turn the user was already aware of a problem (the filled pause may
cue  hesitation),  or  that the previous user turn was probleniatically processed  (note  the
large braiiching factor) and heiice needs to be re-entered now. We also see that this rule,
although it covers somewhat less examples than its 'simpler' version, is more precise (33/7
vs 44/26).

5.6 Discussion
On the basis of our extensive investigation of learner performance on the four components
of the SI task, we came to the following conclusions.

5.6.1 Class label design
We investigated task design via systematic class partitioning. The observed trends suggest
that class label design has a substantial impact 011 learrier performance. We can establish
that it is beneficial to perform class partitioning for the SI task, since all components
improved significantly over the sc.ore attained in the complex experiment. and also over
the prompt baseline (the latter with the exception of hIBL on the FWD PR component).
A general trend seems to be that it iS optimal to combine at most two SI components
(optimal  in 7 cases  out   of  8).   and,   in   case two components are conibined.  one  of  them
should be the TRA component.

It turns out to be optimal for both the TRA and the BWD PR component to be co-
learnt. which implies that BWD PR could be best labelled as a task-related act and merged
in the TRA componeiit of the SI module. This might seem to reflect common knowledge,
however, note that previous work on detecting BWD PR (cf. Section 2.2.4) has not drawn
such a conclusion. Given this finding. it might in general be advisable for the automatic
detection of awareness sites to learn those in combination with other dialogue-act-like
class labels  (i.e.. to detect probleni   and/or   slot-filling   and/or   negation  .  etc.),  instead
of learning it  iii a two-class fashion (i.e.. detect problem   or '110 problem).

Entropy in a task does not seem to deterinine performance. Note that the entropy
figures in Table 5.1 are based on sheer counts of class labels. not taking into account that
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in the enipirical experinients the iriforniation in the features and the classifiers bias largely
deterinine learnitig performalice.

5.6.2 Feature design
We liave forind tliat iii the lilajority of cases (5 tiines out of 8) the ASR feature groiip
provides most inforiiiation to classifying a component. Note that this group contaiiis the
largest nuniber of featiires C 1.525). Iii one case the ASR feature group attains a higher
scoie  than  the  f'1111  feattire  expetiitieiit.  although  not  on  a significant scale. Three ti11ies
the DAI featitre grc,tip. ccmtainizig 944 featiires. provides most information for classifv-
ing a componerit.  (,iice fc,r  classifyitig forward-pointing problems. and twice for dasifyiiig
backward-poititiiig pr(,1)lenis. Iii otie case this group outperforms the ftill feature experi-
ment (altliough 11(,t significantly).

Prosodic featiires (the siiiallest 11111111)er of features. 13) in general contribute least to
the tasks. suggesting that althotigh it is possible to analyse (components of) the SI task iii
prosodic terms (iii acc=ordatic·(, with the findings of e.g.  [Hirschberg et al. 2004}). it might
be more optimal to coiiibine tliese features with other. automatically available pieces of
information. At the Saille time. since [Hirscliberg et al. 2004] find that prosodic ationialies
within a certain speaker's inpitt are inore iniportant for predicting recognition probleins
tlian anonialies across speakers. 01ir prosodic features might produce better perforinance
when norinaliseci with respect to speake.r identity. We conducted a pilot study on probleiIi
detect ioii iisiiig tiortiialis(Yl  prosoclic f(,atiires. liowever.  it  has  iiot  led to inure  sticcess  of
the prol,lelil cc,tiipotiezits of SI.

We cotic·111(le tliat processitig tlie itiforitiatioii Coming from all sources turils out to be
best for classification, iiiiplying 011 the oiie lia.iici that it is the largest set of featiires tliat
seenis to be most liseftil for 01ir task, atid on the other. that the SI task niay not reqitire
explicit selection of features. which is typically a computationally expensive enterprise.  On
more large-scale itivestigatioti of iticlividual featiires in detecting commiinication problenis
see  [Lendvai et al.  20(}21,1.

5.6.3  MBL and RI compared
Our empirical investigatic,Ii sliows that leariiing performance becomes practically identical
for both the meiiiory-basecl learner and the rule induction learner when the tasks are
optintised by class partitioning. AIost iiiiportantly. when the best score of MBL and RI is
conipared  per  coinpoiieiit. we observe tliat  011 all tasks  AIBL  and  RI  produce  statistically
indistinguishable  performance.     This  outcome further supports the hypothesis   and   the

evidence siipplied for the findings of [Daelemans et al. 1999. Daelemans and Hoste 20021,
whereas it contradicts those iii [Rotarri and Litman 2003] (see Section 3.1)

In  general.  the scores  prodticed  1)Y  R I  are somewhat lower tlian those  by  MBL.  aiid  also
exhibit more variatioll. RI procitices iniprovelnelit in the class partitioning experiments 011
a larger scale than AIBL: 01)violisly. it has a imich larger margin to improve 011 as coiiipareci
to the coniplex  experiixiezit.  iii  which  AIBL  produced  relatively high scores already.   We  see
that RI oftell provicles illsiglit ilito tlle featilles that it caIi use particularly well iii a task.
It wozild be possible to atialys(' featiire tisage ill AIBL as Well. for exainple by observiiig
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assigned feature weights and selected nearest lieighbours: however. such aii arialysis lies
out of the scope of the current study.

5.6.4 Evaluation
The extent to which we are able to classify the individual SI compoiients is liot easy to
compare with those iii other studies. siiice many important factors are quite different iii
most  of the surveyed studies  (cf.   Section  2.2):  not  only the learners. the coinputatioiial
costs of the inethod. and the fine-grainedness of classes, but the eniployed evaluative
1Iieasures as well.  For an easy overview, iii Table 5.12 we reproduce the best scores attained
on the individual Sl coinponents in the information partitioning experiments described iii
this chapter.

Algorithm Class label Metric
ac(· I-)re rec          F

MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7

SLOT 83.5 90.7 84.9 87.7

2.2 1.8 2.6 2.0

FWD PR 68.6 67.1 53.5 59.4

2.6 4.4 5.4 4.1

BWD PR 92.3 93.7 88.1 90.8

0.9 2.5 2.1 1.2

Rl TRA 86.0 92.0 89.1 90.5

1.7 2.0     1.5     1.5

SLOT 82.6 88.4 82.9 85.5

2.4 4.4 3.8 2.8

FWD PR 65.0 57.9 72.1 62.6

2.0 3.9 12.2 5.2

BWD PR 90.5 92.4 85.1 88.5

1.4 3.5 3.9 1.5

Table 5.12: Best scores produced by MBL and RI on the shallow interpretation coniponents
in optimal class- and feature design, averaged over 10-fold CV experiments.

The best scores reported in the literature on classifying dialogue acts (note that these
are niore large-scale than our TRAs) are in the range of 70-80% accuracy, recall, or F-
score  (cf. the surveys  in  [Choi et  al.  1999.  Reithinger and  Engel 2000]).   The  work  that
describes the study most siizzilar to ours about classification of slots is [Cettolo et al. 19961.
who report 67.27 accuracy on classifying recognised speech in terms of slots in the
travel domain   (by  Colnbining  a  rule  based  module  with   binary classification trees).     At
the same time. [Rayner and Hockey 2003] attain 77.8% accuracy on extractiiig semantic
atoms from spoken utterances. combining rule-based and n-gram-based methods. On clas-
sifying forward-pointing problems [Litman et al. 20001 and [Walker et al. 2000bj report
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a  top 93.55'i. respectively 86.29  accuracy. On classifying backward-pointing problems.

[Litman et al. 2001] report 80. 7% precision and 81.1% recall.

5.7 Summary
We hypothesised that learning the complex class label incorporating the four SI compo-
nents (cf. Chapter 4) niight not yield the optimal performance that can be attained with
our shallow approach to extracting pragniatic-semantic inforniation fr01Il spoken user in-
put. Our goal in the current chapter was to learn an optimal class and feature combination
for each SI component. The experimental results support our hypothesis that automat-
icall,A, searching for optimal class label combinations is possible, and that the results of
this can substantially improve ML performance on a task. Feature partitioning however
proved not to be beneficial for the learners on the SI task. suggesting that our learners
best utilise information from all knowledge sources in the SI task.

On the basis of the conducted atialyses we can state that AIBL and RI produce practi-
cally identical results on the SI task when both their parameters and the task composition
are optimised. We find no evidence that memory-based learning and rule induction at-
tain different performances depending on the task - reflected by the four different SI
components - or the employed features ·- reflected by the three different feature groups.

The fact that some menibers of some feature groups seem to supply more information
to the learners than others might seem to be a data=specific finding (see the analyses of
the induced rules). We would  like to emphasise however  that  the goal of our study is  not
to generate observations pertaining to the specific feature values reported here. but to
estimate the extent to which our method, pursued by a shallow approach for the detectioii
of a limited set of basic user input types - - that nonetheless aim to be general - of
human-machine interaction, is capable of producing a shallow interpretation of user input
to a SDS. From aii explanatory perspective however, inspecting the rules induced from
feature values can ex
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Filtering Information

The findings of the previous chapters revealed that our classifiers successfully use the
ASR word graph features in the SI module. However. noise that is supposedly present
iii these features, especially in the bag-of-words features, might interfere with their opti-
mal  utilisation.   In  1.1 we emphasised  that  both  the  user  input  to  a  SDS  and  the  ASR
output are often noisy. Disfiuencies such as filled pauses, repetitions, stutters, and un-
grammatical constructions are a main example of noisy user iiiput; iii fact, the occurrence
of disfiuencies in user utterances is regarded as a stunibling block for speech recognition,
aggravating imperfect  NLU (cf. [Stolcke et al. 1998b, Duchateau et  al.  2003]).   The  ASR
output often contains incorrectly recognised words, for instance because input cotitain-
ing words that are not covered by the ASR grammar may become completely garbled

[Rayner and Hockey 2003}.
Another cause of noise in the input might be the following.  Cettolo et al. 19961 claims

that not all semantic contents of an utterance may be relevant to the communication.
For example, based on the literature. syntactic head words seem to be more important
in NLP tasks than non-head words. Since it could be that some of the ASR features
represent noise or superfluous information that may have negative effect on interpreting
the spoken input, we hypothesise, based on the literature, that removing such iteins niay
lead to improved performance of the SI module.

Recently there is an increased interest in applying natural language processing tech-
niques directly to the word graph or the n-best list output of an ASR, which is claimed
to increase robustness of the interpretation systeni  IHe and Young 20041.   Some of these
approaches (e.g.. Ivan Noord et al.  19991) are deployed in a task and language dependent
way. implying that they need to be redeveloped for eacli new system. Others use statistical
techniques  to model errors  in  the  ASR output.  and  utilise  the  outcome  of such  processing
for  inforination  extraction  purposes  [Palmer  and Ostendorf 2001].  or to  disambiguate the
ASR output  [Koeling 20021.  At  the same time. hand-crafted rules  coiribined  with  various
data-driven classification techniques are also utilised for a variety of NLU tasks tliat incor-
porate the treatinent  of noise,  e.g. disfluency detection  Stolcke et al. 1998b]. recognition
error correction  Ringger  and  Allen 1997. Stolcke et al. 1998b. Zechner and Waibel  1998}.
interpretation of command and control tasks  Nakano et  al. 1999 Rayner and Hockey 2003].

105
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speech-to-speech translation [Kiefer  et   al.  2000].
Needless to say, directly processing the raw ASR hypotheses is a complicated task.

since instead of a linear sequence of words a graph or a large number of word strings (i.e.,
the paths generated from the graph) need to be treated. Furthermore. [Boves et al. 1996]
emphasise that such input may be defective since the recogniser may miss essential words
completely. whereas  Zechner aiid Waibel 1998] claim that the paths themselves may be
ungranimatical in a different way than disfluencies.

Iii the current chapter we iiivestigate whether filtering the word graph output, trans-
formed into n-best paths, iinproves performance of the SI niodule. We describe three
approaches that attempt to filter out tliose items from the n-best lists that may corre-
spond to noise or to superfluous information in the spoken input: (i) disfluencies. (ii)
words that are not tlie head of their syntactic chunk. and (iii) words that do not belong
to the set of 15 1110St frequent words in the bag-of-words. Filtering is applied to the user's
BOW contained in the feature vector. and the filtered feature vector is subsequently used
in learning the SI task as optimised in the previous chapter.

The first filtering method attempts to remove potential disfluencies from the word
graph automatically. since previous work suggests that this might be beneficial for auto-
matic processing of natural language (cf. e.g. [Heeman and Allen 1994, Spilker et al.  2001,
Spilker  et  al.  2000]). We describe ML-based techniques  that  aim  at  filtering  disfluencies
from the BOW vector: classification of disfluencies is carried out both by MBL and RI
that are trained on the Spoken Dutch Corpus (Corpus Gesproken Nederlands.  CGN).  The
disfiuency filtering technique is first evaluated on the CGN, and is subsequently applied
to the word graph material of the OVIS corpus.

Our second approach to filtering is to edit the user BOW based on syntactic knowledge.
Syntactic information is often  used in interpretation tasks (cf. Section  2.3). We again take
a shallow approach: syntactic analysis of the recognition lattice paths is performed with
a memory-based shallow parser tool. based on which all words but syntactic chunk heads
are removed from the set of recognised words. The words that are syntactic chunk heads
in the word graph paths are then used in the shallow interpretation task. Syntactic chunk
head words are claimed to represent semantic aspects of the entire chunk well enough to
be utilised in higher-level NLP tasks (cf. e.g. [Buchholz 2002, Hacioglu et al. 2004]). Our
technique of chunk non-head filtering allows to test the performance of syntactic chunk
heads in the SI module.

The third filtering method is based on word frequency. The approach taken in the work
of [Rotaru and Litman 2003] is to select the 9, as well as the 15 highest-ranked features
out of 141 according to their information gain calculated in various language learning
tasks (among others in classifying speech recognition errors and user awareness in spoken
dialogues).  We take a slightly different approach by selecting the same amount  (15)  from
the 1110St frequent words in the user's BOW, and filter out all other words from the BOW.
The impact of frequency-based filtering is again measured directly on the SI task.

The  structure  of the chapter  is the following. In Section  6.1 we describe disfluency
filtering: we introduce the notion of a disfluency. and report on earlier work on automated
processing of disfluencies.  In the first part of the section our approach to ML-based
disfluency detection is explained. introducing the training material  (the CGN corpus).
and reporting on the performance of our technique on the CGN corpus.  In the second
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part we give an account of how disfluency detection is performed on the OVIS word grapli
paths,  and  finally  present  the  experiniental findings about incorporating  the  disfluency
filtered BOWs into the SI module.

Iii Section 6.2 we utilise a menwry-based shallow parser to identify syntactic chunk
heads in the OVIS niaterial. after which the chunk heads are used (together with the
other features) to classify the SI coInponents. Finally. in Section 6.3 we give an account of
frequency-based filtering. The chapter is concluded by discussing the findings about the
filtering approaches. and by sumniarising the treated issues.

6.1 Filtering disfluencies
The group of speaker phenomena commody referred to as disfluencies includes hesitations,
filled pauses, laughter, repetitions, false starts, abandoned grammatical constituents, iii-
completely uttered words (also called as fragments), self-corrections.   and  the  like.     Al-
though human listeners are good at handling disfluent items in spoken language utter-
ances (cf.  Levelt 1989, Shriberg  19941).  they are likely to cause  confusion  when  present
in the input to automatic NLP systems, resulting in poor human-computer interaction
[Nakatani and Hirschberg 1994, Eklund and Shriberg  19981

It has not been established in the literature in what ways precisely disfluencies intro-
duce ungrammaticality into the structure of an utterance. Figure 6.1 shows part of an
utterance that has disfluent elements iii it. The example, taken from the CGN corpus.
features a fragmented word ('interne-', i.e., an incomplete version of the word 'internet')
within the larger chunk of the abandoned constituent 'van interne'. which is corrected by
the speaker after  the  editing term 'sorry' by replacing  it  with  'van  electronic  commerce'
As the example shows. often there is structure in and around disfluent chunks: before
the interruption point (i.e., where the speaker interrupts himself) there may be word(s)
meant  to be erased (called the reparandum), whereas the word(s) that follow it (called
the repair) may be intended to replace the erased part.

'Itaditional implementations of speech recognisers, taggers, and parsers do not treat
disfluent passages in the input as constituents of the sezitence but rather as items that
need to be discarded [Bear et al. 1992, McKelvie 1998, Nakatani and Hirschberg 1994,
Oviatt 1995, Spilker et al. 2001}. As opposed to this, some research has also focused on
processing ill-formed input: for example, [Charniak and Johnson 2001] claim that once a
parser is trained on ungrammatical data, ill-formedness in new material does not have a
negative effect on the parser.

In many situations disfluent items can play a discourse role (cf. [Levelt 1989} on
context-sensitive monitoring). which Inay be useful to take into consideration for a number
of NLP tasks. Our approach in the current study is simply to locate and remove disfluent
passages in the word graph lattice of recognised dialogues, and investigate whether doing
so improves further processing of these dialogues.
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'...  het veilig gebruik Ivan interne-_1 2 sorry314 van electronic commerce" ...,
the safe usage of interne- sorry of electronic commerce

Figure 6.1: Example disfiuency from the CGN corpus. saniple nr. fn000056. Notation: 1:
reparandum. 2: interruption point. 3: editing term, 4: disfluent chunk. 5: repair. Note
that 11Sually the first occurrence of a repeated word is regarded as disfluent (e.g. in our case the
first occurrence  of  ' van' is marked as inside  the  disfluent  chunk).

6.1.1 Filtering disfluencies from transcribed words
Researchers who have worked on automatic disfluency detection in the past decades include
[Hindle 1983.  Bear et al.  1992,  Heeman and Allen 1994. Nakatani and Hirschberg 1994].
[Oviatt 1995. Shriberg et  al.  20011.  Alost of their work involves relatively sniall datasets.
since annotating discourse for disfluencies is a difficult aiid time-consuming process. In ad-
dition. many of these studies tend to focus on a subset of disfluent phenomena. such as re-
pairs or fragmented words, and are usually concerned with (American) English.  Exceptions
include [Eklund and Shriberg 1998. Eklund 2004]on Swedish, and [Spilker et al. 20011 on
German. AIany studies invest in trying to group disfluencies according to various aspects,
which is often a hard task since these phenomena are manifold in nature, an issue which
is extensively treated in 1Eklund 2004].

In the literature it is often assumed that once the interruption point is determiiied
(most  often  by  identifying  an  incompletely  pronounced  word).  it is possible to carry  out
complete reconstruction of the correct sentence structure automatically [Bear et al. 1992.
Heeinan 1999. Sliriberg et  al.  2001}.  The presence of a fragmented  word  is often regarded
as an integral property of a speech repair atid is employed as a readily available feature
in automatic processing of disfiziencies   (cf.      [Nakatani and Hirschberg 1994]), although
[Spilker et al. 2001] aiid [Heeman 1999] observe that finding word fraginents automatically
is an unsolved problem. since automatic identification of a fragmented word is not straight-
forward. In [Lendvai 2003] we concentrated on the automatic detection of fragmented vs
non-fragmented words. Our pilot study concluded that classification of fragmented words
could be carried out by memory-based learning with a 74.9 F-score. Moreover, unlike
some disfluency types. for example filled pauses  ('uhin'), fragmented words are typically
not recognised by ASRs.

Iii the curreilt ,study we aim at detecting any types of disfluencies via classification by
MBL and RI. Since disfluencies are not systeinatically indicated in the traliscriptions of user
input in the OVIS corpus. we lack the possibility to train on OVIS. After listening to the
recorded speech material of the OVIS corpus however, we concluded that OVIS contains
artificially clean traliscriptions. since some user turns contain disfluent or ungrammatical
items that are not transcribed iii the corpus. Iii addition, [Eklund 2004] reports that
disfluencies frequently occur iii human-machine travel booking dialogues.

Therefore. iii the current sttidy our two classifiers are trained on the CGN which
contains annotatiotis of disfluencies. Classification performance is first evaluated on the
CGN, after which the same technique is applied to tlie paths in the speecli recognition
lattice of the OVIS dialogues. The impact of filtering is directly measured on the SI task.
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6.1.1.1  Introduction to the CGN corpus

The CGN contains huinan-human dialogues. monologues. and niziltilogues that are sairi-
pled from diKerent regions of the Netherlands and the Flemish area of Belgium.  This
corpus is designed to provide a research source for language and speech engineers and
linguists.     It   consists  of  1.000   hours   of  orthographically transcribed speech from  adult
speakers of contemporary standard Dutch.  For approximately 100 hours of speech. which
is about one million words from the total material. detailed annotatioiis are macie on the
phonetic and syntactic levels. The discourses are of various levels of spoiitaneity. ranging
froni televisioii broadcasts to telephone conversations. The number of speakers in CGN
spans froin 1 (iii newsreading files) to 7 (in parliamentary sessions). Each speaker is a»
signed a unique identification code. For details on the overall design of the corpus see
[Oostdijk  20021.

For the curreiit stiicly we macie use of CGN Release 6. As disftziericies are reported to
occur both in dialogue and monologue [Shriberg et  al. 2001, Eklund 2004], we make use of
1-speaker data as  well. Our material comprises a representative sample  of  1,322  full  dis-
courses. consisting of 1,009,968 lexical tokens iii 129.932 utterances. This means that one
dialogue consists of 100 sentences on average. Utteraiice segmentation is performed auto-
matically in the corpus. based on the detection of longer pauses in the speech material.  The
punctuation marks at the end of segments can be period ' ', question mark  ?'. and a row of
three  dots  '...'. the latter standing for unfinished  sentences. The average utterance lengtli
is 7.8 words in the corpus. All sentences are orthographically transcribed, part-of-speech-
tagged.  leminatised,  and morpho-syntactically tagged  [Van der Wouden et  al.  2002].    In
addition, a full syntactic dependency tree is manually built for each utterance.

We illustrate the CGN material iii Figure 6.2, featuring the first turns of a spontaneous
dialogue, and in Figure 6.3, showing a more restricted 2-speaker discourse frolil tile corpils.
The dialogues are translated into English. The Dutch transcriptions are provided in
Figures 4 and 5 of the Appendix.

In the CGN tokens are marked for several speech phenomena. among others for disflu-
encies. These include tlie following, their amount in ourmaterial given in brackets:

• filled pauses (31.682): 'uh: 'uhm. hu: 'hm: 'mmm: 'mm-hu, etc.

• editing teriiis. eirtpty  coordinating conjunctions. discotirse illarkers  (56.832):   'oh'.
'tjonge' (gee). 'hoor' (an emphasiser). 'h6' (huh), etc.

• mispronounced but complete words, (self-created) onoinatopoeic words (1.298):  hij
blelde Ibelde} niet' (he did not clat /catth

•   fragniented words (9.073):    hij be- belde niet (he did not c- catO

• garbled material (6.921)

•  laughter.  coughing.  crying  (8,045).

 Eklund and Shriberg 1998. Ekltind 2004} describe a rare disfiliency phenoinetion: a
filled pause occurring inside a word. observed in Germanic langiiages that heavily use
compounding as a word-formation method. The filled pause in such cases stands mostly
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Turn Utterance

S 1             I  have  to  go  to uhm Hilde whose uh whose upper  body  is of course still
in plaster.

S2 mni-hu.
Sl      and then I have to go to tae-bo.
S2      well they won't know how to spell that, want to bet?
Sl               and  I  also  have to. haha no.
S2      haha. no seriously.
Sl yes? tae-bo that is T A E hyphen B O but this name is must not be used

anymore.
S2    oli?

S 1               because..     haven't you heard  it?
S2    no.
Sl      because uh Billy Blanks the guy who uh invented tae-bo is uhm..
82     you don't need t- e- you don't need to explain. it's not about the con-

tents.
Sl      no but I'd like to tell this to you. GARBLED.
S2      G.ARBLED. yeah OK yeah but I know who you mean yeah.
Sl            yeah well tae-bo.. so Billy Blanks  has  this  zih  has a lawsuit.
S2    yeah?
S 1              and  so this concerns  that   that   so  this name tae-bo  was  so to speak  in-

rented by him and it took him fifteen years to develop all that and so
Oil.

S2    yeah.
Sl      and so he thinks that only he should be allowed to use it. so that only

he shorild be allowed to sell the videotapes and so that sports schools
sliouldIi't use the name tae-bo.

S2     without that they G.ARBLED yeah.
Sl        without that they pay a whole lot of money to h-... so he just wants to

earn a whole lot of money with that.  and of coiirse lie just earns oh tons
of money with that tae-bo.

S2      yeah yeah.

Figure 6.2: The first turns of a spontaneous dialogue sampled from the CGN corpus
(sample nr. fn000451). translated into English.
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Turil Utteranc:e

Sl the Flemish government has a new health care insurance planned starting
in the middle of next year. the heavily disabled are to receive financial
conipensatioii for tlieir lion-niedical costs. this aniount may be between
three thousand five hundred and six thousand five hundred francs per
nioIith. the Systerri is financed by the Flemish governinent as well as by
the Citizens. these pay thirty francs per month via their governmental or
private health insurance. Johny Vansevenant.

S2 the decision that a health care insurance should be introduced was IIlade
already  by the previous  Flemish  government.    but  its actual realisation
has not yet been carried out. the system will now be organised via the
governmental or private health insurance companies. these will collect a
contribution of thirty francs per month from their members.

Figure 6.3: The first turns of a broadcast dialogue sampled from the CGN corpus (saniple
nr. fv600473), trarislated into English.

between two stems  in a compounded  noun   (e.g.,  'beach-uh-volley'),  but    -  iii  highly  rare
cases  - also within morphological constituents  of  a  word (e.g., 'daar-uh-door,   there-,th-
fore).  In our material such  a filled pause is present 202 times.

At the same time, disHuency phenomena happening at the sentence level, such as
repairs of ill-formed phonetic, syntactic or semantic constituents of the sentence, aban-
doned grammatical constructions, repetitions, and the like, are not explicitly marked in
the corpus. However,  part of these  can be inferred  from ' . . . ' punctuation marks  (marking
abandoned  sentences that  may or  may not  be continued),  and  from the syntactic depen-
dency tree annotation of a sentence, in which disfiuent items are not connected to the full
tree. Figure 6.4 contains an example sentence from the CGN corpus with the complete
morpho-syntactic analysis tree. Note that certain leaves are not connected to the tree: iii
the given sentence such left-out leaves consist  of a false start  ('ik  uh':  I uh), a filled pause
'uh'  after the word   scepsis'  (scepticism),  and a repetition  (zo'n;  such  a).

By definition. we consider all items that are not incorporated under the syntactic tree
as disfiuencies. These include some, but not all, of the word-level encodings listed above.
Some disfluencies are still connected to the syntactic tree when they have a full pragmatic.
semantic, or syntactic role in the sentence. This is of course hard to annotate consistently.
which probably introduces soine noise into the mark-up. despite the clear-cut annotation
guidelines and transcription protocols  of CGN  (cf.   [Van der Wouden  et al. 20021).   It  also
entails that some out of the 11.648 abandoned sentences (i.e.. the utterances ending with
'...') are still incorporated in (bigger) syntactic trees.

[Oviatt 1995] finds that in human-human dialogues there are more disfluencies than
in human-computer dialogues, due to the lack of constraints in the presentation form of
the former. Spontaneous spoken dialogue is especially abundant in disfluent events. Such
dialogues are less focus;sed on a topic or a task, resulting in a niore relaxed way of speech
construction and speech planning. According to our criteria. in our full niaterial there are
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Figure 6.4: Example sentence with full inorpho-syntactic tree from the CGN: ik uh ik
lieb met de nodige scepsis uh deze gang van zaken zon zo'n jaar aangekeken' I uh I have

followed this process with ah a certain amount of scepticism for for about a lear.

49,577 disfluent items. constituting 34.423 bigger disfluent chunks. This means that 9.1%
of all lexical tokens in  the  data are  part  of a disfluent  chtink,  and  a disftiient chunk consists
of 1.4  items on average. In Figure  6.4  we have for example three disfluent chunks.

We assign the class label IN-DISFL to all disfluent words. and the class label OUT-DISFL
to all other words iii the corpus. The learning task will be to classify each token in the
corpus iii terms of these two classes.

6.1.1.2 Features

In our study the identification of cues for detecting disfluencies is based on close in-
spection of the clata and on the literature [Plauche and Shriberg 1999. Heeman 1999.
Shriberg et  al. 2001, Nakatani  and  Hirschberg 1994. Oviatt  1995]. We focus on using word-
based information only, in order to investigate the feasibility of disfluency detection with
i'eadily available features.  [Heenian and Allen 1994} assume that local context is suffi-
cient in detecting most speech repairs, without taking syntactic well-formedness or speech
prosody into consideration. At the saine time, we consider that exploiting the manually
annotated part-of-speech  ( POS) labels would  give  too much advantage  to our model.  as
opposed to a disfluency detection task in a real implementation where no 100%-correct
POS information would be available. Furthermore. in the POS annotation of the CGN
disfluent items have a unique POS label instead of a true syntactic role label, which would
be a give-away featiire during the classification task.

Table 6.1.1.2 lists the 31 contextual properties that we extracted aittomatically from
the corpus material. subdivided into groups according to tlie aspect they describe. Nine
lexical string features represent the focus item itself and its neighbouring four left and four
right zinigram lexical Contexts  (if any).   Our lexical context window is therefore of length
nine.  The second feature group consists of 20 binary features that mark whether ali overlap
in wording occurs between the focus item and its context window. Two features in the
third group represent oj·erlap iii initial letters between the focus item and its immediate



113 6.1 Filtering disfluencies

Aspect Featiire

Lexical identity (1) Leftd context item (2) Left3 (3) Left2 (4) Leftl (5) Focus
item (6) Rightl (7) Right2 (8) Right3 (9) Right4

Lexical overlap (1) Left4/Left3 (2) Left:i/Le 2 (3) Left2/Left,2 (4) Left 1/Focus
(5)      Focus/Rightl (6) Right.1/Right2 (7) Right2/Right3
(8) Right3/Right* (9) Focus/Le 4 (10) Focus/Left.3 (11)
Focus/Left2 (12) Focus/Right2 (13) Focus/Right.3 (14)
Focus/Right4 (15) Leftl/Rightl (16) Leftl/Right2 (17)
Left.4/Le 2 (18) Left)/Leftl (19) Rightl/Right3 (20)
Riglit2/Right4

First Letter overlap (1) Leftl/Focus (2) Rightl/Focus

Table 6.1: Overview  of the employed  features  for  the  disfluency  detection  task,  grouped
according to their aspect.

left and right context. Matching words or word-initial letters are often to be found both
at the reparandum onset   and the repair onset.   as   in the correction 'van interne-    van
electronic commerce'  (of interne-  of electronic  commerce)  in  Figure  6.1.

By employing these features we allow the learners to make use of possible correlations
between certain feature values and the potential presence of a disfiuent item. Note that
some features of the overlap groups deliberately re-introduce properties that are implicitly
present in the lexical features already. We found it important to express the word and
letter overlaps explicitly in order to ensure that the learners. that otherwise may be unable
to capture sub-wordform similarities, can utilise potentially relevant itiforniatioii.

6.1.1.3 Experimental set-up

Our first goal is to classify disfluent chunks in CGN based on the above contextual proper-
ties of each utterance. The experimental set-up here is the same as throughout otir study:
we train MBL and RI and conduct parameter optiniisation by WPS in a 10-fold CV. where
partitioning is based on whole discozirses. The performance of the learners is evaluated iii
terms of accuracy, precision, recall, and F-score, where accuracy measures the overall per-
centage of correctly predicted IN-DISFL and OUT-DISFL class labels. Thus, in the example
sentence in Figure 6.4 both words in 'ik uh' need to be classified as IN-DISFL to count as a
correct classification of the chunk. Likewise, precision, recall, and F-score apply to entire
chunks in our evaluation.

An additional technique we use iii these experiments is attenuation.  Infrequent or
unknown words are often problematic for machine learning techniques since the occurrence
statistics of such items are unreliable.  At the same time. the word form of infrequent items
may cozitain useful information: for instance. a capitalised word is likely to be a nained
entity. a word that contains a number is usually either a digit or the name of an object
Ce.g..  TU-154),  a  hyphen  tends  to  indicate compounding. In addition. the final letters  of
a word may give away morphological clues. e.g.. -ly (adverb) in English. or -dt (verb) in
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Dutch. Attenuation is a niasking technique for words occurring below a certain frequency
threshold. retaining some word forni inforniation for these while masking the actual word.
Besides addressing the sparse data problem. another advantage of attenuation is that it
reduces the search space since the number of different feature values that need to be
checked becomes much smaller. The attenuation method we use is a simplified version of
[Van deti Bosch and Buchholz 20021. which is in turn based on a proposal by [Eisner  1996]:

•  If a word occurs less than 100 times iii the training data then convert it to AIORPH and

-  if it contains a tiumber then add -NUM

-  if it contains a hyphen then acid -HYP
-  if its first letter is a capital then add -CAP
-  if none of these three tests apply then add the last two letters of the word

• Else retain the original word.

For the exaniple sentence in Figure 6.4 this strategy produces the sequence 'ik uh
ik heb met de MORPH-ge AIORPH-is uh deze AIORPH-ng van zaken zo'n zo'n jaar
MORPH-en' (approximately: I uh I have MORPH-ed this MORPH-ss with uh a certain
MORPH-nt of MORPH-sm  for fo,' about  a  year).    The  attenuation  method is applied
to each training   and   test   data set. creating attenziated versions   of  both: the frequency
thresholds are established based on the training data sets. We hypothesise that for the
current learning task attenuation will not have a negative effect (and might even have a
positive effect) since the billary overlap features. which are not based on the attenuated
words. are likely to compensate for some of the potential information loss.

6.1.1.4 Baseline

To quantify the performance of our disfluency detection method. we need to define a
baseline. The most straightforward baseline is to always predict the majority class: 1110St

words iii the corpus are riot disfiuencies, thus this baseline amounts to always predicting
OUT-DISFL, resulting in correct prediction in 89.9% of the cases. However, for the class
of interest (IN-DISFL) this strategy leads  to a recall  of  0 (all disfluencies are missed),  an
undefined precision and hence an undefined F-score.

A somewhat more intelligent baseline is the following. The most frequent kind of
relatively easily detectable disfiuencies are four basic filled pauses (FPs). transcribed as
'uh'. 'uhm',hu'. and 'hm' in the CGN corpus. We define a FP-baseline that predicts that
all filled pauses are disfluencies and everything else is not. This baseline has an accuracy
of 92.3%. a relatively high precision  (not  100/6.  since  one  in four filled pauses  is  part  of a
larger disfluent  chunk).  a similar recall (it misses  most  disfluent  chunks)  and  an  F-score
of 74.5 (displayed iii Table 6.2).

6.1.1.5   Results of testing on CGN data
Table 6.2 shows the average perforniance of AiBL in three series of 10-fold CV experiments.
as well as the FP baseline. The result of the experiment is that both classifiers outperform
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Algorithm Aletric
acc pre rec      F

FP baseline 92.3 76.0 73.1   74.5

1.8 5.7 5.1 5.2

MBL 97.9 87.6 84.9 86.2
0.6 1.4 2.2 1.8

RI 97.3 87.1 78.6 82.6

0.8 2.0 3.4 2.7

Table 6.2: Performance on detecting disfluent chunks in CGN by MBL and RI. averaged
over 10-fold CV experiments. in comparison with the filled pause baseline.

the FP-baseline significantly (MBL: t -7.6, p <0.01, RI: t -4.7, p <0.01). The accuracy of
both classifiers is rather high (MBL: 97.9%, RI:  97.3%). The F-sc.ore of classifying disfluent
chunks is 86.2 for MBL and 82.6 for RI. which is a 11.7, respectively 8.1 points increase
compared to the baseline strategy, due to iniproved precision and recall on the IN-DISFL
Class. AIBL produces a significantly better F-score than RI (t =7.1, p <0.01).

Note that although the algorithm parameters are optimised   in this experiment,   the
class design is not, since the task here is to perform binary classification. Optimising the
class label in such cases is not as 'straightforward' as we have performed it in Chapter 5.
It is an empirical issue in what ways it would be possible to decompose the global IN-DISFL
and OUT-DISFL classes iii a robust way.

The settings resulting from the optimisation process by WPS (wrapped progressive
sampling) show a clear trend of algorithm parameter use.  For MBL, in nine folds the
MVDM (modified value difference) distance metric is found optimal, in all but one cases
combined with GR (gain ratio) feature weighting. In general, a k larger than or equal to
3. but smaller than or equal to 19 is used. The most reliable features for the learner are
the focus word itself, as well as whether the focus word overlaps with the ininiediate right
or second right word in the context window.

For RI. in 8 out of 10 folds it is optimal to cover a single example per rule. arid to
siniplify the induced hypothesis. Iii all folds it is optimal to order the rules by increasing
frequency, and to allow negation. We run an experiment on the full data set with RI with
these settings. ancl display the obtained rule set below. Feature names are the following:
Foc:  focus word,  L 1:  immediate left context word,  Rl : immediate right context  word,  LX
FOC/Ll: lexical overlap between focus word  and  immediate  left  context  word.  LT  FOC/Ill:
first letter overlap between focus word and immediate right context word. and so on.

1    If FOC =  uh' then IN_DISFL. (25381/184)
2    If Ll = ENIPTY A Rl = EMPTY then IN_DISFL. (31919/21)
3     If Lx FOC/Rl A FOC 96 'yes' A FOC' 4 .that' A FOC 96 'no' A R,1 76 EMPTY (5072/807)

then IN_DISFL.
4     If I.X FOC/R2 A R l= 'uh' then IN_DISFL. (1595/129)
5    If Lx FOC/Rl A FOC 0  yes' A For 96 'you' A FOC 96 'that' A FOC' 96 (415/99)

'Ilo' A R) 96 EMPTY A !Lx Foc/I,2 then IN_DISFI..
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6    If FOC = G.ARBLED A I.3 = EMPTY then IN_DISFL. (2194/154)

7   If LX FOC/R 1 A FOC' 4 .yes' A FOC 4 'you' A FOC 96 'that' A FOC' 0 (349/102)

'no' A R2 0 EAIPTY A !1.x Rl/R2 then IN_DISFL.
8    If LX FOC/R2 A LX I.3/Ll A !11% FOC/Rl then IN_DISFL. (960/298)

9    If Foc' = 'uhm' then IN_DISFL. (2698/28)

10    If FOC = 'haha' then IN_DISFL. (2300/43)

11    If LX FOC/R2 A FOC 96 .yes' A LX Ll/Rl A ILX 1.1/FOC A R3 96 E.AIPTY (873/170)

then IN_DISFL.
12    If FOC = GARBLED A Ll 4 .the' then IN_DISFL. (2323/400)

13   If LT Ll/FOC A LX FOC/Rl A FOC' 96 'yes' A FOC 76 'that  A L2 916 EMPTY (168/48)

then iN_DISFL.
14    If LT Ll/FOC' A LX FOC'/Rl A FOC 916 'yes' A FOC' 96 'that' A FOC' 96 no' (82/14)

then IN_DISFL.
15    If LT Ll/FOC A LX FOC/Rl A FOC' 9,6 'yes' A FOC 96 .that' A FOC 56 'no' (52/2)

A 113 0 'you' A R.1 0 EMPTY then IN_DISFL.
16 Else OUT_DISFL. (905519/25698)

We see that RI uses the overlap (niost often: lexical overlap) features extensively. both
between the focus word and its context. or between context words. Many conditions are
made on the identity of the focus word: for example, if it is a filled pause, a garbled
item. or laughter. then it is classified disfluent; and when it is carrying some specific. but
apparently. generally important  content.  such  as the words  'you'.   'yes'.  and  'no'.  then  it
is not disfluent. Note that the lexical items are translated into English. but in some cases
this might be misleading ,since conditioning on the Dutch item 'de' can correspond both
to a definite article (i.e.. the) and to a word fragment (i.e., de-): the same may hold for
a number of other short 'trud words (e.g.. je-. ne-. etc.)

In fact. 59 times 'de' is marked as a fragment iii the CGN (but not marked as such
in our experimental material, since that would  be a give-away  cue),  and  'je'  is  marked  3
times as a fragmented word.  Even if in some cases 'yes' corresponds to a fragmented word.
we believe that in the majority of cases conditioning on 'yes  and  no' means conditioning
on the affirmative, respectively negative true word (and not a fragmented word).  Our
classifiers thus learn that  yes' and 'no' are most of the tillie not annotated as disfluencies
(e.g., as filter words) in CGN.

6.1.2 Filtering disfiuencies from recognised words
6.1.2.1  Preprocessing the OVIS data

Having trained on the CGN. the next step is to apply the disfluency filter to the OVIS
material. First we preprocess the OVIS word graph lattices by unfolding all paths in each
lattice.  As an illustration of this. consider the word graph in Figure 6.5. This graph
represents the ASR output produced after processing the input ik moet volgende week
dinsdag van schiphol   iiaar   nijinegen'    (i   need   to   90   neit   week tuesdav from schiphot to
nijmegen), which is the first user turn in the dialogue ill Figure 4.2. Unfolding the lattice
results in eight paths:    'ik moet volgende week dinsdag van schiphol maar nijmegen'  (i
need  to  90  next  week  tuesday from  schiphol  but  niymegen).  ik moet  volgende week dinsdag
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Figtire 6.5. Worcl graph of tlie user inpiit  iii turn Ul of Figure 4.2 ik 1110et volgexicle week
cliiisclag vaii  sclkiphol  Iiaai  iii iniegen'  C 1  need to  90 hom schipliol to iii,jittegen on ttiesday
ne.rt u,eek). Hash niarks  stand  for pauses.  the conficletice score· of each  worci  li>·potliesis  is
give 11 after the slash.

vall  sclliphol  liaar  ilijiliegi'11'  ( 1  n.red  to  go  ne.t't  tt,eel   ittesda,4 fr'o,N  .5·chiphot  to  nt'./mrgen).
'ik  moet  volgeticle week clinsdag schiphol  naar ziijitiegen'  C i  need  to  go  ne.rt  week tuesday
schiphot to nij,negen). 'ik nioet volgende dinsdag schiphol naar nijinegen  ( i need to go 71(:,Et

tuesdav schiphol  to  nijmegen).  and  so  oii.   Note  that  the word graph iii pi·iticiple  uiifo](ls
iii niany more than eight paths. given the various transitions that contaiii pauses. ancl/or
tokens  with  different transition probabilities: however.  when  generating  tlie  word  striiigs.
identical strings are collapsed.

As a result of preprocessiiig all the word graphs iii the OVIS corpus. we have a niaterial
of 17.242 paths witli 90.527 words to c I:issify.

6.1.2.2    Results of testing on OVIS data
Siiice disfiueticies are not annotated in the unfolded paths. we cannot directly measure
tlie perforniance of the leartiers on cletecting disfiziencies iii the OVIS inaterial: however.
it is possible to 111ake Solile observations with respect to the words that are classified as
disiliwitt. Looking at the classified Hiaterial. we see that repetitions aiid filled pauses are
correctly  detecteci  in  the experinient. Below  are  fozir  classification  exainples.  the  itc,nis
classified disfilielit marked by brackets. an approximate translation given in italics:

(i) nee [ik wil] ik wil verbinding
n.O fl wa.Titj I want con·nf.dio·n

(ii) ik wil graag van Den Haag Mariahoeve naar [van] van Centraal
I mari.t from. The Hag·zie. Maricihoe.·pe t° Ifmnil fi'om Centr·al

(iii) [uh] van of naar Zwolle
Irthj  front  or  to  Zu:olle

(iv) wil van Zaandam [naar Arnhem] naar Arnhem
71)ant. f'['0111 Zaandain. Ito Arn.hemj to Ani.h('.ni.

Iii fact. we see tliat disfiriency filtering is capable of eliminating proper disfluencies.
liowever. contrary to what is 11,·pothesised in the literature. this does not seem to r ,sult
iii iziore granimatical. or less ambiguous word strings (i.e.- the string 1 want froiii The
Hagize Alariahoeve to froni Central  issyntacticallv or semantically not substaiitially better
fornied than 'I want from The Hague liariahoeve to from frc,iii Central'. etc.).
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At the same time, we can establish that stylistic differences between the training and
test data have some unfavourable effects on classification. In particular. in the CGN short
sentences that consist  of one or two  items are most often regarded as fully disfluent  (i.e..
abandoned) chunks. Therefore. short user input. which is typical in interactions   with
a SDS. is often classified disfluent in the OVIS material (by both classifiers). This is
obviously wrong in many cases: for example when the user provides only a station name
or a day in reply to a system prompt. It also often happens that the user answers simply
'yes'  or   no'  (to a yes/no system prompt). and these words  are  classified  as  disfluent.

We have seeii above in the experiment on CGN material that many times 'yes' and
'110   are  distinctively  not  classified  as  disfluencies  (see  the  RI  rules). We assume  that  the
contextual differences around these tokens in the two corpora are large enough to result
in a different treatment (by both learners) of the same tokens (cf.  rules 3, 5. 7, 11, 13,
14,   15  in the above rule set). We believe  that a simple  rule-based  pre- or post-processing
procedure would solve some of the anomalies originating in stylistic and annotational
differences between CGN and OVIS. possibly resulting in better classifier performance:
however. testiiig this empirically lies out of the scope of our study.

In total 3,818 word hypotheses are classified as disfluent by MBL in the full OVIS data
set,  and  3,449 by RI. Words that are classified as  belonging to a disfluent  chunk include  all
types of words, ranging from specific slot values to filled pauses and unintelligible material.
Table 6.3 displays the 20 tokens that are most frequently classified as disfluent by the two
learners. The most remarkable finding, illustrated by the two lists iii the table, is that
many content words are classified as disfitient by both learners. These include words such
as 'yes'. 'no'. and various slot values ('today'. tomorrow', 'Friday', 'nine'. etc.) that were
previously found to contribute much to the classification of the SI components (cf. Section
4.4.2. as well as the findings of Chapter 5)

It is noteworthy that regardless of the classification bias. the words that are most
frequently classified disfluent by MBL and RI are very much the same. This may indicate
that the information in the training data as presented to the learners is more determining
for classification results of disfluent phenomena than the kind of algorithmic approach
employed.

In this experiment RI induced a rule set that contains 50 rules and 247 conditions
about the IN-DISFL Class. Iii general, these rules contain up to 6 conditions, have a small
coverage. and many counter-examples.

6.1.2.3  Incorporating the disfiuency filtered BOW in SI

The next step iii our investigation is to use the disfluency-filtered BOW in the SI task.
Note that the set-up of this experiment is identical to the general experimental set-up
in the SI module (i.e.. 10-fold CV combined with WPS), the only difference being that
instead of the full BOW we iise tlie disfluency-filtered BOW. For each component the class
label is as optimised iii the class partitioning experiments of the previous chapter.

We preprocess the material as follows. The words classified as part of a disfluent chunk
are  removed from  the  BOW representation by switching  the  '1'  indicating  presence  in  the
BOW to '0: Since 172 words are always classified as disfluent by MBL. and 170 by RI (which
is  again  a very similar result). these are always removed from  the BOW representation
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MBL                                                                                     RI

frequency item fT·eq'uericv ztein
1057 uh 1057             11h

688 GARBLED 688 GARBLED
420 I10 374 I10

391 yes 346 yes
129 uhni 166 to_PP
120 to_PP 129 uhir 1

76                 want                               52                 from
53                 froni                                46                  toniorrow
51                  tomorrow                       40                 I
42                 I                                       27                 want
29        today               23        today
26             0'clock 20 nope
26              at 16 day_after_tomorrow
26        nope                16        at

20  day_aft.er_tomorrow 16  zero
20             zero 13 Friday
19             Friday                      13             not
18        Saturday            12         two
18          nine                  12          nine

15             two 10 yes_EALPH

Table 6.3: The 20 iteiiis most freqiiently classified as disHuent by MBL and RI. 'EAIPH'
indicates the emphatic word form  (i.e., jamel).

(i.e., are always  '0'),   thus  the net effect  of  disfluency  filtering  is  that   the BOW vector
is reduced from 759 to 587 bits in the MBL classification experiment, and to 589 bits iii
the IiI learniiig experiment. Words that are always classified as part of a disfluerit chunk
include filled pauses such as 'uh' and 'uhm'. as well as various low frequency words such
as small station names (e.g.. 'jirrenveen' and 'zwaagwesteinde') or discourse markers  (e.g..
'jazeker'; sure, or 'welnee'; of course not)

6.1.2.4   Effects of disfluency filtering on SI
The results of the learning experiments are shown in Table 6.4, where scores are given for
each SI component. Compared to the scores gained iIi Chapter 5. liere marked iii italics.
we see that the iinpact of this filtering technique produces only a small improvement or no
improvement over the scores of Chapter 5. Scores that indicate improvement are printed
in bold.

Iii general. RI gains more froin disfluency filtering than MBL: RI yields (seemingly)
improved scores on all four components, whereas AIBL only on the SLOT component. This
Sllggests tliat filtering might indeed reniove words that negatively influence the SI task. so
that better patterning can be discovered in the data (primarily by RI). but discarding these
itenis does not practically influence the target task of SI. since none of the improvements
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are stat istically  significant.
The obtained results show that filtering disfluencies does not have a significantly pos-

itive effect on the SI task. although it does not deteriorate the results either. We believe
that the differences between the training and the test material contribute to suboptimal
filtering. For exaniple. the ASR n-best path output never contains fragmented words.
whereas these form one of the main disfluency types in the training material. We assume
that the OVIS lattice paths. on which we attempted disfluency detection. contain distor-
tions on a much larger scale than proper disfluencies (that are difficult or impossible to
recognise by  ASR),  and that these distortions are ungrammatical  in a different  way than
disfluencies  (cf.   [Zecliner and Waibel 1998. Palmer  and  Ostendorf 20011)

For completeness sake. we run two experiments for learning the FWD PR component
by RI, since in feature partitioniilg the isolated ASR group showed (insigizificantly) better
performance than learning oitall features (see Section 5.4.2). We tested both the full (but
disfluency-filtered) feature vector, as well as the isolated disfluency-filtered ASR group iii
learning FWD PR. The results on the FWD PR component. displayed by the line printed
iii sniall size. however show that usizig all features outperforms the isolated ASR group
by RI, signalling that non-significant score differences do not hold generalisation power as
the effect of feature partitioning observed in the previous chapter is not exhibited in the
current task. (Note that although for learning the FWD PR component by MBL the isolated
DM group showed better performance  than  learning  on all features (see Section  5.4.2),  in
the current experiment on FWD PR we employed all features in order to measure the effect
of disfluency filtering.)

6.2 Filtering non-heads of syntactic chunks

6.2.1  Training on CGN data
Our second method for filtering the word graph is to discard everything from the lattice
except the words that act as syntactic chunk heads. For this end we use the memory-
based shallow parser of  Canisius 20041 developed for Dutch, and automatically assign a
syntactic anahsis to each token in the unfolded paths of the word graphs. Since the OVIS
corpus does not provide syntactic annotations, it is not an option to train the parser on
it. and again we use the CGN corpus for training. The memory-based shallow parser is
reported to attain 83.9% precision. 85.9% recall. and 84.9 F-score on tagging and chunking
Dutch spontaneous speech in the CGN corpus material.

Since the ASR output is material claimed to be ill-formed in different ways than spon-
taneous speech (see above). we expect this discrepancy to  again  lead to suboptimal chunk
head filtering. the inferences of which are not known on the end task.

6.2.2   Testing on OVIS data
The preprocessing step here includes unfolding the paths in each ASR lattice and capital-
ising station names to reduce potential parsing errors. Capitalisation is carried out on the
basis of a fixed-length list of occurring station names: it could also be done internally in
the ASR.
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Algorithni CO Ilipolient AIetric

acc pre rec           F

MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7

87.0 94.1 89.3 91.6

0.9 1.4 0.9 1.0

SLOT 83.5 90.7 84.9 87.7

2.2 1.8 2.6 2.0

84.1 92.0 85.4 88.6

2.6 2.2 2.6 2.1

FWD PR 68.6 67.1 53.5 59.4

2.6     4.4     5.4     4.1

66.5 62.4 57.1 59.4
2.5 4.4 6.4 3.8

BWD PR 92.3 93.7 88.1 90.8

0.9 2.5 2.1 1.2

91.9 94.4 86.4 90.2
2.0 3.2 2.3 2.3

RI TRA 86.0 92.0 89.1 90.5

1.7 2.0 1.5 1.5

86.1 92.4 88.9 90.6

1.7 1.4 1.6 1.3

SLOT 82.6 88.4 82.9 85.5

2.4     4.4 3.8 2.8

83.4 90.2 84.6 87.3

2.8 1.8 3.2 2.2

FWD PR 65.0 57.9 72.1 62.6

2.0 3.9 12.2 5.2

65.8 58.3 76.0 65.3

3.1 3.8 12.4     5.3

65.2 59.7 66.2 61.4

28 5.4 148 5 4

BWD PR 90.5 92.4 85.1 88.5

1.4 3.5 3.9 1.5

91.0 93.1 85.6 89.0

1.5 3.3 5.7 2.6

Table 6.4: Performances by MBL and RI when filtering the user bag-of-words from disflu-
encies. using the optimised class labelling as estimated in the class partitioning experi-
ments (cf Chapter  5).   Performance is averaged over 10-fold CV experinients:   accuracy.
and proportionally weighted precision. recall and F-score measured on the classification of
each SI component. The italicised lines show the results of the experiment with unfiltered
features  (cf.  Chapter  5).
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The shallow parser analyses the paths syntactically: each token is assigned a complex
label that encodes three types of information about the word: its POS tag. its syntactic
chunk tag, and a tag Iiiarking whether it is the head in its syntactic chunk. Below is an
illustration of the parsing output of the patli that is correctly recognised from the first
user turii of our exaniple dialogue. Syntactic chunks are indicated by square brackets:
head words are marked as HD, for the rest of the syntactic labels in CGN we refer to
IVan  der  Woudeii  et  al.  2002].     Note  tliat   syntactic   chunks are generally quite small   iii
the data: niatiy of them consist of only one word that is then automatically labelled as
the chunk head. Iii this example only the token volgende' (next) is classified as chunk
non-head.

{ [NP-SU-1 ik/VNWl-HD] [SMAIN-1 moet/WWl-HD] [NP volgende/WW11 week/Nl-HD]

[NP dinsdag/N5-HD] { PNP [PP van/VZl-HD] [NP Schiphol/N5-HD] } { PNP [PP
naar/VZ1-HD] [NP Nijmegen/NS-HD] } }

6.2.3   Incorporating the chunk non-head filtered BOW in SI
Drawing on the material obtained from shallow parsing, each word marked as the head of
a syntactic chunk is retained in the BOW vector. whereas all non-heads are filtered out
from it by switching their corresponding feature values from  1' to '0: In total 573 words
are always classified as chunk heads in the OVIS material, reducing the chunk head filtered
BOW to 573 bits. The new BOW representations for each user turn are used together
with the other word graph, DAI. and prosodic features to classify user input in terms of
SI components by MBL and RI.

Note that the set-up of the following experiments is again the same as the general
set-up  in the SI module (10-fold CV conibined  with  WPS), but instead  of the  full  BOW
we now use the chunk non-head filtered BOW. We learn each SI component as optimised
in the information partitioning experiments in the previous chapter.

6.2.4   Effects of chunk non-head filtering on SI
The results of the experiments are shown in Table 6.5 per SI component.  We can establish
that in general no improvement follows chunk non-head filtering.  We see that filtering non-
head words leads to somewhat higher scores than no filtering only on the SLOT component
for both learners. and additionally on FWD PR for RI. However, the results show that
filtering out words that are not chunk heads does 11Ot lead to significantly better or worse
scores coripared to no filtering on the BOW. There might be a number of reasons for this.

One obvious limitation of this experiment is again the marked difference between train-
ing and test data that probably produces suboptimal results. Another factor might be
that our shallow parser produces small syntactic chunks, so that relatively few words are
actually filtered out from the BOW vector. At the sallie time. directly incorporating pos-
sibly imperfect parsing results may lead to the accumulation of error in the end task.  We
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Algorithin Component AIetric

acc pre rec      F

MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7

86.2 94.0 88.4 91.1
1.3 1.5 1.2     1.5

SLOT 83.5 90.7 84.9 87.7

2.2 1.8 2.6 2.0

83.2 91.1 84.7 87.8
2.1 1.2 2.8 1.7

FWD PR 68.6 67.1 53.5 59.4

2.6     4.4     5.4     4.1

66.3 62.6 55.4 58.5
2.4 4.1 6.7 3.4

BWD PR 92.3 93.7 88.1 90.8

0.9 2.5 2.1 1.2

91.6 94.2 85.8 89.8
1.8 2.5 2.8 2.3

RI TRA 86.0 92.0 89.1 90.5

1.7 2.0 1.5 1.5

83.4 90.7 86.4 88.5

2.4 2.7 2.0 2.0

SLOT 82.6 88.4 82.9 85.5

2.4 4.4 3.8 2.8

83.2 89.7 84.3 86.9

1.8 2.6 3.0 1.8

FWD PR 65.0 57.9 72.1 62.6
2.0 3.9 12.2 5.2

64.5 57.2 74.4 63.9

2.8 3.5 13.0         5.5

63.6 56.7 72.7 63.0

4.:3 4.4 11,2 4,(]

BWD PR 90.5 92.4 85.1 88.5

14 3.5 3.9 1.5

90.5 93.4 84.1 88.4

1.7 3.2 3.2 1.9

Table 6.5: Performances by MBL and RI when filtering out chunk non-head words frO1Il
the user bag-of-words. Classification is carried out in terms of the optimised class labelling
as estimated  in the inforniation partitioning experiments (cf. Chapter  5).  Performance  is
averaged over 10-fold CV experinients: accuracy, and proportionally weighted precision.
recall and F-score measured on the classification of each SI component. The italicised
lines show the results of the experiment  with  unfiltered  features (cf. Chapter  5).
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believe that these issues could be solved to some extent by postprocessing the data. or by
combining simple heuristics (e.g.- word-based rules) with classification.

However.   the   fact   that the occurring iniprovements are statistically insignificant   also
suggests some positive ozitcoine of this experimetit: namely. that we have evidence about
syntactic chunk heads being predictive about pragmatic-semantic information (as defined
by the SI components). since removing all lion-heads does not significantly harm perfor-
Iliance 011 the SI task.

6.3   Filtering on the basis of word frequency
Our third filtering method draws on word frequency in the BOWs. Iii the study of
IRotariI and Litnian 2003] feature subset selection is carried out on the basis of the infor-
mation gain of a featiire as measured in classification of various human-machine dialogue
phenomena. In our stiidy however. classification by the memory-based learner is not al-
ways IG-based (since IG is only one of the four possible feature weighting metrics iii the
four distance furictioris. cf. Section 3.1.1). We opted for filtering the BOW on the basis of
word frequency in the speech recognition output. which is established by general counts
in oiir niaterial.

6.3.1   Incorporating the frequency filtered BOW in SI
Our method is to retai11 information corresponding to the presence or absence of the 15
most frequent words in the users BOW. aiid filter out all other words from the feature
vector. We again nieasure the impact of frequeiicy filtering directly on the SI task. Al-
though frequency filteriiig as implemented in this study draws on simple counts in the
OVIS corpus. an easily implement.able AIL-based alternative would be to filter on the
basis of automatically assigned feature weights.

The left. column of Table 6.6 shows the 15 most frequent words in the ASR output of
the OVIS corpus. whereas the right Collilrin of the same table shows the first 15 words
ranked according to their IG as summed over the IG weight calculations of MBL iii the
coniplex experiment. Note that the two lists largely overlap. indicating that a high IG
assigned in the complex experinieiit often corresponded to a high frequency word. Note
that the assigned IG weights were riot used by AIBL iii the complex experiment except for
one partition. in combination with the MVDM metric. since the feature weighting metrics
optimised  by WPS turned  out  to  be different (cf. Section  4.4.3). For completeness   sake
we reproduce the 100 Illost frequent words in Table 1 of the Appendix.

6.3.2   Effects of frequency-based filtering on SI
The results of classifying SI coniponents by incorporating the frequency-filtered BOW
in the feature vector are shown iii Table 6.7. The scores indicate that frequency-based
filtering has in general a iiegative effect on classification performance. deteriorating it on
all but one SI component: the FWD PR. All scores are significantly worse than in the
non-filtered experirtients oii the v < 0.01 level, (t-scores in order of appearance iii the
table: 5.2. 5.1.6.9 for AIBL. and 4.0.4.3. 3.3 for RI).
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FREQUENCY-BASED TOP 15 IG-BASED TOP 15
frequency item ou. MBL or. RI IG item on MBL ou.     Rl

4886 to_PP             +                 * .570 to_PP                       +                 *

4113 no                                       * .511 110                      -t             *

3897 from                +                 * .465 froill                          +                 *

3284 want               +                 * .418 yes                         *
3267      I                     * .381 o'clock

3254 o'clock 241          at                                                       +                              *

2670                    at                               +                         *                .197        1                                                 +                         *

2206 yes                    * .194 waiit                                                   *

1627      uh          +        * .145 nope            +        *
1605 that .134 arrive

1485 thank .121 tell

1444 OIl .119 from_EAIPH
1322 11Ot thank*          .109
1305 travel .104 the_PN
1293 ten .097 IlOt                            *

Table 6.6: The 15 most frequent, respectively highest-IG-ranked words of the recognised
input in the OVIS corpus.  IG is summarised over the IG weights assigned by MBL in
the complex experiment (Chapter 4). 'PN' indicates a proper noun form (i.e.. Den).
'EMPH'  indicates the emphatic word form  (i.e..  vanuit), '+' indicates overlap of the word
if classified disfluent by MBL, '*' by RI (cf. Table 6.3).

Concerning the FWD PR component. we see that RI seems to improve using the frequency-
filtered BOW, but this is an itisignificant increase. Note that it occurs using all features,
whereas  when  only  ASR  feattires  are used (printed in small font). the performance  seems
to drop. although not significantly. However, it is reinarkable that without inforniation
about the prompting context and the prosody of the input (i.e., the DM and PROS fea-
tzires) forward-pointing problems seem to be less predictable. Since neither the decrease
nor the increase are significant. we have no clear evidence about the effect of filtering in
combination with feature partitioning: however. as the pei formance of the other learner.
AIBL, does not show a significant decrease or increase in the score on this Compoilent. we
mav conjecture that frequency-based word graph filtering is not harmful for the FWD PR
component. but is harniful for all other components.

On the other hand, this seems to indicate that the presence or absence of the most
frequently recognised words is predictive enough about future problems. Other SI 20111-

ponents need the inforniation supplied by all other recognised tokeris as well iii order to
predict future problems: apparently. many cues are lost when the represeiitation of the
recogii it ion liypothesis is reduced from 759 to 15 1)its.

It  is  noteworthy  that  we  can  also  observe  a  lot of overlap (marked  by   + '  for  AIBL  and
'*'  for  Rl)  between  the  lists of the most  frequeiit.  respectively highest-IG-ranked words  in
Table 6.6. and the list of words that are most often classified disfluent (see Table 6.3).This
means that the majority in the small set of words that are kept in the frequency-filtered
BOW are the ones that are often filtered oiit from the still quite large set of disfluency-
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Algorithm Componen Metric
acc pre rec      F

MBL TRA 86.6 94.3 89.3 91.7

0.7 1.5 1.0 0.7

85.8 93.6 88.0 90.8
1.0 1.3 0.9 0.9

SLOT 83.5  90.7 84.9 87.7

2.2 1.8 2.6 2.0

79.0 87.5 78.4 82.7

2.2 2.8 3.1 2.4

FWD PR 68.6 67.1 53.5 59.4

2.6     4·4     5.4     4.1

67.1 64.1 54.4 58.7

1.8 4.3 3.9 3.4

BWD PR 92.3 93.7 88.1 90.8

0.9 2.5 2.1 1.2

89.8 93.2 82.3 87.4
1.3 3.0 2.2 2.0

RI TRA 86.0 92.0 89.1 90.5

1.7 2.0 1.5 1.5

83.1 90.5 86.5 88.4
1.0 1.3 1.3 0.7

SLOT 82.6 88.4 82.9 855
2.4     4.4 3.8 2.8

76.6 88.1 72.9 79.7

2.8 3.6 4.2 2.1

FWD PR 65.0 57.9 72.1 62.6

2.0 3.9 12.2 5.2

66.9 60.4 74.2 65.5

3.8 6.0 12.7 5.3

62.1 55.0 65.5 59.3

4.4 5 9 12.2 7.4

BWD PR 90.5 92.4 85.1 88.5

1.4 3.5 3.9 1.5

87.9 90.1 81.7 85.2
1.6 6.5 6.8 2.7

Table 6.7: Performances by MBL and RI on the SI components (in terms of the optimised
class labelling as estimated iii the class partitioning experiments, cf. Chapter 5) when the
BOW is filtered using the 15 most frequent words in OVIS. Performance is averaged
over 10-fold CV experiments: accuracy. and proportionally weighted precision, recall and
F-score measured on the classification of each SI component. The italicised lines show the
results  of the experiment with unfiltered  features (cf. Chapter  5).
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filtered BOW Observe tliat for exaniple a filled pause is among the 15 most frequent
words in the corpus. whereas it is one of the most frequent disfluencies in general.

In fact. tliis may niean that the experiments using the frequency-filtered BOW are
to sonie extent coinplementary to the experinieiits using the disfluency-filtered BOW.
Although we indeed see that frequency-based filtering aggravates performance on three
SI components, whereas disfiuency  filtering  does  not. the obtained results  do not clearly
support this hypothesis tliat would 11eed furtlier investigation. We conjecture that infor-
mation about the SI coinponents is probably carried not by the individual words, but the
co-occurrence of these.

6.4 Discussion
Iii  effect,  by the three filtering approaches we investigated  the  feasibility  of  incorporating
higher-level information in the SI task. In particular, by disfluency filtering we aimed at
blocking information in the SI module that could be incorrect or superfluous in terms of
syntactic and/or lexical criteria. By chunk non-head filtering we aimed at promoting
information judged syntactically more dominant.  By frequency filtering we aimed at
restricting information in the SI module to words that are supposed to carry information
of the highest value in the given SDS's domain.

Two out of the three filtering approaches, disfluency filtering and chutik non-head
filtering showed an encouraging, but statistically insignificant positive effect on the SI
task, whereas the results for the third method, frequency-based filtering, showed primarily
negative effects on the SI task. We assume that the investigated filtering approaches are
difficult NLP classification tasks in themselves: in particular, we have found that they
exhibit sensitivity to differences between training and test data.

We have to emphasise that the evaluation of the results obtained by testing the filtering
methods directly on the SI task needs to be taken with certain precaution: since the BOW
representation is utterly shallow, the effects of filtering may not reach an optimal effect on
the SI task, for example because the frequency or the syntactic context of a word is riot
represented by the BOW. At the same time. incorporating incorrect classification results
(since e.g. neither automatic disfluency detection nore shallow parsing is perfect) in new
classification tasks may yield cumulative error. which deteriorates learning performance.

6.5 Evaluation
The qiiestion arises what performance c01114 be expected from the learners on the SI task.
if they had access to perfectly recognised material. Therefore. we will run additional ex-
periments iii which the BOW is created on the basis of the transcribed user input. This
emulates the situation where classification of SI components is based on perfectly recog-
nised and 'perfectly disfluency filtered' (i.e., left out from the annotation), respectively
automatically chunk non-head filtered and frequency filtered user input. The obtained
results will provide us with the topline scores that could be ultimately attained by the
these filtering techniques.
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frequency item
1018 to_PP

887 from

789        I

770 no

744 want
521 yes
500 o'clock

390        at
211 travel

179 that

174 the_PN
140 not

136 groningen
135 you_POL
133 from_EMPH

Table 6.8: The 15 most frequent itenis in the transcribed iitterances of the OVIS corpzis.
'PN'  indicates a proper noun  form  (i.e.-  Den). 'EMPH' indicates an emphatic word  form
(i.e.- vanuit). 'POL' indicates a polite word form (i.e.. 11)

6.5.1      Analysis of transcribed utterances  in  OVIS
Table 6.8 shows the 15 most freqrient words iii the transcribed OVIS corpus. Note that the
most frequent transcribed words overlap largely with the most frequently recognised words
(Table  6.6).   The  tokens  that  are not contained  in  the  list  of most frequent transcribed
words are 'uh'.  'thank'.   oni  and  'ten:   The ranking of words is somewhat different between
the two lists. suggesting that there are differences in the magnitude of the frequency of
certain words in the word graphs. respectively in transcribed utterances. For example. 'no
is found to be hypothesised very frequently  (4,113 times. cf. Table 6.6).  and  'yes'  much less
frequently (2.206 times. cf. Table 6.6). whereas iii reality these two words occur on a more
similar scale (770 vs 521 times. cf. Table 6.8). Recall that we have found that the N TRA
is more difficult for our classifiers to detect in the input (cf. Section 5.2.3) - it might be
that the ASR of this system has probleins with recognising the words corresponding to the
N TRA (which are iIiainly '110:  tiot'. don't': nee. geen,   niet).   It  illay be  inferred  from  the
statistics that the ASR hypothesises the occurrence of *no to a rather substantial extent,
which might indicate that  it  has difficulties  with  recognising 'no'. and/or with recogizising
the iriaterial that might stirrozind '110' (e.g.. a correction of a slot value).

6.5.2 Data preprocessing
Since disfluencies are not transcribed in the real user utterances. the transcribed titteran-
ces can be directly used to emulate 'perfect' disfluency filtering. The resulting BOW has
559 bits. which thus comprise the full lexicon based on transcribed utterances.  For emu-
lating automatic chunk non-head filtering on the perfectly recognised (i.e.. transcribed)



129 6.5 Evaluation

Algorithin Componetit Disfluericy fi]t Nori-hea,1 Hit Freqii(,tic, 8lt
acc F          ac·c·               F          ac:c·                F

 I B I. TRA 89.1 93.3 88.6 92.9 88.9 93.1
1.3 0.8 1.(j 0.8 1.1 0.6

SLOT 86.8 90.8 85.6 90.2 83.6 88.7

1.6 1.2 1.8 1.4 1.(j ().7

FWD PR 68.5 61.1 68.4 6().9 67.8 60.1

2.1 3.7         :i.2          :1.3 3.3 4.-1

BAD PR 93.1 91.8 92.8 91.·1 93.0 91.6

1.1 1.1 1.1 1.1 0.9 1.1

RI TRA 88.6 92.6 88.() 91.9 88.0 92.4
1.9 1.6 1.9 1.6 1.4 1.2

SLOT 88.7 91.6 85.6 89.8 8().9 85.7

1.3 1.2 1.3 1.1 1.() 1.1

FWD PR 65.8 64.9 66.1 64.3 66.3 61.2
3.2 3.,1 :1.0 3.5 :i.4 6.7

BWD PR 92.1 90.4 92.8 91.4 91.7 90.0

1.6 1.5 1.0 1.3 2.2 2.7

Table 6.9: Topline scores in terms of accuracy and F-score produced b.y MBL and Rl using
the transcribed utterance in optimal class- and feature design, averaged over 10-fold CV
experiizients. The column Disfluency filt shows perfoi maiice based 011 all the features
where the BOW represents the transcribed user ritterance from which disfitiencies were
renioved by the transcribers. The column Non-head filt shows performance based on the
chinik 11011-head filtered transcribed user utterance. The column Frequency filt shows
perforniance based on the frequency filtered transcril,ed ziser titteraiice.

inptit.  we again use the shallow parser and analyse the transcribed sentences syiitactically.
discarding tokens that are non-heads. The resulting BOW has 490 1,its. since 69 tokens
are always classified by the sliallow parser as cllunk 11011-lieads.  For elilillathig toplille
frequency filtering. we discard tokens from the transcribe(1 stritigs that are not iii the 15
most frequent transcribed words. The resulting BOW iii this experinielit has tlierefore 15
bits.

The set-up of the topline experiments is identical to the general set-lip throughout this
study (10-fold CV combined with WPS for parameter optiniisatioii). Iii all three toplitle
experitrients we use the filtered BOW as well as orir other featiires to classify user inpiit
in ternis of the SI coniponents optimisecl for algorithm parameters and class labels. We
display the ,scores of the three experiziiezits with both leaniers iii Tal,le 6.9.

6.5.3 Evaluating filtering on the basis of topline experiments
Siiice disfiliencies are not transcribed iii this material. it is liot I)ossible to 111easiire the
effect of tlie disfluency filtering method in the topline experiments. thus tile figures iii the
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Disfiuency filt column of Table 6.9 can be regarded as an illustration of the performance
of the learners when both perfect disflueticy filtering and perfectly recognised input is
assumed.

The only comparison we can make is between the scores in column Disfluency jilt to
those in column Non-head filt. These scores are practically the same for all SI components.
indicating  that.  as  was  the  case on the recognised niaterial.  filtering  out non-chunk heads
from the transcribed user input seems not to have impact on classification pei forniance

Frequency filterilig however seems not to deteriorate performance on the transcribed
material to the same extetit as on the word graph material: we see that when the learners
have to draw on the perfectly recognised and frequency filtered user words, performance
decreases only on the SLOT coiliponent (recall that 011 the recognised material it decreased
also on TRA and BWD  PR).  We assulne t.hat the SLOT conlponent requires knowledge about
more than only the top 15 words to keep up learner performance (about findings on the
role of specific words  in  classifying  the  SLOT  component see Section  5.3.3).   The  TRA  alid
the BWD PR components do not suffer from frequency filtering: it might be that iii the
transcribed input niore consistent co-occurrences can be found between the presence or
absence of the top 15 words and TRA and BWD PR classes, than in those of the recognised
input.

Comparing the topline scores attained on filtering the transcribed user utterance to
those obtained using the filtered word graphs (reported earlier  in this chapter.  e.g..   the
corresponding non-italicised lines in Table  6.4).  we can establish the following.   For  the
majority of tasks both learners produce an improvement of a few points of F-score when
zising the actual words uttered by the iiser instead of using the recognised words. Signifi-
cant improvements are displayed in Table 6.10. Both for AIBL and RI the filtering methods
for the TRA and SLOT components perform significantly better on the transcribed word
string than on the word graphs, but not for the FWD PR component. It is difficult to see
a trend for the BWD PR component.

In sum, the topline experiments suggest that all three filtering methods could in prin-
ciple produce higher scores on classifying task-related acts and slots in the user input.
given an iniproved speech recognition olitput. However,  the  fact  that  none  of the filter-
ing methods seems to improve performance on the FWD PR component implies that it is
as efficient to consider the noisy word graph material for identifying user turns that are
sources of communication problems than to consider perfectly understood user words.

Given that there are no significant differences across the filtering methods in the topline
experiments (i.e.. across the rows of Table 6.9),  and the significant, but relatively small im-
provements of the topline scores over the recognised material, it may be hypothesised that
the room for improvement available for filtering recognised material is rather small. We
conjecture that 01ir SI approach is robust to noise iii itself already. so that removing noise
from the feature vector cannot substantially ameliorate ML performance on classifying the
SI components.

6.5.4   Evaluating SI on the basis of the topline experiments
Comparing the topline SI scores (on manually disfluency filtered material. cf. the Disjiu-
ency fitt column of Table 6.9) with our best scores scores obtained in Chapter 5 (see Table
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Algorithm Cowl){)Iletlt Statistical sigii ificatic·e
Disfluenc'y filt Noti-heacl tilt. Freqlieii(·y filt

MBI. TRA t = 3.7   p < .(}1 1=3.5 p < .01     t = 6.2 p < .01

SLOT t -6.3   p< .01    t -4.5   p< .01 t = 8.9 p < .01
Fki'D PR
BWD PR              -                        -                  t= 6.8   p< .01

m TRA t= 5.0   P< .(}1    t -4.5 P < .01 t -8.6 p < .01
SLOT t = 4.7 p < .01 t = 6.1 p < .01 t= 10.8 P < .01
FWD PR          -
BWD PR           -             t= 5.0 p   < .01 t = 3.1 p < .()5

Table  6.10:   Statistical  significatices  in a paired t-test of learner  performance  011  filteririg
transcribed user input iinprovitig over filtering recognised itipiit.

5.12),  two trends seein to emerge. Alost iinportantly.  we agaiti see that the performance of
AIBL and RI iS practically ideiitical for all SI coniponents. corresponding to our filidings 011
recognised inaterial. The extezit to whicli the SI components can be learnt likewise corr('-
spoIids to our previous findings. namely, that we are able to learn task-relatecl acts most
sticcessfully, followed by the backward-pointing problem and the slot components. alid
that forward-pointing problems are very hard to predict on the basis of the ziser iitterance
in shallow coiitext.

Comparing these two tables. it can be observed that the classification performance of
the SI mochile is a few points below the topline scores in terins of F-score. In the coluitin
showing  statistical  significance in Table  6.11 we present   aii  evaluation  of  the   iniprovecl
performatice on traliscribed 1iser inmit over recogiiised tiser inptit  (without fltering).  Tlie
figures show that wheti they liave access to trmiscribed material. 1,oth learners improve
significantly 011 the TRA. SLOT, and BWD PR Colliporients, but not 011 the FWD PR Colll-
polleyit.

The rightziiost (0111111ii of Table 6.11 sliows how imich recltiction iii errors is prodiweci
on  the  level of F-score  by the learners. given  that  they  have  access  to t ranscribed insteac 1
of recognised words in the user inpiit. Both MBL aiid RI show the largest error reduction
for the SLOT component (MBL: 25%, Rl:  42%). followed b.y the TRA and tlie BWD PR
components. No significant ilriprovemerit occurs on the FWD PR by ally of the leariiers.
These figures indicate that with perfect speech recogiiitiozi arid the described shallow inter-
pretation approach it would be possible to ftirther improve the results of the SI module.
especially for cletecti izg which slots are being filled 1,> the user: however. on predicting
forward-poititing problents our shallow interpretatioit approach is capable of reachiiig tlie
performance that  woiild  be attained  based on perfectly recogriised liser  illpilt.

6.6 Summary
Iii this chapter we described experimental results of three filtering techiiiqiies.  Two of these
techitiques. liatilely disfitiency filtering and chunk heacl filtering. can be seeii as AIL-based
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Algoritlilll Conipotient Statistic·al significaiice Error redtiction
MBL TRA t= 4.6 p < .01 19K

SLOT t = 5.0 p < .01 25%
FWD PR       -                         4%
BA'D PR 1-2.6 P < .()5 10%

RI '1'RA t = 2.4 p < .05 22%
SLOT 1 -8.4 P < .01 427
FWD PR       -                          6%
BWD PR 1-2.7 p<.05 165;

Table 6.11:  Statistical significaiices and rc,diictioii levels of leariier perforniance 011 zinfil-
tered transcribed tiser itipiit improving over unfiltered recognised tiser iilptit.

approac·lies that  process 1,-best  1,aths  iii  ASR otitput.  filtering otit certaiii words holli  the
paths alitomatically. The thircl approacli. frequeticy filtering. in effect bears reseniblance
to weighting-based worcl filtering. althotigh it draws on siinple counts in mir corpus. The
8ltering methods provide our two classifiers with a subset of the BOW features.

Iii three series of experiments we trailied AIBL and RI to learn the SI coinponents (as
optimised in Chapter 5) on the basis of all the features where the word graph features
were systematically filtered with one of the three methods. We observed that stylistic, as
well  as  aimotatioii  differezices  betweeii  tlw  trainiiig  aiid  the  test  data iriterfered witli  the
correct filterizig of disflueiicies. respectively chiuik non-heads. Our einpirical results show
tliat the filteriiig techiiiqties iii this set-zip have modest mipact 011 the SI task. Aloreover.
wheii 'iioisiness' is radically reduced sticli as iii frequency-based filtering. many pieces of
iiifortiiation  are lost.  which seems to deteriorate performance on the  SI task.

We siibseqilently coiicizictecl topliiie experinients iii which the filtering methods were
applied to the transcribed user words instead of tlie recogiiised oiies. on tlie basis of wliich
the SI was learnt.  The outcomes of these experiments signal that filtering that employs
higher-level information only leads to a small improvemeiit on shallow interpretation even
wheii perfectlv recogiiiseci liser words serve as input.   Based on  the  experinients conducted
on transcribed liser turiis. our conclusioii is that the proposed sliallow approach is robust
with respect to noise iii the data. thus filtering this noise calinot have trizicli ftirther iii ipact
on classification pei·foritiance on the four SI components.

We also concluded that if all noise could be eliminated (as simulated iii the topline
experiments), this would be beneficial for the TRA. BWD PR, and especially the SLOT
component, but for detecting forward-pointing problems our SI Iliodule already produces
the sanie performance.

A valuable outcome of the experimental series (lescribed in tliis chapter is that across
the performances of the niemory-based learner ancl the rule induction learner again similar
trencls can be found. reflecting our previous finding that if task desigii and algorithm
settiligs are optimisecl. MBL alid RI are likely to show siinilar scaling of classification
perfortiiance 011 oiir NLU tasks.
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Conclusions

The research issues of our stzicly were the following:

(i) deterinine the extent to which supervised niachine learning techniques can be used
for shallow iIiterpretatioii of liser tiiriis iii spokcii clialogrie systenis,

(ii) explore whetlier tlie coiziplex learning task of four-level shallow interpretation can
be optimised by clecomposing it to subtasks. aiid

(iii) explore whether filtering noise from spoken user input OIl the basis of higher-level
linguistic information leads to improved learnitig perforiIiance on the shallow inter-
pretation task.

Corresponding to (i). we coziducted a case study by training  IBL ancl Rl 011 a corplis
of Dutch clialogues with a SDS iii the travel doinain.  Pragmatic-semantic informatioll
was exti·acted froiti spoken user input iii a shallow way. i.e.. cliawing 011 1111sophisticatecl
features. iii terms of a four-level interpretation. Our investigation yielded the followiiig
results.

Wheii the four interpretation levels are combitied iii a complex class label involv-
ing task-related acts, filled slot types. forward-pointing problenis, and backward-pointing
probleins. inachine learning perforinance is Ilot  optimal.  although significantly better t lian
the score of an informed baselitie strategy tliat draws on the most recently posed sys-
teni pronipt. The component for which both AIBI. and RI achieve the highest F-score
is the identification  of task-related  acts (89.0. respectively 80.9 F-score). tlie reslilts  <)1)-
tained on backward-poiiiting probleins are quite silililar to these (87.7. respectively 78.6
F-score). Classificatioii results of filled slot types are sotiiewhat lower (83.4. respectivel.\-
75.7 F-sc·ore ). whereas both algorithms attaiti the lowest score iii this task on the forwar(i-

pointing problein component (55.4. respectively 55.6 F-score). Predictioii  of task-relat*,cl
acts. slots. alid backward-pointing problenis is done significantly better by AIBL than by IiI.
It is difficitlt to classify the complex label. siiice soriie (aspects of) componezits ai·e harcler
to predict tlian others (e.g.. whether users accept syste111 err()rs. or whether the iiser itiput
is  goiiig to cause  conimunication problems). which ma·  aggravati'  leariier  performaiice  iii
general.

133
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Therefore. corresponditig to (ii). in Cliapter 5 we developed a method for improving the
modules perforniance by 111eans of partitioitiiig the inforniation presented to the learning
algorithnis.  For each SI coiiipoiieiit we cc,iiductecl two consecutive series of experiments
with both MBL alicl RI. hi the first series we performed class partitioning. in the secoticl
series feature partitioning. The large-scale experiniental matrix provided a possibility
to coiIipare AIBL aii(1 RI to a considerable extent: all experinietits were conducted uii(ler
ideiitical coriditiotis. blit tlie class lai)els. as well as the feature groiips. were systeinatically
variecl.

Based oii the outcomes of this matrix we estal,lishecl that it is useful to optimise the
task  composition, i.e. class label.  in  the  111(,cltile.  In  partictilar.  we  have  found that class
partitioning has a stil)stantial. positive inflitence 011 thescores produced by both classifiers
for all SI conipoiients. The best scores prociziced In· the SI modtile are displayeci in Tai)le
5.12 (page 103).  Tlie classification success of the various SI components exhibits the same
trend for both learners as found iii Chapter 4: the highest performance is produced 011
learning the task-related acts (AIBI.: 91.7 F-score. RI: 90.5). followed by the detection of
backward-pointing problenis (AIBL: 9().8 F-score, Rl: 88.5). The results for the reinaining
Conponmits fille(1 slot types (AIBL: 87.7. RI: 85.5) and forward-pointing probleins (AIBL:
59.4. RI: 62.6) - are lower. The iiiiproveitietits gained by optimising the class label of tlie
learning tasks account for substantial error reductioiis, especially for RI. reducing lip to 505I
of classification errors in ternis of F-score. It is remarkable that in class partitioning MBL
atid RI produce statistically identical top performatices concerning all four SI components.

We  observed  that   the  various  grotips  of  infortiiation  soiirce  contribizted  to  a  different
extetit to the classification tasks. wliere priniarily features of the speecli recogniser outpiit
provicled niost inforinatioii to classifying a coniponent. Selecting a particular featiire
grozip did not improve our scores: iii general. tisitig inforniation coming froni all available
sources turited out to be best for extractiiig praginatic-semantic itiformation from spoken
user tllrils.

Corresponding  to  our  third  goal  (iii). iii Chapter 6  our  aim  was  to  l,lock tliose pieces
of iiiformatioti fr0111 the optirnised learnitig algorithms tliat the literatzire supposes to
negatively effect langiiage processiiig: we designed tliree. pritiiarily niachine learniiig-based
methods to automatically filter tlie speech recogizisei s oiitput frotii disfluent words. froii 1
syiitactically less doininant words, and from words that cio not frequently occiir in the
recogizition livpotheses. We observeci that disRueIicy filteriiig and chunk 11011-heacl filterizig
had a positive but statistically insignificant impact on the SI task. whereas freqtiezicy-based
filtering deteriorated classification perforinance.

Tlie experiniental outcomes obtained 011 transcribed tiser inpitt (emulating the Sit 11-

atioii iii whicli speech recogiiition is perfect and clean of disfluencies) ftirther show that
the effect of noise filtering is overall minor on our module. We cotijecture that filtering
cannot substantially improve learililig performance on the SI task. probably because in
our optimised experimental set-zip the classifiers can internally cope witli noise atici super-
fluoiis inforniation by appropriate weightitig or selection of features. At tlie same tillie. we
hypothesise that tlie hiipact of noise filtering woiild becoine more promizient witli better
stylistic matcli of trailiing and test data.  Tlie topline experiments show that. given perfect
speech recognition. perforiziaiice of the SI inodzzle could flirther iniprove.



135

lii this stridy it was our general ai111 to creatc· a SI modille tliat is robrist iii several
l'eSp('Cts:

• it deploys aclequate. generalisal,le niachine learning teclmiqzies.

• it copes with noise in spoketi iiiput and iii the sliallow represctitation of sticli iiiput.
2111(1

• it accouiits for 11111]ti-layerediiess in the input coiitent

We conceptiialise(1 sliallow ititerpretation as a straightforward classificatioii task. Our
approach led to sitiiilar scale atid perforinance teridencies iii titachitie learning expt'rimetits
with clifferently biasect classifiers. stiggesting that the inetliod can be generally iniple-
niented by supervised learning tecliniques. The tested classificatioti methods proved to be
adequate for the given task, since eveti the niost difficult goal, tlie complex prediction of
all four levels of the SI task. both MBL and RI produced significant improveinents above
baseliiie learning techniques. Besides the ability t() provide a shallow pragniatie-seinantic
interpretation of tlie user turn. we were supplied content-related knowledge about the
lizinian machine interaction process representecl by our corpus. The employed machine
learning techriiques produced satisfactory or good results of practical value. All utilised
iriforniation was easily obtained from the SDS, inaking the establislied approach attractive
for NLU applications.

We have dealt with noisiness 011 several levels. The learniiig algorithms (lrew on ap-
proxiniative, erroiieous. and hypothetical measureInents iii the data. since tlie features
extracted from the spoken user illpltt represent a large nuinber of possibly iniperfect niea-
sureinents and liypollieses of the SDS itself. 0111 experiments show that in the proposed
set-lip classifiers can tolerate noisiriess. since these interpret user iitterances well al,ove the
baseline even wheii faced with recogiiition errors. Aloreover. when filtering tecliniques that
incorporate higher-level linguistic information were applied to the iioisy speech recogniser
oiitpiit. the cleaned (lata were liot shown to yield significaiitly better results iii leariiirig to
extract pragmatic-seliiantic inforination from user turns.

At the same tillie. we were also able to learn which factors of lititiian-nia(·hiiw ititerac-
tion can be identified as problem sources. Certaiti types of user iriput. mainly ineta-replies
stich as accepting errors that the system has made. or providing 11011-standarcl answers in-
dependent of the dialogue context. as well as certain properties of the SDS were fc„ind to
caiise miscomintinication, and thus to easily introduce probleiiis into the interactioii with
a SDS. In the examined systein sticli properties iitchided the speech recogniser's diffoilty
ill I,rocessing liegative user answers. the design of the opellilig system question. as well
as aspects of the dialogue manager's promptiiig strategy that does liot facilitate recovery
from misunderstaildings between the hiuiian and tlie 1Iiachine.

hi  orcier  to  accoziIit  for  mtilti-1:i,zi1Iedness  iii tlie iiipiit coiltetit.  we  extractecl  iii forma-
tion related to pragiiiatic and semantic levels of the iiser zitteraiice: on the praginatic level
task-related acts. poteiitial problem source. ancl probleni awareness were detected. on the
Seritalitic level the siipplied information unit types were identified.   IT'e came to tlic cozichi-
sic,Ii that such Complex information is best to extract wlien tlie coiliponent collil)illation is
optitiiised. which is possible to determine via a mkitrix of niacliiiw learniiig exp<·riixients.
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The outconies of the experiments flirtliermore taught us that for sliallow interpretation
of user utterances   it   is  optimal   to   co-learn   at   most   two   SI   coniponents  and.   in  case  two
components are coiiibizied. one of thelll should be the task-related act component. Tlie
results also suggested that the backward-pointing probletil component could be inerged iii
the task-related act component of the SI module.

The goal of this stiidy was to develop and test a geiteral niethocl to be impleniented
in a shallow interpretation module of a SDS. We reported on the performance of this
module given a particular data set collected from interactions with a particular system.
Our research is a case stiicly. the details of which are not intended to serve as getieral
findings about spokeii litiinan-machitie interaction. bitt as findings about the described
shallow approach. Its main finding is that drawing on unsophisticated  - thus potentially
noisy features that characterise the dialogue situation (s,ystem prompts, full output of
the speecli recogniser. acoustic-prosodic  measurements of the speech sigiial).  and  by  per-
foritiitig alitotilatic optiinisation of the fornizilated machiiie learning task at least iii terms
of class lal,els and algorithm parameter settings. it is possible to extract sophisticated
inforniation of practical praginatic-seitiatitic value frolli the spokeii user input with robtist
perfortiialice.

We assuine that the 111(:thod of autoniatically training classifiers 011 pragmatic-seniaiitic
tasks can be generally applied to data collected fr01Il dialogue systems: the proposed class
design shozild be portable to other types of task-oriented dialogues that employ a closed
set of cloinain concepts.  We hypothesise that with tlie lise of additional - shallowly
fornnilated - engineeriiig techniques  (e.g.. more featiires. their aiitoniatic  combiiiatioii
and  selection.  more  stuctured  represeiitation  of speech  recognition  otitput.  combination
of inforination sources and learning methods) the module's current performance would
improve. Iii the future we plan to apply tliis approach to different dialogue data to gain
more restilts. and to prove that the method is suitable for other domains as well.
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152 Appendis

Turn Utterance

S 1          van welk station  naar welk station  wilt u reizen
Ul van amsterdam

S2    wanneer wilt u vanuit almelo naar anisterdani centraal station reizen
U2 fout

S3 het spijt me ik heb it niet begrepen wilt u nog eens zeggen wanneer u
vanuit almelo naar amsterdam centraal station wilt reizen

U3 terug klopt niet

S4 het spijt me maar ik heb u weer niet begrepen wilt u nog eens zeggen
waniieer u vanuit almelo naar amsterdam centraal station wilt reizen

U4 ik wil van amsterdam tiaar emnien

Figure 1: Original transcription of example  turils from dialogue nr. 002/005  from  the
OVIS corpus.

FREQUENCY-BASED TOP 100
freq item »q item »q item freq item

4886 naar 680 half 399 leeuwarden 245 j awel

4113 nee 637 amsterdam 393 zeven 244 vijf

3897 van 634 twee 387 voor 239 s-morgens
3284 wil 618 dertig 376 dertien 238 zaterdag
3267  ik 606 groningen 369 februari 235 nul

3254 uur 597 a(:ht 368 uhm 235 maandag
2670 om 593 nee_dank_u 358 verbinding 233 en

2206 ja 588 maar 354 delft. 231 wilde

1627 iih 557  is 339 vrijdag 219 woerden

1605 dat 542 het 333   in 219 arnhem
1485 dank 521 utrecht 324 zwolle 218 assen

1444 OP 496 elf 313 dinsdag 216 ongeveer
1322 niet 487 klopt 309 voorburg 216 nijniegen

1305 reizeIi 485 haag 303 vier 215 achttien

1293 tien 482 twaalf 303 rond 213 alphen
1241 negen 478 station 295 donderdag 211 heerlen

1210 den 478 drie 290 januari 210 deventer

1201  de 473 een 285 iiiaastricht 205 vijftien

1100 neen 437 centraal 278 twintig 198 trein

1062 u 428 leiden 274 aankonien 189 heb

989 graag 427 vandaag 271 ook 186 woensdag
948 vertrekken 427 hoorn 269 breda 186 juni

914 vanuit 423 rotterdam 266 zes 178 negentien
875 niorgen 422 vanaf 262 zondag 173 veertien

754 XXX 404 haarlern 254 tussen 173  te

Table 1:  The 100 most frequent words of the recognised input in the OVIS corpus.
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Till ti Utterance Ver. type

Sl               goedemorgen   dit   is   het    autoniatische    informatiesysteein   van
openbaar vervoer reisinformatie dit systeern geeft ilitslzlitenci
informatie over treinreizeil van ns-station naar ns-station van
welk static,11 naar welk station wilt u reizen

Ul ik wil van voorschoten naar den haag centraal station

S2       wanneer wilt u vanuit voorschoten iiaar utreclit centraal statioii INIPI.

reizen
U2 ik wil riaar dell haag centraal StatiO Il

S3      wanneer wilt u vanuit voorschoten naar den haag centraal sta- IMPL
tioii reizen

U3 overmorgen

S4      hoe laat wilt u overiiiorgen reizen IMPL

U4 ergens in de avond

S5      u wilt dus tiissen achttien en vierentwintig uur vertrekken EXPL

U5   ja
SG het spijt me ik heb u niet begrepen wilt u nog eens zeggen of u EXPL

tussen achttien en vierentwintig uur wilt vertrekken
UG   ja
S7              er  zijn vijf verbindingen  dit  is de vroegste  ( . . . )   wilt  u  dat  ik  de

verbinding nog eens lierhaal
U7 ja doe maar
S8 het spijt me ik heb u 1liet begrepen kunt u nog eens zeggen of

ik de verbinding moet herhalen
U8   ja
S9               ik   herhaal de verbinding   ( . . . )      zal   ik   de   verbinding   nog   eens

herhalen
U9 nee

Slo het spijt me ik heb u Iiiet begrepeii kunt 11 nog eeris zeggen of

ik de verbinding moet herhalen
Ulo riee Iiiet herhalen

Sll het spijt me maar ik heb u weer Iiiet begrepen kunt u nog eens

zeggen of ik de verbinding moet. herhalen
Ull nee

S 12 wilt u ook de eerstvolgende verbinding weten

U12 nee

S 13 wilt u nog een andere verbinding weten

I T 13 nee

S 14 liet spijt me ik heb u niet begrepen kunt u nog eens zeggen of

u een andere verbinding wilt weten
U14 nee ik wil geen andere verbindiiig weten

Figure 2: Original transcription of dialogiie iii. 001/007 sampled from the OVIS corpus.
System pronipts are marked for verification type.
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Turn Utterance Annotation

Sl   goedenavorid dit is liet automatische informatiesys- Q_VA
teem van openbaar vervoer reisinforniatie dit systeem
geeft uitsluitend inforinatie over treinreizen van ns-
station naar ns-station van welk station naar welk
station wilt u reizeii

Ul ik moet volgende week dinsdag van schiplio] naar nij- S.\AD_PROB_OK

megen

$2        van waar riaar waar wilt u op dinsdag twaalf december Q_VA:I_D
reizen

U2 van schiphol naar nijmegeri S_VA_OK_PROB
S3    hoe laat wilt u vanuit schiphol naar nijmegen reizen Q-H:I_VA
U3 rond kwart over elf savon(is S-TH_PROB_OK
S4  u wilt dus om elf uur achtendertig s ochtends E_TH

vertrekken
U4 nee s avonds N:S_T_PROB_PROB

S5    wilt u mij alstublieft corrigeren                                      M
U5 nee ik wil om elf uur vijftien s avonds vertrekken N:S_TH_PROB_PROB
86 u wilt dus om drieentwintig ziur achtendertig E_H

vertrekken

U6 zo ongeveer ja A:Y_PROB_PROB
S7 het spijt me ik heb u niet begrepen wilt u nog eens RE_H

zeggen of 11 om drieentwintig uur achtendertig wilt
vertrekken

U7 om drieentwintig uur vijftien S_H_OK_PROB

S8    u wilt dlls om drieentwintig uur vijftien vertrekken E_H

U8 ja              Y_VOID_OK_OK

Figure 3:  The original Dutch transcription of dialogue nr. 004/005 sampled from the OVIS
corpus. User turns are annotated by our label set OIl the four components of SI, system
prompts are analysed in terms of TRAs and slots.
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Turn Utterance

S 1      ik moet nog uhm naar Hilde toe die nog steeds natuurlijk met 'r uh met
'r bovenlijf in 't gips zit.

S2 mill-hu.
S 1             en  ik  moet  nog  tae-boFIi.
S2      ja dat weten ze niet hoe ze dat moeten sclirijven. wedden?
S 1               en ik moet  nog...   ggg  nee.

ggg. nee serieus.
Sl      ja? tae-bo dat is T A E streepje B O maar die naam mag dlls niet meer

gebruikt worden.
S2    oh?

S 1             omdat.     heb je  dat niet gehoord?
S2     nee.
S 1               onidat uh Billy Blanks  die  vent  die  dlls uh tae-bo heeft uitgevonden  die

uhm.
S2       je hoeft niet t- e- je hoeft 11it te leggen. het gaat niet om inhozid.
S 1               nee  maar  dat  wil  ik even zeggen tegen  jou.   xxx.
S2        xxx. ja okd ja maar ik weet wie je bedoelt ja.
Sl             nou ja tae-bo.. Billy Blanks die heeft dlls dat uh heeft nu een rechtszaak.
S2    ja?
Sl       en daarbij gaat 't d'rom dat dat dus die naam tae-bo die heeft hij dus zeg

maar verzonnen en daar heeft ie vijftien jaar over gedaan om dat allemaal
te ontwikkelen enzovoort.

S2    ja.

Sl       en hij vindt dus dat hij dat alleen mag gebruiken. dus dat hij ook alleen
maar die videobanden mag verkopen en dat sportscholeIl diis niet die
naam tae-bo mogen gebruiken.

S2       zonder dat ze xxx ja.
Sl      zonder dat ze aan hem heel veel geld ge-..  hij wil dus gewoon heel veel

geld verdienen d'raan. en hij verdient natuurlijk oh echt bakken met geld
aan dat tae-bo.

S2       ja ja.

Figure 4: The first turns of a spontaneous dialogue sampled from the CGN corpus (sample

nr. fn000451).
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Turn Utterance

Sl               de   Vlaamse   regering   wil    vanaf   niidderi   volgerid   jaar   starten   met   een

zorgverzekering. zwaai· hulpbehoevenderi krijgen een financi8le toelage
voor hzin niet-medische kosten. liet bedrag schommelt tussen drieduizend
vijfhonderd en zesduizend vijfhonderd frank per maand. het systeein
wordt gefinancierd door de Vlaamse overheid maar ook door de burger.
die   betaalt   dert ig frank per maand   via het ziekenfonds   of   een   priv#-
verzekeringsfonds. .Ioliny Vansevenant.

S2      de vorige Vlaamse regering besliste al dat er een zorgverzekering moest
komen. maar de Coiicrete uitwerking ervan liet op zich wachten. nu
zou het systeeni wordeti georgatiiseerd via de zieketifoiidseii of priv6-
verzekeringskassen. die zouden aan hun leden een bijdrage vragen van
dertig frank per niaand.

Figure 5: The first turns of a broadcasting discourse sampled from the CGN corpus (sample
nr. fv600473).



SUIiinlary

The goal of this study is to develop and test a gezieral niethod that can be impleniented iii
an  iiiterpretation  module  of a spoken dialogue system  (SDS). The interpretation process
is called shallow since the material utilised is obtained directly from the speech recogniser
and the dialogue manager of the SDS without performing deep linguistic processing.

Our approach integrates the components of the proposed shallow interpretation (SI)
modille in a machine learning framework where four pragmatic-semantic aspects of the
user input are conceptualised as learning tasks: the detection of task-related acts (basic
pragniatic acts exhibited  by  the user turn), information units (query slots for which infor-
mation is provided  by  the user), forward-pointing problems (whether  the user input  is  a
source of communication problems in the interaction with the SDS) and backward-pointing
problems (whether  the  user is aware that. communication problems have occurred).

We train two supervised machine learning algorithms - MBL. a niemory-based classi-
fier, and RI, a rule induction classifier, considered as two extremes of working principle -
0Ii labelled data coming froni a corpus of Dutch dialogues with a SDS in the travel domain.
Dialogues are represeiited by a large amount of automatically extracted simple contextual
features such as the wording and the history of system prompts, the full output of the
speech recogniser, and acoustic-prosodic measurements of the speech signal, on the basis
of which the user input is classified in terms of the four pragniatic-semantic components.
An automatic algorithm parameter optimisation method [Van den Bosch 2004} is plugged
into the module.

Our findings show that the ambitious task of simultaneously learning the four-level
interpretation of spoken user turns (Chapter 4) yields significantly better results than
an informed baseline strategy that draws on the most recently posed system prompt.
Classification of task-related acts, slots. and backward-pointing problems is done better
by MBL in these experiments than by RI.

In Chapter 5 we develop a method for improving the module's performance by nieans
of class partitioning  (i.e.,  the SI components  are  learnt in isolation  and in different  com-
binations  with  each  other) and feature partitioning (i.e., classificatioii draws on isolated
information sources). We find that class partitioning has a substantial. positive influence
mi the scores produced by both classifiers for all SI components. The niodiile's highest
performance is attained on learning tlie task-related  acts  (MBL: 91.7 F-score.  RI:   90.5).
followed  by  the  detection of backward-pointing problems  (AIBL: 90.8 F-score.  RI:   88.5)
The results for the reinaining components - filled slot types (AIBL: 87.7. RI: 85.5) atid
forward-pointing problems (MBL: 59.4. iiI: 62.6) - are lower. The improvenients gained
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by optimising the class label of the learning tasks account for substantial error reduc-
tions. especially for Ill. eliminating up to 50W of classification errors in terms of F-score.
It is remarkable that in class partitioning AiBL and RI produce statistically identical top
performances concerning all four SI components. We observe that the vari,us groups of
infomiation source contribute to a different extent to the classification tasks: primarily the
speech recogniser output provides most information to classification. Using information
corning froiIi all available sources turns out to be best for extracting pragmatic-semantic
information  from spoken  user  input.

In Chapter 6 our aim is to block those pieces of information from the optimised learn-
ing algorithms that the literature supposes to negatively effect language processing. We
design three, priniarily inachine learniiig-based niethods to automatically filter the speech
recogniser's oiitput from disfluent words, from syntactically less dominant words, and from
words that do not frequently occur iii the recognition hypotheses. The experimental out-
conws suggest that filtering cannot substantially improve learning performance on the SI
task: we conclude that in our optimised experimental set-up the classifiers are enabled to
interiially cope with noise.

Besides answering our three research questions, the general aim of this work is to cre-
ate an SI module that is robust in several respects. We conceptualise SI as a supervised
classification task. and find that the proposed shallow approach leads to similar scale and
performance tendencies of differently biased classifiers. suggesting that the method can
with a similar success be implemented by other supervised learning techniques. In order
to account for multi-laveredness in the input content, we extract information related to
pragniatic and semantic levels of the user utterance.  We conclude that an optimal compo-
nent combination of such complex information is not trivial to determine, but is possible to
find out via class partitioning, and that it would be useful to merge the backward-pointing
problem component into the task-related act component of the SI module.

The module treats noisiness on several levels. The learning algorithms draw on approx-
imative measurements. since the features extracted from the spoken user input include a
large number of hypothetical values. AIoreover. we find that when filtering techniques
that incorporate higher-level linguistic information are applied to the noisy speech recog-
niser output, the cleaned data do not yield significantly better performance on the SI
tasks than the 110iSy data. At the same time, we are also able to learn which factors of
human-machine interaction can be identified as problem sources for the SI module itself
(e.g..  users accepting errors  that the system  has  made),  as  well  as  for  the  examined  SDS
(the speech recogniser's difficulty in processing negative answers, aspects of the dialogue
nianager's prompting strategy).

The main finding of this study is that drawing on zinsophisticated. potentially noisy
features that characterise the dialogue situation, and by performing automatic optimisa-
tion of the formulated machine learning task at least in terms of class labels and algo-
rithm parameter settings, it is possible to extract sophisticated information of practical
pragmatic-semantic value from spoken user input with robust performance.



Samenvatting

De doelstelling van dit proefschrift is het ontwikkelen van een algeniene methode die een
zogenaanide 'oppervlakkige interpretatie' (shallow interpretation, SI) uitvoert van gebrui-
kersuitingen in gesproken dialoogsystemen (spoken dialogue systems, SDSs).  SDSs commu-
niceren met een gebruiker iii gesproken natuurlijke taal 0111 een specifieke taak uit te voeren,
bijvoorbeeld (zoals in ons onderzoek) het geven van informatie over treinreizen in Neder-
land. Interpretatie vindt in onze analysemodule plaats op vier pragmatisch-semantische
niveau's die de volgende aspecten van een gesproken gebruikersuiting (oftewel spoken user
turn) beschrijven: basale acties  die  naar de onderliggende taak verwijzen ( task-related
acts).  welke type informatie de gebruiker  in zijn uiting geeft (slots, bijv. het invullen van

vertrektijd of aankomststation), of de uiting communicatieproblemen oplevert tussen  sys-
teem en gebruiker (forward-pointing  problems),  en  of uit de uiting blijkt  dat de gebruiker
zich bewust is van het ontstaan van communicatieproblemen  ( backward-pointing problems).

Het interpretatieproces wordt uitgevoerd door middel van gesuperviseerde lerende sys-
temen die - op basis van geannoteerde voorbeelden uit het OVIS corpus - getraind
worden om nieuwe uitingen te elassificeren. In dit proefschrift gebruiken we twee algo-
ritmen, memory-based  learning  (MBL)  en  mle  induction  (RI),  die vaak gezien worden  als
twee extremen van het continuum van lerende systemen. De aanpak is 'oppervlakkig' 0111-
dat de informatie die door de lei ende algoritmen gebruikt wordt bestaat uit eenvoudige
contextuele kenmerken (features) van de gesproken uiting, zoals akoestisch-prosodische

metingen, de dialooggeschiedenis,  en de woordhypotheses  van  de  spraakherkenner  (auto-
matic speech recogniser, ASR) van het SDS. De parameters van MBL en RI worden bij elk
experiment automatisch geoptimaliseerd met behulp van de methode van [Van den Bosch

2004].
De experimenten in Hoofdstuk 4 geven aan dat de complexe taak van het tegelijkertijd

classificeren van alle vier SI niveau's significant beter geleerd wordt door beide algoritmen
dan door een geinformeerde basisstrategie gebaseerd op de meest recente systeemvraag.
Het classificeren van task-related acts. slots. en backward-pointing problems wordt signi-
ficant beter gedaan door MBL dan door Rl.

In Hoofdstuk 5 bekijken we of het mogelijk is de prestatie van de algoritmen te ver-
beteren door middel van information partitioning. d.w.z. het systeiiiatische verdelen en op
een andere manier samenstellen van informatie in de klasse-componenten ( class partition-
ing) eii van de features voor een taak (feature partitioning) Wij zien dat class partitioning
een positieve invloed heeft op beide algoritmen. zodat de beste resultaten (in termezi van
F-score) voor beide algoritnien op alle SI taken nagenoeg identiek zijn. De component die
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iii  de  niodule  het   meest sticcesvol voorspeld wordt   is de task-related  act   (MBL:    91.7  F-
score.  RI: 90.5) gevolgd door backward-pointing problems  (MBL: 90.8 F-score.  RI:   88.5).
De  resultaten  van de beide aiidere coniponenten  - type slots  (MBL:   87.7.  RI:   85.5).  en
forward-pointing problems (NIBL: 59.4, RI: 62.6) - liggen wat lager. Deze verbetering
ten opzichte van het complexe experiment uit Hoofdstuk 4 levert een significante reductie
van  classificatiefoitten op. vooral voor  RI  (tot  50%  reductie op F-score). De experimenteii
met feature partitioning tonen aan dat onze informatiebronnen systematisch verschillen iIi
hun bijdrage voor de SI taken. waarbij de ASR features het nieest informatief blijken te
zijn. In het algemeen worden de beste resiiltaten echter bereikt wanneer alle beschikbare
informatie gebruikt wordt.

Hoofdstuk 6 beschrijft drie pogingeii oni de iii de literatuur beschreven  ruis' (noise) uit
de ASR features te filteren: disfiuencies (zoals zelfcorrecties, afgebrokeii woorden. eilz.).
chunk non-heads (d.w.z. syntactisch Illinder belangrijke woorden). en woorden met een
lagere frequentie.  In de drie experinienten wordt elk van deze bronnen van ruis automatisch
uit de ASR features gefilterd. waarna de SI taken opnieuw geleerd worden. De resultaten
lijken geen significante invloed aan te toneri van filtering op SI. waaruit afgeleid kan wordeii
dat (le geoptinialiseerde leren(le algoritinen zelf al in staat zijn oni met de ruis om te gaan.

Een belangrijke doelstelling van dit proefschrift is dat het model voor SI op verschei-
dene maniereti robuust is. Allereerst leidt de formulering van de SI taak als een geopti-
nialiseerde leertaak er toe dat de twee algoritmen nagenoeg identieke prestaties kunnen
behalen, waarbij we verwachten dat de hier beschreven aanpak en resultaten ook gener-
aliseerbaar zijii naar andere gesuperviseerde leertechnieken. Daarnaast is de SI module in
staat oni alle vier componenten te interpreteren. waarbij de optimale samenstelling van
de compotienten automatisch gevonden kaii wordeii. Tenslotte worden storingsfactoren iii
de interactie op meerdere manieren behandeld. De algoritmen gebruiken een groot aantal,
inogelijk incorrecte. eenvoudige features voor het extraheren van complexe begrippen uit
de gebruikersuiting. De resultaten van Hoofdstzik 6 laten zien dat er in principe geen ver-
betering optreedt in de module wanneer features gefilterd worden. Tegelijkertijd heeft het
onderzoek praktische kennis opgeleverd over probleemfactoren. zowel voor de SI module
(zoals acceptatie van systeemfouten door gebruikers) als voor de interactie met de SDS
iii het algenieen (zoals de problematische verwerking van negatieve uitingen, en diverse
aspecten  van de dialoogmanager).

De belatigrijkste conclusie van ons werk is dat gebaseerd op eenvoudige. soms ruizige.
contextuele kenmerken het niogelijk is om op robtiuste wijze complexe informatie van
pragmatisch-semantische aard te extraheren uit gesproken gebruikersuitingen met behulp
van lerezide algoritmen die geoptiinaliseerd zijn op hun parameters en op sanienstelling
van de taakcomponeiiten.



Kivonat

Disszertticidnk c6lja egy olyan tiltaltinos eljtirtis kifejleszt#se 6, teszteltse. ainely besz6lgetd-
reiidszerbe (spoken d·ialogue system. SDS) Agyazva felhaszntildk haiigzdbesz#didiiek r#sz-
leges 6rtelniez6,6.t (shallow interpretation. SI) hajtja vdgre explicit graininatikai inforniticiO
felliasznAl sa n6lkiil. Az SDS-ek tiltaltinos funkcidja. hogy valainely szolgAltattist g#pi
verbiilis kommunikkid segitsdg#vel eljrhetdvj tegyenek, illetve arr61 az Altaliziik vizsgtilt
esethen pt.lcitii,1 vasfiti  menetrendr61 - felviltigositti.St adjanak. Az ember -gGp inter-
akci6 sortin telidt a felhaszndld beszdd61,61. mely tkibbnyire az SDS Altal feltett kadaw
adott vtilasz. a g6piiek ki kell iiyernie a sikeres kommunikticidlioz #s a v6geredilifinvt acic)
adatbtizis-lekdrdezjshez szuks(iges inforindcidt.  Az Altalunk fejlesztett modulban ez a
mestersjges  iiitelligencia  m6dszereinek  egyik#vel.   feliigyelt  gil,pi  taimid  algoritmusok   (Su-
pet-vised machine learning algorithms) felhaszndllistival ttirt#nik. 111elyet mind memdriaalapti
tallultissal (,nemory-based  learning,   MBL).   mind  szabdlytatiuldssal   (rule  induction,   RI)
elvdgziink.

Az MBL 6 az RI algoritmzisokat - melyek a tantilds intenzitdsdnak #s a niegizerzett
tudds reprezentdldsdnak szempolitjtib61 a felugyelt tanuldsi mdclszerek k6t vdglet( nek tekitit-
het6k - holland nyelvi-1, ember g#p pArbesz6deket tartalmaz6 annotAlt gyakorldkorpuszoii
tanitjuk a felliaszntild hangzdbesz6.dben bevitt szuvegdnek (spoken ·user inpli. ) 11#gy prag-
matikai-szeitiantikai szinten va16 r zleges 6rtelmezA,6re. A szintek a kuvetkezdk: a fel-
hasziia16 vA,laszdnak alapvet6 koniinunikativ aktusa C task-related act, TRA),  a  felhasznli16
Altal Inegaclott tartalmi inforniticid tipusa az SDS lek6rdez(isistrukti'irdjAbaii Uille.d  query
slot. sLoT).   annak  felismer6se,   hogy   a   bevitt   mondat   fog-e  probl#nitit  okoziii   az  aclott
ptirbesz6dbeli   (forward-pointing   problem,   FWD   PR),   valaiilint   alinak   azotiositfuia.   hogy

amennyibezi a diskurzzis sordn probl6ma meriilt fel, a felliasznA16 tzidatdbati van-e en-
nek (backward-pointing problem. BWD PR).  A tantiltis alapjtizil a ptirbesz6dek egyszeri-1. az
SDS-ben azitoinatikusaii hozztifdrhetd jelleiIiz6i szolgAliiak. mdyeket litiroin csoportra oszt-

hattink: a besz6djel akusztikai-proz6diai attribfitizinai. az SDS dialdgiismenedzsere Altal
t Arolt   plirbesz6cle16zmOriyek C

dialogue history). valainint az SDS automatikus besz#dfelis-
11ierdje (automatic speech recogniser. ASR) teljes. szdgrtif-hipot#zis formtijl'l kimenete.
inelyet rendezetlen szdlialinazkdnt  C -bag-of-wonis ")  librAzolutik.  A tantilds sortiii mindk it
algoritmus parain6tereit atitoniatikusaii optimaliztiljtik  Van clen Bosch 2004] 1116dszer(lvel.

A disszertAcid 1. fejezete a iliegvtilaszolni kivtint kutattisi k6rdOseket fogalinazza ineg.
A 2. fejezet nitis kutatdcsoportok SI-re ronatkoz6 eredm#nyeit 6s nicklszereit tkirgyalja.
kiilunds tekititettel a korpuszatinottilfi.sra, valamint a praginatikai-Szoillantikai itiforniticic;
kinver#s6hez felhasziitilt interakci6-jellemz6kre.  A 3. fejezet bemutatja a gOpi tallulas
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teriilet6t. ahol fdk :It a memdriaalapi'i 6s a szabtilytanuld algoritmusok bels6 mechanizmu-
sdra  forditunk  figyelmet.  valamint  meghatdrozzuk  tanuldsi  kis6rleteink  metodikA.jdt.

A 4. fejezetben leirt kis#rletek alapjdn megAllapithat6. hogy az SI modul a bonyolult.
n6gyszintft  8rtelmez#st  eredm6nvesebben  k ·pes  elv6gezni.  mint  az  az  alapeljdrtis   (base-
line strategy), amely az elemz#shez az SDS legut6bb feltett kdrd66t veszi figyelembe. A
TRA, SLOT. ds BWD PR r zfeladatokat az AIBL algoritmils az Osszetett feladat sordn jobb
eredm6niivel oldja meg, mint az RI algoritmus.

AlunkAnk  5.  fejezet6ben  az  SI  modult  az  informAci6megosztds  (information  partition-
ing) inodszei Gvel fejlesztjiik tovdbb: az algoritinusok mind a zidgy SI alfeladatot az 8sszes

lehets6ges kombititicidban  megtanuljdk  (class partitioning).  majd a kapott optimdlis  kom-
binticidt a hdrom elkul6nitett attribiltumcsoport alapjAn (feature partitioning).   Ategtillapit-
juk, hogy a class part·itionirig 1116dszerrel a mocitil teljesitmdnve hatdkonyan ndvekszik
(n6mely esetben a komplex feladathoz k6pest esetenkjnt 50%-os hibacsiikken6st is eldrve)
mind MBL. mind RI eset#ben. A legjobb eredmenyt a TRA komponensen (vagyis az alapvet6
besz6(laktzis-tipus  kinyer6s#it)  drjuk  el  (MBL: 91.7 F-score,  RI:   90.5).  melyet  a  BWD  PR
komponens  kuvet   (AIBL: 90.8 F-score.   RI:    88.5).     A   SLOT  koniponens  klasszifikticidja
valamivel alacsonyabb eredmjnnyel vdgezhet6 el (MBL: 87.7, RI: 85.5). A legnehezebb
feladatnak a FWD PR komponens meghatdrozdsa bizonyul  (MBL:  59.4.  RI: 62.6). Meglep6
vizsgkilati eredmdny. hogy ezzel a mddszerrel a k6.t algoritmus az 6rtelniezds egy-egy szintjiit
statisztikailag azonos teljesitm6mivel k#pes rnegtaiiulni. Alegdllapitjzik, hogy a h roni in-
formAcidforrds k8zul az ASR attribfitumcsoport bizonyul a leghasznosabbnak: Altaltiban
azonban legoptinidlisabb az 8sszes lehetsdges attributum figyelembe vdtele a tanultis sordn.

A 6. fejezetben az ekdppen optimaliztilt drtelmez6modul robtisztussdgtinak (robustness)
tortibbi vizsgdlatdt hajtjuk vdgre. Hdrom kisdrleti lilddszer kerul alkalniaztisra abb61 a
cdlb61.   hogy  az   ASR   "zajos"   (noisy)   kimeneti   hipot6zisdb61  kiszurjiink   hdromfdle   -   a
szakirodalom Altal  zavardnak  feltdtelezett  -  elemet:   a  diszfluens  elemeket  (d·isjtuencies,
figymint  61ijavittis,   szdisiI16tlds.   hummGg .   stb.).a  grammatikailag aldrendelt szavakat
(chunk  non-heads). ds azokat a szavakat. anielyeket  az  ASR  hipot6zise alacsonyabb gyako-
risAggal tartalmazza. Az elsd kdt 1116dszert ism  automatikusan. gdpi tanuldsi techniktik
segits6gdvel v6gezziik. esetenk61lt gramniatikai informAcid felhaszndldsdval. A megszfirt
ASR kimeneten (a tfibbi attribiltummal egyetemben) elvdgzett SI kis6rletek azonban azt
sugalljdk, hogy az #rtelmezOsi feladat nem igdnyli az attribiltumok zajossdgdnak cs6kken-
tasat, mivel a kapott   eredni6nyek   neni mutatnak jelent6s vdltoztist   az   5.   fejezetben   tdr-
gyaltakhoz kapest. Ebb61 art·a ki)vetkeztetunk, liogy az SI modul az optimalizdlds sordn
bels6 robusztussdgot 6rt el ezekkel az elemekkel szemben.

A lefrt technikai megolddssal nemcsak besz6lt nyelvi sztiveg rdszleges elemz6sjt tudtuk
elv6gezizi, de hasznos tudtist tivertiink a gdp ds az ember k6z6tt foly6 pdrbeszOd szdmos
gyakorlati jellenizdj 61.  Noha a modell az litazAs t6makBr#ben kerult bemutatdara. a
kisdrletek Altaldnos metodiktija, valamint a kapott teszteredm#Iiyek az eljArks tiltalAnos
alkalmazhat6sdgdra utalnak. Kutatdsunk sortin megAllapitottuk, hogy a kifejlesztett inodul
k6pes arra. hogy zajos. egyszerti attribi'itumok alapj n gdpi tantil .si m6dszerekkel fel-
haszndldk hangzdbeszddtb61 magasszintu. praginatikai-szemantikai jellegfi informAci6t nver-
jeti ki stabil teljesitn16nnyel.
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