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SERIAL AND NONSERIAL SIGN-AND-RANK STATISTICS:
ASYMPTOTIC REPRESENTATION AND

ASYMPTOTIC NORMALITY

BY MARC HALLIN,1 CATHERINE VERMANDELE AND BAS WERKER

Université Libre de Bruxelles, Université Libre de Bruxelles
and Tilburg University

The classical theory of rank-based inference is entirely based either on
ordinary ranks, which do not allow for considering location (intercept) pa-
rameters, or on signed ranks, which require an assumption of symmetry. If
the median, in the absence of a symmetry assumption, is considered as a lo-
cation parameter, the maximal invariance property of ordinary ranks is lost
to the ranks and the signs. This new maximal invariant thus suggests a new
class of statistics, based on ordinary ranks and signs. An asymptotic repre-
sentation theory à la Hájek is developed here for such statistics, both in the
nonserial and in the serial case. The corresponding asymptotic normality re-
sults clearly show how the signs add a separate contribution to the asymptotic
variance, hence, potentially, to asymptotic efficiency. As shown by Hallin and
Werker [Bernoulli 9 (2003) 137–165], conditioning in an appropriate way on
the maximal invariant potentially even leads to semiparametrically efficient
inference. Applications to semiparametric inference in regression and time
series models with median restrictions are treated in detail in an upcoming
companion paper.

1. Introduction. The classical theory of rank-based inference is entirely
based either on ordinary ranks or on signed ranks. Ranks indeed are maximal in-
variant with respect to the group of continuous order-preserving transformations,
a group that generates the null hypothesis of absolutely continuous independent
white noise (no location restriction), whereas signed ranks (i.e., the signs along
with the ranks of absolute values) are maximal invariant under the subgroup that
generates the subhypothesis of symmetric (with respect to the origin) independent
white noise.

Now, in most statistical models a location parameter for the error term is usually
specified to be zero: regression and analysis of variance models, stationary autore-
gressive moving average (ARMA) models and so on. Symmetric white noise al-
lows for such an identification, at the expense, however, of a symmetry assumption
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that in practice is often quite unrealistic. In addition, the trouble with independent
white noise without further restrictions is that it does not allow for identifying any
location parameter.

This location parameter in most applied work is the mean—a heritage of
Gaussian models—but could be the median as well. Zero-median noise is cer-
tainly as natural as zero-mean noise. In a semiparametric context, it is even more
satisfactory, because it does not require any moment assumption on the densities
under consideration. Median regression and autoregression models have, there-
fore, recently attracted much attention: see, for instance, [12, 14, 15, 17, 21], to
quote only a few. Moreover, from the point of view of statistical inference, the
assumption of zero-median noise is also more convenient, since it induces more
structure. The hypothesis of zero-mean white noise indeed is not invariant under
any nontrivial group of transformations, so group invariance arguments cannot be
invoked in models that involve zero-mean noise. The situation is quite different for
the hypothesis of zero-median noise, which is generated by the group of all contin-
uous order-preserving transformations g such that g(0) = 0. A maximal invariant
for this group is the vector of ordinary ranks, along with the vector of signs. Hallin
and Werker [11] have shown that, in such a situation, semiparametric efficiency
is achieved by conditioning with respect to a maximal invariant. Maximality of
the invariant here is essential: conditioning, for example, on the ranks when the
signs and ranks, not the ranks alone, are maximal invariant generally induces an
avoidable loss of efficiency.

Invariance and semiparametric efficiency arguments in such models thus lead
to the new concept of sign-and-rank-based statistics, which involve both signs and
ranks. This new concept is more natural than the traditional rank-based one in all
models that include a location (intercept) parameter, but also in models such as
stationary ARMA models, where the noise is inherently centered. The objective of
the present paper is a detailed study of the class of linear sign-and-rank statistics
for which we provide Hájek-type asymptotic representation and asymptotic nor-
mality results. These results readily allow for building new rank-based tests for a
variety of problems in one-, two- and k-sample location, regression, ARMA and
related models without making any symmetry assumptions on the underlying er-
ror densities. They also form a basis for the construction of semiparametrically
efficient procedures in median constrained models (see [10]).

The paper is organized as follows. Section 2 briefly introduces several concepts
of white noise: independent, independent with zero mean, independent with zero
median and independent symmetric white noises. We recall how the invariance
principle for each of these concepts, but for white noise with zero mean, leads to
a different concept of ranks and/or signs—the right concept for median-centered
white noise being the signs and ranks. Sections 3 and 4 propose a systematic in-
vestigation of (linear) nonserial and serial sign-and-rank statistics. These new sta-
tistics, which are measurable with respect to the vectors of ranks and signs, are
studied along the same lines as the classical linear rank statistics (see, e.g., [3] for
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the nonserial context; see [5] and [7] for the serial context) and the linear signed-
rank statistics (see [3] and [13] for the nonserial context; see [7] for the serial
context). However, the nonindependence between the ranks and the signs (in sharp
contrast with the traditional context of signed ranks, where the signs and the ranks
of absolute values are mutually independent) requires a more delicate treatment.
Section 5 concludes with an empirical study: simulations very clearly show that
the proposed procedures quite significantly outperform their classical counterparts
based on either parametric correlograms or traditional ranks—the more skewed the
underlying densities, the more significant the efficiency gain.

2. White noise and group invariance.

2.1. White noise and semiparametric statistical models. Whatever the concept
of ranks, rank-based inference applies in the context of semiparametric models
under which the distribution of some observed n-tuple Y(n) := (Y

(n)
1 , . . . , Y

(n)
n )′

belongs to a family of distributions of the form{
P(n)

f ;θ , θ ∈ � ⊆ R
K,f ∈ F

}
,(2.1)

where θ denotes some finite-dimensional parameter of interest and f denotes
some unspecified density (densities throughout are tacitly taken with respect to
the Lebesgue measure over the real line) that plays the role of a nonparametric
nuisance. This distribution P(n)

f ;θ , in general, is described by means of (i) a residual

function, namely, a family {Z(n)
θ , θ ∈ �} of invertible functions indexed by n and θ

that map the observation Y(n) onto an n-tuple of residuals

Z
(n)
θ

(
Y(n))= Z(n)(θ) := (

Z
(n)
1 (θ), . . . ,Z(n)

n (θ)
)′
,

and (ii) a concept of white noise with (marginal) density f such that Y(n) has
distribution P(n)

f ;θ iff Z(n)(θ) is white noise with (marginal) density f .
We concentrate on four particular forms of white noise. Define F := {f :f (x) >

0, x ∈ R} as the set of all nonvanishing densities over the real line, let F∗ :=
{f ∈ F :

∫∞
−∞ zf (z) dz = 0} be the subset of all densities in F with zero mean,

let F0 := {f ∈ F :
∫ 0
−∞ f (z) dz = ∫∞

0 f (z) dz = 1/2} be the set of densities
in F having zero median and let F+ := {f ∈ F :f (−z) = f (z), z ∈ R} be the
set of densities in F that are symmetric with respect to the origin. Denote the
following terms:

(a) Independent white noise: Let H (n)
f denote the hypothesis under which the ran-

dom vector Z(n) = (Z
(n)
1 , . . . ,Z

(n)
n )′ is a realization of length n of an indepen-

dent white noise; that is, Z
(n)
i , i = 1, . . . , n, are i.i.d. with density f ∈ F .

(b) Zero-mean independent white noise: Let H (n)
∗;f denote the hypothesis under

which Z(n) is a realization of length n of an independent with zero-mean white
noise; that is, Z

(n)
i , i = 1, . . . , n, are i.i.d. with density f ∈ F∗.
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(c) Zero-median independent white noise: Let H (n)
0;f denote the hypothesis under

which Z(n) is a realization of length n of an independent with zero-median
white noise; that is, Z

(n)
i , i = 1, . . . , n, are i.i.d. with density f ∈ F0.

(d) Symmetric independent white noise: Let H (n)
+;f denote the hypothesis under

which Z(n) is a realization of length n of an independent symmetric white
noise; that is, Z

(n)
i , i = 1, . . . , n, are i.i.d. with density f ∈ F+.

The notation H (n), H (n)∗ , H (n)
0 and H (n)

+ is used whenever the underlying den-
sity function f remains unspecified within F , F∗, F0 or F+, respectively. In prac-
tice, of course, the role of the random variables Z

(n)
i is played by the residuals

Z
(n)
i (θ) (i = 1, . . . , n) associated with a specific value θ of the parameter in the

statistical model under consideration.
The independent white noise hypothesis H (n) is most general, but does not

allow for identifying location parameters. A classical attitude, when location is
to be identified, consists in assuming that the underlying white noise density has
zero mean, that is, adopting H (n)∗ . As already explained, an often-used alternative
solution requires the median (instead of the mean) of the white noise density to be
zero, leading to H (n)

0 . The additional assumption of symmetry yields H (n)
+ .

2.2. Group invariance: ranks, signed ranks, and signs and ranks. Let E (n) :=
(Rn,Bn,P (n) := {P(n)

θ;f , θ ∈ �, f ∈ F }) be characterized (in the sense of Sec-

tion 2.1) by the residual function Z
(n)
θ and the white noise concept H (n). Denote

by G the set of all continuous, strictly monotone increasing functions g : R → R

such that limx→±∞g(x) = ±∞, define G(n)
g : z = (z1, . . . , zn)

′ ∈ R
n �→ G(n)

g (z) :=
(g(z1), . . . , g(zn))

′ ∈ R
n and consider the group (acting on R

n)

G(n)
θ , ◦ := {(

Z
(n)
θ

)−1◦G(n)
g ◦Z(n)

θ , g ∈ G
}
, ◦.

This group (known as the group of order-preserving transformations of
residuals) clearly is a generating group for the fixed-θ submodel E (n)(θ) :=
(Rn,Bn,P (n)(θ) := {P(n)

θ;f , f ∈ F }) of E (n), with maximal invariant the vector

R(n)(θ) := (R
(n)
1 (θ), . . . ,R

(n)
n (θ))′, where R

(n)
i (θ) denotes the rank of the residual

Z
(n)
i (θ) among Z

(n)
1 (θ), . . . ,Z

(n)
n (θ).

Similarly, let G+ := {g ∈ G :g(−z) = −g(z)} and denote by G(n)
θ;+ the corre-

sponding subgroup of G(n)
θ . This group (the group of symmetric order-preserving

transformations of residuals) is a generating group for E (n)
+ (θ) := (Rn,Bn,

P (n)
+ (θ) := {P(n)

θ;f , f ∈ F+}), the submodel of E (n)(θ) that results from restrict-
ing to symmetric densities f ∈ F+. A maximal invariant here is the vector
R(n)

+ (θ) := (s
(n)
1 (θ)R

(n)
+;1(θ), . . . , s

(n)
n (θ)R

(n)
+;n(θ))′, where R

(n)
+;i (θ) denotes the rank
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of the absolute value |Z(n)
i (θ)| among |Z(n)

1 (θ)|, . . . , |Z(n)
n (θ)| and where s

(n)
i (θ)

is the sign of Z
(n)
i (θ).

Turning to the model E (n)
0 := (Rn,Bn,P (n)

0 := {P(n)
θ;f , θ ∈ �, f ∈ F0}) char-

acterized by the residual function Z
(n)
θ and the zero-median white noise con-

cept H (n)
0;f , it is easy to see that a generating group for (with obvious notation)

E (n)
0 (θ) is obtained by considering the subgroup of G(n)

θ that corresponds to G0 :=
{g ∈ G :g(0) = 0}, with maximal invariant the vectors s(n)(θ) := (s

(n)
1 (θ), . . . ,

s
(n)
n (θ))′ of residual signs and R(n)(θ) of residual ranks.

Provided that the parameter θ contains a location or intercept component, and
leaving aside the condition that residuals should have finite first-order moments,
the model E (n)∗ := (Rn,Bn,P (n)∗ := {P(n)

θ;f , θ ∈ �, f ∈ F∗}), which is character-

ized by the same residual function Z
(n)
θ as E (n)

0 , but has zero-mean rather than

zero-median white noise, coincides with E (n)
0 . Both models indeed involve the

same family of distributions P (n) over (Rn,Bn); they only differ in the way
the nonparametric family P (n) is split into a collection of parametric subfamilies
P (n)

f := {P(n)
f ;θ , θ ∈ �} (hence, of course, in the way θ is to be interpreted). Rather

than two distinct models, E (n)
0 and E (n)∗ thus constitute two different parametriza-

tion of the same model, but the invariance structure underlying E (n)
0 is not present

in E (n)∗ . The median, in this respect, allows for a richer structure and, therefore,
seems more appropriate than the mean as a location parameter.

2.3. Group invariance and semiparametric efficiency. The importance of con-
sidering maximal invariants—thus, signs and ranks in models with zero-median
white noise—has been substantiated by Hallin and Werker [11]. Their paper
showed that, in a very broad class of models, semiparametrically efficient infer-
ence procedures can be obtained by conditioning with respect to a maximal invari-
ant σ -algebra.

More precisely, assume that the semiparametric family (2.1) is such that:

(i) For any fixed f , the parametric subfamily P (n)
f := {P(n)

f ;θ , θ ∈ �} is locally

asymptotically normal (LAN), with central sequence �
(n)
f (θ).

(ii) For any fixed θ , the nonparametric subfamily P (n)
θ := {P(n)

f ;θ , f ∈ F } is gener-

ated by a group of transformations with maximal invariant W(n)(θ).

Then, under very general conditions, semiparametrically efficient inference (test-
ing, estimation, etc.) at f can be based on the semiparametrically efficient central
sequence E[�(n)

f (θ)|W(n)(θ)], which, moreover, is distribution-free under P (n)
θ .

Projecting onto maximal invariant σ -algebras (generated, in the context of Sec-
tion 2.2, by the ranks, the signed ranks or the signs and ranks) thus yields
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(at given f ) the same results as tangent space projections. In a companion pa-
per [10], we specialize the Hallin and Werker [11] abstract results to obtain semi-
parametrically efficient inference in median regression and autoregressive models
using the asymptotic representation results of the present paper for general sign-
and-rank statistics.

Inference based on ranks and signed ranks has since long ago made its way to
everyday practice and even to elementary textbooks. A pretty complete toolkit of
rank-based methods is available for the analysis of linear models with independent
observations (see [4, 18] for a systematic account and the state of the art in this
context), as well as for the analysis of linear time series models (see [2, 5–7, 9]).
It is somewhat surprising, therefore, that sign-and-rank statistics never have been
considered so far in the vast literature devoted to that subject. The purpose of this
paper is to fill this gap.

2.4. Two simple examples. Two examples are treated in some detail in Sec-
tions 3.4 (median regression) and 4.4 (median moving average), respectively.

Under the median-regression model, observations are of the form

Yi = θ1 + θ2c
(n)
i + εi, i = 1, . . . , n,(2.2)

where θ := (θ1, θ2) ∈ R
2, the c

(n)
i ’s are regression constants and the εi ’s are in-

dependent and identically distributed (i.i.d.) with density f . Instead of the usual
specification that E[εi] = 0, however, we rather impose that the median of εi is
zero (i.e., f ∈ F0). Here, the residuals take the form Z

(n)
i (θ) := Yi − θ1 − θ2c

(n)
i .

Under P(n)
f ;θ , these residuals are i.i.d. with density f ∈ F0. Under fairly general

conditions, this model, for fixed f (with weak derivative f ′), is LAN with central
sequence

�
(n)
f (θ) := n−1/2

n∑
i=1

−f ′

f

(
Z

(n)
i (θ)

)( 1
c
(n)
i

)
.(2.3)

In the first-order median moving average (MA) model, observations are gener-
ated by the MA equation

Yt = εt + θεt−1, t = 1, . . . , n,(2.4)

with θ ∈ (−1,1). Here again, we assume that the εt ’s are independent and identi-
cally distributed with density f and median zero. For simplicity, assume ε0 = 0.
The residuals are defined recursively as Z

(n)
t (θ) := Yt − θZ

(n)
t−1(θ), with initial

value Z
(n)
0 (θ) = 0. Here again, for fixed f (with weak derivative f ′), LAN holds

with central sequence

�
(n)
f (θ) := n−1/2

n∑
t=1

−f ′

f

(
Z

(n)
t (θ)

)
Z

(n)
t−1(θ).(2.5)
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2.5. Sign-and-rank statistics. A sign-and-rank statistic is an (s(n),R(n))-
measurable statistic, where s(n) = (s

(n)
1 , . . . , s

(n)
n )′ and R(n) = (R

(n)
1 , . . . ,R

(n)
n )′

are the vector of signs and the vector of ranks, respectively, associated with some
n-dimensional random vector Z(n). The objective of this paper is to introduce lin-
ear nonserial (Section 3) and linear serial (Section 4) sign-and-rank statistics, and
to study their distributions under H (n)

0 .
Denote by

N
(n)
− :=

n∑
i=1

I
[
Z

(n)
i < 0

]= n∑
i=1

I
[
s
(n)
i = −1

]
and by

N
(n)
+ :=

n∑
i=1

I
[
Z

(n)
i > 0

]= n∑
i=1

I
[
s
(n)
i = 1

]
the numbers of negative and positive components in Z(n) (in s(n)), respectively.
Under H (n)

0 , N
(n)
+ is binomial Bin(n,1/2). Letting N(n) := (N

(n)
− ,N

(n)
+ ), note that

σ(N(n)) = σ(N
(n)
− ) = σ(N

(n)
+ ), because N

(n)
+ = n−N

(n)
− with probability 1. Since

s
(n)
i = I [Z(n)

i > 0] − I [Z(n)
i < 0] = I [R(n)

i > n − N
(n)
+ ] − I [R(n)

i ≤ N
(n)
− ] for all

i = 1, . . . , n, the couple (N(n),R(n)) is maximal invariant for H (n)
0 .

Defining the sets

N (n)
− := {

i ∈ {1, . . . , n} : s(n)
i = −1

}= {i−1 < · · · < i−
N

(n)
−

}
and

N (n)
+ := {

i ∈ {1, . . . , n} : s(n)
i = 1

}= {
i+1 < · · · < i+

N
(n)
+

}
,

the distribution of (s(n),R(n)) under H (n)
0 is conveniently characterized as

follows: The marginal distribution of s(n) is uniform over the 2n elements
of {−1,1}n and the conditional distribution of R(n) given s(n) is such that
(R

(n)

i−1
,R

(n)

i−2
, . . . ,R

(n)

i−
N

(n)−
;R(n)

i+1
,R

(n)

i+2
, . . . ,R

(n)

i+
N

(n)+
) is (conditionally) uniformly dis-

tributed over the (N
(n)
− !)(N(n)

+ !) possible combinations of a permutation of

{1, . . . ,N
(n)
− } with a permutation of {(n − N

(n)
+ ) + 1, . . . , n}.

Let us finally denote by Z
(N

(n)
− )

(·)− and Z
(N

(n)
+ )

(·)+ the vectors of order statistics as-

sociated with the negative and positive elements of Z(n), respectively. These two

vectors—the first one of length N
(n)
− and the second one of length N

(n)
+ —constitute

a natural (random) decomposition of the vector of order statistics Z(n)
(·) associated

with Z(n).
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3. Nonserial linear sign-and-rank statistics.

3.1. Definition and conditional asymptotic representation. A linear nonserial
sign-and-rank statistic is a statistic of the form

S(n)
c := 1

n

n∑
i=1

c
(n)
i a(n)(N(n);R(n)

i

)
,(3.1)

where a(n)(·; ·) is a real-valued score function defined over {((ν, η); i) :ν, η ∈
{0,1, . . . , n}, η ≤ n − ν, i ∈ {1, . . . , n}}; note that each summand in (3.1) is al-
lowed to depend on the sign s

(n)
i of Z

(n)
i , but also, via N(n), on the other signs,

but not on the other ranks. As usual, the c
(n)
i ’s (i = 1, . . . , n) denote nonrandom

regression constants.
The exact mean E[S(n)

c ] and the exact variance Var[S(n)
c ] of S

(n)
c under H (n)

0
are easily obtained from elementary combinatorial arguments: Letting c̄(n) :=
n−1∑n

i=1 c
(n)
i , we obtain

E
[
S(n)

c
]= (n2n)−1c̄(n)

n∑
j=1

n∑
ν=0

(
n

ν

)
a(n)((ν, n − ν); j )

and

Var
[
S(n)

c
]= 1

n(n − 1)2n

n∑
i=1

(
c
(n)
i − c̄(n))2

×
n∑

ν=0

(
n

ν

){ n∑
i=1

[
a(n)((ν, n − ν); i)]2

− 1

n

[
n∑

i=1

a(n)((ν, n − ν); i)]2}
,

respectively.
If asymptotic results are to be obtained, some stability of the scores a(n) is

required as n increases. We therefore assume the existence of a score-generating
function. A function ϕ : (0,1) → R is called a score-generating function for the
score function a(n) if

E
[{

a(n)(N(n);R(n)
1

)− ϕ
(
F
(
Z

(n)
1

))}2|Z(n)
(·)
]= oP(1)(3.2)

under H (n)
0;f , as n → ∞. Here F denotes the distribution function associated with

density f . Note that, by the rule of iterated expectations and the fact that N(n) =
(N

(n)
− ,N

(n)
+ ) is measurable with respect to Z(n)

(·) , a sufficient condition for (3.2) to
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hold is

E
[{

a(n)(N(n);R(n)
1

)− ϕ
(
F
(
Z

(n)
1

))}2|N(n)]= oP(1)(3.3)

under H (n)
0;f , as n → ∞.

No asymptotic results for S
(n)
c can be obtained without some assumptions on

the asymptotic behavior of regression constants c
(n)
i , i = 1, . . . , n. We assume that

the classical Noether condition holds:

(N) The constants c
(n)
i , i = 1, . . . , n, are not all equal and

lim
n→∞

max1≤i≤n(c
(n)
i − c̄(n))2∑n

j=1(c
(n)
j − c̄(n))2

= 0.

We may now state a first asymptotic representation and asymptotic normality
result. This result, however, is a conditional one in the sense that the centering in
(3.4) and (3.5) below is a conditional centering. Since, conditionally on the signs,
the sign-and-rank statistic (3.1) reduces to a purely rank-based statistic, this con-
ditional representation result follows from classical results on linear rank statistics
and merely serves as an intermediate step in the derivation of the main result (of
an unconditional nature) in Section 3.3. Contrary to the unconditional one, which
requires exact or approximate scores, the conditional result holds for any scores
that satisfy (3.2).

LEMMA 3.1. Let ϕ : (0,1) → R be a nonconstant square-integrable score-
generating function for a(n) and let the regression constants c

(n)
i (i = 1, . . . , n)

satisfy the Noether condition (N). Assume moreover that
∑n

i=1(c
(n)
i − c̄(n))2 =

O(n), as n → ∞. Then:

(i) (Asymptotic representation) under H (n)
0;f , as n → ∞,

S(n)
c − E

[
S(n)

c |N(n)]= T
(n)
ϕ;f − E

[
T

(n)
ϕ;f |Z(n)

(·)
]+ oP

(
1/

√
n
)
,(3.4)

where T
(n)
ϕ;f := 1

n

∑n
i=1 c

(n)
i ϕ(F (Z

(n)
i )) (F stands for the distribution function as-

sociated with f );
(ii) (Asymptotic normality) under H (n)

0 , as n → ∞,

√
n
(
S(n)

c − E
[
S(n)

c |N(n)])/√√√√1

n

n∑
i=1

(
c
(n)
i − c̄(n)

)2 L−→ N (0, σ 2
ϕ ),(3.5)

where 0 < σ 2
ϕ := ∫ 1

0 ϕ2(u) du − (
∫ 1

0 ϕ(u)du)2 < ∞.
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Observe that, under H (n)
0 ,

E
[
S(n)

c |N(n)]= 1

n

n∑
i=1

c
(n)
i E

[
E
[
a(n)(N(n);R(n)

i

)|s(n)]|N(n)]

= 1

n

n∑
i=1

c
(n)
i

{
P
[
s
(n)
i = −1|N(n)] 1

N
(n)
−

N
(n)
−∑

j=1

a(n)(N(n); j )

+ P
[
s
(n)
i = 1|N(n)] 1

N
(n)
+

n∑
j=(n−N

(n)
+ )+1

a(n)(N(n); j )}

= c̄(n)

(
1

n

n∑
j=1

a(n)(N(n); j ))

= c̄(n)

(
1

n

n∑
i=1

a(n)(N(n);R(n)
i

))

and

E
[
T

(n)
ϕ;f |Z(n)

(·)
]= 1

n

n∑
i=1

c
(n)
i E

[
ϕ
(
F
(
Z

(n)
i

))|Z(n)
(·)
]

(3.6)

= c̄(n)

(
1

n

n∑
i=1

ϕ
(
F
(
Z

(n)
i

)))
.

Hence, part (i) of Lemma 3.1 actually states that

1

n

n∑
i=1

(
c
(n)
i − c̄(n))a(n)(N(n);R(n)

i

)
(3.7)

= 1

n

n∑
i=1

(
c
(n)
i − c̄(n))ϕ(F (Z(n)

i

))+ oP
(
1/

√
n
)
,

under H (n)
0;f , as n → ∞. Note that the expression on the right-hand side of (3.7)

coincides with the asymptotic representation of the purely rank-based statistic
1
n

∑n
i=1(c

(n)
i − c̄(n))a

(n)
ϕ (R

(n)
i ), where a

(n)
ϕ (R

(n)
i ) are, for instance, the traditional

exact scores E[ϕ(F (Z
(n)
i ))|R(n)

i ] associated with the score-generating function ϕ.

The sign-and-rank statistic S
(n)
c thus asymptotically decomposes into two parts;

one of them (namely, S
(n)
c − E[S(n)

c |N(n)]) asymptotically does not depend on N(n)

and represents the contribution of the ranks, while the second one (E[S(n)
c |N(n)] −

E[S(n)
c ]) constitutes the contribution of the signs. Moreover, the ranks and N(n) be-

ing mutually independent, these two quantities are orthogonal to each other and
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contribute additively to the unconditional asymptotic variance (see the proof of
Proposition 3.2 below).

PROOF OF LEMMA 3.1. Since the ranks R(n) and N(n) are mutually indepen-
dent under H (n)

0;f , part (i) of the lemma follows from classical asymptotic represen-
tation results for linear rank statistics; see [3], page 61. The proof of part (ii) of the
lemma, in view of (3.4), simply consists in checking that

√
n(T

(n)
ϕ;f −E[T (n)

ϕ;f |Z(n)
(·) ])

satisfies the traditional Lindeberg condition. �

3.2. Exact and approximate scores. Following the classical literature on
ranks, we consider in the present paper sign-and-rank statistics based on either
exact or approximate scores.

Let U
(n)
1 , . . . ,U

(n)
n be an n-tuple of i.i.d. random variables uniformly dis-

tributed over (0,1). Define s
(n)
Ui

:= I [U(n)
i > 1/2] − I [U(n)

i < 1/2], N
(n)
U;− :=∑n

i=1 I [U(n)
i < 1/2] and N

(n)
U;+ :=∑n

i=1 I [U(n)
i > 1/2]. Denote by R

(n)
Ui

the rank of

U
(n)
i among U

(n)
1 , . . . ,U

(n)
n , by U

(ν)
(i)− (i = 1, . . . , ν) the ith-order statistic associ-

ated with a sample of ν i.i.d. random variables uniformly distributed over (0,1/2)

and by U
(ν)
(i)+ (i = 1, . . . , ν) the ith-order statistic associated with a sample of ν

i.i.d. random variables uniformly distributed over (1/2,1). Note that the condi-
tional distribution of U

(n)
i given the event s

(n)
Ui

= −1 (resp. s
(n)
Ui

= 1) is uniform
over (0,1/2) [resp. (1/2,1)]. The linear nonserial sign-and-rank statistics con-
structed from the exact and approximate scores associated with ϕ are defined by

S
(n)
c;ϕ;ex/appr := 1

n

n∑
i=1

c
(n)
i a

(n)
ϕ;ex/appr

(
N(n);R(n)

i

)

:= 1

n

n∑
i=1

c
(n)
i

{
I
[
s
(n)
i = −1

]
a

(n)
ϕ;−;ex/appr

(
N

(n)
− ;R(n)

i

)
(3.8)

+ I
[
s
(n)
i = 1

]
a

(n)
ϕ;+;ex/appr

(
N

(n)
+ ;R(n)

i − (n − N
(n)
+
))}

,

where the score functions a
(n)
ϕ;−;ex, a

(n)
ϕ;−;appr, a

(n)
ϕ;+;ex and a

(n)
ϕ;+;appr, all defined on

the set {(ν; i);ν, i ∈ {1, . . . , n} with i ≤ ν}, are given by

a
(n)
ϕ;−;ex(ν; i) := E

[
ϕ
(
U

(n)
1

)|N(n)
U;− = ν,R

(n)
U1

= i
]= E

[
ϕ
(
U

(ν)
(i)−

)]
,(3.9)

a
(n)
ϕ;−;appr(ν; i) := ϕ

(
E
[
U

(ν)
(i)−

])= ϕ

(
i

2(ν + 1)

)
,(3.10)

a
(n)
ϕ;+;ex(ν; i) := E

[
ϕ
(
U

(n)
1

)|N(n)
U;+ = ν,R

(n)
U1

= (n − ν) + i
]

(3.11)
= E

[
ϕ
(
U

(ν)
(i)+

)]
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and

a
(n)
ϕ;+;appr(ν; i) := ϕ

(
E
[
U

(ν)
(i)+

])= ϕ

(
1

2
+ i

2(ν + 1)

)
(3.12)

Observe that, under H (n)
0;f , S

(n)
c;ϕ;ex = E[T (n)

ϕ;f |N(n),R(n)] = E[T (n)
ϕ;f |s(n),R(n)].

We then have the following proposition.

PROPOSITION 3.1. Let ϕ : (0,1) → R be a nonconstant square-integrable
function. Then ϕ is a score-generating function for a

(n)
ϕ;ex. If, moreover, ϕ is the dif-

ference of two nondecreasing square-integrable functions, then ϕ is also a score-
generating function for a

(n)
ϕ;appr.

PROOF. Let us first consider the exact scores defined by relationships (3.8),
(3.9) and (3.11), and let us show that, under H (n)

0;f ,

E
[{

a
(n)
ϕ;ex

(
N(n);R(n)

1

)− ϕ
(
F
(
Z

(n)
1

))}2|N(n)]= oP(1)(3.13)

as n → ∞. By the definition of a
(n)
ϕ;−;ex, we only need to show that

E
[{

E
[
ϕ
(
F
(
Z

(n)
1

))|s(n)
1 = −1,N

(n)
− ,R

(n)
1

]− ϕ
(
F
(
Z

(n)
1

))}2|N(n)
− , s

(n)
1 = −1

]
= oP(1),

under H (n)
0;f , as n → ∞. Since F(Z

(n)
1 ) is, under H (n)

0;f and conditionally on
s
(n)
1 = −1, uniform over the interval (0,1/2), this readily follows from a slight

generalization of Theorem V.1.4.a in [3], page 157.
Let us now consider the approximate scores defined by (3.8), (3.10) and (3.12).

Clearly, (3.3) holds for a
(n)
ϕ;appr if, under H (n)

0;f ,

E
[{

a
(n)
ϕ;−;appr

(
N

(n)
− ;R(n)

1

)− ϕ
(
F
(
Z

(n)
1

))}2|N(n)
− , s

(n)
1 = −1

]
and

E
[{

a
(n)
ϕ;+;appr

(
N

(n)
+ ;R(n)

1 − (n − N
(n)
+
))− ϕ

(
F
(
Z

(n)
1

))}2|N(n)
+ , s

(n)
1 = 1

]
are oP(1) as n → ∞. We have

E
[{

a
(n)
ϕ;−;appr

(
N

(n)
− ;R(n)

1

)− ϕ
(
F
(
Z

(n)
1

))}2|N(n)
− , s

(n)
1 = −1

]
= E

[{(
a

(n)
ϕ;−;appr

(
N

(n)
− ;R(n)

1

)− a
(n)
ϕ;−;ex

(
N

(n)
− ;R(n)

1

))
+ (a(n)

ϕ;−;ex

(
N

(n)
− ;R(n)

1

)− ϕ
(
F
(
Z

(n)
1

)))}2|N(n)
− , s

(n)
1 = −1

]
≤ 2E

[{
a

(n)
ϕ;−;appr

(
N

(n)
− ;R(n)

1

)− a
(n)
ϕ;−;ex

(
N

(n)
− ;R(n)

1

)}2|N(n)
− , s

(n)
1 = −1

]
+ 2E

[{
a

(n)
ϕ;−;ex

(
N

(n)
− ;R(n)

1

)− ϕ
(
F
(
Z

(n)
1

))}2|N(n)
− , s

(n)
1 = −1

]
.



266 M. HALLIN, C. VERMANDELE AND B. WERKER

In view of the result for exact scores, we just consider the second term. Denoting
by �x� the integer part of x (x ∈ R

+), we may write

E
[{

a
(n)
ϕ;−;appr

(
N

(n)
− ;R(n)

1

)− a
(n)
ϕ;−;ex

(
N

(n)
− ;R(n)

1

)}2|N(n)
− , s

(n)
1 = −1

]
= 1

N
(n)
−

N
(n)
−∑

i=1

{
a

(n)
ϕ;−;appr

(
N

(n)
− ; i)− a

(n)
ϕ;−;ex

(
N

(n)
− ; i)}2

=
∫ 1

0

{(
a

(n)
ϕ;−;appr

(
N

(n)
− ;1 + ⌊N(n)

− u
⌋)− ϕ(u/2)

)
+ (ϕ(u/2) − a

(n)
ϕ;−;ex

(
N

(n)
− ;1 + ⌊N(n)

− u
⌋))}2

du

≤ 2
∫ 1

0

{
a

(n)
ϕ;−;appr

(
N

(n)
− ;1 + ⌊N(n)

− u
⌋)− ϕ(u/2)

}2
du

+ 2
∫ 1

0

{
a

(n)
ϕ;−;ex

(
N

(n)
− ;1 + ⌊N(n)

− u
⌋)− ϕ(u/2)

}2
du.

That this latter quantity is oP(1) follows from an obvious adaptation of Lem-
ma V.1.6.a and Theorem V.1.4.b in [3], pages 164 and 158, respectively. �

3.3. Asymptotic representation and asymptotic normality. We now can state,
for the nonserial case, the main result of this paper.

PROPOSITION 3.2. Let ϕ : (0,1) → R be a nonconstant square-integrable
score-generating function for S

(n)
c;ϕ;ex/appr and let the regression constants c

(n)
i

(i = 1, . . . , n) satisfy the Noether condition (N). Whenever approximate scores are
considered, assume that ϕ is the difference of two nondecreasing square-integrable
functions. Assume, moreover, that c̄(n) = O(1) and

∑n
i=1(c

(n)
i − c̄(n))2 = O(n) as

n → ∞. Let µ−
ϕ := ∫ 1/2

0 ϕ(u)du, µ+
ϕ := ∫ 1

1/2 ϕ(u)du and µϕ := ∫ 1
0 ϕ(u)du. Then,

writing S
(n)
c for either S

(n)
c;ϕ;ex or S

(n)
c;ϕ;appr:

(i) (Asymptotic representation) under H (n)
0;f , as n → ∞,

S(n)
c − E

[
S(n)

c
]= 1

n

n∑
i=1

(
c
(n)
i − c̄(n))ϕ(F (Z(n)

i

))
(3.14)

+ c̄(n)

{
2
N

(n)
−
n

µ−
ϕ + 2

N
(n)
+
n

µ+
ϕ − µϕ

}
+ oP

(
1/

√
n
);

(ii) (Asymptotic normality) under H (n)
0 , as n → ∞,

√
n
(
S(n)

c − E
[
S(n)

c
])/√√√√σ 2

ϕ

n

n∑
i=1

(
c
(n)
i − c̄(n)

)2 + [c̄(n)(µ−
ϕ − µ+

ϕ )
]2

(3.15)

L−→ N (0,1).
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Note that, in case ϕ is skew-symmetric with respect to 1/2 [i.e., ϕ(u) =
−ϕ(1 − u)], we have µ−

ϕ = −µ+
ϕ and µϕ = 0. Straightforward calculation yields

c̄(n){2N
(n)
−
n

µ−
ϕ + 2N

(n)
+
n

µ+
ϕ − µϕ} = c̄(n)µ−

ϕ (1 − 2N
(n)
−
n

). The conditional (3.4)
and unconditional (3.14) asymptotic representations thus coincide and reduce to
Hájek’s traditional one for linear rank statistics, as soon as c̄(n) = o(1) (examples
of skew-symmetric score functions are the location scores ϕf := −f ′/f of a sym-
metric distribution with density f ).

PROOF OF PROPOSITION 3.2. (i) We first establish (3.14) for exact scores.
From (3.4) and (3.6), we have

S
(n)
c;ϕ;ex − E

[
S

(n)
c;ϕ;ex

]= 1

n

n∑
i=1

(
c
(n)
i − c̄(n))ϕ(F (Z(n)

i

))
(3.16)

+ E
[
S

(n)
c;ϕ;ex|N(n)]− E

[
S

(n)
c;ϕ;ex

]+ oP
(
1/

√
n
)
.

Since

E
[
S

(n)
c;ϕ;ex|N(n)]= E

[
E
[
T

(n)
ϕ;f |N(n),R(n)]|N(n)]= E

[
T

(n)
ϕ;f |N(n)]

= E
[
E
[
T

(n)
ϕ;f |s(n)]|N(n)]

= E

[
1

n

n∑
i=1

c
(n)
i E

[
ϕ
(
F
(
Z

(n)
i

))|s(n)
i

]|N(n)

]
,

where

E
[
ϕ
(
F
(
Z

(n)
i

))|s(n)
i

]= I
[
s
(n)
i = −1

] ∫ 1/2

0
ϕ(u)2du

+ I
[
s
(n)
i = 1

] ∫ 1

1/2
ϕ(u)2du

= 2I
[
s
(n)
i = −1

]
µ−

ϕ + 2I
[
s
(n)
i = 1

]
µ+

ϕ ,

it follows that

E
[
S

(n)
c;ϕ;ex|N(n)]= 2

n

n∑
i=1

c
(n)
i E

[
I
[
s
(n)
i = −1

]
µ−

ϕ

+ I
[
s
(n)
i = 1

]
µ+

ϕ |N(n)](3.17)

= 2c̄(n)

(
N

(n)
−
n

µ−
ϕ + N

(n)
+
n

µ+
ϕ

)
and

E
[
S

(n)
c;ϕ;ex|N(n)]− E

[
S

(n)
c;ϕ;ex

]= c̄(n)

(
2
N

(n)
−
n

µ−
ϕ + 2

N
(n)
+
n

µ+
ϕ − µϕ

)
,(3.18)
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which, along with (3.16), establish (3.14) for exact scores.
Turning to approximate scores, we can assume, without loss of generality, that

ϕ is nondecreasing. Since (3.16) also holds if approximate scores are substituted
for the exact ones, it is sufficient, so that (3.14) holds for approximate scores, to
show that the difference

E(n) := {
E
[
S

(n)
c;ϕ;appr|N(n)]− E

[
S

(n)
c;ϕ;appr

]}
(3.19)

− {E[S(n)
c;ϕ;ex|N(n)]− E

[
S

(n)
c;ϕ;ex

]}
is oP(1/

√
n ). Note that

E
[
S

(n)
c;ϕ;appr|N(n)]
= c̄(n) 1

n

{N
(n)
−∑

j=1

ϕ

(
j

2(N
(n)
− + 1)

)
+

N
(n)
+∑

j=1

ϕ

(
1

2
+ j

2(N
(n)
+ + 1)

)}
(3.20)

= c̄(n)

{
2
N

(n)
−
n

D−
N

(n)
−

+ 2
N

(n)
+
n

D+
N

(n)
+

}
,

where D−
m := 1

2m

∑m
j=1 ϕ(

j
2(m+1)

) and D+
m := 1

2m

∑m
j=1 ϕ(1

2 + j
2(m+1)

) are Rie-

mann sums for the integrals µ−
ϕ := ∫ 1/2

0 ϕ(u)du and µ+
ϕ := ∫ 1

1/2 ϕ(u)du, respec-

tively. Since ϕ is square-integrable, any term in the Riemann sum 1
2m

∑m
j=1 ϕ2(1

2 +
j

2(m+1)
) associated with

∫ 1
1/2 ϕ2(u) du is o(1) as m → ∞. This implies that

1
2m

ϕ(1
2 + m

2(m+1)
) is o(1/

√
m); hence, in view of the fact that N

(n)
+ = OP(n),

this implies that 1
2N

(n)
+

ϕ(1
2 + N

(n)
+

2(N
(n)
+ +1)

) = oP(1/
√

n ) as n → ∞. The same rea-

soning shows that any finite sum of Riemann terms in D−
N

(n)
−

or D+
N

(n)
+

actually is
oP(1/

√
n ) as n → ∞.

Now, any Riemann sum D+
m for µ+

ϕ satisfies, since ϕ is nondecreasing, the

double inequality D+
m ≤ D+

m ≤ D̄+
m , where D+

m := 1
2m

∑m−1
j=0 ϕ(1

2 + j
2(m+1)

) and

D̄+
m := 1

2m

∑m
j=1 ϕ(1

2 + j
2(m+1)

) are the upper and lower Darboux sums associated

with
∫ 1

1/2 ϕ(u)du. The difference D̄+
m − D+

m clearly is 1
2m

(ϕ(1
2 + m

2(m+1)
) − ϕ(1

2)),

which is o(1/
√

m) as m → ∞. Hence, for any Riemann sum, D+
m − µ+

ϕ is also
o(1/

√
m), so that D+

N
(n)
+

− µ+
ϕ = oP(1/

√
n ) as n → ∞.

Furthermore, since the sequence D+
m − µ+

ϕ converges to zero, it is bounded,

so that D+
N

(n)
+

− µ+
ϕ is uniformly integrable and E[N

(n)
+
n

D+
N

(n)
+

− 1
2µ+

ϕ ] = o(1/
√

n )

as n → ∞.
A similar reasoning of course holds for D−

N
(n)
−

and µ−
ϕ . Going back to (3.20) and

recalling that c̄(n) = O(1), we thus obtain the desired result that E(n) is oP(1/
√

n ).
This completes the proof of part (i) of the proposition.
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(ii) As for asymptotic normality, elementary calculations yield

√
nc̄(n)

(
2
N

(n)
−
n

µ−
ϕ + 2

N
(n)
+
n

µ+
ϕ − µϕ

)

= c̄(n)

(
2(µ−

ϕ − µ+
ϕ )

(
N

(n)
−
n

− 1

2

)/√
1/4n

)√
1

4
,

which, since (
N

(n)
−
n

− 1
2)/

√
1/4n is asymptotically standard normal, is also asymp-

totically normal with mean zero and asymptotic variance [c̄(n)(µ−
ϕ − µ+

ϕ )]2. The
remark (right after Lemma 3.1) on the orthogonality between the two parts of the
asymptotic representation of S

(n)
c completes the proof. �

Test statistics related to “regression coefficients” naturally involve “regression
constants” c

(n)
i that are not all equal. Quite on the contrary, test statistics related

to location and intercepts do not involve any constants—more precisely, they are
still of the form S

(n)
c , but with constants c

(n)
i all equal to 1. Proposition 3.2, as it is

stated, does not apply. However, going back to the proof, one easily checks that,
letting S

(n)
ϕ;ex/appr := 1

n

∑n
i=1 a

(n)
ϕ;ex/appr(N

(n);R(n)
i ), under the same assumptions on

the scores ϕ,
√

n
(
S

(n)
ϕ;ex/appr − E

[
S

(n)
ϕ;ex/appr

])
= 2

N
(n)
−
n

µ−
ϕ + 2

N
(n)
+
n

µ+
ϕ − µϕ + oP(1)(3.21)

L−→ N
(
0, (µ−

ϕ − µ+
ϕ )2)

under H (n)
0 , as n → ∞.

3.4. Example: median regression. The central sequence (2.3) takes the form
�

(n)
f = �

(n)
f (θ) = √

n(T
(n)
ϕf ;f ;1, T

(n)
ϕf ;f ;2)′ with (using the notation of Section 3)

T
(n)
ϕf ;f ;1 := 1

n

n∑
i=1

ϕf

(
F
(
Z

(n)
i

))
,

T
(n)
ϕf ;f ;2 := 1

n

n∑
i=1

c
(n)
i ϕf

(
F
(
Z

(n)
i

))
and ϕf (u) := −f ′

f
(F−1(u)), u ∈ (0,1). Instead of an arbitrary score-generating

function, we therefore focus on ϕf . Define

S
(n)
ϕf ;1;ex := E

[
T

(n)
ϕf ;f ;1|N(n),R(n)]
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and

S
(n)
ϕf ;2;ex := E

[
T

(n)
ϕf ;f ;2|N(n),R(n)].

Straightforward calculations lead to

2
N

(n)
−
n

µ−
ϕf

+ 2
N

(n)
+
n

µ+
ϕf

− µϕf
= 2f (0)

N
(n)
+ − N

(n)
−

n
,

so that Proposition 3.2 and (3.21) yield

E
[
�

(n)
f |N(n),R(n)]= √

n

(
S

(n)
ϕf ;1;ex

S
(n)
ϕf ;2;ex

)
= �

(n)∗
f + oP(1)

under P(n)
f ;θ , as n → ∞, where

�
(n)∗
f := √

n


2f (0)

N
(n)
+ − N

(n)
−

n

1

n

n∑
i=1

(
c
(n)
i − c̄(n))ϕf

(
F
(
Z

(n)
i

))+ c̄(n)2f (0)
N

(n)
+ − N

(n)
−

n


is a version of the semiparametrically efficient central sequence for θ in the semi-
parametric experiment E (n)

0 . This latter statement can easily be checked using stan-
dard tangent space calculations. Similarly, in view of (3.5) and Proposition 3.1,
the approximate score version of the same semiparametrically efficient central se-
quence is

�˜ (n)∗
f := √

n


2f (0)

N
(n)
+ − N

(n)
−

n

1

n

n∑
i=1

(
c
(n)
i − c̄(n))ϕf

(
R˜ (n)

i

)+ c̄(n)2f (0)
N

(n)
+ − N

(n)
−

n


with, for i = 1, . . . , n,

R˜ (n)
i := I

[
R

(n)
i ≤ N

(n)
−
] R

(n)
i

2(N
(n)
− + 1)

(3.22)

+ I
[
R

(n)
i > n − N

(n)
+
](1

2
+ R

(n)
i − (n − N

(n)
+ )

2(N
(n)
+ + 1)

)
.

This central sequence, which is measurable with respect to the residual signs and
ranks, can be used to perform semiparametrically efficient inference (tests, estima-
tion, etc.); see, for example, Section 11.9 of [16]. For a full treatment of sign-and-
rank-based versions of semiparametrically efficient central sequences in median
restricted models, we refer to [10].
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4. Serial linear sign-and-rank statistics.

4.1. Definition and conditional asymptotic representation. Nonserial sign-
and-rank statistics, just as their traditional rank-based counterparts, are inefficient
in the context of dependent observations: Only serial statistics can capture the ef-
fects of serial dependence. Define a linear serial sign-and-rank statistic of order k

(k ∈ {1, . . . , n − 1}) as a statistic of the form

S
(n)
k := 1

n − k

n∑
t=k+1

a
(n)
k

(
N(n);R(n)

t , . . . ,R
(n)
t−k

)
,

where a
(n)
k (·; ·, . . . , ·) is defined over the product of the set {(ν, η);ν, η ∈

{0,1, . . . , n}, η ≤ n − ν} with the set of all (k + 1)-tuples of distinct integers in
{1, . . . , n}. The asymptotic mean and variance of S

(n)
k are given in the subsequent

Proposition 4.1.
Here also an asymptotic representation result is proved, establishing the asymp-

totic equivalence between S
(n)
k and a “parametric” serial statistic T

(n)
k . The asymp-

totic normality of T
(n)
k then entails that of S

(n)
k . A function ϕk : (0,1)k+1 → R is a

score-generating function for the serial score function a
(n)
k if

E
[{

a
(n)
k

(
N(n);R(n)

k+1, . . . ,R
(n)
1

)− ϕk

(
F
(
Z

(n)
k+1

)
, . . . ,F

(
Z

(n)
1

))}2|Z(n)
(·)
]

(4.1)
= oP(1)

under H (n)
0;f , as n → ∞. Once more, (4.1) automatically holds if, under H (n)

0;f ,

E
[{

a
(n)
k

(
N(n);R(n)

k+1, . . . ,R
(n)
1

)− ϕk

(
F
(
Z

(n)
k+1

)
, . . . ,F

(
Z

(n)
1

))}2|N(n)]
(4.2)

= oP(1)

as n → ∞. We then have the following conditional asymptotic representation and
asymptotic normality results, which are the serial counterpart of Lemma 3.1.

LEMMA 4.1. Let ϕk : (0,1)k+1 → R be a score-generating function for a
(n)
k .

Then:

(i) (Asymptotic representation) under H (n)
0;f , as n → ∞,

S
(n)
k − E

[
S

(n)
k |N(n)]= T

(n)
ϕk;f ;k − E

[
T

(n)
ϕk;f ;k|Z(n)

(·)
]+ oP

(
1/

√
n
)
,(4.3)

where

T
(n)
ϕk;f ;k := 1

n − k

n∑
t=k+1

ϕk

(
F
(
Z

(n)
t

)
, . . . ,F

(
Z

(n)
t−k

))
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and

E
[
T

(n)
ϕk;f ;k|Z(n)

(·)
]

= [n(n − 1) · · · (n − k)]−1
∑ · · ·∑

1≤t1 =···=tk+1≤n

ϕk

(
F
(
Z

(n)
t1

)
, . . . ,F

(
Z

(n)
tk+1

));
(ii) (Asymptotic normality) if, moreover, 0 <

∫
(0,1)k+1 |ϕk(uk+1, . . . ,

u1)|2+δdu1 · · · duk+1 < ∞ for some δ > 0, then, under H (n)
0 , as n → ∞,

√
n − k

(
S

(n)
k − E

[
S

(n)
k |N(n)]) L−→ N (0,V 2),

where, denoting by U1,U2, . . . an i.i.d. sequence of standard uniformly distributed
random variables,

V 2 := E[{ϕ∗
k (Uk+1, . . . ,U1)}2]

(4.4)

+ 2
k∑

j=1

E[ϕ∗
k (Uk+1, . . . ,U1)ϕ

∗
k (Uk+1+j , . . . ,U1+j )]

with, for u1, . . . , uk+1 ∈ (0,1),

ϕ∗
k (uk+1, . . . , u1)

:= ϕk(uk+1, . . . , u1)

−
k+1∑
l=1

E[ϕk(Uk+1, . . . ,U1)|Ul = u1] + kE[ϕk(Uk+1, . . . ,U1)].

PROOF. To prove part (i) of the lemma, we only need to show that, un-
der H (n)

0;f , as n → ∞, E[{D(n)
k }2|Z(n)

(·) ] = oP(1), where

D
(n)
k := √

n − k
{(

S
(n)
k − E

[
S

(n)
k |N(n)])− (T (n)

ϕk;f ;k − E
[
T

(n)
ϕk;f ;k|Z(n)

(·)
])}

.

Since the maximal invariant (N(n),R(n)) depends on Z(n)
(·) only through N(n), we

actually have E[{D(n)
k }2|Z(n)

(·) ] = (n− k)Var[S(n)
k −T

(n)
ϕk;f ;k|Z(n)

(·) ]. Conditionally on

Z(n)
(·) (and hence on N(n)), S

(n)
k − T

(n)
ϕk;f ;k is a linear serial rank statistic in the sense

of Hallin, Ingenbleek and Puri [5]. Corollary 2 of Lemma 2, and Lemma 4 (Ap-
pendix 3) of that paper imply that there exists a constant K (not depending on n)
such that

E
[{

D
(n)
k

}2|Z(n)
(·)
]≤ (2k + 1 + K

n − k

)
× E

[{
a

(n)
k

(
N(n);R(n)

k+1, . . . ,R
(n)
1

)
− ϕk

(
F
(
Z

(n)
k+1

)
, . . . ,F

(
Z

(n)
1

))}2|Z(n)
(·)
]
.
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By (4.1), the last term converges to zero in probability under H (n)
0;f as n → ∞,

which completes the proof of (4.3).
The asymptotic normality of

√
n − k(T

(n)
ϕk;f ;k − E[T (n)

ϕk;f ;k|Z(n)
(·) ]) [part (ii) of

Lemma 4.1], hence also that of
√

n − k(S
(n)
k − E[S(n)

k |N(n)]), is also established
in [5]. The special form of V 2 follows from Yoshihara’s [20] central limit the-
orem for U -statistics under absolutely regular processes, which requires the
(2 + δ)-integrability of the score-generating function ϕk . �

Note that the right-hand side in (4.3) is exactly the same as in the asymptotic
representation of the purely rank-based serial statistic

(n − k)−1
n∑

t=k+1

ϕk

(
R

(n)
t

n + 1
, . . . ,

R
(n)
t−k

n + 1

)

− E

[
(n − k)−1

n∑
t=k+1

ϕk

(
R

(n)
t

n + 1
, . . . ,

R
(n)
t−k

n + 1

)]
.

This remark, which is analogous to the remark made in the nonserial case just be-
fore the proof of Lemma 3.1, will play a crucial role in the proof of the asymptotic
normality part of Proposition 4.1(ii).

4.2. Exact and approximate scores. As in the nonserial case, two types of
scores—the exact and the approximate ones—are naturally associated with a given
score-generating function. Define (referring to Section 3.2 for notation)

S
(n)
ϕk;ex/appr := 1

n − k

n∑
t=k+1

a
(n)
ϕk;ex/appr

(
N(n);R(n)

t ,R
(n)
t−1, . . . ,R

(n)
t−k

)
,

where, for (η, ν) ∈ {0,1, . . . , n}2, ν ≤ n − η and 1 ≤ i1 = i2 = · · · = ik+1 ≤ n,

a
(n)
ϕk;ex

(
(η, ν); i1, . . . , ik+1

)
:= E

[
ϕk

(
U

(n)
1 , . . . ,U

(n)
k+1

)|N(n)
U;− = η,N

(n)
U;+ = ν,

R
(n)
U1

= i1, . . . ,R
(n)
Uk+1

= ik+1
]

and

a
(n)
ϕk;appr

(
(η, ν); i1, . . . , ik+1

)
:= ϕk

(
E
[
U

(n)
1 |N(n)

U;− = η,N
(n)
U;+ = ν,R

(n)
U1

= i1
]
,

. . . ,E
[
U

(n)
k+1|N(n)

U;− = η,N
(n)
U;+ = ν,R

(n)
Uk+1

= ik+1
])

= ϕk

(
I [i1 ≤ η]

(
i1

2(η + 1)

)
+ I [i1 > n − ν]

(
1

2
+ i1 − (n − ν)

2(ν + 1)

)
,
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. . . , I [ik+1 ≤ η]
(

ik+1

2(η + 1)

)

+ I [ik+1 > n − ν]
(

1

2
+ ik+1 − (n − ν)

2(ν + 1)

))
.

The following lemma provides sufficient conditions for ϕk to be a score-generating
function for a

(n)
ϕk;ex and for a

(n)
ϕk;appr.

LEMMA 4.2. Let ϕk : (0,1)k+1 −→ R be nonconstant and square-integrable.
Then ϕk is a score-generating function for a

(n)
ϕk;ex. If, moreover, ϕk is a linear com-

bination of a finite number of square-integrable functions that are monotone in all
their arguments, then ϕk is also a score-generating function for a

(n)
ϕk;appr.

PROOF. The proof easily follows along the same lines as in the nonserial case
and is left to the reader. �

4.3. Unconditional asymptotic representation. Lemma 4.1 was only an inter-
mediate, conditional result; the following proposition provides the corresponding
unconditional asymptotic representation and asymptotic normality. Define

µϕk
:=
∫
[0,1]k+1

ϕk(u0, . . . , uk) du0 · · ·duk,

µ(0)
ϕk

:=
∫
[0,1/2]k+1

ϕk(u0, . . . , uk) du0 · · · duk,

µ(k+1)
ϕk

:=
∫
[1/2,1]k+1

ϕk(u0, . . . , uk) du0 · · · duk

and, for ν = 1,2, . . . , k,

µ(ν)
ϕk

:= ∑ · · ·∑
0≤i1<···<iν≤k

∫
(ui1 ,...,uiν )∈[1/2,1]ν

∫
(uj ,0≤j≤k,j =i1,...,iν )∈[0,1/2]k+1−ν

ϕk(u0, . . . , uk) du0 · · · duk.

PROPOSITION 4.1. Let ϕk be a nonconstant square-integrable score-gene-
rating function for S

(n)
ϕk;ex/appr. Whenever approximate scores are considered, as-

sume that ϕk is a linear combination of square-integrable functions that are
monotone in all their arguments. Then, writing S

(n)
k for either S

(n)
ϕk;ex or S

(n)
ϕk;appr:

(i) (Asymptotic representation) under H (n)
0;f , as n → ∞,

S
(n)
k − E

[
S

(n)
k

]
= T

(n)
ϕk;f ;k − E

[
T

(n)
ϕk;f ;k|Z(n)

(·)
]

(4.5)
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+ 2k+1[n(n − 1) · · · (n − k)]−1

×
{
I
[
N

(n)
− ≥ k + 1

]
N

(n)
−
(
N

(n)
− − 1

) · · · (N(n)
− − k

)
µ(0)

ϕk

+
k∑

ν=1

I
[
k + 1 − ν ≤ N

(n)
− ≤ n − ν

]
× N

(n)
−
(
N

(n)
− − 1

) · · · (N(n)
− − k + ν

)
× N

(n)
+
(
N

(n)
+ − 1

) · · · (N(n)
+ − ν + 1

)
µ(ν)

ϕk

+ I
[
N

(n)
+ ≥ k + 1

]
N

(n)
+
(
N

(n)
+ − 1

) · · · (N(n)
+ − k

)
µ(k+1)

ϕk

}
− µϕk

+ oP
(
1/

√
n
);

(ii) (Asymptotic normality) if, moreover, ϕk is (2 + δ)-integrable for some
δ > 0, then, under H (n)

0 , as n → ∞,

√
n − k

(
S

(n)
k − E

[
S

(n)
k

])/√√√√√V 2 + (k + 1)2

[
µϕk

− 2
k+1∑
ν=1

νµ
(ν)
ϕk /(k + 1)

]2

(4.6) L−→ N (0,1),

with V 2 given in (4.4).

When the score ϕk is skew-symmetric with respect to 1/2 [i.e., ϕk(u0, . . . , ui,

. . . , uk) = −ϕk(u0, . . . ,1 − ui, . . . , uk) for all i = 1, . . . , k], then µϕk
=∑k+1

ν=0 µ
(ν)
ϕk = 0 with

µ(ν)
ϕk

=
(

k + 1
ν

)∫
[1/2,1]ν×[0,1/2]k+1−ν

ϕk(u0, . . . , uk) du0 · · · duk,

so that

µ(0)
ϕk

= −
(

k + 1
1

)−1
µ(1)

ϕk
=
(

k + 1
2

)−1
µ(2)

ϕk
= −

(
k + 1

3

)−1
µ(3)

ϕk
= · · · .

This and the fact that N
(n)
− /n − 1

2 = OP(n−1/2) implies that the right-hand side

of (4.5) reduces to T
(n)
ϕk;f ;k − E[T (n)

ϕk;f ;k|Z(n)
(·) ] + oP(1). Hence, the conditional (4.3)

and unconditional (4.5) representations of S
(n)
k − E[S(n)

k ] coincide.

PROOF OF PROPOSITION 4.1. As in the nonserial case, we first prove the as-
ymptotic representation result for exact scores. From the definition of exact scores,
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we obtain, for S
(n)
k = S

(n)
ϕk;ex, writing T

(n)
k for T

(n)
ϕk;f ;k := 1

n−k

∑n
t=k+1 ϕk(F (Z

(n)
t ),

. . . ,F (Z
(n)
t−k)),

E
[
S

(n)
k |N(n)]
= E

[
E
[
T

(n)
k |R(n),N(n)]|N(n)]= E

[
T

(n)
k |N(n)]

= E

[
1

n − k

n∑
t=k+1

E
[
ϕk

(
F
(
Z

(n)
t

)
, . . . ,F

(
Z

(n)
t−k

))|N(n), s
(n)
t , . . . , s

(n)
t−k

]|N(n)

]
,

where

E
[
ϕk

(
F
(
Z

(n)
t

)
, . . . ,F

(
Z

(n)
t−k

))|N(n), s
(n)
t , . . . , s

(n)
t−k

]
= 2k+1

∫
[0,1]k+1

ϕk(u0, . . . , uk)

(4.7)
× I

[
sign

(
u0 − 1

2

)= s
(n)
t ,

. . . , sign
(
uk − 1

2

)= s
(n)
t−k

]
du0 · · ·duk.

The asymptotic representation (4.5) (for exact scores) follows by combining (4.7)
and part (i) of Lemma 4.1. Turning to approximate scores, it is sufficient for (4.5)
to hold that

E(n) := {
E
[
S

(n)
ϕk;appr|N(n)]− E

[
S

(n)
ϕk;appr

]}− {E[S(n)
ϕk;ex|N(n)]− E

[
S

(n)
ϕk;ex

]}
(4.8)

be oP(1/
√

n ). Note that

E
[
S

(n)
ϕk;appr|N(n)]
= [n(n − 1) · · · (n − k)]−1

× ∑ · · ·∑
1≤i1 =···=ik+1≤n

ϕk

(
I
[
i1 ≤ N

(n)
−
]( i1

2(N
(n)
− + 1)

)
+ I

[
i1 > N

(n)
−
](1

2
+ i1 − N

(n)
−

2(N
(n)
+ + 1)

)
,

. . . , I
[
ik+1 ≤ N

(n)
−
]( ik+1

2(N
(n)
− + 1)

)

+ I
[
ik+1 > N

(n)
−
](1

2
+ ik+1 − N

(n)
−

2(N
(n)
+ + 1)

))
.

For notational simplicity, let us consider the case k = 1; the general case follows
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along the same ideas. For k = 1 we have

E
[
S

(n)
ϕ1;appr|N(n)]− E

[
S

(n)
ϕ1;ex|N(n)]

= 1

n(n − 1)

{ ∑∑
1≤i =j≤N

(n)
−

ϕ1

(
i

2(N
(n)
− + 1)

,
j

2(N
(n)
− + 1)

)

+
N

(n)
−∑

i=1

n∑
j=N

(n)
− +1

ϕ1

(
i

2(N
(n)
− + 1)

,
1

2
+ j − N

(n)
−

2(N
(n)
+ + 1)

)

+
n∑

i=N
(n)
− +1

N
(n)
−∑

j=1

ϕ1

(
1

2
+ i − N

(n)
−

2(N
(n)
+ + 1)

,
j

2(N
(n)
− + 1)

)

+ ∑∑
N

(n)
− +1≤i =j≤n

ϕ1

(
1

2
+ i − N

(n)
−

2(N
(n)
+ + 1)

,
1

2
+ j − N

(n)
−

2(N
(n)
+ + 1)

)}

− 4

n(n − 1)

{
I
[
N

(n)
− ≥ 2

]
N

(n)
−
(
N

(n)
− − 1

)
µ(0)

ϕ1

+ I
[
1 ≤ N

(n)
− ≤ n − 1

]
N

(n)
− N

(n)
+ µ(1)

ϕ1
(4.9)

+ I
[
N

(n)
+ ≥ 2

]
N

(n)
+
(
N

(n)
+ − 1

)
µ(2)

ϕ1

}
= 4N

(n)
− (N

(n)
− − 1)+

n(n − 1)

{
(N

(n)
− )2

N
(n)
− (N

(n)
− − 1)

D−−
N

(n)
− ,N

(n)
−

− µ−−
ϕ1

− (N
(n)
− )2

N
(n)
− (N

(n)
− − 1)

1

4(N
(n)
− )2

×
N

(n)
−∑

i=1

ϕ1

(
i

2(N
(n)
− + 1)

,
i

2(N
(n)
− + 1)

)}

+ 4N
(n)
− N

(n)
+

n(n − 1)

{
D−+

N
(n)
− ,N

(n)
+

− µ−+
ϕ1

}+ 4N
(n)
+ N

(n)
−

n(n − 1)

{
D+−

N
(n)
+ ,N

(n)
−

− µ+−
ϕ1

}
+ 4N

(n)
+ (N

(n)
+ − 1)+

n(n − 1)

{
(N

(n)
+ )2

N
(n)
+ (N

(n)
+ − 1)

D++
N

(n)
+ ,N

(n)
+

− µ++
ϕ1

− (N
(n)
+ )2

N
(n)
+ (N

(n)
+ − 1)

1

4(N
(n)
+ )2
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×
N

(n)
+∑

i=1

ϕ1

(
1

2
+ i

2(N
(n)
+ + 1)

,
1

2
+ i

2(N
(n)
+ + 1)

)}
,

where x+ := max(0, x),

D−−
	,m := 1

4	m

	∑
i=1

m∑
j=1

ϕ1

(
i

2(	 + 1)
,

j

2(m + 1)

)
,

D−+
	,m := 1

4	m

	∑
i=1

m∑
j=1

ϕ1

(
i

2(	 + 1)
,

1

2
+ j

2(m + 1)

)
,

D+−
	,m := 1

4	m

	∑
i=1

m∑
j=1

ϕ1

(
1

2
+ i

2(	 + 1)
,

j

2(m + 1)

)
,

D++
	,m := 1

4	m

	∑
i=1

m∑
j=1

ϕ1

(
1

2
+ i

2(	 + 1)
,

1

2
+ j

2(m + 1)

)
are Riemann sums for the integrals

µ−−
ϕ1

:=
∫ 1/2

0

∫ 1/2

0
ϕ1(u0, u1) du0 du1,

µ−+
ϕ1

:=
∫ 1/2

0

∫ 1

1/2
ϕ1(u0, u1) du0 du1,

µ+−
ϕ1

:=
∫ 1

1/2

∫ 1/2

0
ϕ1(u0, u1) du0 du1,

µ++
ϕ1

:=
∫ 1

1/2

∫ 1

1/2
ϕ1(u0, u1) du0 du1,

respectively. Here again, due to the fact that ϕ1 is square-integrable, the function
(u, v) �→ ϕ∗

1 (u, v) := ϕ1(u, v)I [u = v], (u, v) ∈ [1/2,1]2, which vanishes except
over the diagonal of the unit square, is integrable and has integral zero. Hence,
(1/4m2)

∑m
i=1 ϕ2

1(1
2 + i

2(m+1)
, 1

2 + i
2(m+1)

), as a Riemann sum for the integral of

ϕ∗
1 over [1/2,1]2, is o(1). Since[

m∑
i=1

ϕ1

(
1

2
+ i

2(m + 1)
,

1

2
+ i

2(m + 1)

)]2

≤ m

m∑
i=1

ϕ2
1

(
1

2
+ i

2(m + 1)
,

1

2
+ i

2(m + 1)

)
,

it follows that (1/4m2)
∑m

i=1 ϕ1(
1
2 + i

2(m+1)
, 1

2 + i
2(m+1)

) is o(1/
√

m), as m → ∞.

A similar result holds for (1/4m2)
∑m

i=1 ϕ1(
i

2(m+1)
, i

2(m+1)
), as well as, of course,
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for any individual terms such as (1/4m2)ϕ1(
1
2 + m

2(m+1)
, 1

2 + m
2(m+1)

). Thus, (4.9)
as n → ∞ takes the form

E
[
S

(n)
ϕ1;appr|N(n)]− E

[
S

(n)
ϕ1;ex|N(n)]

= 4N
(n)
− (N

(n)
− − 1)+

n(n − 1)

[
D−−

N
(n)
− ,N

(n)
−

− µ−−
ϕ1

]
+ 4N

(n)
− N

(n)
+

n(n − 1)

[
D−+

N
(n)
− ,N

(n)
+

− µ−+
ϕ1

]
+ 4N

(n)
+ N

(n)
−

n(n − 1)

[
D+−

N
(n)
+ ,N

(n)
−

− µ+−
ϕ1

]
+ 4N

(n)
+ (N

(n)
+ − 1)+

n(n − 1)

[
D++

N
(n)
+ ,N

(n)
+

− µ++
ϕ1

]+ oP
(
1/

√
n
)
.

Considering the difference D++
m,m − µ++

ϕ1
, we have

D++
m,m − µ++

ϕ1
= 1

4m2

m∑
i=1

m∑
j=1

ϕ1

(
1

2
+ i

2(m + 1)
,

1

2
+ j

2(m + 1)

)

−
∫ ∫

[1/2,1]2
ϕ1(u0, u1) du0 du1

(4.10)

= 1

4m2

m−1∑
i=1

m−1∑
j=1

ϕ1

(
1

2
+ i

2(m + 1)
,

1

2
+ j

2(m + 1)

)

−
∫ ∫

[1/2,1]2
ϕ1(u0, u1) du0 du1 + o

(
1/

√
m
)
,

because, in view of the same argument as above, the two first sums in (4.10) are
o(1/

√
m). As in the proof of Proposition 3.1, due to the fact that ϕ1 can be as-

sumed to be nondecreasing in its two arguments, the sum that appears in this latter
expression is composed between the two Darboux sums

D++
m,m := 1

4m2

m−1∑
i=1

m−1∑
j=1

ϕ1

(
1

2
+ i − 1

2m
,

1

2
+ j − 1

2m

)

and

D̄++
m,m := 1

4m2

m−1∑
i=1

m−1∑
j=1

ϕ1

(
1

2
+ i

2m
,

1

2
+ j

2m

)
.

These Darboux sums also converge to the integral
∫∫

[1/2,1]2 ϕ1(u0, u1) du0 du1
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and

D̄++
m,m − D++

m,m = 1

4m2

[
ϕ1

(
1

2
+ m − 1

2m
,

1

2
+ m − 1

2m

)
− ϕ1

(
1

2
,

1

2

)]
;

the same argument still implies that this difference, hence also D++
m,m − µ++

ϕ1
, is

o(1/
√

m). The other three quantities of the same type can be treated similarly.
Uniform integrability and the fact that N

(n)
± are OP(n), as in the proof of Proposi-

tion 3.1, complete the proof that (4.8) is indeed oP(1/
√

n ).
To conclude, we now prove the asymptotic normality result. Denote by 
k+1

the set of permutations π of {1, . . . , k + 1}. Then

E
[
S

(n)
ϕk;ex|N(n)]
=
(

n

k + 1

)−1 ∑ · · ·∑
1≤t1<···<tk+1≤n

{
k+1∑
ν=0

1

(k + 1)!2
k+1µ(ν)

ϕk

× ∑
π∈
k+1

I
[
s
(n)
tπ(1)

= 1, . . . , s
(n)
tπ(ν)

= 1,

s
(n)
tπ(ν+1)

= −1, . . . , s
(n)
tπ(k+1)

= −1
]};

hence E[S(n)
ϕk;ex|N(n)] is a U -statistic computed from the n-tuple Z

(n)
1 , . . . ,Z

(n)
n

with kernel

hk(z1, . . . , zk+1)

=
k+1∑
ν=0

2k+1µ
(ν)
ϕk

(k + 1)!
× ∑

π∈
k+1

I
[
zπ(1) > 0, . . . , zπ(ν) > 0, zπ(ν+1) ≤ 0, . . . , zπ(k+1) ≤ 0

]
.

Routine calculation yields, under H (n)
0;f ,

E
[
hk

(
Z

(n)
1 , . . . ,Z

(n)
k+1

)|Z(n)
1

]
= 2I

[
Z

(n)
1 > 0

] k+1∑
ν=0

ν

k + 1
µ(ν)

ϕk
+ 2I

[
Z

(n)
1 ≤ 0

] k+1∑
ν=0

k + 1 − ν

k + 1
µ(ν)

ϕk

and

Var
(
E
[
hk

(
Z

(n)
1 , . . . ,Z

(n)
k+1

)|Z(n)
1

])= {
µϕk

− 2
k+1∑
ν=1

ν

k + 1
µ(ν)

ϕk

}2

,
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which is strictly positive. Classical results on U -statistics (see, e.g., [19]) then
imply that, under H (n)

0;f , as n → ∞,

(n − k)1/2(E[S(n)
ϕk;ex|N(n)]− E

[
S

(n)
ϕk;ex

])
L−→ N

(
0, (k + 1)2

{
µϕk

− 2
k+1∑
ν=1

ν

k + 1
µ(ν)

ϕk

}2)
.

The same argument as in the nonserial case can be invoked to establish the as-
ymptotic independence of the right-hand side in the conditional asymptotic rep-
resentation (4.3) and (n − k)1/2(E[S(n)

ϕk;ex|N(n)] − E[S(n)
ϕk;ex]). The result follows.

�

4.4. Example: first-order median moving average. The central sequence (2.5)
under P(n)

f ;θ clearly [central sequences are always defined up to oP(1) quantities]
can be rewritten as

�
(n)
f = √

n − 1r
(n)
f ;1 + oP(1),

where, defining ϕf (u) := −f ′
f

(F−1(u)) and ψf (u) := F−1(u), u ∈ (0,1),

r
(n)
f ;1 := 1

n − 1

n∑
t=2

ϕf

(
F
(
Z

(n)
t

))
ψf

(
F
(
Z

(n)
t−1

))
,

a measure of serial dependence associated with f . With this notation, it clearly ap-
pears that r

(n)
f ;1 is a particular case [letting k = 1 and ϕ1(u0, u1) := ϕf (u0)ψf (u1)]

of the statistic T
(n)
ϕk;f ;k considered in Lemma 4.1.

Define the serial linear sign-and-rank autocorrelation statistic of order 1 (based
on exact scores) as r˜(n)∗

f ;1;ex := E[r(n)
f ;1|N(n),R(n)]. Proposition 4.1 implies that, un-

der P(n)
f ;θ , as n → ∞,

r˜(n)∗
f ;1;ex = r

(n)∗
f ;1 + oP

(
1/

√
n
)

with

r
(n)∗
f ;1 = r

(n)
f ;1 − E

[
r
(n)
f ;1|Z(n)

(·)
]

+ 22

n(n − 1)

{
I
[
N

(n)
− ≥ 2

]
N

(n)
−
(
N

(n)
− − 1

)
(−f (0))

∫ 0

−∞
xf (x) dx

+ I
[
1 ≤ N

(n)
− ≤ n − 1

]
N

(n)
− N

(n)
+

×
(
−f (0)

∫ ∞
0

xf (x) dx + f (0)

∫ 0

−∞
xf (x) dx

)
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+ I
[
N

(n)
+ ≥ 2

]
f (0)

∫ ∞
0

xf (x) dx

}
+ oP

(
1/

√
n
)

= r
(n)
f ;1 − E

[
r
(n)
f ;1|Z(n)

(·)
]+ 2f (0)µf

N
(n)
+ − N

(n)
−

n
+ oP

(
1/

√
n
)

= 1

n − 1

n∑
t=2

−f ′

f

(
Z

(n)
t

)
Z

(n)
t−1 − 1

n(n − 1)

∑∑
1≤t1 =t2≤n

−f ′

f

(
Z

(n)
t1

)
Z

(n)
t2

+ 2f (0)µf

N
(n)
+ − N

(n)
−

n
+ oP

(
1/

√
n
)

= 1

n − 1

n∑
t=2

−f ′

f

(
Z

(n)
t

)(
Z

(n)
t−1 − µf

)+ 2f (0)µf

N
(n)
+ − N

(n)
−

n
+ oP

(
1/

√
n
)
.

Letting

r˜(n)
f ;1;appr := 1

n − 1

n∑
t=2

ϕf

(
R˜ (n)

t

)
ψf

(
R˜ (n)

t−1

)
(4.11)

with R˜ (n)
t given in (3.22), the approximate score counterpart of r˜ (n)∗

f ;1;ex is, in view
of Lemmas 4.1 and 4.2,

r˜(n)∗
f ;1;appr = r˜(n)

f ;1;appr − E
[
r˜(n)
f ;1;appr|N(n)]+ 2f (0)µf

N
(n)
+ − N

(n)
−

n

= 1

n − 1

n∑
t=2

ϕf

(
R˜ (n)

t

)
ψf

(
R˜ (n)

t−1

)
(4.12)

− 1

n(n − 1)

∑∑
1≤t1 =t2≤n

ϕf

(
R˜ (n)

t1

)
ψf

(
R˜ (n)

t2

)+ 2f (0)µf

N
(n)
+ − N

(n)
−

n
.

In conclusion, defining �
(n)∗
f := √

n − 1r
(n)∗
f ;1 and �˜ (n)∗

f ;ex/appr := √
n − 1 ×

r˜ (n)∗
f ;1;ex/appr

, we obtain

�
(n)∗
f = �˜ (n)∗

f ;ex + oP(1) = �˜ (n)∗
f ;appr + oP(1)

under H (n)
0;f , as n → ∞. Using standard arguments, one easily verifies that �

(n)∗
f ,

�˜ (n)∗
f ;ex and �˜ (n)∗

f ;appr are indeed three versions of the semiparametrically efficient

central sequence for θ in the model E (n)
0 ; again, the sign-and-rank-based �˜ (n)∗

f ;appr

can be used to perform semiparametrically efficient inference (tests, estimation,
etc.) for the MA(1) coefficient θ ; see, for example, Section 11.9 of [16].
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5. Numerical study. The finite-sample performance of the proposed test sta-
tistics has been studied in the context of the first-order moving average model
of the example in Section 4.4. More precisely, we generated 1000 replications of
each of the MA(1) processes characterized by equation (2.4) with parameter values
θ = ±0.3, ±0.25, ±0.20, ±0.15, ±0.10, ±0.05 and 0, and the following asym-
metric innovation densities:

(a) f (z) := ft1I [z ≤ 0] + fN (0,1)(z)I [z > 0], where ft1 stands for the Cauchy
density and fN (0,1) for the standard normal one;

(b) f (z) := ft5I [z ≤ 0] + fN (0,1)(z)I [z > 0], where ft5 stands for the Student
density with 5 degrees of freedom;

(c) f := fNλ=−10 (the skew normal density with skewness λ = −10; see [1]), duly
shifted and rescaled to have zero median and unit variance;

(d) f := fNλ=−20 (the skew normal density with skewness λ = −20), duly shifted
and rescaled to have zero median and unit variance;

(e) f := 0.5fN (0,1) + 0.5fN (−5,2) (a mixed-normal density), duly shifted and
rescaled to have zero median and unit variance;

(f) f := 0.75fN (0,1) + 0.25fN (−5,1) (a mixed-normal density), duly shifted and
rescaled to have zero median and unit variance.

For each replication, randomness (namely, θ = 0) has been tested against first-
order moving average dependence (two-sided test), based on the asymptotically
normal distribution of:

(i) the ordinary first-order autocorrelation coefficient

r
(n)
1 := (n − 1)−1

n∑
t=2

(
Zt − Z̄(n))(Zt−1 − Z̄(n))/n−1

n∑
t=1

(
Zt − Z̄(n))2;

(ii) the “traditional” first-order van der Waerden rank autocorrelation coefficient

r˜(n)
vdW;1 :=

{
(n − 1)−1

n∑
t=2

�−1
(

R
(n)
t

n + 1

)
�−1

(
R

(n)
t−1

n + 1

)

− [n(n − 1)]−1
∑∑

1≤i =j≤n

�−1
(

i

n + 1

)
�−1

(
j

n + 1

)}/
σ

(n)
vdW;1,

where � stands for the standard normal distribution function and σ
(n)
vdW;1

stands for the exact standardizing constant (see, e.g., [8]);
(iii) the “traditional” first-order Wilcoxon rank autocorrelation coefficient

r˜(n)
W ;1 :=

{
(n − 1)−1

n∑
t=2

ϕlog

(
R

(n)
t

n + 1

)
ψlog

(
R

(n)
t−1

n + 1

)

− [n(n − 1)]−1
∑∑

1≤i =j≤n

ϕlog

(
i

n + 1

)
ψlog

(
j

n + 1

)}/
σ

(n)
W;1,
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with ϕlog(u) := 2u − 1 and ψlog(u) := ln( u
1−u

), u ∈ (0,1) (ψlog is propor-

tional to the inverse of the logistic distribution function); σ
(n)
W;1 stands for the

exact standardizing constant (see, e.g., [8]);
(iv) the “traditional” first-order Laplace rank autocorrelation coefficient

r˜(n)
L;1 :=

{
(n − 1)−1

n∑
t=2

ϕexp

(
R

(n)
t

n + 1

)
ψexp

(
R

(n)
t−1

n + 1

)

− [n(n − 1)]−1
∑∑

1≤i =j≤n

ϕexp

(
i

n + 1

)
ψexp

(
j

n + 1

)}/
σ

(n)
L;1,

with ϕexp(u) := sign(2u − 1) and

ψexp(u) := ln(2u)I [u ≤ 0.5] − ln 2(1 − u)I [u > 0.5], u ∈ (0,1)

(ψexp is proportional to the inverse of the double-exponential distribution

function); σ
(n)
L;1 stands for the exact standardizing constant (see, e.g., [8]);

(v) the first-order sign-and-rank autocorrelation coefficient r˜ (n)∗
W/vdW;1 defined

in (4.12), with the approximate scores ϕf (u) = 1
γ
ϕlog(u)I [u ≤ 0.5] +

φ−1(u)I [u > 0.5] and ψf (u) = γψlog(u)I [u ≤ 0.5] + φ−1(u)I [u > 0.5] as-

sociated with a density f (z) := 1
γ

exp(z/γ )

(1+exp(z/γ ))2 I [z ≤ 0] + fN (0,1)(z)I [z > 0]
(with γ := √

π/8 ) that is logistic on the negative half-line and standard nor-
mal on the positive half-line (yielding Wilcoxon scores for the negative resid-
uals and van der Waerden scores for the positive ones);

(vi) the first-order sign-and-rank autocorrelation coefficient r˜ (n)∗
L/vdW;1 defined

in (4.12), with the approximate scores

ϕf (u) = − 1

γ
I [u ≤ 0.5] + φ−1(u)I [u > 0.5]

and

ψf (u) = γψexp(u)I [u ≤ 0.5] + φ−1(u)I [u > 0.5]
associated with a density f (z) := 1

2γ
exp(z/γ )I [z ≤ 0] + fN (0,1)(z)I [z > 0]

(with γ = √
π/2 ) that is double-exponential on the negative half-line, and

standard normal on the positive half-line (yielding Laplace scores for the neg-
ative residuals and van der Waerden scores for the positive ones).

The results of these simulations (series length n = 250; number of replications
1000) are summarized in Figures 1–6, where the graphs of the empirical power
functions associated with testing procedures (i)–(vi) are plotted against θ .

These graphs speak for themselves and need little comment. They all clearly
demonstrate the superiority, under asymmetric densities, of the sign-and-rank
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FIG. 1. Empirical power, under Cauchy/standard normal innovations (a), of various parametric,
rank and sign-and-rank tests for randomness against first-order MA dependence [based on the test
statistics (i)–(vi)]. The series length is n = 250; 1000 replications were performed.

methods over both their classical Gaussian and traditional rank-based competitors.
The more skewed the underlying density, the more significant the improvement.
For instance, in Figure 1 [Cauchy/Normal density (a)] the percentage of rejec-

FIG. 2. Empirical power, under Student (5 d.f.)/standard normal innovations (b), of various para-
metric, rank and sign-and-rank tests for randomness against first-order MA dependence [based on
the test statistics (i)–(vi)]. The series length is n = 250; 1000 replications were performed.
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FIG. 3. Empirical power, under skew-normal (λ = −10) innovations (c), of various parametric,
rank and sign-and-rank tests for randomness against first-order MA dependence [based on the test
statistics (i)–(vi)]. The series length is n = 250; 1000 replications were performed.

tion at θ = −0.05, which is only 0.0240 for the traditional correlogram-based tests
(a severely biased test, thus), is as high as 0.7720 for the sign-and-rank Laplace/van
der Waerden tests (vi). At θ = −0.10, the corresponding figures are 0.2460 for

FIG. 4. Empirical power, under under skew-normal (λ = −20) innovations (d), of various para-
metric, rank and sign-and-rank tests for randomness against first-order MA dependence [based on
the test statistics (i)–(vi)]. The series length is n = 250; 1000 replications were performed.
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FIG. 5. Empirical power, under mixed normal innovations (e), of various parametric, rank and
sign-and-rank tests for randomness against first-order MA dependence [based on the test statistics
(i)–(vi)]. The series length is n = 250; 1000 replications were performed.

the correlogram-based tests, but 0.9770 for the Laplace/van der Waerden ones.
Of course, the performance of the parametric correlogram method in this case
is particularly poor, due to the absence of finite moments, but the superiority of

FIG. 6. Empirical power, under mixed normal innovations (f ), of various parametric, rank and
sign-and-rank tests for randomness against first-order MA dependence [based on the test statistics
(i)–(vi)]. The series length is n = 250; 1000 replications were performed.
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the sign-and-rank-based methods over their “purely rank-based” competitors re-
mains quite substantial (at θ = −0.05 and θ = −0.10, Wilcoxon tests only yield
empirical powers 0.4360 and 0.8250). Quite understandably, this superiority of
the sign-and-rank methods over their competitors fades away under moderately
skewed densities (see Figure 2, where it is less pronounced than in Figure 1), but
it remains extremely substantial in Figures 4–6.
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